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Abstract

Field experiments are a key source of data and knowledge in agricultural research. An
emerging practice is to compile the measurements and results of these experiments (rather
than the results of publications, as in meta-analysis) into global datasets. Our aim in the
present study was to provide several methodological paths related to the design of global
datasets. We considered 37 field experiments as the use case for designing a global dataset
and illustrated how tidying and disseminating the data are the first steps towards open
science practices. We developed a method to identify complete factorial designs within
global datasets using tools from graph theory. We discuss the position of global datasets in
the continuum between data and knowledge, compared to other approaches such as meta-
analysis. We advocate using global datasets more widely in agricultural research.

This preprint version of this article has been peer-reviewed and recommended by PCI Math
Comp Biol (https://doi.org/10.24072/pci.mcb.100197)
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Introduction

Field experiments, whether conducted on farms or at experimental research stations, have
traditionally been the primary approach for acquiring knowledge in crop sciences (Maat,
2011). Yet, extrapolating applicable principles from localized experiments remains a chal-
lenging task (Makowski et al., 2014). To derive general rules about agroecosystem function-
ing, meta-analysis, i.e. a “statistical analysis of a large collection of analysis results from
individual studies to integrate the findings” (Glass, 1976), is typically employed. Alter-
natively, global datasets, corresponding to the aggregation of observations from numerous
experiments, can serve as another valuable tool for analyzing agronomic data. While the
use of meta-analysis to report results is growing in crop science, it is not a mainstream
analysis method compared to reports based on a repeated (years) set of one or two field
trials. Distinguishing themselves from meta-analyses, global datasets compile raw experi-
mental results on a detailed scale, such as repeated measurements on individuals or multiple
state variables on the canopy. In contrast, meta-analysis is typically restricted to published
results with a limited set of variables.

Although examples of comprehensive agronomic datasets exist (Kattge et al., 2011; New-
man and Furbank, 2021), only a few studies have been based on global datasets (Licker et
al., 2010; Lobell et al., 2020; Newman and Furbank, 2021) with even less focus on methods
for this type of datasets in crop science (Senft et al., 2022). One significant advantage
of agronomic global datasets relies on the fact that they include diverse phenotypic ob-
servations from varying soils and climates, enabling more reliable generalization of local
findings (Tardieu, 2020). These datasets reduce the risk of spurious correlations (Krajewski
et al., 2015; Tardieu, 2020) and maximize the utility of experimental data yet to be used in
scientific publications (Zamir, 2013).

However, global datasets come with their own challenges. Assembling these datasets requires
extensive data collection, standardization, and homogenization across diverse experiments
conducted by different research teams (White and Van Evert, 2008; Makowski et al., 2014).
This tedious curation step is an undervalued task, whose duration could be reduced from
the adoption of good practices upstream. Recent efforts and international initiatives aimed
at opening and standardizing data are emerging, highlighting that data standardization
is crucial for improving the interpretation of experimental results and the generalization
of knowledge acquisition. It also facilitates statistical meta-analysis and data publication
(Krajewski et al., 2015). However, datasets for plant and crop measurements in controlled
field trials are still scarce in public databases. The different field experiments gathered often
have diverse objectives, leading to unbalanced and incomplete designs. Confounding factors,
i.e. the unintended mixing of two or more effects making them indistinguishable, can also
be challenging (Casler, 2015). Consequently, using and analyzing global datasets require a
thorough understanding of the dataset, judicious interpretation of the results, identification
of balanced data subsets for specific research questions, and acceptance that the effects of
some factors may remain indistinguishable. Therefore, the application of statistical learning
techniques on global datasets is only feasible after extensive data pre-processing.

Despite these challenges, crop science would greatly benefit from the study of global datasets
combining multiple experiments (White and Van Evert, 2008; Zamir, 2013; Cruz and Nasci-
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mento, 2019). This approach is particularly relevant considering the current agricultural
landscape, where crop diversification is crucial for sustainable farming (Duru et al., 2015).
This diversification mandates extensive experimentation, requiring robust data-federation
efforts. The joint analysis of global datasets makes it possible to understand the context-
dependent nature of diverse experiments and enhances comprehension of the interaction
between crop diversity and agroecosystem functioning.

To achieve this, we recommend adopting practices for designing and analyzing global
datasets that align with tidy data (Wickham, 2014; Broman and Woo, 2018) and FAIR
principles (Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al., 2016). As
a use case, we illustrate the design of a global dataset for intercropping systems, in which
at least two crop species are grown in the same field for a significant part of their growth
cycle. We describe the main steps involved in designing a global dataset gathering 37
intercropping experiments across Europe. We also describe and apply an original method
to identify complete factorial design subsets of interest. This methodological development
was aimed at helping the potential collaborators to explore and get an overview of the
dataset as a function of their factor of interest, a key step in assisting further modeling and
analysis steps.

Our global aim was to describe our workflow in a realistic manner, hoping to promote these
practices and to encourage the scientific community to move towards a more open approach
to conducting experimental science in agronomy, making it more reproducible and shared.

Design steps of global datasets

This section presents the generic steps involved in designing a global dataset. As the gath-
ering, cleaning, and formatting of the spare source datasets is time-consuming, we followed
tidy data specifications (Wickham, 2014) and a global data science workflow as presented
by Wickham and Grolemund (2016) (Figure 1).
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Raw files

Experiment 1 
{file_1, file_2, file_i }

Experiment n 
{file_1, file_2, file_j }

Standardized files

Experiment 1 
{file_std_1}

Experiment n 
{file_std_n }

Global dataset

Data
{table_1, table_2, table_n}

Metadata

Import

Tidy

Understand

Communicate

Support analysis

Visualize and edit
Visual exploration of the dataset
Identify errors and outliers in original data

Design
Identify subsets of data supporting statistics

Share data

Gather and tidy datasets

Distribute
Credit data producers 
Open-data with FAIR principles

Figure 1. Main steps for designing global datasets. The left column corresponds to a
classical data science workflow. We adapted these steps for global dataset design specificities,
to illustrate the importance of data gathering, tidying, and sharing (dotted frame). While some
actions supporting subsequent data analysis are generic (visualization, editing), most depend
on the chosen analysis strategy.

1. Gather and tidy source datasets

1.1. Conceptual framework

Overall, the aim of this gathering and tidying step is to transform a highly heterogeneous
set of tables, scattered in various files according to the logic of each practitioner, into a
structured and documented set of rectangular files.

In a first step, the research groups that conducted the experiments whose features are in-
teresting for a global dataset shall be identified and contacted. While the data processing
step is often known to be very time-consuming in the overall data science workflow (Wick-
ham, 2014), this contact and convincing step is also very long, with potential disappointing
responses (Popkin, 2019).

Then, a basic database model for the global dataset has to be developed. This step in-
volves defining the structure of a database, including the number of tables needed and the
relationships between them. It also involves describing the metadata, such as the variables
measured or collected, their definitions, and units.

Using this database model, the raw experimental files are standardized, from various spread-
sheet formats into a single and coherent dataset. In crop science, operating by field exper-
iment makes the whole process easier, by focusing standardization efforts on a set of files
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sharing common properties (illustrated by moving from raw to standardized files in Fig-
ure 1). These standardized files are then combined and documented to make the data
“analysis-friendly” (Wilson et al., 2017), which enables detection of errors and data explo-
ration, validation and analysis. A good practice is to work with “tidy” data which is a
standard way of mapping the meaning of a dataset to its structure (Wickham, 2014). A
dataset is messy or tidy depending on how rows, columns and tables are matched up with
observations, variables and types. In tidy data, every column is a variable, every row is an
observation, and every cell is a single value. Messy data is any other arrangement of the
data (Wickham and Grolemund, 2016; Broman and Woo, 2018).

1.2. Case study

Although combining results from a few experiments (usually two years, often sequential)
is common in the intercropping literature (and more generally in crop science), no study
includes joint analysis of dozens of experiments to infer more generic results about intercrop-
ping functioning. To this end, we designed, built and analyzed a global dataset gathering the
results of 37 field experiments that involved cereal-legume intercrops and the corresponding
sole crops. Globally, the aim of these field experiments was to compare the growth and
grain yield (t.ha-1) of multiple combinations of species grown in intercrop to their sole-crop
reference. The field experiments were carried in 5 European countries (France, Denmark,
Italy, Germany and England) from 2001 to 2017. The global dataset included 5 legume
species (chickpea, faba bean, lentil, lupin and pea), 3 cereal species (barley, durum wheat
and soft wheat) and 8 resulting intercrops, i.e. i) barley associated with faba bean, lupin
or pea, ii) durum wheat associated with chickpea, faba bean or pea, and iii) soft wheat
associated with lentil or pea.

To gather the 37 experiments, six research teams were contacted. For each experiment,
several spreadsheet files (all in Excel format) were retrieved, ranging from 1 to 10 per
experiment. These files differed by the number of sheets they contained, ranging from 1
to 67. We finally collected a total of 86 excel files (412 sheets). These raw data were
highly heterogeneous at all levels, whether concerning the variables (e.g. type, name, unit,
measured scale) or the format of the file itself (e.g. one sheet per date or per variable,
different tables on a same sheet, calculations and graphs mixed with raw data cells, different
languages and encoding format).

Aiming at improving machine and human readability (Wilson et al., 2017), variable names
were chosen to be as explicit as possible. We settled for composite names separated by
underscore and containing: as few abbreviations as possible, a reference to the organizational
levels (organs: leaf, shoot; individuals: plants; population: crop), and a reference to the
variable itself (biomass, number, length). After gathering step, the information of the
files was transformed into standardized rectangular data tables, following a tidy format
(Wickham, 2014) and recommended practices of data organization in spreadsheets (Broman
and Woo, 2018), resulting in the creation of one given file per experiment. The measured
values were not normalized (for e.g. spatial field or experimenter effects) as the information
on experimental design type and structure was only accessible in very few trials. Each file
included 6 sheets with one table per sheet, defined as a function of the category of data they

5



provided (e.g. plant functioning, climate, agricultural practices). This step resulted in the
creation of 37 excel files (vs. 86) and 222 sheets (vs. 412).

Finally, all the files were pooled together using R software, to create one global table per data
category, i.e. four tables related respectively to climate, crop measurements, agricultural
practices and global information describing the site (Figure 2). Overall, the global dataset
contained 308 and 299 statistical individuals (defined as a unique combination of {site * year
* management}) in intercrop and sole crop, respectively (Table 1). The number of plant
characteristics was much larger (33351 observations, among which 12896 were measured in
sole crops and 20455 in intercrops), since several variables were measured at the crop scale,
sometimes several times during the crop cycle.

country site plot_name year experiment_id + 9 columns describing 
the characteristics of 
the experiment_id

country1 site1 plot1 year1 site1_plot1_year1 …

country1 site2 plot2 year2 site2_plot2_year2 …

… … … … … …

data_trials.csv (37 observations)

experiment_id reference linked to original 
experiments

experiment_id1 doi1

experiment_id2 doi2

… …

references.xlsx (37 observations)

data_management.csv (915 observations)

experiment_id management + 28 columns describing agricultural 
practices defining the management

experiment_id1 M1 …

experiment_id1 M2 …

… … …

experiment_id date + 7 columns for the 
climate variables

experiment_id1 date1 …

experiment_id1 date2 …

… … …

data_traits.csv (33.351 observations)

experiment_id management + 12 columns describing main 
data_management information

measurement_date variable value

experiment_id1 M1 … date1 variable1 x1

experiment_id1 M1 … date2 variable1 x2

… … … … … …

data_climate.csv (27.024 observations)

Figure 2. Representation of the relationships between tables identified in the
global dataset. Five tables were defined to organize data, all sharing a common identi-
fier (experiment_id, which is the concatenation of the site_plot_year of each experiment).
The table data_trials.csv provides the main characteristics (e.g. latitude/longitude, soil tex-
ture) of each site, with one line per experiment (37 observations). The table data_climate.csv
provides the climate time series during the growing season for each experiment (27.024 ob-
servations), retrieved using a gridded API (NASA POWER API, Sparks (2018)). The table
data_management.csv describes the different agricultural practices used in each experimenta-
tion (e.g. species grown in sole- or intercrop, genotype, fertilization). The table data_traits.csv
provides all the plant variables and their value as a function of time (measurement) per man-
agement and experiment (33.351 observations). Finally, the table references.xlsx provides the
initial experimental references linked to each experiment (when existing).
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Table 1. Overview of the diversity of the treatments in the global dataset by
factors (columns) and experiments (rows). Within each column, each colored rectangle
is a level of the factor considered. For instance, the two colors for the Mixing pattern indicate
that the two species intercropped were sown in alternate rows or within the row; the two
colors for the Nitrogen (N) fertilization indicate that the experiment included at least two N-
treatments (no fertilization and N-fertilization, the latter of which may include several amounts
of N); regarding Species mixture, the number of colors indicates the number of different species
mixtures included in a given experiment. A rectangle in a given row and column indicates that
the corresponding experiment contains at least one statistical individual with the corresponding
factor level.
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2. Share organized data

While there are relatively few incentives to share agronomical (Senft et al., 2022) or ecolog-
ical (Jenkins et al., 2023) datasets, requirements and practices need to evolve (Krajewski
et al., 2015). The ability to easily disseminates data is thus a key feature in designing a
dataset, since it determines how other researchers will be able to interact with the data, and
potentially increase its reuse. Open data should be designed in accordance with the FAIR
data principles (https://force11.org/info/the-fair-data-principles/).

When discussing with the involved research groups, one recurrent constraint to open their
data was the perception that their contribution could not be credited unless sharing author-
ship in research articles. If applied consistently, open-data FAIR requirements will allow
contributors to be specifically acknowledged for their work, through citation of the dataset
they contributed to (Jenkins et al., 2023).

This global dataset, as well as the metadata associated, are available on a data repository
in a FAIR way (Gaudio et al., 2023). Out of the 37 experiments gathered, 11 have never
been valued before. Additional details on experimental designs and management practices
are reported in the reference publications for 26 of the 37 experiments (Knudsen et al., 2004;
Corre-Hellou et al., 2006; Hauggaard-Nielsen et al., 2008; Hauggaard-Nielsen et al., 2009a;
b; Launay et al., 2009; Bedoussac and Justes, 2010a; b; Naudin et al., 2010, 2014; Barillot
et al., 2014; Pelzer et al., 2016; Tang et al., 2016; Viguier et al., 2018; Kammoun et al.,
2021).

3. Support new analysis

3.1. Conceptual framework

Once the data are in a tractable format, visual exploration allows for a comprehensive
overview of data patterns, aiding in the identification of anomalies such as errors and outliers
that may not be immediately apparent through numerical analysis alone. Later, additional
processes are required to render the dataset operational for analytical and modeling studies,
such as data imputation, dimension reduction, or data normalization. Because these steps
depend largely on the chosen analytical workflow, they are not directly included in the com-
municated open datasets, but rather tailored by the subsequent analytical team (Figure 1).
Nonetheless, sharing methods can support the future reuse of the dataset. In our case in
crop ecology, we illustrated this step with the development of an original method aiming at
identifying subsets in the overall dataset corresponding to complete factorial designs.

3.2. Case study

Method

The brief description of the global dataset revealed the diversity of agronomic situations
considered (Table 1). While the experimental designs share many similarities (e.g. species
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cultivated, agricultural practices), the resulting overall design is unbalanced. We thus de-
veloped a method to a posteriori identify subsets in the global dataset corresponding to
complete factorial designs. This approach can quickly assess whether the dataset is suited
to answer a set of scientific questions, as long as the factors of interest are sufficiently
represented in the global dataset. The role of this method was not to identify potential
confounding factors, which is left for the interpretation of the results of further statistical
analysis

To identify the largest data subsets associated with complete factorial designs in the global
dataset, we used tools from graph theory (Phillips et al., 2019). In graph theory, a graph 𝐺
is a pair 𝐺 = (𝑉 , 𝐸) where 𝑉 is a set of vertices, and 𝐸 is a set of edges that connect some
of the vertices (Table 2).

Table 2. Definitions in graph theory used in the present study.

Term Definition

subgraph 𝐺 = (𝑉 , 𝐸) of a graph 𝐺 = (𝑉 , 𝐸) A graph whose vertex set (𝑉 ) is included in the
vertex set of 𝐺 (i.e. 𝑉 ⊆ 𝑉 ) and whose edge set
(𝐸) is included in the edge set of 𝐺 (i.e 𝐸 ⊆ 𝐸)

complete graph A graph whose vertices are all connected
clique of a graph 𝐺 A complete subgraph of 𝐺
maximal clique of a graph 𝐺 A clique that cannot be extended by including one

more adjacent vertex
𝑘-partite graph A graph that can be partitioned into 𝑘 non-empty,

vertex-disjoint, edgeless subgraphs
𝑘-partite clique or 𝑘-clique A set of vertices that induces a complete 𝑘-partite

subgraph
maximal 𝑘-partite clique A 𝑘-clique that cannot be extended by including

one more adjacent vertex

Given a set of categorical variables 𝑋1, ..., 𝑋𝑘, each having values in a discrete set (i.e.
∀𝑖 = 1, ..., 𝑘 𝑋𝑖 ∈ 𝒜𝑖 ∶= {𝑥𝑖,1, ..., 𝑥𝑖,𝑗𝑖

}, (𝑗𝑖 ∈ ℕ∗ denoting the number of levels of variable
𝑋𝑖)), a 𝑘-partite graph can be derived by setting 𝑉 = ⋃𝑘

𝑖=1 𝒜𝑖 (i.e. each level of each factor
is a vertex) and 𝐸 = {(𝑥, 𝑦)| levels 𝑥 and 𝑦 observed together}.
A factorial design is complete if, and only if, all possible combinations of the factor levels are
present. For a graph 𝐺 = (𝑉 , 𝐸), this is equivalent to identifying a subgraph with an edge
between each pair of vertices from independent sets (i.e. a 𝑘-clique). Thus, the challenge
of identifying the largest complete factorial designs within a global dataset can be reduced
to counting the number of maximal 𝑘-cliques in the graph.

Phillips et al. (2019) developed the Maximum Multipartite Clique Enumeration (MMCE)
algorithm to count the number of maximal multipartite cliques within a 𝑘-partite graph.
MMCE starts from the observation that if 𝐺 is 𝑘-partite, and if another graph 𝐺′ is built
from 𝐺 by adding all intrapartite edges, then 𝐶 is a maximal 𝑘-partite clique in 𝐺 if 𝐶
is a maximal clique in 𝐺′ with at least one vertex in each partite set. Thus, the initial
question is a matter of a modified problem of maximal clique enumeration, which is a 𝑁𝑃 -
hard problem (Lawler et al., 1980). To address this issue, the MMCE algorithm uses a
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graph inflation approach, by adding all possible intrapartite edges to 𝐺. It then identifies
maximal cliques in the inflated graph using a procedure of Bron and Kerbosch (1973) and
checks whether the cliques identified cover all of the partite sets. We coded MMCE in
the R programming language (https://github.com/RemiMahmoud/kclique). Although the
problem of identifying maximal 𝑘-partite cliques with the maximum number of vertices has
also been shown to be 𝑁𝑃 -hard for any 𝑘 ≥ 3 (Phillips et al., 2019), the relatively few
vertices (|𝑉 | < 300) in the global dataset allowed solutions to be found quickly.

Application

Here, we illustrate this method with two datasets : (1) a theoretical one, where we generated
an unbalanced design of five environments, five intercrops, and two management levels
(Figure 3A); and (2) a practical one, corresponding to the global dataset presented in this
study (Figure 3B and 3C).

When applied on the theoretical unbalanced design (Figure 3A), this method identified
8 maximal 3-partite cliques, each of these designs having different number of modalities
in considered factors (environment, intercrops or management). There is only one design
maximizing the number of environments, and no factorial design was found with two levels
per factor.
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Figure 3. Three maximal k-cliques that represent distinct complete factorial de-
signs within theoretical (A) and experimental (B-C) unbalanced designs. Black
edges represent the edges of the cliques and gray edges represent the factor combinations ap-
pearing in the initial design. In the case A, we generated a random unbalanced design for three
factors and illustrated the 3-clique maximizing the number of environments. The experimental
design in the cases B and C corresponds to the aggregation of the 37 experimentations (blue
nodes). In case B, we searched for any intercrop observed at least in two environments. In
case C, there was an additional constraint on two levels of nitrogen (N) fertilization. Countries
were abbreviated with their ISO 3166 codes; species were abbreviated as barley (bar), chickpea
(cp), durum wheat (dw), faba bean (fb), lentil (len), lupin (lup), soft wheat (sw); nitrogen
fertilization was abbreviated as N0 for no fertilization, and N for fertilization.
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We considered two examples for the application on the agronomic global dataset. In the
first one, we searched for any number of intercrops observed at least in two environments.
Two designs were identified: the one with the most environmental modalities is illustrated
in Figure 3B; the alternative design was, crossing {environments} x {intercrops}, {FR_22,
FR_21} x {dw/pea, dw/fb}. The second example was the same request with an additional
constraint on two levels of nitrogen (N) fertilization. In this case, three designs were iden-
tified, the largest one being illustrated in Figure 3C. The alternative designs were, crossing
{environments} x {intercrops} x {N-fertilization}, {FR_9, FR_5, FR_22} x {dw/pea} x
{N0, N} and {FR_22, FR_20, FR_16} x {dw/fb} x {N0, N}.

Discussion

One key reason to use agricultural data is to improve knowledge in crop science, as in
other scientific fields. This can be generalized with the Data, Information, Knowledge
and Wisdom pyramid (Ackoff, 1989), which describes the continuum between data and the
knowledge it provides. Thus, the issue is to use appropriate methods based on the available
data to provide insights and understanding of a studied system’s functioning. Depending on
whether data come from experimental data or from scientific publications, methods related
to global datasets or meta-analysis, respectively, will be used (Makowski et al., 2014). Both
are useful for studying global issues in agronomy (Table 3). Two important issues arise from
this observation: data availability and the knowledge that one wants to provide.

Table 3. Overview of a comparison between meta-analysis and global datasets.

Criterion Meta-analysis Global datasets

Scope All practices studied in multiple
scientific publications

All practices tested in multiple
experiments

Time required to collect and
tidy the data

Long to very long (dozen to hundreds
of hours)

Very long

Variables used Often standard variables (e.g. yield,
nitrogen fertilization)

All available observations (e.g.
agronomic practices, phenotypic
measurements, climate)

Number of observations Moderate to large (dozens to
hundreds)

Large (hundreds to thousands)

Reuse Possible, but limited to the present
variables

Possible once the data are
formatted

Data sources Scientific publications Experimental files

In meta-analysis, data are available because they are already published, even if it takes a
long time to retrieve them. Conducting a meta-analysis is thus time-consuming, especially
the pre-analysis search and development of the database, which represent around 60% of
the working time (Allen and Olkin, 1999). Meta-analysis requires identifying and extracting
the values of interest from scientific publications, while being cautious to avoid potential
bias.

In contrast, building global datasets requires interacting with the research teams that con-
ducted the experiments and adapting their raw experimental files to a standard format
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(Figure 1). This step itself is very likely to necessitate more time than meta-analysis data
processing step, and would greatly benefit from improved upstream data standardization
practices (Krajewski et al., 2015). The main advantage of global datasets in biology is
that they consist of phenotypic observations, which means that the studied processes are
potentially observed at lower levels than in meta-analysis. In this sense, global datasets
could enable further investigation of potential causalities based on correlations in the data
(Garside and Bell, 2011; Gunawardena, 2014). Additionally, since agronomic global datasets
contain plant-related variables measured at multiple organizational levels (e.g. organ, plant,
crop), they can target a wide audience for data reuse. For instance, researchers develop-
ing functional–structural plant models (Louarn et al., 2020) may be interested in variables
measured at the plant scale (e.g. number of tillers, inter-node length, plant height), while
those who develop crop models to predict yield (Berghuijs et al., 2021) may be interested
in variables measured at the crop scale (e.g. crop biomass, crop height).

Alternatively, global datasets might have a role in increasing the discovery and use of non-
published experimental data. In our case, almost 30% of the experimental data gathered
have not been published through a research article. Bringing them together with other
experiments valued the time and energy required to conduct those field experiments. It
was also a friction point, since researchers may be reluctant to share unpublished data. For
instance, in our use case, 11 of the 37 experiments were not included in published articles
or database before this initiative, while each is now described within the global dataset
(Gaudio et al., 2023) and linked back groups leading field experiments in 1-4 scientific
publications (Gaudio et al., 2021; Louarn et al., 2021; Mahmoud et al., 2022; Meunier et al.,
2022). Based on the global dataset developed in this study, Gaudio et al. (2021) extracted
a subset of 28 experiments to assess the influence of intercropping on the relation between
plant biomass and grain yield; Louarn et al. (2021) extracted a subset of 15 experiments to
validate the adaptation of Nitrogen Nutrition Index (NNI) to intercropping; Mahmoud et al.
(2022) extracted a subset of 11 experiments to assess the influence of nitrogen fertilization
on plant-plant interactions in intercrops; and Meunier et al. (2022) extracted a subset of 31
experiments to calibrate a statistical model used in a modeling chain to predict ecosystem
services as a function of the species associated in cereal-legume intercrops.

We argue that crop science can benefit from global datasets because they decrease the cost
of data (reuse) and increase the reproducibility of studies along with open data science
tools (Lowndes et al., 2017). Ultimately, global datasets contribute to new findings through
joint analysis of multiple experiments - a key consideration given the pressing need for
consolidating results in the context of an increasingly variable and changing climate. Despite
these needs for advancements, the challenges associated with the data standardization and
proprietary rights present significant obstacles to the building of these global datasets in crop
science. A tighter integration between experimental and modeling research communities is
the first step in a way forward.
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