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Abstract7

Field experiments are a key source of data and knowledge in agricultural research. An8

emerging practice is to compile the measurements and results of these experiments (rather9

than the results of publications, as in meta-analysis) into global datasets. Our aim in the10

present study was to provide several methodological paths related to the design of global11

datasets. We considered 37 field experiments as the use case for designing a global dataset12

and illustrated how tidying and disseminating the data are the first steps towards open13

science practices. We developed a method to identify complete factorial designs within14

global datasets using tools from graph theory. We discuss the position of global datasets in15

the continuum between data and knowledge, compared to other approaches such as meta-16

analysis. We advocate using global datasets more widely in agricultural research.17
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Introduction18

Field experiments, whether conducted on farms or at experimental research stations, have19

traditionally been the primary approach for acquiring knowledge in crop sciences (Maat,20

2011). Yet, extrapolating applicable principles from localized experiments remains a chal-21

lenging task (Makowski et al., 2014). To derive general rules about agroecosystem function-22

ing, meta-analysis, i.e. a “statistical analysis of a large collection of analysis results from23

individual studies to integrate the findings” (Glass, 1976), is typically employed. Alter-24

natively, global datasets, corresponding to the aggregation of observations from numerous25

experiments, can serve as another valuable tool for analyzing agronomic data. Distinguish-26

ing themselves from meta-analyses, global datasets compile raw experimental results on a27

detailed scale, such as repeated measurements on individuals or multiple state variables on28

the canopy. In contrast, meta-analysis is typically restricted to published results with a29

limited set of variables.30

Although examples of comprehensive agronomic datasets exist (Kattge et al., 2011; New-31

man and Furbank, 2021), only a few studies have been based on global datasets (Licker et32

al., 2010; Lobell et al., 2020; Newman and Furbank, 2021) with even less focus on methods33

for this type of datasets in crop science (Senft et al., 2022). One significant advantage of34

agronomic global datasets relies on the fact that they include diverse phenotypic observa-35

tions from varying soils and climates, enabling more reliable generalization of local findings36

(Tardieu, 2020). These datasets reduce the risk of spurious correlations (Tardieu, 2020) and37

maximize the utility of experimental data yet to be used in scientific publications (Zamir,38

2013).39

However, global datasets come with their own challenges. Assembling these datasets requires40

extensive data collection, standardization, and homogenization across diverse experiments41

conducted by different research teams (White and Van Evert, 2008; Makowski et al., 2014).42

The different field experiments often have diverse objectives, leading to unbalanced and43

incomplete designs. Confounding factors, i.e. the unintended mixing of two or more effects44

making them indistinguishable, can also be challenging (Casler, 2015). Consequently, using45

and analyzing global datasets require a thorough understanding of the dataset, judicious in-46

terpretation of results, identification of balanced data subsets for specific research questions,47

and acceptance that the effects of some factors may remain indistinguishable. Therefore,48

the application of statistical learning techniques on global datasets is only feasible after49

extensive data pre-processing.50

Despite these challenges, crop science would greatly benefit from the study of global datasets51

combining multiple experiments (White and Van Evert, 2008; Zamir, 2013; Cruz and Nasci-52
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mento, 2019). This approach is particularly relevant considering the current agricultural53

landscape, where crop diversification is crucial for sustainable farming (Duru et al., 2015).54

This diversification mandates extensive experimentation, requiring robust data-federation55

efforts. The joint analysis of global datasets makes it possible to understand the context-56

dependent nature of diverse experiments and enhances comprehension of the interaction57

between crop diversity and agroecosystem functioning.58

To achieve this, we recommend adopting practices for designing and analyzing global59

datasets that align with tidy data (Wickham, 2014; Broman and Woo, 2018) and FAIR60

principles (Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al., 2016). As61

a use case, we illustrate the design of a global dataset for intercropping systems, in which62

at least two crop species are grown in the same field for a significant part of their growth63

cycle. We describe the main steps involved in designing a global dataset gathering 3764

intercropping experiments across Europe. We also describe and apply an original method65

for identifying factorial designs, which is a key step in assisting modeling and analysis66

steps.67

Designing global datasets68

This section presents the generic steps involved in designing a global dataset. As the gath-69

ering, cleaning, and formatting of the spare source datasets is time-consuming, we followed70

tidy data specifications (Wickham, 2014) and a global data science workflow as presented71

by Wickham and Grolemund (2016) (Figure 1).72
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Raw files

Experiment 1 
{file_1, file_2, file_i }

Experiment n 
{file_1, file_2, file_j }

Standardized files

Experiment 1 
{file_std_1}

Experiment n 
{file_std_n }

Global dataset

Data
{table_1, table_2, table_n}

Metadata

Import

Tidy

Understand

Communicate

Support analysis

Visualize and edit
Visual exploration of the dataset
Identify errors and outliers in original data

Design
Identify subsets of data supporting statistics

Share data

Gather and tidy datasets

Distribute
Credit data producers 
Open-data with FAIR principles

73

Figure 1. Main steps for designing global datasets. The left column corresponds to a74

classical data science workflow. We adapted these steps for global dataset design specificities,75

to illustrate the importance of data gathering, tidying, and sharing (dotted frame). While some76

actions supporting subsequent data analysis are generic (visualization, editing), most depend77

on the chosen analysis strategy.78
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1. Gathering and tidying datasets79

Overall, the aim of this gathering and tidying step is to transform a highly heterogeneous set80

of tables scattered in various files according to the logic of each practitioner into a structured81

and documented set of rectangular files.82

In a first step, the research groups that conducted the experiments whose features are in-83

teresting for a global dataset shall be identified and contacted. While the data processing84

step is often known to be very time-consuming in the overall data science workflow (Wick-85

ham, 2014), this contact and convincing step is also very long, with potential disappointing86

responses (Popkin, 2019).87

Then, a basic database model for the global dataset has to be developed. This step in-88

volves defining the structure of a database, including the number of tables needed and the89

relationships between them. It also involves describing the metadata, such as the variables90

measured or collected, their definitions, and units.91

Using this database model, the raw experimental files are standardized, from various spread-92

sheet formats into a single and coherent dataset. In crop science, operating by field exper-93

iment makes the whole process easier, by focusing standardization efforts on a set of files94

sharing common properties (illustrated by moving from raw to standardized files in Fig-95

ure 1). These standardized files are then combined and documented to make the data96

“analysis-friendly” (Wilson et al., 2017), which enables detection of errors and data explo-97

ration, validation and analysis. A good practice is to work with “tidy” data which is a98

standard way of mapping the meaning of a dataset to its structure (Wickham, 2014). A99

dataset is messy or tidy depending on how rows, columns and tables are matched up with100

observations, variables and types. In tidy data, every column is a variable, every row is an101

observation, and every cell is a single value. Messy data is any other arrangement of the102

data (Wickham and Grolemund, 2016; Broman and Woo, 2018).103

2. Distributing datasets104

While there are relatively few incentives to share agronomical (Senft et al., 2022) or eco-105

logical (Jenkins et al., 2023) datasets, requirements and practices need to evolve. The106

ability to easily disseminates data is thus a key feature in designing a dataset, since it107

determines how other researchers will be able to interact with the data, and potentially in-108

crease its reuse. Open data should be designed in accordance with the FAIR data principles109

(https://force11.org/info/the-fair-data-principles/).110
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When discussing with the involved research groups, one recurrent constraint to open their111

data was the perception that their contribution could not be credited unless sharing author-112

ship in research articles. If applied consistently, open-data FAIR requirements will allow113

contributors to be specifically acknowledged for their work, through citation of the dataset114

they contributed to (Jenkins et al., 2023).115

3. Supporting analysis116

Once the data are in a tractable format, visual exploration allows for a comprehensive117

overview of data patterns, aiding in the identification of anomalies such as errors and outliers118

that may not be immediately apparent through numerical analysis alone.119

Later, additional processes are required to render the dataset operational for analytical120

and modeling studies, such as data imputation, dimension reduction, or data normaliza-121

tion. Because these steps depend largely on the chosen analytical workflow, they are not122

directly included in the communicated open datasets, but rather tailored by the subsequent123

analytical team (dotted frame in Figure 1).124

Nonetheless, sharing methods can support the future reuse of the dataset. In our case in125

crop ecology, we illustrated this step with the development of an original method aiming at126

identifying subsets in the overall dataset corresponding to complete factorial designs. This127

method is presented in the following section.128

Case study129

We briefly describe the features of the available field experiments to highlight their richness130

and heterogeneity (see Gaudio et al. (2021) and Mahmoud et al. (2022) for full details and131

experimental protocols; see Gaudio et al. (2023) for the global dataset online).132

1. Intercropping context and experimental data133

Although combining results from a few experiments (usually two years, often sequential)134

is common in the intercropping literature (and more generally in crop science), no study135

includes joint analysis of dozens of experiments to infer more generic results about intercrop-136

ping functioning. To this end, we designed, built and analyzed a global dataset gathering the137

results of 37 field experiments that involved cereal-legume intercrops and the corresponding138

sole crops. Globally, the aim of these field experiments was to compare the growth and139

grain yield (t.ha-1) of multiple combinations of species grown in intercrop to their sole-crop140
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reference. The field experiments were carried in 5 European countries (France, Denmark,141

Italy, Germany and England) from 2001 to 2017 (Figure 2). The global dataset included 5142

legume species (chickpea, faba bean, lentil, lupin and pea), 3 cereal species (barley, durum143

wheat and soft wheat) and 8 resulting intercrops.144

145

Figure 2. Location of the 37 intercropping experiments gathered within the global dataset.146

2. Gathering, tidying and distributing147

To gather the 37 experiments, six research teams were contacted. For each experiment,148

several excel files were retrieved, ranging from 1 to 10 per experiment. These files differed149

by the number of spreadsheets they contained, ranging from 1 to 67. We finally collected a150

total of 86 excel files and 412 spreadsheets. These raw data were highly heterogeneous at151

all levels, whether concerning the variables (e.g. type, name, unit, measured scale) or the152

format of the file itself (e.g. one spreadsheet per date or per variable, different tables on a153

same spreadsheet, calculations and graphs within raw data files, different languages).154

7



After the step of gathering, the files were transformed into standardized rectangular data155

tables, following the tidy format and good practices (Wickham, 2014; Broman and Woo,156

2018), resulting in the creation of one given file per experiment. Each file includes 6 spread-157

sheets, in which the variables and values were placed as a function of the information they158

provided (e.g. plant functioning, climate, agricultural practices). This step resulted in the159

creation of 37 excel files (vs. 86) and 222 spreadsheets (vs. 412).160

Finally, all the files were pooled together using R software, with a final table per type of161

variable, i.e. four tables related respectively to climate, crop measurements, agricultural162

practices and global information describing the site. Overall, the global dataset contained163

308 and 299 statistical individuals (i.e. a unique combination of site * year * management)164

in intercrop and sole crop, respectively (Table 1). The number of plant characteristics was165

much larger (33351 observations, among which 12896 were measured in sole crops and 20455166

in intercrops), since several variables were measured at the crop scale, sometimes several167

times during the crop cycle.168

This global dataset, as well as the metadata associated, are available on a data repository169

in a FAIR way (Gaudio et al., 2023). Out of the 37 experiments gathered, 11 have never170

been valued before.171

Additional details on experimental designs and management practices are reported in the172

reference publications for 26 of the 37 experiments (Knudsen et al., 2004; Corre-Hellou et173

al., 2006; Hauggaard-Nielsen et al., 2008; Hauggaard-Nielsen et al., 2009a; b; Launay et al.,174

2009; Bedoussac and Justes, 2010a; b; Naudin et al., 2010, 2014; Barillot et al., 2014; Pelzer175

et al., 2016; Tang et al., 2016; Viguier et al., 2018; Kammoun et al., 2021).176

8



Table 1. Diversity of the treatments in the global dataset by factor (columns) and experiment177

(rows). Within each column, each colored rectangle is a level of the factor considered. A178

rectangle in a given row and column indicates that the corresponding experiment contains at179

least one statistical individual with the corresponding factor level.180

181

3. Supporting analysis182

The brief description of the global dataset revealed the diversity of agronomic situations183

considered (Table 1). While the experimental designs had many similarities (e.g. species184

cultivated, agricultural management), the resulting overall design did not allow an immedi-185

ate statistical analysis of the global dataset. We thus developed a method to a posteriori186

identify subsets in the global dataset corresponding to complete factorial designs. This ap-187

proach can quickly assess whether the dataset is suited to answer a set of scientific questions,188

as long as the factors of interest are sufficiently represented in the global dataset.189
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To identify the largest data subsets associated with complete factorial designs in the global190

dataset, we used tools from graph theory (Phillips et al., 2019). In graph theory, a graph 𝐺191

is a pair 𝐺 = (𝑉 , 𝐸) where 𝑉 is a set of vertices, and 𝐸 is a set of edges that connect some192

of the vertices (Table 2).193

Table 2. Definitions in graph theory used in the present study (Phillips et al., 2019)194

Term Definition

subgraph 𝐺 = (𝑉 , 𝐸) of a graph 𝐺 = (𝑉 , 𝐸) A graph whose vertex set (𝑉 ) is included in the
vertex set of 𝐺 (i.e 𝑉 ⊆ 𝑉 ) and whose edge set (𝐸)
is included in the edge set of 𝐺 (i.e 𝐸 ⊆ 𝐸)

complete graph A graph whose vertices are all connected
clique of a graph 𝐺 A complete subgraph of 𝐺
maximal clique of a graph 𝐺 A clique that cannot be extended by including one

more adjacent vertex
𝑘-partite graph A graph that can be partitioned into 𝑘 nonempty,

vertex-disjoint, edgeless subgraphs
𝑘-partite clique or 𝑘-clique A set of vertices that induces a complete 𝑘-partite

subgraph
maximal 𝑘-partite clique A 𝑘-clique that cannot be extended by including

one more adjacent vertex

Given a set of categorical variables 𝑋1, ..., 𝑋𝑘, each having values in a discrete set (i.e. ∀𝑖 =195

1, ..., 𝑘 𝑋𝑖 ∈ 𝒜𝑖 ∶= {𝑥𝑖,1, ..., 𝑥𝑖,𝑗𝑖
}, (𝑗𝑖 ∈ ℕ∗ denoting the number of levels of variable 𝑋𝑖)),196

a 𝑘-partite graph can be derived by setting 𝑉 = ⋃𝑘
𝑖=1 𝒜𝑖, (i.e. each level of each factor is a197

vertex), and 𝐸 = {(𝑥, 𝑦)| levels 𝑥 and 𝑦 observed together}.198

A factorial design is complete if, and only if, all possible combinations of the factor levels are199

present. For a graph 𝐺 = (𝑉 , 𝐸), this is equivalent to identifying a subgraph with an edge200

between each pair of vertices from independent sets (i.e. a 𝑘-clique). Thus, the challenge of201

identifying the largest complete factorial designs within a global dataset can be reduced to202

counting the number of maximal 𝑘-cliques in the graph.203

Phillips et al. (2019) developed the Maximum Multipartite Clique Enumeration (MMCE)204

algorithm to count the number of maximal multipartite cliques within a 𝑘-partite graph.205

MMCE starts from the observation that if 𝐺 is 𝑘-partite, and if another graph 𝐺′ is built206

from 𝐺 by adding all intrapartite edges, then 𝐶 is a maximal 𝑘-partite clique in 𝐺 if 𝐶207

is a maximal clique in 𝐺′ with at least one vertex in each partite set. Thus, the initial208

question is a matter of a modified problem of maximal clique enumeration, which is a 𝑁𝑃 -209

hard problem (Lawler et al., 1980). To address this issue, the MMCE algorithm uses a210

graph inflation approach, by adding all possible intrapartite edges to 𝐺. It then identifies211
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maximal cliques in the inflated graph using a procedure of Bron and Kerbosch (1973) and212

checks whether the cliques identified cover all of the partite sets. We coded MMCE in213

the R programming language (https://github.com/RemiMahmoud/kclique). Although the214

problem of identifying maximal 𝑘-partite cliques with the maximum number of vertices has215

also been shown to be 𝑁𝑃 -hard for any 𝑘 ≥ 3 (Phillips et al., 2019), the relatively few216

vertices (|𝑉 | < 300) in the global dataset allowed solutions to be found quickly.217

Here, we illustrate this method with a fictive global dataset made up from an unbalanced218

design of five environments (site*year), five crops, and two management levels (Figure 3).219

When applied on this unbalanced design, this method identified 11 maximal 3-partite cliques,220

with four examples illustrated in Figure 3. While each of these examples maximized the221

representativeness of a factor of interest (crop, environment, or management), no factorial222

design was found with two levels per factor in this fictive dataset.223

We also applied this method to address a specific issue (Mahmoud et al., 2022), in which we224

analyzed how nitrogen (N) fertilization influenced plant-plant interactions within intercrops.225

To this end, we looked for experiments that included both N-fertilized and unfertilized226

treatments by looking for a maximal 2-clique in a graph composed of two sets of vertices:227

i) field experiments and ii) N fertilization (i.e. unfertilized and N fertilized levels). The228

targeted maximal 2-clique needed to contain the two levels of the sets of N-fertilization229

vertices.230
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231

Figure 3. Four maximal 3-cliques that represent distinct complete factorial designs232

within an unbalanced design with three factors. Black edges represent the edges of the 3-233

cliques and gray edges represent the factor combinations appearing in the initial design. Despite234

the potential richness of the global dataset, there was no case where two levels of each factor235

were combined in a factorial design: network A focused on crops, network B on environments,236

network C on management, and network D on crop and management together.237
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Discussion238

One key reason to use agricultural data is to improve knowledge in crop science, as in239

other scientific fields. This can be generalized with the Data, Information, Knowledge240

and Wisdom pyramid (Ackoff, 1989), which describes the continuum between data and the241

knowledge it provides. Thus, the issue is to use appropriate methods based on the available242

data to provide insights and understanding of a studied system’s functioning. Depending on243

whether data come from experimental data or from scientific publications, methods related244

to global datasets or meta-analysis, respectively, will be used (Makowski et al., 2014), and245

both are useful for studying global issues in agronomy (Table 3). Two important issues arise246

from this observation: data availability and the knowledge that one wants to provide.247

Table 3. Overview of a comparison between meta-analysis and global datasets.248

Criterion Meta-analysis Global datasets

Scope All practices studied in multiple
scientific publications

All practices tested in multiple
experiments

Time required to collect and
tidy the data

Long to very long (dozen to hundreds
of hours)

Very long

Variables used Often standard variables (e.g. yield,
nitrogen fertilization)

All available observations
(e.g. agronomic practices,
phenotypic measurements,
climate)

Number of observations Moderate to large (dozens to
hundreds)

Large (hundreds to thousands)

Reuse Possible, but limited to the present
variables

Possible once the data are
formatted

Data sources Scientific publications Experimental files

In meta-analysis, data are available because they are already published, even if it takes a249

long time to retrieve them. Conducting a meta-analysis is thus time-consuming, especially250

the pre-analysis search and development of the database, which represent around 60% of251

the working time (Allen and Olkin, 1999). Meta-analysis requires identifying and extracting252

the values of interest from scientific publications, while being cautious to avoid potential253

bias.254

In contrast, building global datasets requires interacting with the research teams that con-255

ducted the experiments and adapting their raw experimental files to a standard format256

(Figure 1). This step itself is very likely to necessitate more time than meta-analysis data257

processing step. The main advantage of global datasets in biology is that they consist of258
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phenotypic observations, which means that the studied processes are potentially observed259

at lower levels than in meta-analysis. In this sense, global datasets could enable further in-260

vestigation of potential causalities based on correlations in the data (Garside and Bell, 2011;261

Gunawardena, 2014). Additionally, since agronomic global datasets contain plant-related262

variables measured at multiple organizational levels (e.g. organ, plant, crop), they can target263

a wide audience for data reuse. For instance, researchers developing functional–structural264

plant models (Louarn et al., 2020) may be interested in variables measured at the plant265

scale (e.g. number of tillers, inter-node length, plant height), while those who develop crop266

models to predict yields (Berghuijs et al., 2021) may be interested in variables measured at267

the crop scale (e.g. crop biomass, crop height).268

Alternatively, global datasets might have a role in increasing the discovery and use of non-269

published experimental data. In our case, almost 30% of the experimental data gathered270

have not been published through a research article. Bringing them together with other271

experiments valued the time and energy required to conduct those field experiments. It272

was also a friction point, since researchers may be reluctant to share unpublished data. For273

instance, in our use case, 11 of the 37 experiments were not included in published articles or274

database before this initiative, while each is now described within the global dataset (Gaudio275

et al., 2023) and linked back groups leading field experiments in 1-4 scientific publications276

(Gaudio et al., 2021; Louarn et al., 2021; Mahmoud et al., 2022; Meunier et al., 2022). Based277

on the global dataset developed in this study, Gaudio et al. (2021) extracted a subset of 28278

experiments to assess the influence of intercropping on the relation between plant biomass279

and grain yield; Louarn et al. (2021) extracted a subset of 15 experiments to validate the280

adaptation of Nitrogen Nutrition Index (NNI) to intercropping; Mahmoud et al. (2022)281

extracted a subset of 11 experiments to assess the influence of N fertilization on plant-plant282

interactions in intercrops; and Meunier et al. (2022) extracted a subset of 31 experiments283

to calibrate a statistical model used in a modeling chain to predict ecosystem services as a284

function of the species in cereal-legume intercrops.285

We argue that crop science can benefit from global datasets because they decrease the cost286

of data (reuse) and increase the reproducibility of studies along with open data science tools287

(Lowndes et al., 2017). Ultimately, global datasets contribute to new findings through joint288

analysis of multiple experiments - a key consideration given the pressing need for consoli-289

dating results in the context of an increasingly variable and changing climate. Despite these290

needs for advancements, the challenges associated with the data standardization and propri-291

etary rights present significant obstacles to the utilization of these global datasets in crop292

science. A tighter integration between experimental and modeling research communities is293

the first step in a way forward.294
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