Ecophysiological modelling of plantnematode interactions to understand *(nnia* plant tolerance

Joseph Penlap^{*1,2}, Suzanne Touzeau^{1,2}, Frédéric Grognard¹ and Valentina Baldazzi^{1,2}

¹Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, France

²Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France | *joseph.penlap@inria.fr

1. Context

Root-knot nematodes (RKN), Meloidogyne spp.

- small soil worms, obligate root endoparasites
- clonal reproduction
- ubiquitous polyphagous pest
- 14% of global crop losses worldwide [1] [1] Djian-Caporalino, *EPPO Bulletin*, 2012

Symptoms

- wilting and root deformation (galls)
- stunted growth
- reduced water and nutrient uptake
- hijacking of plant resources (carbon)

2. Research question

Strong variability in plant response to RKN parasitism among species & cultivars

Which mechanisms underlie plant tolerance?

3. Integrated plant-pest model

Pest

- RKN stages:
 - eggs
 - free-living larvae J2
 - within-root larvae
 - mature females
- RKN demography

Plant

- Plant compartments: fruit, shoot, root
- Vegetative and reproductive phases
- Plant resources: carbon and water
- Resource uptake and transport

Plant-RKN interactions

Plant model

Approach

- experimental data (tomato, cucurbit, pepper) with and without RKN
- model coupling plant ecophysiology and pest population dynamics

4. Model calibration

Experimental tomato data (ongoing)

Transport Growth Respiration Rhizodeposition RKN feeding Gall formation

$$\begin{cases}
\frac{dJ}{dt} = \underbrace{\Omega(C_r)\beta J_2 W_r}_{RKN \text{ entry}} - \underbrace{\eta J}_{Maturation} -\underbrace{(\mu_j + \mu_r)J}_{Mortality} \\
\frac{dF}{dt} = \underbrace{\theta(C_r)\eta J}_{Maturation} -\underbrace{(\mu_F + \mu_r)F}_{Mortality}
\end{cases}$$

5. Perspectives

- Identify key physiological and architectural traits underlying plant tolerance to guide the selection of new tolerant cultivars
- Long-term dynamics: effect of plant tolerance, cultural practices (rotations, etc.) and abiotic conditions on soil infestation and crop damages [2]

[2] Nilusmas et al., Evolutionary Applications, 2020