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Abstract: Rodent and human malaria parasites cause dysbiosis in the host gut microbiome, but
whether Plasmodium species affecting birds cause dysbiosis in their hosts is currently unknown.
Here we used a model of avian malaria infection to test whether parasite infection modulates the
bird microbiome. To this aim, bird fecal microbiomes were characterized at different time points
after infection of canaries with the avian malaria parasite Plasmodium homocircumflexum. Avian
malaria caused no significant changes in the alpha and beta diversity of the microbiome in infected
birds. In contrast, we discovered changes in the composition and abundance of several taxa. Co-
occurrence networks were used to characterize the assembly of the microbiome and trajectories of
microbiome structural states progression were found to be different between infected and uninfected
birds. Prediction of functional profiles in bacterial communities using PICRUSt2 showed infection
by P. homocircumflexum to be associated with the presence of specific degradation and biosynthesis
metabolic pathways, which were not found in healthy birds. Some of the metabolic pathways with
decreased abundance in the infected group had significant increase in the later stage of infection.
The results showed that avian malaria parasites affect bacterial community assembly in the host gut
microbiome. Microbiome modulation by malaria parasites could have deleterious consequences for
the host bird. Knowing the intricacies of bird-malaria-microbiota interactions may prove helpful in
determining key microbial players and informing interventions to improve animal health.

Keywords: avian malaria; microbiome; parasite-microbiota interactions

1. Introduction

The scarcity of gut microbiome studies compared with other taxonomic groups un-
derscores a gap in our understanding of host-microbiota interactions in metazoans [1].
Next-generation sequencing and microbiome analyses in different bird species [2] provide
a significant contribution to our understanding of the diversity of microbial communities in
the gut microbiota of metazoans and a first insight into the functional contribution of bird
microbiome to host physiology [3]. Studies on the identification of extrinsic and intrinsic
factors affecting gut microbiome composition revealed that host genetics is among the
most important factors accounting for differences in the composition of gut microbiome
in wild birds [4]. The local habitat of the birds was also shown to have a large influence
on gut microbiome composition in Arctic-breeding shorebirds [5], and Brown-headed
Cowbirds [6]. The ecological implications of microbiota diversity in wild birds remain to
be explored [7].
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In addition to host genetics and environmental factors, empirical evidence shows that
parasite infection triggers changes in host microbiome [8–10]. For example, a recent study
by Videvall et al. [11] showed differential bacterial abundance in the microbiome of uropy-
gial gland of Plasmodium-infected house sparrows compared to uninfected birds. These
results suggest that Plasmodium infection may affect the abundance, but also the composi-
tion and/or diversity of commensal bacteria associated with the host. This has been shown
experimentally for murine malaria parasites [12–14]. By disrupting the microbiota-immune
system homeostasis, malaria alters the profiles of mouse gut microbiome [12–14]. Two inde-
pendent studies provided evidence that infection with rodent malaria parasites Plasmodium
yoelii [15] and Plasmodium berghei [16] resulted in alterations in the gut microbiome profile.
Similar results were reported for other apicomplexan parasites such as Eimeria spp. in
chicken [10] and Cryptosporidium parvum in goat kids [8]. Mechanistically, deviation from
immune homeostasis due to malaria infections may impact the host microbiome composi-
tion, and malaria-related changes in the composition of the microbiome may further alter
the host immunity [14], which may result in different patterns of disease susceptibility
and/or severity.

Based on morphological and mitochondrial genome features, more than 55 species of
avian malaria parasites have been described [17,18]. Host specificity of malaria parasites
varies from specialists infecting a single bird species to generalists infecting more than
300 distantly-related bird species [17–19]. Plasmodium homocircumflexum (COLL4) is known
to infect around 19 different bird species belonging to 11 families (MalAvi v. 2.5.5) [18].
The distribution of this parasite in wildlife populations is not well known, however, the
detection of P. homocircumfelxum in the European migratory birds, wintering in Africa, and
resident birds of Africa and South America regions indicates its natural occurrence (MalAvi
v. 2.5.5) [18]. Experimental infections of several bird species showed that this parasite can
be highly virulent [20–22], however, the pathologies caused by P. homocircumflexum varies in
different bird species, which might appear due to the adaptation of parasite gene expression
in the avian hosts of different species [23]. The pathogenicity of P. homocircumfelxum is
manifested by the development of severe parasitemia and/or exoerythrocytic stages in
various organs leading to death of the host [21,22].

In this study, we tested whether experimental infection of canaries (Serinus canaria do-
mestica) by the generalist avian malaria parasite P. homocircumflexum modulate the bird host
gut microbiome from acute and chronic stages of the primary infection to the beginning of
the latent stage. The results support that, as with murine and human malaria, avian malaria
parasites influence the composition and structure of commensal bacteria populations in the
host gut.

2. Material and Methods
2.1. Ethical Statement

All procedures were performed at Nature Research Centre in Vilnius, Lithuania, ac-
cording to Lithuanian and International Guiding Principles for Biomedical Research Involv-
ing Animals (2012). Infection experiments were reviewed and approved by the Lithuanian
State Food and Veterinary Service, Ref. No 2020/07/24-G2-84. The assessment of the
animal health and all described procedures were implemented by trained professionals
(under licenses 2012/02/06-No-208, 2016/01/29-No-344, and 2021/02/05-No-527).

2.2. Birds and Housing Conditions

One-year-old domestic canaries (Serinus canaria domestica) were kept in the same room
of Nature Research Centre vivarium (License No. LT-61-13-003) under standard living
conditions for birds. Experimental birds were housed in cages individually. The facilities
were under a controlled temperature of 21 ◦C throughout the duration of the experiment.
Standard food for canaries and water were provided ad libitum.
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2.3. Experimental Design

Canaries were used as a model for avian malaria infection with P. homocircumflexum
parasite. Before the experimental procedures began, birds were randomly separated in
‘infected’ and ‘control’ groups (Figure 1). Birds in the control group received blood from
uninfected bird donors. The infected group of birds received an inoculation of infectious
blood with P. homocircumflexum parasites. Every four days post-infection (DPI) blood
samples were collected and parasitemia was measured. Bird feces were collected and
used for DNA extraction and microbiome analysis using bacterial 16S rRNA amplicon
sequencing to test for an impact of malaria infection on bird gut microbiome. Experimental
procedures are described below.
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Figure 1. Experimental design. Canaries were inoculated with P. homocircumflexum-infected (n = 8) or
uninfected (n = 8) donor blood. Blood and fecal samples were collected at different time points as
indicated. Created with BioRender.com.

2.4. Thawing the Cryopreserved Avian Malaria Sample

The cryopreserved P. homocircumflexum strain COLL4 was thawed and used to infect
donor canaries. Samples containing P. homocircumflexum-infected avian blood, cryopre-
served in liquid nitrogen, were thawed as described by Dimitrov et al. [24]. Briefly, thawed
samples were mixed with 12% NaCl (1/3 of thawed sample amount). After 5 min equili-
bration, one volume of 1.6% of NaCl was added followed by centrifugation at 1400 rpm for
5 min. After centrifugation, the supernatant was removed and 1.6% NaCl (1/3 of original
sample) was added and centrifuged again. The same procedure was repeated three times
with 0.9% NaCl solution. The final mixture was diluted with 0.9% NaCl and sub-inoculated
into two donor canaries.

2.5. Experimental Infection of Birds

Birds from one group (n = 8) were experimentally infected with P. homocircumflexum
using the protocol described by Palinauskas et al. [25]. Each experimental bird was sub-
inoculated with a mixture (0.10 mL) of infected blood, 3.7% sodium citrate and 0.9% saline
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in proportion 4:1:5 into the pectoral muscles. Each bird received approximately 3 × 105 of
mature P. homocircumflexum meronts. The duration of experiment was 85 DPI. Parasitemia
was examined every 4 DPI until 36 DPI by taking blood from the brachial vein as described
in the section below. After 36 DPI, parasitemia was measured two more times at 75 and
85 DPI (Figure 1).

2.6. Blood Sample and Bird Feces Collection

Blood samples were taken from birds by puncturing brachial vein using heparinized
microcapillaries. A small drop of blood was used to make two smears for microscopy
to count erythrocytic stages in the blood (see below). Smears were air-dried, fixed with
absolute methanol and stained as described by Valkiūnas et al. [26]. A fraction of blood
(20–30 µL) was placed in SET-buffer for molecular analysis (PCR, see below) to confirm the
lineage in recipient birds. The blood for smears and SET-buffer was collected at 0 DPI prior
to the inoculation of infected and non-infected blood and every 4 DPI until 36 DPI, and on
75 and 85 DPI (Figure 1). Fresh feces were collected from each bird in sterile tubes at the
same time as blood taking on 0, 8, 16, 24, 36, and 85 DPI. Samples were stored at −20 ◦C
before genomic DNA extraction.

2.7. Microscopic Examination

We used an Olympus BX61 light microscope (Olympus, Tokyo, Japan) to examine
blood smears and calculated the parasitemia as a percentage by actual counting of the
number of parasites per 10,000 erythrocytes as described by Godfrey et al. [27].

2.8. DNA Extraction and PCR for P. homocircumflexum Identification

Total DNA for PCR analysis was extracted from the blood stored in SET-buffer us-
ing an ammonium acetate extraction protocol by Sambrook and Russel [28]. We per-
formed a nested PCR following a protocol described by Hellgren et al. [29] to confirm
P. homocircumflexum infection. For the first PCR we used the primers HaemNFI [5′-
CATATATTAAGAGAAITATGGAG-3′] and HaemNR3 [5′-ATAGAAAGATAAGAAATACC
ATTC-3′] [29]. In the second PCR a fragmentt of mitochondrial cyt b gene (478 bp) was am-
plified using the primers HaemF [5′-ATGGTGCTTTCGATATATGCATG-3′] and HaemR2
[5′-GCATTATCTGGATGTGATAATGGT-3′] [30]. For PCR mix we used 12.5 µL of Dream-
Taq Master Mix (Thermo Fisher Scientific, Vilnius, Lithuania), 8.5 µL of nuclease-free water,
1 µL of each primer and 2 µL of template DNA (extracted DNA or products of first PCR).
Plasmodium homocircumflexum-positive samples were determined by running 2 µL of second
PCR product on 2% agarose gel. For parasite lineage confirmation, samples containing par-
asite DNA were sequenced from the 5′end using the HAEMF primer on an ABI PRISM TM
3100 capillary sequencing robot (Applied Biosystems, Waltham, MA, USA) as described by
Bensch et al. [30]. The BLAST search tool (National Centre for Biotechnology Information
website: http://www.ncbi.nlm.nih.gov/BLAST, accessed on 12 October 2022) was used to
determine COLL4 lineage.

2.9. DNA Extraction and 16S rRNA Sequencing for Microbiome Analysis

Genomic DNA was isolated from fecal samples of uninfected or Plasmodium-infected
canaries using a Pure Link Microbiome DNA Purification Kit (Invitrogen, Waltham, MA,
USA; Thermo Fisher Scientific, Vallejo St. Emeryville, CA, USA). Final DNA samples were
eluted in 70 µL of elution buffer. Genomic DNA quality (OD260/280 between 1.8–2.0)
was measured with NanoDrop™ One (Thermo Scientific, Waltham, MA, USA). More than
200 ng of DNA at 20 ng/µL concentration were used for amplicon sequencing of the
16S rRNA gene, which was commissioned to Novogene Bioinformatics Technology Co.,
(London, UK). Libraries were prepared with NEBNext® Ultra™ IIDNA Library Prep Kit
(New England Biolabs, Ipswich, MA, USA). A single lane of Illumina MiSeq system was
used to generate 251-base paired-end reads from the V4 variable region of the 16S rRNA
gene using barcoded universal primers (515F/806R) in samples from uninfected (n = 8) or

http://www.ncbi.nlm.nih.gov/BLAST
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P. homocircumflexum-infected (n = 8) canaries. The raw 16S rRNA sequences obtained from
bird fecal samples were deposited at the SRA repository (Bioproject No. PRJNA904724).

2.10. 16S rRNA Sequences Processing

The software package Quantitative Into Microbial Ecology (QIIME) 2 pipeline (v. 2021.4) [31]
was used for the analysis of sequencing data. First, 16S rRNA gene sequences were first de-
multiplexed and then quality trimmed based on the average quality per base of the forward
and reverse reads using DADA2 software [32] implemented in QIIME2. Reads were then
merged and chimeric variants were removed. The resulting representative sequences were
taxonomically assigned using a pre-trained naïve Bayes taxonomic classifier [33] based on
SILVA database version 132 [34] and the 515F/806R primer set. The resulting taxonomic
data tables were collapsed at genus level and low abundant taxa were removed by filtering
taxa with less than 10 total reads and present in less than 30% of samples. The taxonomic
data tables were used for network analysis and keystone taxa identification.

2.11. Statistical Analysis

Alpha and beta diversity analyses of taxonomic and functional profiles were per-
formed using rarefied amplicon sequence variants (ASVs) and pathway tables, respectively.
Differences in alpha diversity metrics (i.e., Faith’s phylogenetic diversity, observed fea-
tures and Pielou’s evenness index) within and between different groups were tested using
a pairwise Kruskal–Wallis test. Beta diversity was explored using the Bray–Curtis dis-
similarity index and compared among the groups using a PERMANOVA test. To test
whether factors such as ‘time’ or ‘infection status’ have an impact on beta diversity, an
Adonis PERMANOVA test was used. Longitudinal analyses, including comparisons of
first differences in alpha diversity metric (i.e., Shannon entropy differences in an individual
between different samplings days (DPI)) and first distances (i.e., Bray–Curtis dissimilarity
between an individual’s microbiome composition at two separate sampling days), were
used to compare the individual’s variation rate over time; specifically, we compared the
temporal variations for both metrics in all DPI intervals, using 0 DPI as reference (e.g., form
0 to 8 DPI, from 0 to 16 DPI, and so on). Consequently, the variation rates were compared
between uninfected and infected birds using Kruskal–Wallis test and Mann–Whitney U
test, respectively. Longitudinal analyses were also performed on the taxonomic profile,
detecting and ranking the bacterial genera with the strongest temporal signal (i.e., changes
in abundance across time). The longitudinal analyses were performed using the Qiime2
plugin q2-longitudinal pipeline, using the “feature-volatility” function, which detects only
features of importance in terms of temporal variations and includes descriptive statistics
for all important features. This pipeline mostly uses the random forests ensemble learning
as a supervised regression method [35].

Differential abundance of taxa and pathway analyses were performed using the R
package ‘DeSeq2’ [36], which applies data normalization based on negative binomial
distribution and links variance and mean by local regression, and compares the magnitude
of the changes, expressing it as log ratio (log fold change). The comparisons were performed
with the Wald test. The number of shared taxa or predicted pathways in the different
experimental conditions were visualized using Venn diagrams implemented in the online
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 12 October 2022).
Differences were considered significant when p < 0.05.

For differential network analysis Jaccards index (Jacc) was calculated with Network
Construction and Comparison for Microbiome Data (NetComi) script [37] on R studio [38].
This index test for dissimilarities between the “most central nodes” in the networks for
degree, betweenness centrality, closeness centrality, eigenvector centrality and for the hub
taxa. The “most central nodes” are defined as nodes with a centrality value higher than
the empirical 75% quartile. For testing the similarity of most central nodes, two p-values
p(J ≤ j) and p(J ≥ j) for each Jacc, which represent the probability that the observed Jacc
value is “lower than or equal” or “higher than or equal”, respectively, to the Jacc value

http://bioinformatics.psb.ugent.be/webtools/Venn/
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expected by random, were calculated taking into account the total number of taxa in both
sets [39]. The Jacc ranges from 0 (completely different sets) to 1 (sets equal).

2.12. Bacterial Co-Occurrence Networks and Attack Tolerance Test

Co-occurrence microbial networks were built for each condition using the taxonomic
profiles at genera level. Microbial networks were used for the graphical representation and
visualization of the microbial community assemblies and the quantification of the impor-
tance of bacterial taxa in the network community. In the networks, bacterial taxa are repre-
sented by nodes and the significant positive (weight > 0.75) or negative (weight < −0.75)
co-occurrence interaction between the nodes are represented by edges. The network anal-
ysis and construction were performed using Sparse Correlations for Compositional data
(SparCC) method [40], implemented in R studio environment [38]. The software Gephi
0.9.5 [41], was used to visualize the microbial networks and to measure the topological
features of networks (i.e., number of nodes and edges, network diameter, average de-
gree, weighted degree, average path length, modularity and number of modules). The
progression of the ‘microbiome structural state’ was presented using the alpha diversity
metric of observed feature [42], measured with QIIME2 pipeline [31], and the number of
edges and nodes collected from Gephi [41]. To test the network tolerance to attacks, the
Network Strengths and Weaknesses Analysis (NetSwan) script [43] was conducted in R
studio [38]. This script simulates a network attack by removing first the nodes with the
highest betweenness centrality value, and measures decreases on network connectivity.
Connectivity values ranged between 0 (maximum of connectivity between nodes) and 1
(total disconnection between nodes).

2.13. Prediction of Functional Traits in the Bird Microbiome

For the metabolic profiling of each sample, PICRUSt2 software [44] was used for the
prediction of functional gene abundances based on 16S rRNA gene amplicon sequences.
Briefly, the ASVs were aligned and placed into a reference tree (NSTI cut-off value of 2),
which was then used to infer gene family copy numbers of each ASVs and finally determine
gene family abundance per sample. Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthologs (KO) [45], Enzyme Classification numbers (EC) and Cluster of Orthologous Genes
(COGs) [46] were used as gene family catalogs for the predictions. Pathway profiles were
inferred from structured pathway mapping based on MetaCyc database [47].

3. Results
3.1. Experimental Infection of Plasmodium homocircumflexum in Birds

To test how malaria infection modulates the microbiome of vertebrate hosts, we fol-
lowed an experimental model of avian malaria (Figure 1). All canaries experimentally
infected with P. homocircumflexum were susceptible to the infection and developed para-
sitemia (Figure 2). As expected, the control group composed of uninfected birds remained
negative to Plasmodium infection throughout the experiment. One bird from each group
died during the experiment. Based on microscopic examination, the prepatent period,
before the parasite appeared in the peripheral blood for the first time, was less than 4 days
post-infection (DPI). The dynamics of infection varied individually. The peak of parasitemia
was recorded at 8 DPI in six infected birds, and in two canaries the peak was reached at
12 DPI. The parasitemia at the peak varied between 6.5–15.6% of infected erythrocytes. The
parasitemia decreased four days after the peak at which point parasitemia was under 0.5%
in all infected birds. From 24 DPI onwards the infection fluctuated between disappear-
ance from peripheral blood and very low parasitemia. The parasite was detected in the
peripheral blood in two infected birds at 85 DPI.
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Figure 2. Temporal dynamics of P. homocircumflexum parasitemia. Individual parasitemia values (%
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for fecal sample collection and microbiome analysis.

3.2. Changes in the Taxonomic Profiles of Bird Gut Microbiome in Response to
P. homocircumflexum Infection

To assess the impact of P. homocircumflexum infection on the gut microbiome of canaries,
the diversity and composition of amplicon sequence variants (ASVs) of uninfected and Plas-
modium-infected birds were analyzed in fecal samples collected at different DPI (Figure 1)
with variation in parasitemia (Figure 2). Comparison of alpha diversity indexes within
groups revealed significant differences in the Faith’s index and observed features (Kruskal–
Wallis test: Faith’s index, p < 0.001; Observed features, p < 0.001), but no in the species
evenness (Kruskal–Wallis test, p = 0.113). In addition, pairwise comparisons of these alpha
diversity indexes between the groups at each sampling day show no significant differences
between infected and uninfected birds (Kruskal–Wallis test, p > 0.05) (Figure S1). Similarly,
beta diversity (Bray–Curtis dissimilarity index) comparisons showed no difference between
groups (PERMANOVA, p > 0.05), or within groups across time (PERMANOVA, F = 1.44;
p = 0.147) (Figure S2). Further statistical comparison of Bray–Curtis dissimilarity index
using multifactorial PERMANOVA (Adonis function), detected significant compositional
changes in time, but not associated with the infection state of the birds (Adonis: time,
p = 0.002; infection, p = 0.135, interaction, p = 0.285). To further confirm these results, we
used the longitudinal statistical approach “q2-longitudinal”, which, by means of machine
learning algorithms, analyzes temporal changes in the microbiome. Shannon’s entropy,
which combines richness and evenness into one index, showed no significant difference
between infected and uninfected birds, regardless of time intervals (Figure 3A). Likewise,
no differences in Bray–Curtis’s distance were found for any of the time intervals (Figure 3B).
Altogether, these results showed that P. homocircumflexum infection does not modify the
alpha or beta diversity of bird microbiome.
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Figure 3. Effect of P. homocircumflexum infection on host microbial diversity and taxonomic profiles
of bird microbiome. (A) Shannon entropy was used in the longitudinal analysis to compare the
differences in alpha diversity between infected and uninfected birds at different time intervals
(i.e., from 0 to 8 DPI, from 0 to 16 DPI, from 0 to 24 DPI, from 0 to 36 DPI, and from 0 to 85 DPI).
Kruskal–Wallis was used to compare the differences (alpha = 0.05). (B) Similar longitudinal analysis
was performed for beta diversity, based on Bray–Curtis distance. Between-groups comparisons were
performed using Mann–Whitney U test (alpha = 0.05). (C) Longitudinal feature-volatility analysis
of bacterial genera among infected and uninfected birds. The top 20 important features (i.e., from
100 taxa detected by random forest modeling exhibiting important temporal variations in abundance)
are shown, including their temporal signal (importance) and net average change. (D) Volcano plot
showing the differential bacterial abundance in bird microbiome between control and infected groups
throughout the duration of experiment. Taxa with significant differences between the groups are
represented with blue (Wald test, p < 0.05) and red (Wald test, p (corrected with Benjamin and
Hochberg method) < 0.05) dots. The gray dots represent taxa with no significant differences between
groups. Taxa with significant differences in their abundance were identified using DeSeq2 algorithm.
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Taxonomic profiling of microbiome in uninfected and infected birds revealed the pres-
ence of a taxonomic core (i.e., taxa identified in all DPI, in either infected or uninfected birds)
in both groups, as well as unique taxa associated to different sampling days (Figure S3A).
A higher number of unique taxa (125) was found in the taxonomic core of the control group
compared to that of the infected group (79), while 268 bacterial genera were present in the
taxonomic core of both groups (Figure S3B). The unique taxa found at each sampling day
were mostly specific to each group (Figure S3B), and those found only in infected birds
were listed (Table S1). This suggested that infection is associated with modulation of the
bird microbiome composition.

The longitudinal analysis on the taxonomical profiles revealed a total of 100 “im-
portant” taxa in terms of their temporal signal (i.e., their abundance changes gradually
over time or are strongly predictive of specific timepoints), considering both infected and
uninfected birds (Table S2). The top 20 important taxa included Cetobacterium (phylum Fu-
sobacteriota), Anaerococcus (Firmicutes), Methyloversatilis (Proteobacteria), Aurantimicrobium
(Actinobacteriota), Porphyromonas (Bacteroidota), among others (Figure 3C). Differential
analysis of taxa abundance between infected and uninfected birds revealed significant
differences only at 24 and 36 DPI in 3 and 4 bacterial genera, respectively, belonging to
Proteobacteria (Escherichia-Shigella, Undibacterium, Pseudahrensia, and Croceicoccus), Chlo-
roflexi (Anaerolinea), Verrucomicrobia (Opitutaceae) and Firmicutes (Lachnospiraceae) (Wald
test, p < 0.05; Figure 3D; Table S3). The taxa abundance per phylum shows that the most
abundant bacteria in the gut microbiome of birds belongs to Chloroflexi, Proteobacteria,
Firmicutes, and Actinobacteriota (Figure S3C).

3.3. Changes in Microbial Community Assembly in Response to P. homocircumflexum Infection

Bacteria co-occurrence networks were inferred and used to assess the impact of P. ho-
mocircumflexum infection on the assembly of microbial communities in bird guts at different
DPI. Visual inspection revealed that malaria infection changes network topology (Figure 4),
and its parameters (Table 1). The difference of topological parameters between Plasmod-
ium-infected and control group varied at each sampling day, however more noteworthy
differences in topology were recorded at 8 and 24 DPI (Table 1).
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Figure 4. Co-occurrence networks of bird microbiome in the different experimental groups at 8,
16, 24, 36 and 85 DPI. Bacterial co-occurrence networks were inferred from the microbiome of
P. homocircumflexum-infected birds and control. Nodes represent bacterial taxa and connecting edges
stand for a co-occurrence correlation (SparCC > 0.75). Node sizes are proportional to the eigenvector
centrality value. Edges representing positive or negative correlations were colored in lilac and red,
respectively. Only nodes with at least one connection are displayed.
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Table 1. Topological parameters of co-occurrence networks.

Network
Features

8 DPI * 16 DPI 24 DPI 36 DPI 85 DPI

Control Plasmodium-
Infected Control Plasmodium-

Infected Control Plasmodium-
Infected Control Plasmodium-

Infected Control Plasmodium-
Infected

Nodes 242 (688) ** 180 (641) 482 (938) 571 (1100) 534 (938) 473 (1023) 771 (1059) 926 (1267) 463 (926) 364 (666)
Edges 617 399 1929 2354 2673 1597 4375 6299 1934 1736

Positive 453 (73.4%) 245 (61.4%) 1130 (58.6%) 1467 (62.3%) 1597 (59.8%) 1079 (67.6%) 2877 (65.8%) 4169 (66.2%) 1423 (73.6%) 1403 (80.8%)
Negative 164 (26.6%) 154 (38.6%) 799 (41.4%) 887 (37.7%) 1076 (40.2%) 518 (32.4%) 1498 (34.2%) 2130 (33.8%) 511 (26.4%) 333 (19.2%)
Network
diameter 15 16 11 13 9 12 8 13 12 17

Average degree 5.099 4.433 8.004 8.245 10.011 6.753 11.349 13.605 8.354 9.538
Weighted degree 1.928 0.827 1.124 1.67 1.651 1.946 2.897 3.649 3.254 4.84

Average path
length 4.434 5.367 4.551 4.279 3.914 5.046 3.72 3.985 4.321 4.944

Modularity 1.13 2.118 2.85 2.001 2.345 1.474 1.657 1.543 1.013 0.939
Number of

modules 55 49 75 106 59 84 63 61 73 45

Average
clustering
coefficient

0.43 0.422 0.529 0.459 0.466 0.448 0.475 0.446 0.458 0.473

* DPI—days post-infection. ** a number of nodes with at least one connection (a total number of nodes).

To assess the progression of microbiome structural states, we plotted observed features
(as a measured of taxa inventory) against connected nodes (as a measure of connectivity),
or edges (as a measure of degree) for each DPI in infected and uninfected birds. Thus,
‘observed features-connected nodes’ (Figure 5A) and ‘observed features-edges’ (Figure 5B)
plots were referred as ‘microbiome structural states’, from state 1 (8 DPI) to 5 (85 DPI), and
the temporal succession of plots (from one DPI to the next) was referred as progression
of structural states. The progression of structural states was different in control and
Plasmodium-infected birds. Notably, transitions from state 2 to state 3 and from state 3 to
state 4 were different in infected and control groups. In the microbiome of uninfected birds,
the transition from state 2 to state 3 was characterized by an increase in ‘observed features’
with a decrease in ‘connected nodes’ (Figure 5A) and an increase in ‘edges’ (Figure 5B),
while in infected birds this transition was characterized by a decrease in ‘observed features’
with an increase in ‘connected nodes’ (Figure 5A) and a decrease in ‘edges’ (Figure 5B).
In the control group, the transition from state 3 to state 4 was characterized by no change
in ‘observed features’, while in the infected group we observed an increase in ‘observed
features’. In both infected and control, transitions from state 3 to state 4 were associated
with higher number of ‘connected nodes’ and ‘edges’.

3.4. Impact of P. homocircumflexum Infection on Network Centrality Distribution and Robustness

The observed Jacc values for comparisons between networks of infected and unin-
fected groups were higher than expected by random at 16, 24 and 85 DPI (Table S4). At
8 DPI, the observed Jacc of all centrality measures comparisons was also higher than ex-
pected by random, except for betweenness centrality which followed a random distribution
(Table S4). At 36 DPI, the observed Jacc of the centrality measures comparisons was higher
than expected by random, except for eigenvector centrality and hub taxa, which followed
a random distribution (Table S4). It is noteworthy that despite observed Jacc values were
higher than expected by random for most centrality measures, these values were lower than
0.5 suggesting low similarity between centrality measures distribution in the microbiome
of Plasmodium-infected and uninfected birds.

To test whether changes in network structure, and centrality measures impacted
the network robustness, we assessed losses in connectivity after directed taxa removal
(removing first the nodes with higher betweenness centrality). A major deviation from
normal microbiome robustness was observed at 24 DPI in the microbiome of infected birds,
while microbiome robustness in the other sampling days was very similar between groups
(Figure 6). Particularly, removal of 0.11 and 0.23 fraction of the taxa was enough to reach
90% loss in connectivity in the infected and uninfected groups at 24 DPI, respectively. The
results suggest that microbiome modulation due to Plasmodium infection reduces network
robustness significantly at 24 DPI.
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Figure 6. Network tolerance to directed attack. Values of connectivity loss in P. homocircumflexum-
infected (red squares) and control (green circles) birds at different days of experiment were compared.
At each sampling day a threshold (dashed lines) for connectivity loss was determined where the
difference of removed nodes between the infected and control group was the largest.

3.5. Impact of P. homocircumflexum Infection on the Functional Profiles of Bird Guts Microbiome

To assess the impact of avian microbiome taxonomic modulation by P. homocircum-
flexum infection on the functional profiles of birds’ microbiome, we performed pathway
profiling based on predicted metagenomic functions using PICRUSt2 [44]. The comparison
of predicted functional profiles revealed core (i.e., pathways identified in all DPI) and



Microorganisms 2023, 11, 563 12 of 20

unique pathways in both groups. The functional cores in uninfected and infected birds con-
sisted of 420 (total: 455, 92%) and 415 (total: 455, 91%) pathways, respectively (Figure 7A).
Most of the core pathways were shared between the groups (413; total: 455, 91%), with 2
and 7 pathways specific to infected and control group, respectively (Figure S4). Pathways
unique to infected birds on 16, 36 and 85 DPI were listed (Table S5).
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Figure 7. Impact of P. homocircumflexum infection on the predicted functional profiles of bird gut
microbiome. (A) Venn diagram showing the common and different predicted bacterial pathways
found in the microbiome of birds infected with P. homocircumflexum and uninfected birds at different
sampling days. (B) Volcano plot showing differential pathway abundance in Plasmodium-infected
and uninfected birds detected by DESeq2 analysis at 8, 16, 24, 35 and 85 DPI. The blued dots
indicate all statistically significant (p(un-adjusted) < 0.05) pathways, red dots indicate pathways with
statistically significant (p(adjusted) < 0.05) log2 fold changes in the absolute value (cut-off of 1); the
black dots are not significant (p > 0.05). Detailed information on pathway identity is presented in
Table S6. (C) Venn diagram. Comparison of unique and shared pathways with significant changes in
abundance (p(adjusted) < 0.05) between the Plasmodium-infected and uninfected groups at 24 and
36 DPI. Only pathways with statistically significant log2 fold changes in the absolute value (cut-off of
1) were considered.

The comparison of predicted pathway abundance between infected and control birds
showed significant fold changes in relative abundance of 17 and 16 pathways at 24 and
36 DPI, respectively (Log2fold change > 1, p(adjusted) < 0.05, Figure 7B, Table S6). Seven of
these were shared between 24 and 36 DPI (Figure 7C). No significant change in predicted
pathway abundance was found between groups at 8 DPI, 16 and 85 DPI.
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We then tested a possible association between the taxonomic composition and unique
pathways present in infected birds at 16, 36 and 85 DPI. The number of taxa contributing to
the unique pathways at 16 DPI (33 taxa) and 36 DPI (30 taxa) were similar to each other,
but higher to that at 85 DPI (4 taxa) (Figure S5). Most of the contributing taxa were found
to be specific to each sampling day. The decreased number of taxa contributing to unique
pathways at 85 DPI could be associated with latent stage of P. homocircumflexum infection
when the parasite impact on bird microbiome is not as prominent as during acute phase.

4. Discussion

Natural infection with malaria parasites was associated with changes in the human
gut microbiome [48], and the uropygial gland microbiome of house sparrows [11], and
experimental infection with murine malaria parasites modulated the gut microbiome of
mice [15,16]. We hypothesized that infection with avian malaria would impact bird gut
microbiome diversity and structure. To test this hypothesis, we examined microbiome
changes caused by experimental infection of P. homocircumflexum in canaries. As most
available studies on the relation between avian microbiome composition and pathogen
encounter focused on economically important species such as chicken and turkey [49],
this study is a significant contribution to our understanding of wild bird microbiome in
response to infection.

Parasite infection can have synergistic or antagonistic effects on commensal bacteria,
effectively shifting microbiome taxonomic [8,50,51] and functional [8] profiles in mam-
malian [8,15,16] and avian [50,52] hosts. Our results show that microbiome modulation
in Plasmodium-infected birds was most prominent during the chronic stage of primary
infection (from 16 DPI) with a recovered microbiome state by the beginning of the latent
stage (85 DPI), although changes of microbiome network topology were observed as early
as 8 DPI, at the peak parasitemia. Although here we did not aim at testing the relation
between microbiome changes and host health, it is noteworthy that small changes in mi-
crobiome composition could affect greatly the health of birds, as fluctuations in microbial
functions could have a large impact on microbial-mediated processes such as degradation,
detoxification and host defensive mechanisms [3].

We found that alpha diversity of the canary gut microbiome was not greatly affected
by Plasmodium infection within the tested time points; however, some changes were found
in the bacterial composition of Plasmodium-infected birds compared with uninfected birds.
Similarly, a microbiome study of wild Eurasian tree sparrows by Rohrer et al. [53], found
no significant differences in the alpha and beta diversity of birds infected or not with
Plasmodium. Similarly, Macdonald et al. [52] showed that infection with Eimeria tenella,
another avian apicomplexan parasite, did not affect microbial alpha diversity of caecal
microbiome in chicken within the analyzed time point (i.e., 4 1/2 DPI). In contrast, Zhou
et al. [50] reported that E. tenella infection increased the caecal microbial alpha diversity
at 7 DPI. Differences in the tissue tropism of Plasmodium (a blood parasite) and Eimeria
(a prominent gut parasite) in birds may explain differences in their impact on the gut
bacterial diversity. Interestingly, infection with murine malaria parasite P. yoelii decreased
the alpha diversity of the fecal microbiome at 10 DPI, just before a secondary peak of
parasitemia, with a gradual recovery by 30 DPI, when the peak parasitemia of P. yoelii
decreases [15]. Similarly, alpha diversity metrics analysis revealed that infection with
P. berghei transiently (day 5 to 7) increased richness and evenness, but then these parameters
decreased at 9 DPI during acute stage of parasitemia [16]. The results of the latter two
studies suggest that murine malaria reduces alpha diversity during acute stage of infection,
regardless of parasite species (i.e., P. yoelii or P. berghei). The results suggest that avian
malaria parasites, unlike other apicomplexan pathogens, cause no impact in the bacterial
diversity of infected birds.

In this study, avian Plasmodium infection had the highest impact on the abundance
of genera of the phyla Proteobacteria (Escherichia-Shigella, Undibacterium, Pseudahrensia,
and Croceicoccus), followed by Chloroflexi (Anaerolinea), Verrucomicrobia (Opitutaceae) and
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Firmicutes (Lachnospiraceae). Specifically, infection increased and decreased the abundance
of Proteobacteria taxa in the infected birds at 24 and 36 days, respectively. Plasmodium
berghei infection reduced Firmicutes in two lines of laboratory mouse, C57BL/6 and BALB/c,
and increased Proteobacteria and Verrucomicrobia in C57BL/6 mice over a period of 9 days
during acute stage of infection [16]. Fecal microbiome of P. yoelii-infected C57BL/6 mice
showed a decreased abundance of Firmicutes and a relative increase in the abundance
of Bacteroidetes at the peak stage of infection, which reverted to baseline by 30 days
when parasitenia decreased [15]. Similarly, P. yoelii infection induced a reduction in the
abundance of Firmicutes and an increase in the abundance of Bacteroidetes in the gut
microbiome of BALB/c mice [54]. In addition, changes to the intestinal milieu caused by
P. yoelii infection promote colonization of the intestine with both Salmonella enterica serotype
Typhimurium and Escherichia coli [15]. In case of avian malaria, the changes in bacteria
abundance appeared at a chronic stage of infection concurring with low parasitemia,
while rodent malaria effects were detected when the parasite was still at the primary
stage of development. Our results together with previously published studies on murine
malaria [15,55] suggest that the impact of malaria infection on microbiome is mainly
transient and can affect different bacterial taxa.

Bacterial communities are dynamic systems with high intra-individual compositional
variability across time [55,56], and infection causes deviations from normal microbiome
dynamics across biological systems, from animals [57] to plants [58,59]. Similarly, infection
of mice with the pathogen Citrobacter rodentium revealed unique, time-dependent microbial
signatures associated with host response to infection [57]. Compositional changes may
impact community assembly and co-occurrence networks [60]. We found that network
topology and progression of microbiome structural states were affected by infection. Partic-
ularly, we found that arrival to, and departure from, state three (24 DPI) was different in
infected birds compared with the control group.

Notably, network of infected birds in state three were less robust than the control
network. These results suggest that ‘state three’ plays a key role on the temporal dynamics
of bird microbiome. Network robustness, measured here as tolerance to sequential removal
of highly-central nodes [61], is a lower-order connectivity feature investigated at the level
of individual nodes and edges [62–64]. There is a possibility that the accumulation of some
taxa facilitated by infection and/or removal of other taxa excluded by infection within the
first 24 DPI change microbe-microbe interactions affecting the hierarchical organization
(who influences who) of the community. Resulting redistribution of betweenness centrality
values in the network could in turn affect network robustness; with networks having
higher betweenness centrality nodes tending to be more vulnerable to directed attacks [64].
Although the Jacc for betweenness centrality at 24 DPI was higher than expected by
random, the Jacc value was lower than 0.50 suggesting low similarity in the distribution
of betweenness centrality values among nodes in infected and uninfected networks. The
combination of Jacc and robustness analysis supports that redistribution of betweenness
centrality values induced by infection at 24 DPI reduces network robustness at 24 DPI. In
addition to lower-order connectivity features, higher-order network features (i.e., patterns
of interconnections or network motifs [65]), play a fundamental role in understanding
the organization of many complex systems [65], and affect network robustness [64,66,67].
Occurrence of motifs in complex networks is not random, as motifs tend to perform
important functions [68,69]. Thus, robustness reduction in state three networks of infected
birds could be associated not only with redistribution of betweenness centrality across
nodes, but also with modifications in patterns of network motifs. Further studies should
address whether there is an association between network motifs and network robustness in
the avian malaria system presented here.

Despite it is not clear how malaria parasites interact with intestinal microbiota to in-
duce dysbiosis [13,14], several mechanisms can potentially account for changes in bacterial
abundance and composition caused by Plasmodium infection [12,14]. The host-parasite rela-
tionships during malarial infections include immune response of the host that may directly,
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or indirectly, impact the host microbiome composition during malaria infections [14]. For
example, activation and degranulation of mast cells during human and murine malaria
damage the gastrointestinal barrier resulting in release of intestinal bacteria into the blood-
stream [70]. Concomitantly, hemolysis caused by Plasmodium infection of red blood cells
decreases reactive oxygen species (ROS) production by neutrophils increasing the growth
of intestinal invading bacteria within these polymorphonuclear leukocytes [71]. The occur-
rence of some of these potential mechanisms is yet to be tested in birds.

Beyond changes in taxonomic profiles, the metabolites produced by specific bacterial
species in the gut exert systemic effects on the host [72], as well as influence malaria
infection and disease severity [73]. According to our study, most of the unique pathways
identified in the microbiome of Plasmodium-infected birds could not be directly associated
with avian malaria infection, however a PWY5F9-12 (biphenyl degradation) and PWY-3081
(L-lysine biosynthesis V) could be involved in anti-malarial response [74,75]. The presence
of pathways of toluene degradation in the Plasmodium-infected birds could also be as
response to the infection due to the production of toluene by the parasite [76,77].

5. Conclusions

Microbiota diversity in wild birds is highly influenced by the host ecology. As a con-
sequence, microbiome composition and assembly may be under selective pressures by
parasites in natural systems. We found that infection with the avian malaria parasite P. ho-
mocircumflexum modulated the fecal microbiome of canary hosts causing deviation from
normal development, while no significant change in bacterial diversity was observed. The
results showed changes in community assembly as early as 8 DPI, followed by more promi-
nent fluctuations in bacterial composition with the emergence of infection-specific taxa and
pathways at the later stages of infection. Although the microbiome of Plasmodium-infected
birds has mainly recovered by 85 DPI, latent malaria infection could have long-lasting effect
in the host microbiome with impact on bird health [3], and potentially host evolution. In
addition, the spread of low virulent avian malaria parasites across a bird population could
select for individuals carrying an infection-permissive microbiome. Parasite infection may
select against the occurrence or high abundance of bacteria associated with anti-malarial
mechanisms. For example, bacteria within the family Enterobacteriaceae are a rich source of
α1,3-galactosyltransferase (α1,3GT) activity. Immune response to the carbohydrate α-Gal
on the surface of microbiota bacteria in birds could trigger anti-α-Gal antibodies [7], with
malaria killing activity [78]. Interestingly, the abundance of Escherichia-Shigella was signifi-
cantly reduced in P. homocircumflecxum-infected birds at 24 DPI. By reducing the occurrence
of Enterobacteriaceae across the bird population the parasite may reduce anti-malarial
immunity at the population level.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11030563/s1, Figure S1: Alpha diversity indexes of
infected and control bird microbiome. (A) Faith’s phylogenetic diversity index, (B) observed features,
(C) Pielou’s evenness index, were calculated at the level of ASVs and compared between infected
and control groups for each DPI. Control birds, n = 8; infected birds, n = 8. Days post-infection
(DPI); Figure S2: Beta diversity of infected and control bird microbiome. (A) Bray–Curtis distance
from each time point is represented in PCoA plot obtained by Betadisper function. (B) Bray–Curtis
volatility plot, indicating how the microbiome composition changed in each group over time. The
lines represent the mean and the standard error mean from each group. Control birds, n = 8; infected
birds, n = 8. Days post-infection (DPI); Figure S3: Shared and unique bacterial genera found in
the microbiome of infected and uninfected birds. (A) Venn diagrams displaying the number of
shared and unique taxa detected within groups at different time points. (B) Unique taxa detected
at the different time points in uninfected and infected birds were compared and displayed in Venn
diagrams; the percentage at the sides of the core, shows proportional size of shared taxa in infected
and control groups. (C) Taxa abundance per phylum in the microbiome of infected and control birds
at different time points of experiment. Control birds, n = 8; infected birds, n = 8. Days post-infection
(DPI); Figure S4: Shared and unique metabolic pathways found in the microbiome of infected and
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uninfected birds. Unique pathways of infected/control groups at different experimental days were
selected and compared. The functional profiles of microbiome were predicted from 16S rRNA
amplicon sequences using PICRUSt2. Control birds, n = 8; infected birds, n = 8. Days post-infection
(DPI); Figure S5: Taxa contribution to metabolic pathways. Bacterial taxa contribution to unique
pathways in the gut microbiome of infected and control birds at 16, 36 and 85 DPI is displayed as
Sankey diagrams. Taxonomic contribution was assessed using PICRUSt2. Node size is proportional
to the abundance of contributing taxa or pathways. The contribution of each taxon to different
pathways is represented proportionally by the size of cords. Days post-infection (DPI); Table S1: List
of unique bacterial taxa in P. homocircumflexum-infected birds at different DPI and taxonomic core
(i.e., taxa identified in all DPI) are listed; Table S2: List of taxa with important changes in abundance
across time; Table S3: List of differentially abundant taxa identified by the DESeq2 method between
the gut microbiome of P. homocircumflexum-infected and uninfected birds at 24 and 36 DPI. Only
taxa with statistically significant log2 fold changes in the absolute value (cut-off of 1) are presented
(p(adjusted) < 0.05); Table S4: Jaccard indexes of local centrality measures. Jaccard’s indexes for each
of local centrality measures (i.e., degree, betweenness centrality, closeness centrality, eigenvector
centrality and hub taxa) of the sets of most central nodes for pairwise network comparisons. The
two p-values, p(J ≤ j) and p(J ≥ j), for each Jaccard’s index were added. * p < 0.05, ** p < 0.01;
*** p < 0.001; Table S5: List of pathways unique to P. homocircumflexum-infected birds on 16, 36 and
85 DPI; Table S6: List of differential pathways identified by the DESeq2 method between the gut
microbiome of P. homocircumflexum-infected and uninfected birds at 24 and 36 DPI. Only pathways
with statistically significant (p(adjusted) < 0.05) log2 fold changes in the absolute value (cut-off of
one) are listed.
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Plasmodium Homocircumflexum Virulence in Experimentally Infected Passerine Birds. Malar. J. 2019, 18, 174. [CrossRef] [PubMed]
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25. Palinauskas, V.; Valkiūnas, G.; Bolshakov, C.V.; Bensch, S. Plasmodium Relictum (Lineage P-SGS1): Effects on Experimentally
Infected Passerine Birds. Exp. Parasitol. 2008, 120, 372–380. [CrossRef] [PubMed]

http://doi.org/10.1111/jav.01788
http://doi.org/10.3389/fmicb.2015.01403
http://www.ncbi.nlm.nih.gov/pubmed/26733954
http://doi.org/10.1016/j.tim.2021.07.003
http://www.ncbi.nlm.nih.gov/pubmed/34393028
http://doi.org/10.3389/fmicb.2014.00223
http://doi.org/10.3389/fmicb.2019.02258
http://doi.org/10.7717/peerj.321
http://doi.org/10.3389/fimmu.2022.807682
http://doi.org/10.3389/fmicb.2020.548737
http://doi.org/10.1051/parasite/2021047
http://doi.org/10.1002/ece3.7401
http://doi.org/10.1111/jav.02686
http://doi.org/10.1007/s12602-021-09780-w
http://www.ncbi.nlm.nih.gov/pubmed/33791994
http://doi.org/10.1093/cid/ciy374
http://www.ncbi.nlm.nih.gov/pubmed/29701835
http://doi.org/10.1016/j.pt.2019.11.001
http://doi.org/10.1038/srep14603
http://doi.org/10.1038/srep15699
http://doi.org/10.1186/s12936-018-2359-5
http://doi.org/10.1111/j.1755-0998.2009.02692.x
http://doi.org/10.1016/j.ijpara.2014.08.012
http://doi.org/10.1186/s12936-016-1310-x
http://doi.org/10.1186/s12936-019-2810-2
http://www.ncbi.nlm.nih.gov/pubmed/31113429
http://doi.org/10.1016/j.ygeno.2020.03.025
http://www.ncbi.nlm.nih.gov/pubmed/32234432
http://doi.org/10.1016/j.exppara.2014.11.005
http://www.ncbi.nlm.nih.gov/pubmed/25450775
http://doi.org/10.1016/j.exppara.2008.09.001
http://www.ncbi.nlm.nih.gov/pubmed/18809402


Microorganisms 2023, 11, 563 18 of 20
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