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Abstract 

Bat gut microbiomes are adapted to the specific diets of their hosts. Despite diet variation has been associated with 
differences in bat microbiome diversity, the influence of diet on microbial community assembly have not been fully 
elucidated. In the present study, we used available data on bat gut microbiome to characterize the microbial com‑
munity assembly of five selected bat species (i.e., Miniopterus schreibersii, Myotis capaccinii, Myotis myotis, Myotis 
pilosus, and Myotis vivesi), using network analysis. These bat species with contrasting habitat and food preferences (i.e., 
My. capaccinii and My. pilosus can be piscivorous and/or insectivorous; Mi. schreibersii and My. myotis are exclusively 
insectivorous; while My. vivesi is a marine predator) offer an invaluable opportunity to test the impact of diet on bat 
gut microbiome assembly. The results showed that My. myotis showed the most complex network, with the high‑
est number of nodes, while My. vivesi has the least complex structured microbiome, with lowest number of nodes 
in its network. No common nodes were observed in the networks of the five bat species, with My. myotis possessing 
the highest number of unique nodes. Only three bat species, My. myotis, My. pilosus and My. vivesi, presented a core 
microbiome and the distribution of local centrality measures of nodes was different in the five networks. Taxa removal 
followed by measurement of network connectivity revealed that My. myotis had the most robust network, while the 
network of My. vivesi presented the lowest tolerance to taxa removal. Prediction of metabolic pathways using PIC‑
RUSt2 revealed that Mi. schreibersii had significantly higher functional pathway’s richness compared to the other bat 
species. Most of predicted pathways (82%, total 435) were shared between all bat species, while My. capaccinii, My. 
myotis and My. vivesi, but no Mi. schreibersii or My. pilosus, showed specific pathways. We concluded that despite similar 
feeding habits, microbial community assembly can differ between bat species. Other factors beyond diet may play 
a major role in bat microbial community assembly, with host ecology, sociality and overlap in roosts likely providing 
additional predictors governing gut microbiome of insectivorous bats.
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Introduction
Over the past years, research studies have been focus-
ing on understanding the diversity and function of 
host-associated microbiome, both in humans and ani-
mals [1–3]. The gut microbiome consist of microor-
ganism (i.e., bacteria, bacteriophage, fungi, protozoa, 
and viruses) which play important roles in maintaining 
the health of an organisms and can influence basic bio-
chemical and physiological processes (e.g., digestion, 
immune system, metabolic rate) [4, 5]. The composi-
tion of the gut microbiome is influenced by different 
factors, like genetics [6, 7], age [8], environment and 
habitat [9, 10] or diet [11, 12]. All of these factors can 
affect the structure of gut microbiome not only in 
humans, but also in invertebrates or other mammals, 
such as bats.

Bats are one of the most diverse, complex, and wide-
spread groups of mammals in the world, with more than 
1450 species described, which inhabit a very diverse 
range of habitats due to their ability to fly [13]. Studies 
on bat microbiome were performed on different types 
of samples, such as saliva, skin [14–18], tissues [15, 16], 
urine [17], but the most abundant are on gut [18, 19]. 
Bats consume a large variety of food (e.g., fruits, blood, 
insects, fish, nectar) [13] and their gut microbiome is 
adapted to that specific diet [20, 21].

Most studies on the bat gut microbiome used 
metagenomic sequencing approach targeting the 16S 
rRNA gene, especially the V3-V4 region [18, 22, 23]. It 
was shown that diet in these mammals can have a large 
influence on the gut host-microbiome diversity. Phil-
lips et  al. [24] suggested that bats that feed on blood, 
insects, nectar, and fruits may have a higher microbi-
ome diversity, whilst Banskar et al. [25] showed that the 
microbial communities of frugivorous and insectivo-
rous bats are similar. In contrast, Carrillo-Araujo et al. 
[20], analyzed the gut microbiome of phyllostomid bats 
and the results showed that nectarivorous and frugivo-
rous diets have low diversity and less specificity com-
pared with bats feeding on blood and insects which had 
the highest diversity.

Using next-generation sequencing, the results 
obtained can offer information regarding the taxo-
nomic composition of a specific sample [15, 26], but 
with the help of bioinformatics, more complex analy-
sis can be performed. Microbial co-occurrence net-
works are a useful approach to investigate microbial 
community assembly and their dynamics in different 
types of organisms [27, 28]. With the analysis of the 
microbial co-occurrence networks it is possible to 
identify and predict bacterial associations, and also to 
identify the host-associated core microbiome which 

is characteristic of each individual [27]. Besides the 
characterization of co-occurrence networks and core 
microbiome, the 16S rRNA data can be used to predict 
metabolic function, such as pathways and enzymes by 
matching taxonomic data to metabolic reference data-
bases [29, 30].

In the present study, we used a network analysis 
approach, based on 16S rRNA gene data published by 
Aizpurua et al. [31], to characterize the microbial com-
munity structure of five selected bat species (i.e., Mini-
opterus schreibersii, Myotis capaccinii, Myotis myotis, 
Myotis pilosus, and Myotis vivesi), with contrasting 
habitat and food preferences. The characteristic traits 
of each bat species considered in this study are pre-
sented in Table  1. In the original paper, a taxonomic 
characterization of the gut microbiome of 15 differ-
ent bat species was also performed, showing differ-
ences between bats that have different feeding habits. 
While most studies performed on bat-gut microbiome 
are characterizing the presence and relative abundance 
of different (or selected) bacterial taxa, the aims of 
our study were to: (i) represent and characterize the 
microbial co-occurrence networks, (ii) identify of core 
microbiomes, and (iii) predict the metabolic functions, 
such as pathways in order to evaluate the importance 
of the hosts’ life-history characteristics on the micro-
biome constitution.

Materials and methods
Original data set
For data analysis, we used a previously published set 
of 16S rRNA gene sequencing data. The original study 
described the role of gut microbiome in the dietary 
niche of different bat species [31]. Insectivorous and 
piscivorous bat species were considered in that study 
and the taxonomic and functional characteristics of the 
gut microbiome were analyzed. Their results showed 
that the gut microbiome of piscivorous bat species is 
different from the gut microbiome of insectivorous 
ones. Regarding the microbial community, the high-
est similarities were observed between two piscivorous 
bat species: My. capaccinii and My. pilosus with differ-
ent dominant bacteria influenced by habitat (Mediter-
ranean/temperate-subtropical) and My. vivesi, which 
showed different microbial communities. Data sets 
were generated targeting the V3 and V4 hypervariable 
regions of the 16S rRNA gene using the pairs of prim-
ers 341F/806R followed by sequencing on an Illumina 
MiSeq platform. The raw sequence data are available in 
the EMBL-EBI repository under the project accession 
number PRJEB47836.
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Analysis of 16S rRNA sequencing dataset
The 16S rRNA gene sequences used in this study were 
downloaded in fastq format from EMBL-EBI repository. 
The DADA2 software [32] implemented in QIIME2 was 
used for demultiplexing the 16S rRNA gene sequences 
and quality trimming based on the average quality 
per base of the forward and reverse reads. The first 22 
nucleotides were removed and then the total length was 
trimmed to 465 base pairs in both forward and reverse 
reads. Both reads were merged, and chimeric variants 
were removed. The resulting sequences were taxonomi-
cally assigned applying a pre-trained naive Bayes taxo-
nomic classifier [33], based on SILVA database version 
132 [34], and the primers used in the original dataset 
(341F/806R). The taxonomic data table obtained was col-
lapsed at genus level and taxa that had less than 10 total 
reads from each set were removed. The resulted ampli-
con variant sequences (ASVs) table was used for calcula-
tion of Jaccard coefficient of similarity, network analysis, 
identification of the core microbiome, and prediction of 
the functional traits. The beta diversity between samples 
of each bat species was compared using the Jaccard coef-
ficient of similarity and Jaccard clusterization analysis 
was conducted using Vegan implemented on R studio 
(RStudio 2020).

Co‑occurrence networks, identification of core microbiome 
and network resistance analysis
The analysis of the co-occurrence networks was per-
formed using the Sparse Correlations for Composi-
tional Data (SparCC) method [35] implemented in 
R studio (RStudio, the script code used can be found 
in Supplementary File 1). To calculate the correla-
tion matrix, taxonomic ASVs tables were used, select-
ing correlation coefficients with a magnitude larger or 
smaller than 0.6 (for the weight of the interactions). The 
Gephi 0.9.2 [36] software was used for visualization of 
all networks (i.e., with equal-size nodes, and those with 
node size proportional to eigenvector centrality (EV), 
or betweenness centrality (BNC)) and the calculation 
of the topological features and taxa connectedness 
(i.e., number of nodes and edges, modularity, network 
diameter, average degree, weighted degree, clustering 
coefficient, and centrality metrics). We used the online 
available Venn diagram tool (http:// bioin forma tics. psb. 
ugent. be/ webto ols/ Venn/) for visualizing the num-
ber of nodes and shared taxa between networks. Also, 
Venn diagrams were used to visualize the central nodes 
for the two parameters, EV and BNC.

To characterize the taxonomic core microbiome of all 
bat species included in this study the SparCC method 
[35] implemented in R studio (RStudio 2020) with a 

threshold of 0.9 and -0.9 for co-occurrence correlation 
was used. The Gephi 0.9.2 software was used for network 
visualization for those species that had a core.

The robustness of the co-occurrence networks was 
determined using an attack tolerance test with the 
package NetSwan for R [37]. For this analysis all net-
works were subjected to the systematic removal of 
nodes, using three different types of attacks: (i) ran-
dom with 100 iterations, (ii) direct where nodes are 
removed in decreasing order of their BNC value, and 
(iii) cascading where BNC values are recalculated after 
each node removed. Also, the loss of connectivity was 
assessed for each method.

Differential network analysis
Using the package ‘NetCoMi’ [38] in R studio a compari-
son of the similarity of the most central nodes between 
two networks was performed. The result of this com-
parison is a Jaccard index, for each of four local centrality 
measures (i. e. degree, BNC, closeness centrality, EV) for 
the nodes, as well as for those sets of hub-nodes for the 
two networks compared. The Jaccard index of 0 shows 
complete dissimilarity between the parameters, while 
the value 1 indicates the highest similarity between these 
network parameters [38].

Prediction of the functional traits in gut the microbiome 
of bats
We used PICRUSt2 to predict the functional profile of 
bacterial communities based on the 16S rRNA gene 
sequences [39]. The amplicon sequence variants (ASVs) 
were inserted into a reference tree (with a NSTI cut-off 
value of 2), to obtain gene family copy numbers of each 
ASV. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) orthologs (KO) [40], Enzyme Classification 
numbers (EC), and Cluster of Orthologus genes (COGs) 
[41] were used for the functional annotations of the path-
ways. Pathway profiles were mapped based on the Meta-
Cyc database [42], highlighting both the shared as well as 
the unique pathways using a Venn diagram. The MetaCyc 
pathway was calculated based on the abundance of the 
predicted EC numbers. Taxa contribution to pathways 
was inferred using data obtained from the pathways anal-
ysis and set the threshold at 10% contribution for each 
taxon to a specific pathway (only for three bat species).

Statistical analyses
To test the similarity of the most central nodes, we 
calculated two p-values. p(J ≤ j) and p(J ≥ j) for each 
Jaccard’s index, representing the probability that the 
observed value of Jaccard’s index is “less than or equal” 
or “higher than or equal”, respectively, to the Jaccard 
value expected at random. Differences were considered 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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significant for p-value < 0.05. An ANOVA test with 
post hoc analysis was performed in GraphPad Prism 
9 to highlight the statistical differences for all three 
different types of attacks used for testing network 
robustness. The alpha diversity was determined using 
the observed features index. To test for differences in 
alpha diversity metrics between groups, as well as for 
comparing differential pathways abundances we used 
Kruskal–Wallis one-way ANOVA-s.

Results
Assembly of bat microbiome
The bacterial community structure was determined by 
inferring co-occurrence networks in five different bat 
species (Fig.  1, Table  2). The obtained networks show 
that each bat species has distinct patterns of bacte-
rial co-occurrence networks and there are major dif-
ferences between all bat species in the number and 
identity of bacteria present in the gut microbiome 

Fig. 1 Microbial co‑occurrence networks of different bat species. The bacterial co‑occurrence networks were constructed based on 16S rRNA gene 
sequences obtained from a previous study (Aizpurua et al., 2021). Nodes represent bacterial taxa and edges represent co‑occurrence correlation. 
The node color is based on the modularity class. Thus, nodes with the same color belong to the same cluster. The edges are connecting links with 
negative and positive interactions, respectively (SparCC > 0.60 or < ‑0.60). Only nodes with at least one connecting edge are shown

Table 2 Topological features of the microbial co‑occurrence networks

Topological parameters Bat species

Mi. schreibersii My. capaccinii My. myotis My. pilosus My. vivesi

Nodes 107 128 317 40 36

Edges 239 173 2136 51 57

Positive 207 (86.62%) 167 (96.53%) 1461 (68.39%) 46 (78.26%) 54 (85.18%)

Negative 32 (13.38%) 6 (3.46%) 675 (31.60%) 10 (21.73%) 8 (14.81%)

Network diameter 12 15 7 6 8

Average degree 2.731 0.73 13.476 0.773 1.81

Weighted degree 1.358 0.44 3.723 0.312 0.894

Average path length 4.62 5.018 3.234 2.736 3.346

Modularity 0.898 0.868 1.341 0.867 0.872

Number of modules 14 27 27 13 5

Average clustering coefficient 0.459 0.523 0.538 0.465 0.465
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(Fig.  2A, Supplementary Table  1). The topological fea-
tures show the highest number of nodes and edges for 
My. myotis and the lowest number of nodes for My. vivesi, 
whilst the lowest number of edges is observed for My. 
pilosus (Table 2). My. capaccinii shows the highest num-
ber of unique taxa (n = 108), in contrast to My. vivesi, 
which has the lowest number of unique taxa (n = 3). A 
total of 26 taxa are shared between all five bat species. 
Regarding the number of shared nodes between all bat 
species networks, the Venn diagram shows no common 
nodes (Fig. 2B, Supplementary Table 2), with My. myotis 
having the highest number of unique nodes (n = 180). The 

networks show that there are differences in the assembly 
of the bacterial community. The Jaccard’s coefficient of 
similarity of samples in the fives species show that most 
of the samples can be grouped in a different cluster by 
species. The Jaccard clusterization and network analysis 
highlights the fact that both the beta diversity and assem-
bly of the gut microbiome of the five considered species 
is different (Fig. 2C).

The bat-associated core microbiome was analyzed to 
determine the particularities for each species (Fig.  3). 
Only three bat species presented a core microbiome 
within the selected threshold (SparCC > 0.9): My. myotis 

Fig. 2 Cladogram and Venn diagrams of taxa and nodes. The Venn diagrams are showing the number of bacterial taxa in the microbiome (A) and 
nodes in the network (B) that are common or unique between all five bat species. The cladogram (C) displays the simplified Jaccard clusterization of 
bat microbiome from the samples analysed. Percentual values represent proportion of samples of each bat species in each defined cluster

Fig. 3 Core co‑occurrence networks of three bat species. Co‑occurrence networks of My. myotis (A), My. pilosus (B) and My. vivesi (C) are shown. 
Nodes correspond to bacterial taxa, and only those with at least one significant correlation are represented. The color of the nodes is based on the 
modularity class. All edges with positive and negative correlation are represented (SparCC > 0.90 or < ‑0.90). The Venn diagram (D) is showing the 
number of core bacteria that are common or unique among the three bat species
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(Fig.  3A), My. pilosus (Fig.  3B) and My. vivesi (Fig.  3C), 
with the most abundant being present in My. myotis. 
Core networks were characterized by the presence of 
different taxa in each species and none of these bacte-
rial taxa were shared between My. myotis, My. pilosus 
and My. vivesi (Fig.  3D). The core network of My. myo-
tis showed the presence of different bacteria (e.g., Akker-
mansia, Arcobacte Burkholderiales, Coriobacteriales, 
Fusobacteriaceae, Synergistaceae). In both cases of My. 
pilosus and My. vivesi, only two taxa were present in the 
core microbiome (Fig.  3B, C). These results show that 
My. myotis has the highest structural complexity of the 
gut microbiome community, while both My. pilosus and 
My. vivesi show a more specialized, but less diverse struc-
ture since all nodes are unique and specific for each bat 
species.

Node centrality distribution and network robustness
Co-occurrence networks comparisons using the EV and 
BNC parameters highlight once more the complexity of 
My. myotis network, while My. pilosus had the lowest 
complexity. The size of the nodes represents their influ-
ence in a particular network, depending on each param-
eter (Supplementary Fig.  1A, B). Venn diagrams from 
the Fig. 4A, B represent the number of the central nodes 
shared and unique in each species for EV (Supplemen-
tary Table 3) and BNC (Supplementary Table 4) param-
eters. There is one shared node between all bat species 
when EV parameter is used. Also, it is shown a higher 
number of nodes for the bat species My. myotis for both 
EV and BNC. The observed Jaccard’s index for local cen-
trality measures (i.e., degree, BNC, closeness centrality, 
eigenvector centrality, and hub taxa) was significantly 
lower than expected by random for all the comparisons 
(Supplementary Table  5). The Jaccard index showed 
statistically significant differences for all network 

parameters between each pair of comparisons of the five 
bat species, suggesting differences in network centrality 
distribution for each network (Supplementary Table 5).

To determine the robustness of the networks, we tested 
their tolerance to different types of attack: using direct 
(Fig. 5A), cascading (Fig. 5B), and random nodes (Fig. 5C) 
removal. Similar results were reached in the networks by 
all three approaches of taxa removal. Statistical analysis 
was performed using the ANOVA test, showing that the 
bat species My. myotis has the highest ‘robustness’ (i.e., 
lowest susceptibility to network attack). For the same bat 
species less than 20% of network connectivity is lost after 
removal of around 50% of the nodes using each type of 
attack. By comparing the loss of connectivity, measured 
by random attacks, of the networks of all five bat species, 
the network of My. vivesi presents the lowest tolerance 
to taxa removal (Supplementary Fig.  2). Random taxa 
removal result in the lowest loss of connectivity in each 
network, while cascading attacks induce the lowest toler-
ance in all networks (Supplementary Fig. 3).

Predicted functional profiles associated to bat 
microbiomes
For each bat species, the analysis of alpha diversity of the 
observed features (number of pathways) was performed 
(Fig.  6A). The analysis of alpha diversity of functional 
pathways showed that Mi. schreibersii have lower rich-
ness functional pathways than My. capaccinii and My 
myotis (Kruskal–Wallis, p < 0.05, Fig. 6A).

The analysis of the identity of the different predicted 
pathways showed that 82% (357, total 435) of the path-
ways were shared between all bat species. Moreover, 
My. capaccinii, My. myotis and My. vivesi showed unique 
pathways (Fig.  6B, Supplementary Table  6). Indeed, My. 
capaccinii showed the highest number of unique path-
ways (i.e., 13), while Mi. schreibersii and My. pilosus 

Fig. 4 Venn diagrams of microbial co‑occurrence networks of different bat species. The Venn diagrams are showing the number of central nodes 
using two different parameters: eigenvector (A) and betweenness centrality (B) that are common or unique between all five bat species
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lacked unique pathways (Fig. 6B). Differential abundance 
analysis showed that several predicted pathways are dif-
ferent between different bat species (Supplementary 
Fig.  4). The analysis of the specific pathways revealed 
the presence of three ‘superpathways’ for My. capaccinii 
(i.e., fermentation (PWY-7401), pyrimidine nucleobase/
ribonucleoside degradation (PWY-7209) and quinolone 
and alkyquinolone biosynthesis (PWY-6662)), one for 
My. vivesi (proteinogenic amino acid biosynthesis (PWY-
7528)). My. myotis had pathways involved in both degra-
dation (aromatic compound degradation – PWY-7002) 
and biosynthesis (antibiotic biosynthesis – PWY-6919). 
These results suggest that the constituents of My. capac-
cinii’s gut microbiome, a piscivorous bat, have extensive 

Fig. 5 Comparison of network tolerance to taxa removal based on three different types of attack. The resistance of the networks for the 
microbiome of five different bat species was measured by the removal of nodes using three different attacks: direct (A), cascading (B), or random 
(C). Nodes removal was based on their BNC value. All pairwise comparisons were statistically significant. Loss of connectivity values ranges between 
0 (maximum of connectivity between nodes) and 1 (total disconnection between nodes). The statistical analysis used was an ANOVA test with post 
hoc analysis

Fig. 6 Alpha diversity and Venn diagram of pathways. The comparison of alpha‑diversity with the Observed features index for all bat species 
together with the statistical analysis is represented (A). All pairwise comparisons were statistically significant. Details regarding the p‑value for 
the index can be found in Table 3. The Venn diagram (B) is showing the comparison of unique and shared pathways present in the bat species 
considered in this study

Table 3 Statistics for the observed feature index comparisons 
for pathways

Group 1 Group 2 H p‑value

Mi. schreibersii (n = 10) My. capaccinii (n = 22) 7.87 0.005008
My.myotis (n = 9) 5.22 0.022243
My. pilosus (n = 13) 3.23 0.071957

My. vivesi (n = 8) 9.67 0.001872
My. capaccinii (n = 22) My.myotis (n = 9) 0.08 0.001872

My. pilosus (n = 13) 15.42 0.777206

My. vivesi (n = 8) 15.52 0.000086
My. myotis (n = 9) My. pilosus (n = 13) 8.24 0.004075

My. vivesi (n = 8) 11.34 0.000757
My. pilosus (n = 13) My. vivesi (n = 8) 1.26 0.261486
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functional roles, highly differing from the ones of the 
other four bat species analyzed.

For the same three bat species, an analysis regarding 
the taxa contribution to those specific pathways was per-
formed. Only taxa with the highest abundance and con-
tribution (more than 10%) were selected. The bat species 
My. capacinii and one specific pathway for My. myotis 
were eliminated from the analysis because all the taxa 
contributing to those 14 specific pathways had very low 
values. For My. myotis, only three taxa were selected for 
the contribution to the pathway PWY-7002, Sphingobium 
having the highest contribution, followed by Corynebac-
terriales and Mycobacterium genus. In particular, for My. 
vivesi the taxa with the highest contribution were repre-
sented by Bacillaceae, followed by Photobacterium dam-
selae (Fig. 7).

Discussion
As the number of studies on the composition and the role 
of gut microbiome had increased in the past years, more 
and more animals were analyzed. Due to their role in the 
epidemiology and spreading of diseases, the gut micro-
biome of bats was also a subject of great importance. In 
the present study, we used available published data [31] 
to perform a network analysis of the gut bacterial com-
munity for five different bat species. We considered the 
diet as the most important factor that can influence 
the microbiome. It was showed that microbiome and 
diet plays an important role in human health and can 

influence the appearance of diseases: diabetes, autoim-
mune diseases, inflammatory bowel diseases, and some 
types of cancer [43–46]. Animal-based diet has a greater 
impact on the gut microbiome than a plant-based diet as 
it was shown both in humans and in bats [20, 47]. Human 
diets show wide variances around the world (availabil-
ity and type of food, urbanization, lifestyle) and has an 
important impact on their health, both in children and 
adults, highlighting the need for balanced food [48]. Bats 
are conservative in their diet choice, with high similarity 
within the same dietary group (insectivorous, nectari-
vorous, frugivorous), and it is rare to include nonspecific 
food resources. An example is the group of frugivorous 
bats that rarely eat insects, just doing so in order to bal-
ance their nutrients [49].

Bats’ diet plays a major role in building the gut micro-
biome [20, 21, 24]. Phyllostomid bats are the most varied 
and diverse family of bats (over 190 species), with most 
species being insectivorous, but there are also sanguivo-
rous, carnivorous, nectarivorous, and frugivorous species 
in the group. A study on the gut microbiome of differ-
ent species from this family showed that those that feed 
with blood and insects had the most diverse microbiome 
and a more clustered arrangement of bacterial commu-
nity compared to those that have a plant-based diet [20]. 
In contrast, the study performed by Phillips et  al., [24], 
suggested that the microbiome diversity is higher in 
bats relying on a plant-based food-source compared to 
bats using animal-based nutrients. Still, the presence of 

Fig. 7 Contribution of commensal bacteria to pathways in the microbiome from two bat species. The alluvial plot represents the presence of 
specific pathways for two different bat species. The bacterial taxa contributing to those specific pathways are also represented. Node segments 
by columns are showing the host (first column), pathways (second column), and bacterial taxa (third column). The size of the node is proportional 
to the abundance of contributing host, pathway, or bacterial taxa. The cords represent the connection between the host, pathways, and taxa. The 
contribution of each taxon to different pathways is proportionally represented by the size of the cords
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shared bacterial taxa observed between frugivorous and 
insectivorous bats studied in India, suggests an overlap in 
their diet [25].

The microbiome analysis performed in this study 
included bats from two different families (Vespertilio-
nidae and Miniopteridae) that predominantly feed on 
insects, thus sharing a similar fundamental resource. 
Similarly to other studies [19], we found no major proof 
of the effect of host phylogeny per se, none of the char-
acteristics of the individual microbiomes mirrored host 
phylogeny (Fig.  2, also), so we looked for further physi-
ological predictors. Diet was shown as very important 
building factor of microbiome structures and one may 
expect the major differences between constituent micro-
biomes either along the diversity of their diet components 
(few, basically similar species consumed in large quanti-
ties vs. diverse array of taxonomically different groups) or 
basic position in the trophic pyramid (ei. consumption of 
chiefly primary consumers – insect herbivores or preda-
tory insects). The co-occurrence analysis of the networks 
showed that My. myotis had not only the highest micro-
bial diversity, but also the highest number of nodes and 
edges resulting in higher network complexity, while the 
two most distant from My. myotis (both in terms of phy-
logeny as well geographically) were positioned My. vivesi 
and My. pilosus, having the lowest values regarding the 
number of nodes and edges, as well a more specialized 
microbiome (Fig.  1, 3, Table  2.). This may be partially 
caused the contrast between the high diversity of prey 
items in case of My. myotis (Table 1, diverse assemblages 
of ground-dwelling, terrestrial groups of Coleoptera, 
Othoptera and Arachinda, but also Miriapoda, Heter-
optera or Lepidoptera, with up to 40–60 different spe-
cies—see also [50, 51]), in contrast to the purely marine 
sourced, arthropod (Crustacea) and fish consumer My. 
vivesi (up to 70% food made by Crustacea, [52]), or the 
fresh water-fish specialist My. pilosus (up to 60% food 
made by 3 fish species, see [53–55]).

Microbiomes of both Mi. schreibersii (primarily 
a terrestrial Lepidoptera and Diptera preying spe-
cies, [56, 57]), as well My. capaccinii (primarily a 
low diversity, freshwater Diptera-specialist, [58, 59]) 
showed more similarity to each other, or to My. myotis 
(Table  2, Figs.  2 and 4, Supplementary Figs.  1, 2 and 
3), then to the other two bat species with a similarly 
narrow, specialized diet (My. vivesi and My. pilosus). 
This may be caused by other factors than purely diet 
diversity. While Mi. schreibersii may share similar hab-
itats with My. myotis (thus theoretically they may hunt 
the same primary consumers – Lepidoptera and some 
Diptera), the overlap between their food palette is non-
significant, due to the strikingly different hunting tech-
nique and prey-size (Table 1, see also [51, 56, 60]). The 

differences between the feeding regimes of Mi. schreib-
ersii and My. capaccinii, or My. myotis and My. capac-
cinii, are even more significant, as the latter is a really 
narrow specialist, relying primarily on small-sized 
aquatic Diptera (chiefly Chironomidae) and Trichop-
tera [58, 59], thus fully avoiding not only terrestrial 
hunting grounds, but also most terrestrial insects. 
Also, My. capaccinii does not showed the overlap in 
microbiome constituents or structure with the two 
other aquatic feeders species (My. vivesi and My. pilo-
sus), although their consumption of aquatic primary 
consumers was similar (with My. pilosus, even sharing 
some Trichoptera and Chironomidae groups/species, 
see [55, 59]). These three bat species not only showed 
similarly low levels of taxonomic diversity in the diet, 
or the avoidance of secondary consumer insects, but 
also each of them regularly consume fish (vertebrates), 
so they have the most similar diet. Still, the struc-
ture and constituency of their respective microbi-
ome is basically different. In consequence, we suspect 
that hosts’ diet is not the single and most important 
source or predictor for gut microbiome. We suggest 
that geographical co-occurrence and physical con-
tacts via shared roosting may have some importance, 
too. Although the selected species’ ranges are distrib-
uted over three continents, there are several species, 
which show overlapping range, thus they may get into 
physical contact, favouring in this way easy microbial 
exchanges. Three of the targeted species may regularly 
occur even in the same physical space (Mi. schreiber-
sii, My. capaccinii and My. myotis, Table  1, [61]) thus 
accidental or desired (communal roosting for thermal 
confort) physical contacts may be common. Especially 
in the case of Mi. schreibersii and My. capaccinii this 
may be important, as these two species are regularly 
observed to roost in close contact, where individuals 
may engage in aggressive interactions, considerably 
easing microbial exchange trough oral contacts [23, 
62]. The likely lack of any interaction with individu-
als of other species, and also the reduced chances of 
intraspecific interactions in the case of My. vivesi 
(highly territorial, crevice-dwelling species roosting in 
small groups in contrast to all the other species, which 
are cave-dwelling and roosting in close-tight, large 
groups, see Table  1) may be the key not only for the 
low levels of overlap in microbiome constituents with 
other bat species (Figs. 1 and 2, Supplementary Fig. 4), 
but also for the low levels of structuring (Figs.  5 and 
6) and extreme fragility of its microbiome (see Fig.  5, 
Supplementary Figs.  2 and 3). At the beginning of a 
study, the appropriate sample size that should be used 
can be calculated using statistical software, but also 
with some limitations (correlation with the hypothesis, 
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ethics, possibility of sampling) [63, 64]. The different 
size of the sample can influence result: if a small num-
ber of samples are used, this can lead to false prem-
ises and loss of money, or on the contrary, if a larger 
sample is used, this can cause ethical problems, loss of 
money and time [65, 66]. A bias and limitation of our 
study is the lack of a sample size calculation. This was 
not possible because we used already published data 
and selected only those sequences that were suitable 
for data analysis.

Overall, the predominant bacterial phyla in the micro-
biome are gram-positive (Firmicutes) and gram-nega-
tive (Bacteroidetes). Studies on human gut microbiome 
revealed that is richer in the Phyla Firmicutes and Bacte-
roidetes, while when is higher in Proteobacteria, could be 
associated with diseases [67]. In contrast, in the analysis 
of the bats microbial community, the Phylum Proteobac-
teria was more abundant, followed by Firmicutes [20, 25].

In humans, a diet based on animal food had a great 
impact on the relative abundance of bacterial taxonomic 
groups, increasing especially in the microorganisms Alis-
tipes, Biolophila, and Bacteroides and decreasing in those 
from the phyla Firmicutes [47]. The core microbiome of the 
bat species My. myotis showed especially the presence of 
gram-negative bacteria (e.g., Akkermansia, Alistipes, Bac-
teroides, Burkholderiales, and Synergistaceae), associated 
with different physiological changes (anti-inflammatory 
effects, activation of CD4 T cells, regulation of homeostasis 
of oxalic acid) [68–71]. For My. pilosus two bacteria were 
identified, both from the family Fusobacteriaceae, which 
are gram-negative bacteria that can be associated with dis-
eases [72], and this family was reported to be abundant in 
patients having non-alcoholic steatohepatitis [73]. For the 
species My. vivesi the bacteria Mycoplasma was identi-
fied, with an unknown role in their health status or if they 
can transmit it further to animals and humans [74]. Previ-
ous studies also reported the presence of Mycoplasma sp. 
in the gut of Cynopterus sp. [25]. The analysis of the core 
microbiome of frugivorous and insectivorous bats showed 
that they can share the following bacteria in more than 70% 
of the samples analyzed: Deinococcus, Methylobacterium, 
Sphingomonas, Phenylobacterium, Hymenobacter [25].

Rarefaction analysis of the observed bacterial species of 
insectivorous compared with frugivorous bats from India 
showed that the overall diversity of the gut microbiome is 
higher for the first ones [25]. For some species from the 
Phyllostomidae family, the bacterial alpha diversity was 
higher in bats that feed on blood and insects compared 
with those that feed on fruits and nectar [20]. In contrast, 
in our study, we analyse the alpha diversity of functional 
pathways which showed that the individuals from the 
Miniopteridae family are richer in functional pathways 
compared with those from the Vespertilionidae family. 

This may be caused by the high levels of sociality among 
species belonging to Miniopteridae [75].

Tools such as PICRUSt, PICRUSt2, Tax4Fun and Fapro-
Tax have been developed to infer microbial functional 
genes from amplicon sequencing data [76]. Studies com-
paring some of the methods (i.e., PICRUSt, PICRUSt2, 
and Tax4Fun) revealed that no method was superior to 
another [76], and PICRUSt2 has been applied on samples 
from various animals, including arthropods (e.g., Ixodes 
spp.[77], nematodes (e.g., Caenorhabditis elegans, [78]), 
birds (e.g., Serinus canaria domestica [79]), and mam-
mals (e.g., humans [39], goats [80], and bats [21], among 
others. In our study, analysis of the functional predic-
tion for multiple bat species, which are taxonomically 
different and have distinct feeding strategies, showed 
that frugivorous bats are very different from insectivo-
rous, carnivores, or blood-feeders. When comparing 
the animal-based diet with the plant-based diet resulted 
that 37 functional pathways were differentially abundant 
between them. For bats that have an animal diet, the most 
common pathways were associated with biosynthesis and 
generation of precursor metabolites [21]. In particular, 
the pathways analyzed in the present paper, especially 
for three bat species (My. capaccinii, My. myotis and My. 
vivesi) are represented by biosynthesis and degradation 
(Supplementary Table 2). The highest number of particu-
lar pathways were present for the bat species My. capac-
cini, which is a bat species mostly insectivorous, but also 
may consume some fish (vertebrates). As indicated by 
Ingala et al., [21], carnivorous bats had distinct pathways 
compared with other animal or plant-based habits. When 
the analysis of the taxa contributing to those specific 
pathways was performed in the present paper, the bat 
species My. capaccinii, despite having the highest num-
ber of specific pathways had a very low number of taxa 
participating in those 13 pathways. In particular, for the 
bat species My. myotis and My. vivesi the genus Mycobac-
terium and the species Photobacterium damselae had the 
highest contributions. Both of those taxa can cause dis-
eases, and in particular the P. damselae was reported to 
be pathogenic for marine animals and also humans [81]. 
In humans, it was recorded as an opportunistic pathogen 
that can cause fasciitis that can even lead to death [82]. 
Health status of bats is not mentioned in the original 
paper, and further studies should be performed to corre-
late the health of the animals with the taxa identified.

The lower variance of microbial functional profiles 
compared with their taxonomic profiles and the relative 
functional stability of the microbiome in certain environ-
ments make predictions of average gene profiles rather 
reliable [76]. However, a limitation of amplicon-based 
functional predictions is that it varies across sample types 
and functional categories [76], as inferences are biased 
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towards existing reference genomes and cannot provide 
resolution to distinguish strain-specific functionalities 
[39]. Considering that the bat microbiome is relatively 
poorly characterized [21], some of the identified taxa may 
not have reference genomes and/or close matches with 
the available genomes. In addition, amplicon-based func-
tional predictions cannot distinguish between active and 
inactive bacterial constituents in the microbiome (see 
e.g., [83]), which results in the wrong assumption that 
all predicted pathways are active [21]. These limitations 
mean that rare and strain-specific functions [39], poten-
tially present in bats microbiome with different levels 
of activation, may have not been detected in our study. 
Shotgun metagenomics sequencing and transcriptom-
ics could reveal changes in active functional pathways 
related gut microbiome in response to dietary shifts in 
bats.

Conclusions
Diet is one of the major determinants of the gut bacterial 
community and is directly influenced by the type of food 
consumed by the host. We found that My. myotis has the 
highest network complexity and a more abundant core 
microbiome among the studied species, while My. capac-
cini differed the most regarding its functional prediction, 
in the presence of particular protein-coding pathways. 
Animal-based diets can shape the gut microbiome very 
differently, even for bat species that generally have the 
same feeding type (e.g., insectivorous). Not only diet 
composition, but also diversity, as well host ecology pre-
dict microbial diversity, throughout host sociality, roost 
selection and distribution. Specific pathways are more 
representative in the Vespertilionidae than in the Mini-
opteridae family, although Mi. schreibersii is the richest 
in functional pathways (likely caused by differences in 
ecology). The use of network analysis may improve our 
understanding of the microbiome of bats, providing fur-
ther clues to entangle basic differences and to evaluate 
the importance of different evolutionary pathways driv-
ing its development.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12866‑ 023‑ 02836‑7.

Additional file 1: Supplementary File 1. Script code used to infer co‑
occurrence networks.

Additional file 2: Supplementary Table 1. List of shared and unique 
bacterial taxa in M. schreibersii, My. capaccinii, My. myotis, My. pilosus, and 
My. vivesi microbiome.

Additional file 3: Supplementary Table 2. List of shared and unique 
bacterial nodes in the M. schreibersii, My. capaccinii, My. myotis, My. 
pilosus, and My. vivesi co‑occurrence networks.

Additional file 4: Supplementary Table 3. List of shared and unique 
bacterial nodes with various values of EV in the M. schreibersii, My. capac‑
cinii, My. myotis, My. pilosus, and My. vivesi co‑occurrence networks.

Additional file 5: Supplementary Table 4. List of shared and unique 
bacterial nodes with various values of BNC in the M. schreibersii, My. 
capaccinii, My. myotis, My. pilosus, and My. vivesi co‑occurrence networks.

Additional file 6: Supplementary Table 5. Jaccard index for the pairwise 
comparisons of all five bat species considered in this study.

Additional file 7: Supplementary Table 6. Names of unique predicted 
pathways for three bat species.

Additional file 8: Supplementary Figure 1. Microbial co‑occurrence 
network of different bat species. The nodes are representing bacterial 
taxa and the edges represent co‑occurrence correlation. Node size is 
proportional to the eigenvector centrality (A) and BNC (B). The edges are 
connecting links with negative and positive interactions, respectively 
(SparCC > 0.60 or <‑0.60).

Additional file 9: Supplementary Figure 2. Network tolerance to taxa 
removal for five different bat species. Mi. schreibersii, My. capaccinii, My. 
myotis, My. pilosus and My vivesi networks were subjected to direct cascad‑
ing or random removal based on their BNC value. Loss of connectivity 
values ranges between 0 (maximum of connectivity between nodes) and 
1 (total disconnection between nodes).

Additional file 10: Supplementary Figure 3. Network tolerance to 
taxa removal using direct (green line), cascading (red line), or random 
(blueline) removal based on their BNC value for all five bat species. Loss of 
connectivity values ranges between 0 (maximum of connectivity between 
nodes) and 1 (total disconnection between nodes).

Additional file 11: Supplementary Figure 4. Predicted pathways with 
differential abundance in different bat species. The heatmap is showing 
the pathways for all bat species with significant differences in their abun‑
dance (expressed as clr) (Welch’s t‑test, p < 0.05).

Acknowledgements
Not applicable.

Authors’ contributions
AC: data collection and analysis, visualization, writing‑original draft. AWC: 
data collection, supervision, and analysis. AM: data collection and analysis. 
DO: software, writing‑review. ADS: writing‑review. ACC: conception of study, 
supervision, visualization and writing‑review. The author(s) read and approved 
the final manuscript.

Authors’ information
Not applicable.

Funding
The stage conducted by AC at ANSES, Paris where the bioinformatics 
preparation of the data was performed, was supported by National Research 
Development Projects to finance excellence (PFE)—14/2022–2024 granted 
by the Romanian Ministry of Research and Innovation. BIPAR was funded 
by the French Government’s Investissement d’Avenir program, Laboratoire 
d’Excellence “Integrative Biology of Emerging Infectious Diseases” (grant no. 
ANR‑10‑LABX‑62‑IBEID). AW‑C was supported by Programa Nacional de Becas 
de Postgrado en el Exterior “Don Carlos Antonio López” (Grant No. 205/2018). 
AM is supported by the ‘Collectivité de Corse’, grant: ‘Formations superieures’ 
(SGCE‑RAPPORT No. 0300). While working for this study, ADS was funded by 
Project no. TKP2020‑NKA‑01 implemented with the support provided from the 
National Research, Development and Innovation Fund of Hungary, financed 
under the “Tématerületi Kiválósági Program 2020” (2020–4.1.1‑TKP2020) fund‑
ing scheme, and also supported by K‑132794 OTKA project funded by the 
National Research, Development and Innovation Office of Hungary.

Availability of data and materials
All the datasets shown in the present study can be found at the SRA reposi‑
tory https:// www. ncbi. nlm. nih. gov/ sra (Accession numbers: ERR7141691‑
ERR7141699; ERR7141703‑ERR7141706; ERR7141707‑ ERR7141719; 

https://doi.org/10.1186/s12866-023-02836-7
https://doi.org/10.1186/s12866-023-02836-7
https://www.ncbi.nlm.nih.gov/sra


Page 14 of 15Corduneanu et al. BMC Microbiology           (2023) 23:93 

ERR7141725‑ERR7141728; ERR7141729‑ERR7141741; ERR7141742‑ERR7141748; 
ERR7142004‑ERR7142009; ERR7142013‑ERR7142015; ERR7159368; 
ERR7159373‑ERR7159374).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Animal Breeding and Animal Production, University of Agri‑
cultural Sciences and Veterinary Medicine of Cluj‑Napoca, Cluj‑Napoca, Roma‑
nia. 2 Department of Parasitology and Parasitic Diseases, University of Agricul‑
tural Sciences and Veterinary Medicine, Cluj‑Napoca‑Napoca, Romania. 3 UMR 
BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire 
d’Alfort, Maisons‑Alfort, France. 4 INRAE, UR 0045 Laboratoire de Recherches 
Sur Le Développement de L’Elevage (SELMET‑LRDE), 20250 Corte, France. 5 EA 
7310, Laboratoire de Virologie, Université de Corse, Corte, France. 6 School 
of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, 
Canada. 7 Department of Parasitology and Zoology, University of Veterinary 
Medicine, Budapest, Hungary. 8 ELKH‑ÁTE Climate Change: New Blood‑Sucking 
Parasites and Vector‑Borne Pathogens Research Group, Budapest, Hungary. 

Received: 27 January 2023   Accepted: 25 March 2023

References
 1. Apprill A. Marine animal microbiomes: toward understanding 

host–microbiome interactions in a changing ocean. Front Mar Sci. 
2017;4:222.

 2. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current 
understanding of the human microbiome. Nat Med. 2018;24:392–400.

 3. Lin C‑Y, Jha AR, Oba PM, Yotis SM, Shmalberg J, Honaker RW, et al. Longi‑
tudinal fecal microbiome and metabolite data demonstrate rapid shifts 
and subsequent stabilization after an abrupt dietary change in healthy 
adult dogs. Animal Microbiome. 2022;4:1–21.

 4. Alexander M, Turnbaugh PJ. Deconstructing mechanisms of diet‑microbi‑
ome‑immune interactions. Immunity. 2020;53:264–76.

 5. Lindsay EC, Metcalfe NB, Llewellyn MS. The potential role of the gut 
microbiota in shaping host energetics and metabolic rate. J Anim Ecol. 
2020;89:2415–26.

 6. Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Ami‑
nov RI. Predominant role of host genetics in controlling the composition 
of gut microbiota. PLoS ONE. 2008;3:e3064.

 7. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, 
et al. Environment dominates over host genetics in shaping human gut 
microbiota. Nature. 2018;555:210–5.

 8. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini 
A, et al. What is the healthy gut microbiota composition? A changing 
ecosystem across age, environment, diet, and diseases. Microorganisms. 
2019;7:14.

 9. Wong S, Rawls JF. Intestinal microbiota composition in fishes is influ‑
enced by host ecology and environment. 2012.

 10. Bennett G, Malone M, Sauther ML, Cuozzo FP, White B, Nelson KE, et al. 
Host age, social group, and habitat type influence the gut microbiota of 
wild ring‑tailed lemurs (Lemur catta). Am J Primatol. 2016;78:883–92.

 11. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet 
on the gut microbiota. Pharmacol Res. 2013;69:52–60.

 12. Rishi P, Thakur K, Vij S, Rishi L, Singh A, Kaur IP, et al. Diet, gut microbiota 
and COVID‑19. Indian Journal of Microbiology. 2020;60:420–9.

 13. Taylor M. Bats: an illustrated guide to all species. London: Ivy Press; 2019.

 14. Li A, Li Z, Dai W, Parise KL, Leng H, Jin L, et al. Bacterial community 
dynamics on bats and the implications for pathogen resistance. Environ 
Microbiol. 2022;24:1484–98.

 15. Corduneanu A, Mihalca AD, Sándor AD, Hornok S, Malmberg M, Viso NP, 
et al. The heart microbiome of insectivorous bats from Central and South 
Eastern Europe. Comp Immunol Microbiol Infect Dis. 2021;75:101605.

 16. Ramos‑Nino ME, Fitzpatrick DM, Eckstrom KM, Tighe S, Dragon JA, 
Cheetham S. The kidney‑associated microbiome of wild‑caught artibeus 
spp. in Grenada West Indies. Animals. 2021;11:1571.

 17. Dietrich M, Kearney T, Seamark EC, Paweska JT, Markotter W. Synchro‑
nized shift of oral, faecal and urinary microbiotas in bats and natural 
infection dynamics during seasonal reproduction. Royal Soc Open Sci. 
2018;5:180041.

 18. Edenborough KM, Mu A, Mühldorfer K, Lechner J, Lander A, Bokelmann 
M, et al. Microbiomes in the insectivorous bat species Mops condylurus 
rapidly converge in captivity. PLoS ONE. 2020;15:e0223629.

 19. Lutz HL, Jackson EW, Webala PW, Babyesiza WS, Kerbis Peterhans JC, 
Demos TC, et al. Ecology and host identity outweigh evolutionary history 
in shaping the bat microbiome. Msystems. 2019;4:e00511‑e519.

 20. Carrillo‑Araujo M, Taş N, Alcantara‑Hernandez RJ, Gaona O, Schondube JE, 
Medellin RA, et al. Phyllostomid bat microbiome composition is associated 
to host phylogeny and feeding strategies. Front Microbiol. 2015;6:447.

 21. Ingala MR, Simmons NB, Dunbar M, Wultsch C, Krampis K, Perkins SL. You 
are more than what you eat: potentially adaptive enrichment of microbi‑
ome functions across bat dietary niches. Anim Microbiome. 2021;3:1–17.

 22. Dietrich M, Kearney T, Seamark EC, Markotter W. The excreted microbiota 
of bats: evidence of niche specialisation based on multiple body habitats. 
FEMS Microbiol Letters. 2017;364:fnw284.

 23. Yin Z, Sun K, Li A, Sun D, Li Z, Xiao G, et al. Changes in the gut microbiota 
during Asian particolored bat (Vespertilio sinensis) development. PeerJ. 
2020;8:e9003.

 24. Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Delton 
Hanson J, et al. Microbiome analysis among bats describes influences 
of host phylogeny, life history, physiology and geography. Mol Ecol. 
2012;21:2617–27.

 25. Banskar S, Mourya DT, Shouche YS. Bacterial diversity indicates 
dietary overlap among bats of different feeding habits. Microbiol Res. 
2016;182:99–108.

 26. Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, et al. Charac‑
terization of the gut microbiome using 16S or shotgun metagenomics. 
Front Microbiol. 2016;7:459.

 27. Riera JL, Baldo L. Microbial co‑occurrence networks of gut microbiota 
reveal community conservation and diet‑associated shifts in cichlid 
fishes. Anim Microbiome. 2020;2:1–13.

 28. Yao H, Lu S, Williams BA, Flanagan BM, Gidley MJ, Mikkelsen D. Absolute 
abundance values reveal microbial shifts and co‑occurrence patterns 
during gut microbiota fermentation of dietary fibres in vitro. Food Hydro‑
colloids. 2022;127:107422.

 29. Janga S, Díaz‑Mejía JJ, Moreno‑Hagelsieb G. Network‑based function 
prediction and interactomics: the case for metabolic enzymes. Metab 
Eng. 2011;13:1–10.

 30. Zhou Z, Tran PQ, Breister AM, Liu Y, Kieft K, Cowley ES, et al. METABOLIC: 
high‑throughput profiling of microbial genomes for functional traits, 
metabolism, biogeochemistry, and community‑scale functional net‑
works. Microbiome. 2022;10:1–22.

 31. Aizpurua O, Nyholm L, Morris E, Chaverri G, Herrera Montalvo LG, Flores‑
Martinez JJ, et al. The role of the gut microbiota in the dietary niche 
expansion of fishing bats. Anim Microbiome. 2021;3:76.

 32. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 
DADA2: High‑resolution sample inference from Illumina amplicon data. 
Nat Methods. 2016;13:581–3.

 33. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. 
Optimizing taxonomic classification of marker‑gene amplicon sequences 
with QIIME 2’s q2‑feature‑classifier plugin. Microbiome. 2018;6:90.

 34. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K‑H, 
et al. Uniting the classification of cultured and uncultured bacteria 
and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 
2014;12:635–45.

 35. Friedman J, Alm EJ. Inferring correlation networks from genomic survey 
data. PLoS Comput Biol. 2012;8:e1002687.



Page 15 of 15Corduneanu et al. BMC Microbiology           (2023) 23:93  

 36. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for 
exploring and manipulating networks. 2009. p. 361–2.

 37. Lhomme S. NetSwan: Network strengths and weaknesses analysis. R Pack 
Version. 2015. p. 1–8.

 38. Peschel S, Müller CL, von Mutius E, Boulesteix AL, Depner M. NetCoMi: 
network construction and comparison for microbiome data in R. Brief 
Bioinform. 2021;22:bbaa290.

 39. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, 
et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 
2020;38:685–8.

 40. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28:27–30.

 41. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool 
for genome‑scale analysis of protein functions and evolution. Nucleic Acids 
Res. 2000;28:33–6.

 42. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. 
Unifying the analysis of high‑throughput sequencing datasets: characteriz‑
ing RNA‑seq, 16S rRNA gene sequencing and selective growth experiments 
by compositional data analysis. Microbiome. 2014;2:1–13.

 43. Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and 
colorectal cancer. Mol Nutr Food Res. 2017;61:1500902.

 44. Lazar V, Ditu L‑M, Pircalabioru GG, Picu A, Petcu L, Cucu N, et al. Gut micro‑
biota, host organism, and diet trialogue in diabetes and obesity. Front Nutr. 
2019;6:21.

 45. Zhang X, Zhao L, Li H. The gut microbiota: emerging evidence in autoim‑
mune diseases. Trends Mol Med. 2020;26:862–73.

 46. Weng YJ, Gan HY, Li X, Huang Y, Li ZC, Deng HM, et al. Correlation of diet, 
microbiota and metabolite networks in inflammatory bowel disease. J Dig 
Dis. 2019;20:447–59.

 47. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, 
et al. Diet rapidly and reproducibly alters the human gut microbiome. 
Nature. 2014;505:559–63.

 48. Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, et al. 
Diet and the human gut microbiome: an international review. Dig Dis Sci. 
2020;65:723–40.

 49. Courts S. Dietary strategies of Old World fruit bats (Megachiroptera, 
Pteropodidae): how do they obtain sufficient protein? Mammal Rev. 
1998;28:185–94.

 50. Arlettaz R, Perrin N, Hausser J. Trophic resource partitioning and competi‑
tion between the two sibling bat species Myotis myotis and Myotis blythii. J 
Anim Ecol. 1997;66:897–911.

 51. Zahn A, Rottenwallner A, Güttinger R. Population density of the greater 
mouse‑eared bat (Myotis myotis), local diet composition and availability of 
foraging habitats. J Zool. 2006;269:486–93.

 52. Otálora‑Ardila A, Herrera MLG, Flores‑Martínez JJ, Voigt CC. Marine and 
terrestrial food sources in the diet of the fish‑eating myotis (Myotis vivesi). J 
Mammal. 2013;94:1102–10.

 53. Ma J, Jones G, Zhang S, Shen J, Metzner W, Zhang L, et al. Dietary analysis 
confirms that Rickett’s big‑footed bat (Myotis ricketti) is a piscivore. J Zool. 
2003;261:245–8.

 54. Ma J, Zhang J, Liang B, Zhang L, Zhang S, Metzner W. Dietary characteristics 
of Myotis ricketti in Beijing, north China. J Mammal. 2006;87:339–44.

 55. Chang Y, Song S, Li A, Zhang Y, Li Z, Xiao Y, et al. The roles of morphologi‑
cal traits, resource variation and resource partitioning associated with the 
dietary niche expansion in the fish‑eating bat Myotis pilosus. Mol Ecol. 
2019;28:2944–54.

 56. Aizpurua O, Budinski I, Georgiakakis P, Gopalakrishnan S, Ibañez C, Mata V, 
et al. Agriculture shapes the trophic niche of a bat preying on multiple pest 
arthropods across Europe: Evidence from DNA metabarcoding. Mol Ecol. 
2018;27:815–25.

 57. Presetnik P, Aulagnier S. The diet of Schreiber’s bent‑winged bat, Miniop‑
terus schreibersii (Chiroptera: Miniopteridae), in northeastern Slovenia 
(Central Europe). Mammalia. 2013;77:297–305.

 58. Almenar D, Aihartza J, Goiti U, Salsamendi E, Garin I. Diet and prey selection 
in the trawling long‑fingered bat. J Zool. 2008;274:340–8.

 59. Biscardi S, Russo D, Casciani V, Cesarini D, Mei M, Boitani L. Foraging require‑
ments of the endangered long‑fingered bat: the influence of micro‑habitat 
structure, water quality and prey type. J Zool. 2007;273:372–81.

 60. Vincent S, Nemoz M, Aulagnier S. Activity and foraging habitats of Miniop‑
terus schreibersii (Chiroptera, Miniopteridae) in southern France: implica‑
tions for its conservation. Hystrix Italian J Mammal. 2011;22:57–72.

 61. Dietz C, von Helversen O, Nill D. Bats of Britain, Europe and Northwest Africa. 
A & C Black London; 2009.

 62. Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, et al. 
Deconstructing the bat skin microbiome: influences of the host and the 
environment. Front Microbiol. 2016;7:1753.

 63. Kolaczyk ED, Krivitsky PN. On the question of effective sample size in net‑
work modeling: an asymptotic inquiry. Stat Sci. 2015;30:184.

 64. Andrade C. Sample size and its importance in research. Indian J Psychol 
Med. 2020;42:102–3.

 65. Faber J, Fonseca LM. How sample size influences research outcomes. Dent 
Press J Orthod. 2014;19:27–9.

 66. Nayak BK. Understanding the relevance of sample size calculation. Indian J 
Ophthalmol. 2010;58:469.

 67. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, et al. 
Characterizing a model human gut microbiota composed of members of 
its two dominant bacterial phyla. Proc Natl Acad Sci. 2009;106:5859–64.

 68. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez‑Palacios A. The genus Alistipes: 
gut bacteria with emerging implications to inflammation, cancer, and 
mental health. Front Immunol. 2020;11:906.

 69. Raisch J, Dalmasso G, Bonnet R, Barnich N, Bonnet M, Bringer M‑A. How 
some commensal bacteria would exacerbate colorectal carcinogenesis? 
Medecine Sciences: M/S. 2016;32:175–82.

 70. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased 
bacterial diversity characterizes the altered gut microbiota in patients with 
psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. 
Arthritis Rheumatol. 2015;67:128–39.

 71. Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on 
human health and diseases. Int J Mol Sci. 2015;16:7493–519.

 72. Holm K, Bank S, Nielsen H, Kristensen LH, Prag J, Jensen A. The role of 
Fusobacterium necrophorum in pharyngotonsillitis–A review. Anaerobe. 
2016;42:89–97.

 73. Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, et al. 
Fecal SCFAs and SCFA‑producing bacteria in gut microbiome of human 
NAFLD as a putative link to systemic T‑cell activation and advanced disease. 
United European Gastroenterol J. 2018;6:1496–507.

 74. Mascarelli PE, Keel MK, Yabsley M, Last LA, Breitschwerdt EB, Maggi RG. 
Hemotropic mycoplasmas in little brown bats (Myotis lucifugus). Parasit 
Vectors. 2014;7:117.

 75. Christidis L, Goodman SM, Naughton K, Appleton B. Insights into the 
evolution of a cryptic radiation of bats: dispersal and ecological radia‑
tion of Malagasy Miniopterus (Chiroptera: Miniopteridae). PLoS ONE. 
2014;9:e92440.

 76. Sun S, Jones RB, Fodor AA. Inference‑based accuracy of metagenome 
prediction tools varies across sample types and functional categories. 
Microbiome. 2020;8:1–9.

 77. Mateos‑Hernández L, Obregón D, Maye J, Borneres J, Versille N, de La Fuente 
J, et al. Anti‑tick microbiota vaccine impacts Ixodes ricinus performance 
during feeding. Vaccines. 2020;8:702.

 78. Wu‑Chuang A, Bates KA, Obregon D, Estrada‑Peña A, King KC, Cabezas‑Cruz 
A. Rapid evolution of a novel protective symbiont into keystone taxon in 
Caenorhabditis elegans microbiota. Sci Rep. 2022;12:14045.

 79. Aželytė J, Wu‑Chuang A, Maitre A, Žiegytė R, Mateos‑Hernández L, Obregón 
D, et al. Avian malaria parasites modulate gut microbiome assembly in 
canaries. Microorganisms. 2023;11:563.

 80. Mammeri M, Obregón DA, Chevillot A, Polack B, Julien C, Pollet T, et al. 
Cryptosporidium parvum infection depletes butyrate producer bacteria in 
goat kid microbiome. Front Microbiol. 2020;11:548737.

 81. Terceti MS, Ogut H, Osorio CR. Photobacterium damselae subsp. damselae, 
an emerging fish pathogen in the Black Sea: evidence of a multiclonal 
origin. Appl Environ Microbiol. 2016;82:3736–45.

 82. Rivas AJ, Lemos ML, Osorio CR. Photobacterium damselae subsp damselae, 
a bacterium pathogenic for marine animals and humans. Front Microbiol. 
2013;4:283.

 83. Legrand T, Wos‑Oxley M, Wynne J, Weyrich L, Oxley A. Dead or alive: 
microbial viability treatment reveals both active and inactive bacterial 
constituents in the fish gut microbiota. J Appl Microbiol. 2021;131:2528–38.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Structural differences in the gut microbiome of bats using terrestrial vs. aquatic feeding resources
	Abstract 
	Introduction
	Materials and methods
	Original data set
	Analysis of 16S rRNA sequencing dataset
	Co-occurrence networks, identification of core microbiome and network resistance analysis
	Differential network analysis
	Prediction of the functional traits in gut the microbiome of bats
	Statistical analyses

	Results
	Assembly of bat microbiome
	Node centrality distribution and network robustness
	Predicted functional profiles associated to bat microbiomes

	Discussion
	Conclusions
	Anchor 17
	Acknowledgements
	References


