

INRAC CAGIR

INP Ensat L'AgroToulouse

Terres Inovio

World Soybean Research Conference 18 – 23 June 2023 **Vienna | Austria** Using simple cultivar phenotyping and photothermal algorithm to explore the suitability of soybean crop in France

Pactole Plant2Pro

D. Bourgeois¹, L. Kang¹, A. Duchalais¹, C. Schoving^{1,2}, J. Constantin¹, L. Champolivier², P. Maury^{3,} <u>P. Debaeke¹</u>

> ¹INRAE ²Terres Inovia ³ENSAT Toulouse (France)

Development of soybean in France

1981-2010

- Including more legumes into cereal-based rotations (N economy + other ecosystem services)
- Soybean : a summer crop with no N fertilization and low pesticides (29 % under OF)
- Search for protein self-sufficiency by domestic production

Moving northward from traditional regions (SW, NE)

2040-2069

Maturity groups

- 0000

000

00

- none

Nendel *et al* (2023), GCB

from 37 000 ha (2012) to 187 000 ha (2020)

A tool for evaluating crop suitability

- A need for a simple phenological model for predicting the main growth stages and evaluate the feasability of soybean varieties :
 - In regions where soybean is presently poorly developed (but could expand with climate change)
 - As a sequential double crop in regions with available water during summer
 - To optimize sowing date and choice of maturity group
- This tool should be calibrated easily with data from controlled conditions (from a given site) or from a network of field experiments well distributed in a country (*e.g.* France)

A simple photo-thermal algorithm (SPA)

On a daily basis

$$R_{dev} = R_{dev.max} \times f(T) \times f(P)$$

Rdev = rate of development f(T) = temperature factor, 0-1 f(P) = photoperiod factor, 0-1

Under optimal conditions $R_{dev} = R_{dev.max}$ Under T or P limiting conditions $R_{dev} < R_{dev.max}$

Schoving *et al.* (2020), *Front Plant Sci* **10**: 1755

7 parameters for calibrating SPA

Name	Unit	Abbreviation	Origin of data
Minimum temperature of development	(ºC)	ТО	EXP1
Optimal temperature of development	(ºC)	Topt	EXP1
Maximum temperature of development	(ºC)	Tmax	EXP1
Optimal daylength for maximum development	(h)	Popt	Setyono <u><i>et al</i></u> (2007)
Critical daylength for zero development	(h)	Pcrt	Setyono <u><i>et al</i></u> (2007)
Physiological development days in optimal conditions of temperature and photoperiod	d	PDDopt _{c,p}	EXP2 + Optimization
Sensitivity coefficient to the photoperiod	unitless	S	EXP2 + Optimization

Schoving et al (2020)

5

EXP 1. Response to temperature

Cardinal temperatures are similar for all the plant development processes (Parent et al., 2010) → determination of the rate and speed of seed germination in climatic chambers (incubators) is a simple method for testing the response of numerous varieties to temperature

4 x 25 seeds per genotype 11 temperatures from 3° to 43 °C

$$R_{dev} = R_{dev,max} \times f(T) \times f(P)$$

EXP 2. Response to photoperiod

Daylength (h)

7

Phasic thermal time

cv.Symbala (II)

 $R_{dev} = R_{dev,max} \times f(T) \times f(P)$

R1

R5 R7

2013-2018 (4 years) - SW France

RMSE = 5.6 to 9.4 daysBias = -3.5 to 4 days RRMSE = 5 to 17%Schoving et al. (2020)

Perspectives for improving SPA model and use

11

- Implementation of the effect of water stress on phenology
- Refining decision rules for sowing (soil moisture) and harvest (grain moisture)
- Coupling with decision tools for choosing areas suitable for soybean (adding other criteria for soybean growing feasability)
- Comparing two methods for calibrating SPA : platform (one site with different planting date and frequent phenology scoring) vs network (several field experiments across the country)
- Application to the feasibility of double cropping in France

See Maury et al (**board 204**) for more details on the phenotyping approach

Thank you for your attention

Acknowledgements

FRANCE

ECODIV project

agence nationale de la recherche

Technical assistance (INRAE/ENSAT) 12

Béatrice Quinquiry Nicolas Blanchet Lisa Cristofaro Soha Roukaibi Franck Pagès Pierre Perrin

Data supply (Terres Inovia)

Hélène Tribouillois Véronique Biarnès