
HAL Id: hal-04147447
https://hal.inrae.fr/hal-04147447

Preprint submitted on 30 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Positional and conformist effects in public good
provision. Strategic interaction and inertia

Francisco Cabo, Mabel Tidball, Alain Jean-Marie

To cite this version:
Francisco Cabo, Mabel Tidball, Alain Jean-Marie. Positional and conformist effects in public good
provision. Strategic interaction and inertia. 2023. �hal-04147447�

https://hal.inrae.fr/hal-04147447
https://hal.archives-ouvertes.fr


Positional and conformist effects in public 
good provision.

Strategic interaction and inertia

Francisco Cabo
Alain Jean-Marie

&
Mabel TidballMabel Tidball

CEE-M Working Paper 2023-07



Positional and conformist effects in public good provision.

Strategic interaction and inertia

Francisco Cabo∗ Alain Jean-Marie† Mabel Tidball‡

June 27, 2023

Abstract

Social context gives rise, in some individuals, to a desire to conform with other people.
Conversely, other people desire to be exclusive or different from the “common herd”. We
study the interaction between two different agents: the positional player, characterized by
the snob effect, and the conformist player, characterized by the bandwagon effect. Both
agents engage in a public good game. For a static game we prove that some contribution
is feasible only if the status concern of the positional player is sufficiently large. Moreover,
contribution by both players requires also that the conformist player sees private contri-
butions as complements. We also analyze how status concerns influence social welfare.
In the second part of the paper, we extent the game to a dynamic setting, considering
individuals who are change-adverse and who compare their current action against the
opponent’s past action. Convergence to the static Nash equilibrium can be monotone,
oscillating, or spiral. Numerical simulations show that some properties of contributions
and utilities along the transition path can be different than those in the long run; specif-
ically, non-monotone convergence can induce overshooting in contributions allowing for
over/undershooting in welfare.
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1 Introduction

Status-seeking behavior or the influence of social context on people’s behavior has already
been highlighted at the early stages of the economic discipline. Adam Smith noted the
propensity of individuals to expend effort in order to attain status. Due to social context,
people’s preferences are not exclusively determined from absolute consumption. Many classic
economic thinkers, from Thorstein Veblen to John Kenneth Galbraith, acknowledged that
relative consumption also matters. The idea that preferences are interdependent is clearly
stated in Duesenberry’s relative income hypothesis (Duesenberry, 1949). Leibenstein (1950)
states that an individual, in her search for status, seeks to signal wealth through her consump-
tion decisions. He distinguishes three situations when social influences are considered. The
bandwagon effect - or conformism - occurs when the agent seeks to follow the consumption
behavior of others; the snob effect, contrarily, refers to the agent’s desire for exclusiveness;
finally, the Veblen effect is the desire to buy expensive goods to signal wealth (conspicuous
consumption).

According to Corneo and Jeanne (1997) the snob effect arises when the desire to be
identified with the rich is stronger than the desire not to be identified with the poor, while
a bandwagon effect takes place when the former is weaker than the latter. We will define
conformity as the act of changing behavior to match the behavior of others; see, for example,
Ding (2017). On the other hand, snob agents, denoted here simply as positional agents,
wish to behave not just differently, but better than their peers. In the words of Blanton and
Christie (2003), “people try to stick out from others in good ways but not in bad ways”.

The dichotomy between the wish for uniqueness and the desire to conform with others is
present in the social psychology and the social influence literature. Kim and Markus (1999)
analyze whether uniqueness is more common in Western culture, while conformity is more
typical in East Asian culture, acknowledging that the norm to conform is as real as the norm to
be unique. From the two behavioral alternatives, normative and counternormative, Blanton
and Christie (2003) predict that people attend to the second, focusing on how they differ
from others. On the other hand, Cialdini and Goldstein (2004) highlight that conformity
can be based on three motivations: to form an accurate interpretation of reality and behave
correctly, to obtain social approval from others, and to maintain one’s self-concept. Although
we will typically refer to social approval, our analysis encompasses the three motivations.

This dual vision can also be found in the theory of fashion, which by definition is consumed
conspicuously and satisfies two social needs: the need to be similar to their social counter-
parts and the need for differentiation or uniqueness (see Simmel (1904) and Brewer (1991)).
Similarly, Yoganarasimhan (2012) presents a model of social interaction, as a signaling game,
where fashion has two roles: a way of conforming with others (emulation) and a signal of
taste (distinction).

Ever since Becker (1974) and his theory of social interaction, it has been known that
the existence of status concerns is potentially welfare reducing because agents may devote
too much effort to acquire status. If people consume to signal wealth in order to climb the
social ladder, then conspicuous consumption by one agent generates a negative externality
in all other agents, which can reduce welfare (see, for example, Frank (2005)). However,
this is not necessarily the case when the conspicuous good is a private contribution to a
public good. In that case, positive contributions to signal wealth also have an additional
associated externality (in this case positive): the utility from public good consumption. It
is then possible that conspicuous generosity enhances social welfare, see Bougherara et al.
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(2019) and Cabo et al. (2022).
Numerous recent experimental studies show that status concern/social approval is im-

portant in the public good provision and, in particular, in charitable giving (see reference
within Wendner and Goulder (2008) or Ellingsen and Johannesson (2011)). The main idea
behind these experimental studies is that making private donations public tends to raise con-
tributions. It is nonetheless difficult to disentangle whether people increase their donations
to contribute more than or the same as others - that is, to outrun or to conform with what
others contribute.

From a theoretical perspective, the effect of status concern on the private provision of
a public good1 was analyzed by Muñoz-Garćıa (2011), who compared the contribution in
the case of a simultaneous versus a sequential mode of play. Its effect on social welfare was
explored by Bougherara et al. (2019) and extended by Cabo et al. (2022), who studied a one-
shot game and also considered a dynamic mode of play. All these works assume snob agents,
who get a positive positional payoff for contributions above their peers. They contribute
more than their neighbors to signal wealth and to gain social status. The conclusion is that
positionality, or the desire to overrun others, can lead to positive private contributions in a
public good game overcoming the zero-contribution hypothesis predicted by Ostrom (2000).
Cabo et al. (2022) noted that this result would not be attained if agents are exclusively guided
by conformism.

In the present paper, we analyze private contribution to a public good when some agents
are governed by a wish for uniqueness and others by a desire for conformity. Within the
framework of a public good game, we study the conditions under which a virtuous sequence
of private provisions can be opened by snob agents and followed by the conformist players.
The initial contributions of the positional agents would induce some contributions on the
conformist agents. Subsequently, by closing the gap, the conformist agents would oblige
further contributions on the positional agents.

With that aim, we define a static game of private contribution to a public good between a
positional player and a conformist player. In the standard formulation of the game, players en-
joy public good consumption but dislike contributing to the public good (the utility associated
with the absolute quantities contributed by the two players is denoted here as intrinsic util-
ity). Moreover, when social context is considered, players can show status concerns. Hence,
the preferences of a player are also affected by the comparison of her contribution against her
opponent’s contribution. This comparison represents a gain or a loss for the positional player,
depending on whether she contributes above or below the conformist player. However, the
conformist player can only lose from this comparison, and the loss is higher the wider the gap
between contributions, regardless of whether she contributes more or less than her opponent.

Status concerns of the players determine whether no one, only the positional player, or
both players contribute - and in the latter case, whether no one, only one or both players
contribute their total endowment. Contributions are only possible if the status concern of
the positional player is sufficiently large. Only if the positional player contributes, and only
if the conformist player sees private contributions as strong complements can this latter
start contributing. Nevertheless, the conformist player will never contribute more than the
positional player.

1Wendner and Goulder (2008) also study the public good provision (and the excess burden) when utility
depends on the consumption or income of others. However, they put the focus on the social optimum and not
its private provision.
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Positionality raises both players’ contributions as well as the gap between them. Con-
versely, conformism reduces this gap and does not modify the global contribution. In the
interior case, where both players contribute part of but not all of their wealth, we study the
effect of positionality and the degree of conformism on individual and global contributions,
and on welfare.

Positionality raises global contribution which, considering a concave utility from public
good consumption, also raises global (jointly for the two players) intrinsic utility, if position-
ality is initially low and vice versa. Its effect on the global payoff linked to status concerns,
and on social welfare, is undoubtedly positive. Conversely, the degree of conformism has no
effect on global contribution and hence on the intrinsic utility. The payoff linked to status
concerns rises for the society only if the conformist player values the public good less than
the positional player, and if her status concern is not too large. Otherwise, the degree of
conformism reduces the global payoff from the status concerns, and with it social welfare.

The second half of the paper considers a dynamic version of the game in a discrete time
setting. Status concerned players compare their contribution against what they observe their
opponent did the previous period. Moreover, players have inertia, i.e. they are reluctant
to change previous actions. From these two assumptions, the strategic interaction between
the two agents gives rise to a dynamic process which collects each player contribution across
time. We show that this process converges to the static Nash equilibrium of the game, except
when the inertia of players vanishes. We find that, depending on change-aversion parameters,
convergence can be monotone, oscillatory, or spiral. This is at odds with the findings of Cabo
et al. (2022) where both players are positional and convergence is always monotone.

Numerical simulations illustrate the main results obtained in the static and the dynamic
versions of the game. Higher positionality raises both players’ contribution and higher con-
formism makes them more egalitarian, both in the long run and across the transition. How-
ever, some properties of contributions and utilities along the transition path can be different
from those in the long run (or, equivalently, at the static equilibrium). Specifically, over-
shooting contributions can temporarily lower intrinsic and global utility below their long-run
values or even below their value under zero contribution. Likewise, the contribution of the
positional is larger than the contribution of the conformist in the long run, but not necessarily
at every time through the transition.

The remainder of the paper is organized as follows. In Section 2, we present the public
good game and distinguish between the intrinsic utility and the payoffs associated with status
concerns. Section 3 characterizes the different Nash equilibria of the game, depending on the
status concerns of the players. Section 4 analyzes how these concerns affect social welfare for
the interior solution. Section 5 generalizes the model to a dynamic setting and characterizes
the behavior of the dynamic solution. The main results are numerically illustrated in Section
6. Conclusions are presented in Section 7. Technical details are explained in the Appendix.

2 Public good game

This section describes the strategic interaction in a static public good game between two
different individuals. Agents get inner or intrinsic utility from public good consumption, at
the cost of private contributions. However, social context gives rise to additional gains/losses
from the comparison of one player’s contribution in relative terms to the other.

Depending on how they are influenced by social context we distinguish two types of players.
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They both get the same inner satisfaction from public good consumption, but they differ in the
satisfaction they get when comparing their contribution against other people’s contribution;
that is, the payoff associated with status concerns, henceforth denoted as SC payoff or SCP.We
distinguish between the positional player, P , who seeks for exclusiveness, and the conformist
player, C, who “follows the herd” and tries to mimic other people’s behavior.

Player i ∈ {P,C} is endowed with wi, contributes gi ∈ [0,wi] to a public good, and
consumes wi − gi in other private goods. The total utility of this player is the addition of the
intrinsic utility plus the SC payoff:

Ui(gi, g−i) = ui(gi, g−i) + Vi(gi, g−i), (1)

where the index “−i” denotes, as usual, the opponent of player i. The global utility or social
welfare is defined as the addition: U(gi, g−i) = Ui(gi, g−i) +U−i(gi, g−i).

Each player i ∈ {P,C} solves a maximization problem:

max
gi

Ui(gi, g−i), (2)

s.t.: 0 ≤ gi ≤ wi. (3)

2.1 Intrinsic utility

Both players obtain intrinsic utility from absolute consumption, defined as a quasi-linear
function (see, for example, Varian (1994)):

ui(gi, g−i) = wi − gi + bi(G), G = gP + gC. (4)

The utility from public good consumption, bi(G), strictly increases at a decreasing rate with
the total amount contributed. Conversely, private consumption is assumed to provide constant
marginal utility. The assumption of linear utility from private consumption is based on the
idea that the noncontributed amount can be used for many different purposes. Since bi(G)
is an increasing function, player i has an incentive to free-ride on other agents’ contribution,
∂ui/∂g−i(gi, g−i) > 0. Moreover since bi(G) marginally decreases, private contributions are
substitutes,2 ∂2ui/(∂gi∂g−i)(gi, g−i) < 0. Global intrinsic utility for society is u(gP, gC) =

uP(gP, gC) + uC(gC, gP).
The public good game is defined by an intrinsic utility satisfying two additional properties.

C1 No one wants to contribute:

∂ui
∂gi
(gi, g−i) < 0⇔ b′i(G) < 1, ∀G ∈ [0,W ];

with W = wP +wC.

C2 Some private contribution to the public good but also some private consumption are
socially desirable:

∂u

∂gi
(0,0) > 0,

∂u

∂gi
(wP,wC) < 0, ⇔ b′i(W ) + b

′

−i(W ) < 1 < b
′

i(0) + b
′

−i(0).

2Functions bP and bC are assumed to be twice continuously differentiable.
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By condition C1 in a Nash equilibrium, no player would individually contribute, even if
by Condition C2 positive contributions are socially desirable.

From (4), the global intrinsic utility for the two players only depends on the global amount
of public good:3

u(G) =W −G + bP(G) + bC(G).

From condition C2, the maximum global intrinsic utility is reached at an interior con-
tributed amount, 0 < GSO < W . Moreover, although b′i(G) > 0, given the assumption of
diminishing marginal utility, nothing prevents the possibility of a large contribution, GE0,
above which intrinsic utility falls below the utility at zero contribution, U(GE0) = W and
U(G) <W,∀G > GE0. From the point of view of the intrinsic utility, contributions can be in
shortage G < GSO, in excess G > GSO, or at its efficient level, G = GSO. Under shortage, addi-
tional contributions improve the intrinsic utility. However, under excess, contributions reduce
intrinsic utility and indeed, if contributions are very high, intrinsic utility would fall below
W . Thus, contributions are intrinsic welfare improving when G < GE0 (IW-I), or intrinsic
welfare reducing when G > GE0 (IW-R).

2.2 Positional player

A positional or snob agent, P , seeks social status by contributing more than others. This
agent gains (loses) an SCP, defined as a constant fraction of her contribution above (below)
that of the other player:

VP(gP, gC) = vP(gP − gC). (5)

The SCP grows at rate vP ≥ 0 with the contributions of the positional player and decays at
this same rate with the contributions of the other player. Parameter vP will be called the
player’s positional concern.

The marginal utility of a positional player is:

∂UP

∂gP

= −1 + vP + b
′

P(G). (6)

Since bi(G) is a strictly increasing function, an agent with a positional concern greater or
equal to one would always contribute her total endowment, regardless of what the other
player might do. Hence, to avoid this extreme situation, we assume:

Assumption 1 0 ≤ vP < 1.

From the FOC of problem (2)-(3) for the P player, the wished “uncoordinated” amount
of public good for the positional reads:

Definition 1 (Wished amount) The amount of PG wished by palyer P, is defined as:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if vP ≤ 1 − b
′

P(0),

A = (b′P)
−1(1 − vP) if vP ∈ (1 − b

′

P(0),1 − b
′

P(W )),

wP if vP ≥ 1 − b
′

P(W ).

(7)

3Notice here a slight abuse of notation, because we have defined u as a function of (gi, g−i).
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Note that since bP is concave, the wished amount increases with positionality, strictly in the
interior case A = (b′P)

−1(1 − vP) since ∂A/∂vP > 0. If 0 ≤ vP < 1 − b
′

P(0), the marginal utility of
the public good never surpasses the marginal cost from its private provision, and hence, no
public good would be privately provided. However, if vP > 1− b

′

P(0), then the marginal utility
from the public good surpasses, at least initially, the marginal cost from private provision,
and agents are willing to privately provide some public good.

2.3 Conformist player

The second type of player is also influenced by social context, although in a different way
than the positional player. Conformist agents feel better if their behavior fits the average
behavior in society. In our formulation, the well-being of the conformist player decreases if
her contribution deviates (above or below) from the contribution level of the other player. For
the conformist player, the SCP always represents a loss which enlarges with the contribution
gap, regardless of whether she contributes above or below her opponent:

VC(gC, gP) = −
vC

2
(gC − gP)

2. (8)

Parameter vC ≥ 0 denotes this agent’s degree of conformism. Introducing conformism to
intrinsic utility, the FOC from the maximization problem (2)-(3) for the C player now reads:

∂UC

∂gC

= −1 + b′C(G) − vC(gC − gP). (9)

The marginal utility from the private provision can be lower or greater than in the case
without conformism, depending on whether the conformist player contributes more or less
than the positional. If the other player provides more public good than the C player, this
latter has an incentive to increase contributions, which increases the marginal utility from
the private provision. However, opposite reasoning applies when the P player provides less
than the C player.

3 Nash equilibria

This section characterizes the Nash equilibria of a game between a positional and a conformist
player.4 The analysis is carried out considering a particular functional form for the intrinsic
utility.

3.1 First-order conditions and best-response functions

In what follows we assume bi(G) = αi (G − εG
2/2), and hence, the intrinsic utility in (4)

particularizes to the following linear quadratic function: A quadratic utility from public good
consumption can be found in Laury et al. (1999) or Bougherara et al. (2019).

ui(gi, g−i) = wi − gi + bi(G) = wi − gi + αi (G −
ε

2
G2
) , i ∈ {P,C}.

4The case where one player is positional and conformist at the same time is an schizophrenic behavior not
considered here. In the case where both players are conformist, it is easy to prove that the equilibrium is
characterized by no contribution. The case of two positional players is studied in Cabo et al. (2022).
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Given this particular expression, GSO = (αP+αC−1)/(ε(αP+αC)) and GEO = 2GSO. For this
specification, bi(G) is concave. To guarantee that b′i(G) > 0 ∀i ∈ {P,C} G ∈ [0,W ], as well as
Conditions C1 and C2, we must further assume:

Assumption 2 0 < αi < 1, i ∈ {P,C}.

Assumption 3 0 < ε < 1
W .

Assumption 4 αP + αC > 1.

Assumption 5 W >
αP + αC − 1

ε(αP + αC)
.

Note that from Assumption 3 it follows that 0 ≤ G ≤W < 1/ε. Moreover, since 1 < αP+αC < 2,
then 0 < GSO < GE0 < 1/ε. As a result, the global contribution can be IW-I or IW-R.

Considering social context, the utility function does not necessarily satisfy the properties
assumed for the intrinsic utility.

Condition C1 can be reversed if:

∂UP

∂gP

(gP, gC) > 0 ⇐⇒ vP > 1 − αP + αPεG ≡ θP(G),

∂UC

∂gC

(gC, gP) > 0 ⇐⇒ vC(gP − gC) > 1 − αC + αCεG ≡ θC(G).

For vP > 1 − αP, then ∂UP/(∂gP)(0,0) = −1 + αP + vP > 0. Thus, C1 does not hold for
a sufficiently strong positional concern, at least for small contributions. Likewise, if the
positional player contributes above the conformist, gP > gC, and if her degree of conformism
is strong enough, then the conformist player would also be willing to contribute. Therefore,
status concerns can make some contribution individually desirable for both types of agents.

Derivatives in condition C2 can be written as:

∂U

∂gP

(0,0) = −1 + (αP + αC) + vP,
∂U

∂gC

(0,0) = −1 + (αP + αC),

∂U

∂gP

(wP,wC) = −1 + (αP + αC)[1 − εW ] + vP − vC(wP −wC),

∂U

∂gC

(wP,wC) = −1 + (αP + αC)[1 − εW ] − vP + vC(wP −wC).

Under Assumption 4, ∂U/(∂gi)(0,0) > 0, and some contribution by either agent is socially
desirable. However, our Assumptions does not guarantee ∂U/(∂gi)(wP,wC) < 0. Full contri-
bution by one or both types of agents could be socially desirable.

The cross partial derivative for each player reads:

∂2UP

∂gP∂gC

(gP, gC) = −αPε < 0,
∂2UC

∂gC∂gP

(gC, gP) = −αCε + vC.

The positional player regards contributions as substitutes. However, for the conformist player
two situations are possible. If vC < αCε contributions are subtitute goods. However, if
vC > αCε, conformism becomes so strong that contributions from the positional agent raises the
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conformist’s willingness to contribute; i.e. gP and gC become complements for the conformist
agent.

From (7) and (9), the players’ FOC for an interior solution are:

−1 + αP(1 − εG) + vP = 0,

−1 + αC(1 − εG) + vC(gP − gC) = 0.

And therefore, the interior best-response functions of the positional and the conformist players
read:

gbP(gC) = A − gC, A =
vP − (1 − αP)

αPε
. (10)

gbC(gP) = (−B + gP)r, B =
1 − αC

vC − αCε
, r =

vC − αCε

vC + αCε
. (11)

The intercept of the downward-sloping best response by the positional player is positive
for vP > 1−αP. The best-response function of the conformist player (11) is downward/upward
sloping under substitutability/complementarity. In either case, the intercept, given by −rB,
takes a negative value. Note also that B, which represents the contribution of the positional
player at which gbC(B) = 0, takes a positive value only under complementarity.

Positive contribution by the positional player requires A > 0, i.e. the necessary condition:

vP > 1 − αP. (12)

This opens up the possibility for positive contributions for the conformist player as well.
But, assuming (12) is satisfied, under what circumstances would the conformist player imitate
the positional player and contribute? For a moderate degree of conformism, vC < αCε, this
player regards gP and gC as substitutes, and would contribute nothing, no matter how much
the positional player contributes.

Interestingly, if the degree of conformism is above αCε, complementarity can induce the
conformist player to contribute, following the behavior of the positional. However, the con-
formist player imitates the positional only if the contribution of this latter is large enough; in
particular, greater than B, which marks the minimum contribution by the positional player
to induce positive contributions from the conformist (positive marginal utility of the first
unit contributed by this player). Therefore, wP > B is a first necessary condition, otherwise
the positional player would never contribute enough to induce the conformist player to con-
tribute. Moreover, since the positional player never contributes above A, then A > B is also
a necessary condition. That is, 0 < B <min{A,wP}, or equivalently,

vC > αCε +max{
1 − αC

wP

,
1 − αC

A
} ≡ vC(vP). (13)

Given that this threshold is larger than αCε, condition (13) can be interpreted as a strong
complementarity requirement for the conformist player to contribute a positive amount. Con-
versely, weak complementarity is defined as vC ∈ (αCε, vC). In this case, complementarity is
not enough to induce the conformist agent to contribute.

9



3.2 Existence and uniqueness of the Nash equilibrium

Condition (12) is necessary and sufficient for positive contributions by the positional player.
It is also a necessary condition for positive contributions by the conformist player. More-
over, the latter contributes only under the strong complementarity condition (13). Under
substitutability or weak complementarity, only the positional player can contribute. In this
case, she would build the amount of public good which maximizes her welfare, A, unless this
amount surpasses her endowment, wP.

For each pair (vP, vC) ∈ R+ × R+ a unique equilibrium exists. The equilibrium in the
first quadrant is characterized in the following proposition. Note that the equilibrium is a
continuous function of (vP, vC).

Proposition 1 (Nash equilibrium) Under Assumptions 2 and 3 there is a unique Nash
equilibrium:

a) If vP ≤ 1 − αP,
(gN

P , g
N
C) = (0,0).

b) If vP > 1 − αP and vC ≤ vC, then

(gN
P , g

N
C) =

⎧⎪⎪
⎨
⎪⎪⎩

aint = (A,0) if vP < θP(wP),

aP = (wP,0) if vP ≥ θP(wP).

c) If vP > 1 − αP and vC > vC, then

– an interior equilibrium gNint = (g
N
Pint, g

N
Cint) exists if

vP < θP(2wP) ∧ vC > BP(vP) ∧

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

vP < θP(2wC)

or

vC < BC(vP)

(14)

– equilibria where at least one of the players contributes her total endowment exist:
(wP, g

b
C(wP)), (wP,wC) and (g

b
P(wC),wC). Moreover the two equilibria where the

conformist player contributes wC disappear if wP ≤ wC.

Proof. See Appendix A for the detailed proof of all these equilibria.
An interior solution arises when positionality does not push the positional player to want

more than twice her endowment and the conformism is strong enough so that the positional
player can rely on some contribution by the conformist player and does not need to contribute
in full. Moreover, either the positional player does not want more than twice the endowment
of the conformist, or if she does, the conformist does not fully contribute.

Status concerns could be so strong to induce one or both players to contribute all of
their endowments. Full contribution by both agents occurs if both the positional concern and
the degree of conformism are very high. Conversely, one agent would contribute her total
endowment while the other would respond with an interior contribution when positionality is
large and either only positionality or only conformism is very large.

Figure 1 depicts the regions for the different Nash equilibria depending on the positional
concern and the degree of conformism,5 considering the following parameters values: αP =
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(wP, wC)(gPint, gCint)

(wP,gC
b(wP))

(A, 0)

(wP, 0)

(0,0)

(A - wC, wC)

1-αP θP(wP) θP(W)

vC

vP

BP BC BPC v-
C θP(wP) θP(W) 1 - αP

(gPint, gCint)

(wP,gC
b(wP))

(A, 0)

(wP, 0)

(0,0)

1-αP θP(wP) θP(W)

vC

vP

Figure 1: The zones of parameters in the (vP, vC)-plane corresponding to the different con-
figurations for the Nash equilibrium when wP > wC (left) and wP < wC (right). The zones are
limited by continuous lines; dashed lines are the irrelevant parts of the boundary conditions.

αC = 2/3, ε = 1 and wP = 0.5 > wC = 0.2 (left) or wP = 0.3 < wC = 0.4 (right). The definition of
functions and explicit formulas are given in Appendix A.

Moreover we have the following properties for contributions:

Proposition 2 Under the necessary condition (12) for positive contribution,

i) global contribution never exceeds the amount wished by the positional player, GN ≤ A,

ii) the positional player always contributes above the conformist, gN
P > g

N
C .

Proof. See Appendix A.

5In Figure 1 and henceforth,
• Bi = Bi(vP) represents the degree of conformism at which the interior solution of player i reaches her

endowment, giint = wi, provided that vP < θP(2wP);

• BPC the minimum degree of conformism at which the best response of the conformist player to full
contribution by the positional is also full contribution (gbC(wP) = wC), provided that wP > wC (if,
instead, wP < wC the conformist player never fully contributes);

• θP(W ) the minimum positional concern at which the best response of the positional player to full
contribution by the conformist is also full contribution gbP(wC) = wP;

• and θP(wP) the minimum positional concern at which the positional player wants a total amount greater
than her endowment.

11



4 Welfare analysis in the interior solution

This section analyzes the effect of vP and vC on the private provision of the public good and
on social welfare, assuming that positionality and conformism are strong enough to guarantee
positive contributions, but not so large as to imply full contribution by one or both players.
Thus, we focus the analysis on the interior solution, which we write as:

gPint =
A +∆gint

2
, gCint =

A −∆gint
2

, ∆gint = gPint − gCint. (15)

From which the global contribution and the gap between players’ contribution read:

Gint = A, ∆gint =
h(vP)

αPvC

∶=
αP − αC + αCvP

αPvC

=
1 − αC + αCεA

vC

> 0. (16)

The Nash equilibrium belongs to the interior intersection of the two reaction curves under
the following assumption:

Assumption 6 Interior equilibrium: The positional player wants a positive amount of public
good (Condition (12)), the conformist player regards contributions as strong complements
(Condition (13)) and the static equilibrium does not lie on the boundary (Condition (14)).

In the interior solution both players contribute a positive amount and also consume part of
their endowment. As shown in (15), players’ contributions can be written as dependent on two
terms: the global contribution to the public good which matches the positional player’s wished
amount, A, (FOC for this player can be written as Gint = A); and the contribution gap wished
by the conformist player (FOC for this player can be written as ∆gint = (1−αC+αCεGint)/vC).
The positional player would contribute half the amount of public good he wishes, plus half
the gap. Correspondingly, the conformist player would contribute half the amount wished by
the positional player reduced in half the gap.

To study the importance of the positional concern/conformism on social welfare, we first
characterize how one player’s positional concern affects her as well as her opponent’s contri-
bution.

Proposition 3 Under Assumption 6,

• A greater positional concern, vP implies:

∂gPint

∂vP

=
vC + αCε

2αPεvC

> 0,
∂gCint

∂vP

=
vC − αCε

2αPεvC

> 0,
∂Gint

∂vP

=
1

αPε
> 0,

∂∆gint
∂vP

=
αC

αPvC

> 0.

• A greater degree of conformism, vC implies:

∂gPint

∂vC

= −
h(vP)

2αP(vC)
2
< 0,

∂gCint

∂vC

= −
∂gPint

∂vC

> 0,
∂Gint

∂vC

= 0,
∂∆gint
∂vC

= 2
∂gPint

∂vC

< 0.

Proof. The proof is straightforward.
A stronger positional concern increases the contribution of the positional player, gPint.

Moreover, the contribution of the conformist player, gCint, increases due to the strong com-
plementarity. The contribution rise is stronger for the positional player than for the conformist
one. As a result, the gap between players’ contributions widens.

12



A higher degree of conformism will induce this player to increase her contribution in the
exact same amount as the positional player reduces her contribution. Hence, the distribution
of contributions between the two players becomes more equalitarian, although the global
contribution remains unchanged.

Depending on the value of vP, the next proposition characterizes the conditions under
which global contribution is in shortage, in excess, or decreases the global intrinsic utility
below its zero-contribution value:

Proposition 4 Under Assumption 6, global contribution, Gint, is:

1 − αP

αC

αP + αC

αC

αP + αC

+
αP + αC − 1

αP + αC

αP

vP

shortage
Gint < G

SO

excess

Gint ∈ (G
SO,GE0)

IW-R

Gint > G
E0

Proof. Proof is straightforward from the definition of shortage, excess and intrinsic welfare
reducing contribution, as well as the expression for the global contribution in (16).

Next, we analyze the effect of the positional concern, first, and the degree of conformism,
later, on the global intrinsic utility, uint, the global SCP, Vint = VPint + VCint, and the global
social welfare, Uint.

Proposition 5 Under Assumption 6, the positional concern, vP, has an effect on:

i) the global intrinsic utility,

∂uint
∂vP

=
αC − (αP + αC)vP

α2
Pε

≷ 0⇔ vP ≶
αC

αP + αC

,

ii) the global SCP,

∂Vint

∂vP

=
(h(vP))

2
+ α2

CvP(1 − vP)

α2
PvC

> 0,

iii) and the social welfare,

vP ≤
αC

αP + αC

⇒
∂Uint

∂vP

> 0,

vP >
αC

αP + αC

⇒ (
∂Uint

∂vP

≷ 0⇔ vC ≶ BvP ≡
(h(vP))

2 + α2
CvP(1 − vP)

vP(αP + αC) − αC

ε) .

Proof. ∂Vint/(∂vP) > 0 because vP ∈ (0,1). The effect of vP on social welfare can be written
as:

∂Uint

∂vP

=
vC[αC − vP(αP + αC)] + [h

2(vP) + α
2
CvP(1 − vP)]ε

vCα2
Pε

.

The result in Proposition 5 iii) straightforwardly follows.

Figure 2 illustrates the results of Proposition 5. The parameters values are the same as
in Figure 1 (left). A higher positional concern enhances both players’ contributions, and a
greater contribution increases global intrinsic utility if the marginal cost of providing it is lower
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Figure 2: Level curves of uint (left) and Uint (right), αP = αC

than the global marginal benefit. This occurs when the contribution is in shortage, i.e. iff
vP < αC/(αP + αC). Opposite reasoning applies under excess contribution, vP > αC/(αP + αC),
see Figure 2 (left).

Moreover, the SCP to both players are also influenced by a higher vP from price and
quantity effects. The price effect only affects the positional player (positively because ∆gint >
0). The quantity effect of a wider gap between the players’ contributions enhances the SC
gains for the positional player but also the SC losses for the conformist. Adding up the price
and quantity effects for the two players, the global SCP rises with vP.

Under a shortage in contributions, higher positional concern raises contributions, intrinsic
utility, and global SCP, hence implying greater social welfare. Under excess contributions, a
rise in vP worsens intrinsic utility although it improves global SCP. In aggregate, the second
effect is stronger and social welfare increases if the positional concern is small enough, below
BvP , (see Proposition 5 iii)) and vice versa. As shown in Figure 2 (right), the level curves
for social welfare increase with vP to the left of curve BvP but they decrease with vP to the
right of this curve.

Proposition 6 Under Assumption 6, the degree of conformism, vC, does not affect intrinsic
utility. Therefore its effect on social welfare matches its effect on global SCP, given by:

∂Uint

∂vC

=

⎧⎪⎪
⎨
⎪⎪⎩

> 0 if αP > αC ∧ vP <
αP − αC

2αP − αC

≤ 0 otherwise.

Proof. See Appendix A.
When αP ≤ αC a higher degree of conformism undoubtedly reduces intrinsic utility, as

illustrated in Figure 2 (for the case when both players equally value public good consumption).
Its effect when αP > αC depends on the status concern of the positional player, as shown in
Figure 3. A higher degree of conformism will induce the conformist player to increase her
contribution to approach that of the positional one, and the latter will reduce hers by the same
amount. Because the amount of public good does not change, neither does the intrinsic utility
for the two players altogether. However, a higher vC also influences the SCP. The “price”
effect of a rise in the degree of conformism affects the conformist player negatively. Moreover,
a higher degree of conformism narrows the gap between the players’ contributions, which

14



reduces the SC gains for the positional player and the SC losses for the conformist player.
Thus, the total effect for society will be positive (negative) if the gain from a narrower gap for
the conformist player is larger (smaller) than the addition of two negative effects: the negative
“price effect” for this player from a more costly status concern plus the negative effect of a
narrower gap on the positional player. The net effect is positive if the positional player values
the public good more than the conformist (αP relatively large) and her positional concern is
sufficiently small. Conversely, if her positional concern is large a higher degree of conformism
reduces social welfare. Conformism also reduces social welfare if the conformist player values
the public good more than the positional player (αC relatively large), no matter how large
this latter’s positional concern. Figure 3 depicts the case with αP = 4/5 > αC = 1/3. For
vP < (αP −αC)/(2αP −αC), level curves increase with vC (up-movements). And conversely, for
vP > (αP −αC)/(2αP −αC), the level curves increase with reductions in vC (down-movements).
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Figure 3: Level curves of Vint (left) and Uint (right), αP > αC

5 The dynamic model with myopic players

This section extends the static model previously described to a dynamic context. The dy-
namics comes from two facts. First, the social context is based on the comparison of one
player’s contribution against the other players’ contribution observed in the previous period.
Second, players are reluctant to deviate from previous actions: inertia with respect to past
contributions.

In the present section, we define the model and present its main properties. In the
subsequent Section 6, we numerically illustrate the main results. The dynamic version of the
game is presented considering discrete time. The intrinsic utility at time step t results from
current contributions gPt and gCt. The positional agent gets joy from contributing above the
other player’s contribution at the previous step: +vP(gPt − gCt−1). On the other hand, the
conformist agent gets a disutility from deviations from the other player’s previous action:
−vC(gCt − gPt−1)

2/2. Coefficients vi, i ∈ {P,C} are nonnegative.
Additionally, it is assumed that players show inertia: they are reluctant to change their

action from a time step to the next. They get a disutility from deviations from the previous
action: −vI

i(git − git−1)
2/2, i ∈ {P,C}. Coefficients vI

i, i ∈ {P,C} are nonnegative. As a result,
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the utilities of both players at time step t now read:

UP(●) = wP − gPt + αP [Gt −
ε

2
G2

t ] −
vI
P

2
(gPt − gPt−1)

2
+ vP(gPt − gCt−1) (17)

UC(●) = wC − gCt + αC [Gt −
ε

2
G2

t ] −
vI
C

2
(gCt − gCt−1)

2
−
vC

2
(gCt − gPt−1)

2.

The problem of a myopic agent i ∈ {P,C} is:

max
git

Ui(git, g−it, git−1, g−it−1), (18)

the values git−1 being given. The first-order conditions for an interior equilibrium are:

−1 + αP[1 − ε(gPt + gCt)] − v
I
P(gPt − gPt−1) + vP = 0 (19)

−1 + αC[1 − ε(gPt + gCt)] − v
I
C(gCt − gCt−1) − vC(gCt − gPt−1) = 0. (20)

Solving these linear equations, we obtain the unconstrained optimum as a function of the
opponent’s current action and both players’ actions at the previous step:

rP(gCt; gPt−1, gCt−1) =
AαPε + v

I
PgPt−1 − αPεgCt

vI
P + αPε

(21)

rC(gPt; gPt−1, gCt−1) =
(−1 + αC)αCε + v

I
CgCt−1 + vCgPt−1 − αCεgPt

vI
C + vC + αCε

. (22)

Taking the constraints into account, we deduce the dynamic reaction function as:

rDi (g−it; git−1, g−it−1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

wi if ri(g−it; git−1, g−it−1) ≥ wi

ri(g−it; git−1, g−it−1) if 0 ≤ ri(g−it; git−1, g−it−1) ≤ wi

0 if ri(g−it; git−1, g−it−1) ≤ 0.

(23)

It readily follows that a Nash equilibrium at step t must satisfy git = rDi (g−it; git−1, g−it−1)
for i ∈ {P, C}. Provided the Nash equilibrium exists and is unique, this procedure defines a
dynamical process {(gPt, gCt); t = 0,1, . . .}. First, we connect the fixed points of this dynamic
system to the static Nash equilibrium.

Proposition 7 The static Nash equilibrium, gN , is a fixed point of the dynamical system,
git = r

D
i (g−it; git−1, g−it−1) for i ∈ {P, C}.

Proof. See Appendix B.
We are interested in trajectories that lie in the interior of the domain of constraints, for

all t. Accordingly, under Assumption 6, we are certain that the static Nash equilibrium itself
is interior. Then, the dynamic Nash equilibrium git = rDi (g−it; git−1, g−it−1), i ∈ {P, C} is
actually the unconstrained equilibrium git = ri(g−it; git−1, g−it−1), at least when (gPt−1, gCt−1)

is close enough to the static Nash equilibrium (see Proposition 8 i) below). As detailed in
Appendix C.1, the resulting dynamical system is linear and can be written in vector and
matrix form as:

gt = Mgt−1 + Γ
0. (24)

In what follows, we are interested in: a) whether this sequence does or does not converge to
the fixed point gN = (I−M)−1Γ0, and b) when it does, how it converges. Convergence can be
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monotone, oscillating, or spiral. In the last two cases, it is possible to observe overshooting :
a situation in which one or both players contribute, albeit temporarily, more than in the
long-run equilibrium.

Proposition 8 states that the trajectory stemming from the dynamic system (24), gt,
converges towards the static Nash equilibrium, provided that at least one of the players
shows some inertia.

Proposition 8 Under Assumption 6,

i) If the initial condition lies in a neighborhood of the static Nash equilibrium, gint, then
the trajectory of the dynamical system remains an interior solution at every time step.

ii) When vI
i ≠ 0 at least for one player, the solution to the dynamical system (24) converges

to a unique steady state, given by the point gint.

iii) When vI
i = v

I
j = 0, the solution to the dynamical system (24) does not converge in general.

Its trajectory reaches, in finite time, a cycle of order 2, which oscillates around the point
gint and which depends on the initial condition.

Proof. See Appendix C.4.
While Proposition 8 addresses the convergence of the sequence gt, it is not specific about

the type of convergence: monotone, oscillating, or spiral. The following proposition provides
this information.

Proposition 9 Assume 6, and let χ(λ) be the quadratic polynomial defined as:

χ(λ) = (λ − 1)vI
P(λ(vC + v

I
C) − v

I
C) + λε (αP(λ(vC + v

I
C) − v

I
C + vC) + αCv

I
P(λ − 1)) , (25)

whose discriminant with respect to λ is:

∆λ = (εαC+vC)
2
(vI

P)
2
+(εαP)

2
(vI

C)
2
+2εαP(εαC−3vC)v

I
Pv

I
C−2εαP[vC((εαC+vC)v

I
P+εαPv

I
C)]+(εαPvC)

2 .

The convergence of the dynamical system (24) is: a) monotone when ∆λ ≥ 0 and εαPvC −

εαPv
I
C−(εαC+vC)v

I
P−2v

I
Pv

I
C ≤ 0; b) oscillating when ∆λ ≥ 0 and εαPvC−εαPv

I
C−(εαC+vC)v

I
P−

2vI
Pv

I
C ≥ 0; c) spiral when ∆λ < 0. In this last case, d) the speed of convergence decreases with

vI
i and increases with vC.

Proof. See Appendix C, including the proof of Proposition 9 in Appendix C.4.
A graphical illustration of how the type of convergence depends on inertia parameters, is

presented in Figure 4. The parameters chosen for this figure are those used in the simulations
of Section 6.1. The diagram shows the curve of points where the discriminant of polynomial
χ(λ) vanishes.6

Roughly speaking, convergence is monotone when one of the player’s inertia is relatively
large7 with respect to the other player’s inertia. It is oscillating when inertia is relatively
small for both players. Finally, convergence is spiral in the remaining cases - that is, when
the sum of inertias is large enough, and neither one is “very large” with respect to the other.

6It also depicts the data points used in Section 6.1.
7The concept of relatively large is not symmetric between the two players. Convergence is monotone when

the positional’s inertia is much larger than the conformist’s inertia, or when the conformist’s inertia is very
much larger than the positional’s inertia.
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Figure 4: Type of convergence as a function of inertia parameters

We conclude this section with an observation on the relative sensitivity of players to their
respective inertia parameter. Looking back at Figure 4 we identify two particular points
where ∆λ = 0 and either vI

P = 0 or vI
C = 0. Using Proposition 9, it is easily seen that these

points have coordinates:

(
εαPvC

εαC + vC

,0) and (0, vC) .

This leads to the idea to normalize the function χ(⋅) by performing the following change of
parameters:

vI
P = θ

εαPvC

εαC + vC

vI
C = φ vC.

The new parameters θ and φ are dimensionless. The interpretation of φ is simply the relative
intensity of the conformist player’s inertia with respect to her conformism. The interpretation
of θ is not as straightforward: it involves a relative inertia term vI

P/(εαP) proper to the
positional player, but also the modifying factor (εαC+vC)/vC relative to the conformist player.

After the change of parameters, the function χ becomes symmetric in θ and φ. Concerning
the roots of χ, which determine the type of convergence, this implies two phenomena. First,
swapping the values of θ and φ lead to the same roots. Second, a variation of θ is equivalent
to the same variation of φ. This allows us to deduce how much the inertia parameters vI

P and
vI
C must vary, in order to produce the same effect on convergence.

6 Simulations

We present in this section simulations corresponding to different cases under the assumption
of an interior static Nash equilibrium. Our purpose is twofold. On the one hand, we illustrate
the dependence of the static Nash equilibrium on the parameters. On the other, we illustrate
different types of transition. In all the examples, the players’ endowments are wP = wC = 1
and the initial contribution is set to (gP0, gC0) = (0,0).
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In a first example, we let inertia, positionality, and conformism to vary, in order to il-
lustrate different features of the dynamics. In the second example, we focus on utilities, in
particular in the case where the players’ utility, individually as well as globally, can be tem-
porarily reduced with respect to the situation of no contribution (which corresponds to the
Nash equilibrium without status concerns). In the third example, we study a situation where
the contribution of the conformist player can exceed that of the positional in the transition
path.

6.1 First example

The common parameters in all experiments are:

ε =
4

10
, αP = αC =

4

5
.

Consequently, the critical values determining shortage, excess and intrinsic welfare reduction
(see Section 2.1) are: GSO = 15/16 and GE0 = 15/8.

Varying inertia. Assume that the degree of positionalism and conformism are fixed at
vP = 1/3 and vC = 2, while inertia is determined by four different sets of parameters:

Case I1: vI
P = 2, v

I
C = 1, Case I2: vI

P =
2

100
, vI

C =
1

10
,

Case I3: vI
P = 1, v

I
C = 30, Case I4: vI

P = v
I
C = 0.

The static Nash equilibrium for all four experiments (which is also the steady state of
the dynamical system) is (gN

P , g
N
C) = (7/24,1/8) ≃ (0.2917,0.125). At the long-run equilibrium

contributions are in shortage, gN
P + g

N
C = A = 5/12 < G

SO. The first three cases are placed in
the three different regions in Figure 4: monotone (I1), oscillating (I2) and spiral (I3).

The phase diagram for these three cases is displayed in Figure 5 (left) and the time paths
are represented in Figure 5 (right). The trajectory of Case I4 is periodic (see below) and is
omitted for the sake of clarity.

In Case I1, the convergence to the steady state is monotone: both players’ contributions
increase toward that of the static Nash equilibrium (the eigenvalues of the linear dynamic
system are real and positive: λ1 ≃ 0.36 and λ2 ≃ 0.74).

In Case I2, the convergence is oscillating: contributions successively overshoot and un-
dershoot the Nash equilibrium8 (the eigenvalues are real and negative: λ1 ≃ −0.77 and
λ2 ≃ −0.36 × 10

−2).
In Case I3, the convergence is spiral (the eigenvalues are complex: λi ≃ 0.84 ± 0.06i).
The speed of convergence is determined by the modulus of the largest eigenvalue: 0.74,

0.77, and 0.84, respectively.
Case I4 is the case without inertia: the trajectory does not converge to the static Nash

equilibrium. Instead, it perpetually oscillates between contributions (5/12,0) and (1/6,1/4).
The middle point between them is the Nash equilibrium (7/24,1/8). This behavior is predicted
by Proposition 8 iii).

8Because the second eigenvalue is very small, the successive contributions seem to be lying on the same
straight line, which slope is determined by the eigenvector of the linear recurrence.
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Figure 5: Phase diagram (left) and trajectories (right); varying inertia

In Case I3, with spiral convergence, both players temporarily contribute more than at the
steady-state equilibrium. Likewise, in Case I2 with oscillating convergence, and Case I4 with
fluctuation and non-convergence, the two players alternate contributions above and below
the long-run Nash equilibrium. However, global contribution never surpasses GSO and the
trajectory remains under shortage across the transition.

Varying positionalism. Assume that the degree of conformism and inertia are fixed at
vC = 2, v

I
P = 1 and vI

C = 10, while the degree of positionalism takes three different values:

Case P1: vP = 1/3, Case P2: vP = 0.4373, Case P3: vP = 0.56.

Being interior, the static Nash equilibria for these three experiments must satisfy gN
C = g

b
C(g

N
P) =

r(gN
P − B). Consequently, they all lie on the line gN

C = 21gN
P/29 − 5/58. The phase diagram

displayed in Figure 6 (left) shows that a greater positional concern enhances each player’s
contribution in the long run, as proven in Proposition 3. It appears to be so through the
transition as well.

The type of convergence to the equilibrium depends on the eigenvalues of the dynamical
system, which are independent of parameter vP. Then, the eigenvalues are given by the
complex numbers: λi ≃ 0.77 ± 0.16, with modulus ∣λi∣ ≃ 0.79, in all three cases. Convergence
to the Nash equilibrium is therefore spiral.

Varying conformism. Assume that positionalism and inertia are fixed at vP = 1/3, v
I
P = 1

and vI
C = 10, while the degree of conformism, vC, takes three different values:

Case C1: vC = 2, Case C2: vC = 10, Case C3: vC = 20.

The Nash equilibria for these three experiments all lie on the line gP + gC = A = 5/12, as
defined in (10). Global contribution in the long run is the same in all three cases. However,
as predicted by Proposition 3, it is more equally distributed between the two players (closer to
the 45○ line) the greater the degree of conformism. The phase diagram displayed in Figure 6
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(right), shows that a greater conformism implies more equalitarian contributions not only in
the long run, but also through the transition. In all three cases, the eigenvalues are complex:
respectively λi ≃ 0.77±0.16i, 0.57±0.23i, and 0.46±0.19i, with respective modulus: 0.79, 0.61,
and 0.50. Convergence is therefore spiral and faster the greater the degree of conformism, in
accordance with Proposition 9 d).
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Figure 6: Phase diagram for the first example; varying vP (left) and varying vC (right)

6.2 Second example

We focus now on the sequence of players’ “instantaneous” utilities along the dynamic trajec-
tory. This example illustrates the possibility of a non-monotone time path for the intrinsic
and the global utility. This feaure is associated with overshooting in the global contribution.
Large overshooting may raise contributions so high as to be in excess and even intrinsic wel-
fare reducing. In this latter case, intrinsic utility decreases below its level when players do
not contribute at all. Moreover, global utility can also be temporarily lower than in the case
of zero contribution.

The fixed parameters for this experiment are:

ε =
4

10
, αP =

4

5
, vP = 0.56, vC = 2, v

I
P = 1.

And we distinguish four cases depending on the degree of conformism and on whether the
conformist player values the public good equal or less than the positional one:9

Case 1: αC =
4

5
, vI

C = 10, Case 2: αC =
4

5
, vI

C = 30,

Case 3: αC =
1

2
, vI

C = 10, Case 4: αC =
1

2
, vI

C = 30.

9Note that Case 1 in this example coincides with Case P3 in example 6.1.
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The steady state (static Nash equilibrium) for these parameters is interior, with values
(gN

P , g
N
C) = (281/400,169/400) in the first two cases, and (gN

P , g
N
C) = (119/160,61/160) in the

last two. Both lie on the line gN
P + g

N
C = 9/8.

Figure 7 (left) shows the difference between the current intrinsic utility and its value
with no contribution, W . In Cases 3 and 4, the trajectory for contributions successively
exhibits shortage, excess, welfare reducing, and finally excess again. Correspondingly, the
instantaneous intrinsic utility in Figure 7 (left) increases first and decays later to fall even
below W , to finally rise above this value. Cases 1 and 2 follow a similar pattern, but the
intrinsic utility never drops below W . Figure 7 (right) depicts the difference between global
utility with and without contribution. Its behavior is similar to the behavior of the intrinsic
utility, although showing greater variations. In Case 3, where the conformist player has low
inertia, even though intrinsic utility falls below the zero-contribution case, the global utility
does not; benefits associated with status concerns compensate for the loss of intrinsic utility.

Figure 8 (left) depicts the SCP over time, for each player. Social comparison always
implies utility losses for the conformist player and utility gains for the positional player (who
contributes more than the conformist player). The conformist player has a relatively higher
inertia in Cases 2 and 4 than in Cases 1 and 3. When the conformist player has a high change-
aversion she allows a wider contribution gap to open and waits longer to close it. Within this
period, when the gap is wide, the SC gains for the positional increase, although the SC losses
for the conformist player increase even further. The addition of gains and losses can become
negative for some periods of time, especially when the conformist player has high change-
aversion, as illustrated in Figure 8 (right). This explains why when comparing Figure 7 left
and right, one observes a wider variation in global than in intrinsic utility. While the change-
aversion of the conformist player has a negligible effect on intrinsic utility, it considerably
reduces global SCP.
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Figure 7: Global intrinsic utility (left) and global utility (right), relative to u0 ∶=W
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6.3 Third example

In the static (or the long-run) equilibrium, the positional player always contributes more than
the conformist. However, this experiment illustrates that the overshooting phenomenon may
cause the conformist player to temporarily contribute more than the positional. We consider
two sets of parameters:

Case 1: ε =
4

10
, αP = αC =

4

5
, vP = 0.56, vC = 50, v

I
P = 1, v

I
C = 150

Case 2: ε =
4

10
, αP = αC =

4

5
, vP =

1

3
, vC = 50, v

I
P =

2

100
, vI

C =
1

10
.

In both cases, conformism is very high and the conformist player has much larger inertia
than the positional one. The trajectories of the contributions are displayed in Figure 9
(right), as time paths, and in Figure 9 (left), as a phase diagram. Convergence to the Nash
equilibrium is spiral in Case 1, due to the large inertia of the conformist player. Convergence is
oscillating in Case 2 because both inertia parameters are small. In both cases, the contribution
of the conformist player surpasses that of the positional at several time steps. Eventually,
contributions become close enough to their equilibrium and the contribution of the positional
player remains larger than that of the conformist.

7 Concluding remarks

The paper analyzes the strategic interaction between agents keen on distinguishing themselves
from the common herd, and other agents who are willing to imitate this common-herd behav-
ior. Social context is introduced in a game of private provision of a public good considering
two different players. The utility of the positional player rises/decreases when she contributes
more/less than her opponent. The conformist player gets lower utility the more she deviates,
above or below, from the contribution of her opponent.
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Figure 9: Contributions of players in the third example: phase diagram (left) and trajectories
(right)

For a static game, we characterize the minimum positionality for the positional player to
start contributing. Above this threshold, the conformist player would imitate the contribut-
ing behavior, only if she regards contributions as strong complementary goods (a degree of
conformism sufficiently large). We also characterize the conditions for the contributions not
to exhaust the global players’ endowment. In either case, with positive contribution, the
positional player always contributes more than the conformist

The status concerns of the players have different effect on contributions. Positionality
enhances both players’ contribution, and the increment is higher for the positional player
than for the conformist one. Thus, positionality increases both intrinsic utility and the status
concern payoffs (globally, for the two players). The degree of conformism increases the con-
tribution by the conformist player in the exact same amount as it reduces the contribution by
the positional, hence, leaving global contribution unchanged. Therefore, the contribution gap
between the players widens with positionality and it narrows with the degree of conformism.
Conformism has no effect on intrinsic utility, while the status concern payoffs increase only if
the conformist player values the public good little and has a small status concern.

We extend the static game to a dynamic setting, considering that peoples’ social concerns
are built by comparing their current contribution to what they saw their peers contributed in
the past, and assuming further that agents show inertia. The time path for the contributions
which solves this dynamic problem converges to the static Nash equilibrium.

First, we analytically characterize the dynamic solution and the type of convergence:
monotonous, oscillatory, or spiral. Later, numerical simulations help to highlight which prop-
erties of the static equilibrium remain valid through the whole transition and which properties
do not.

In a first set of examples, we observe how the difference in players’ inertia can lead to
monotone, oscillating, or spiral convergence. Moreover, the simulations show that a stronger
status concern for the positional player raises contributions for the two players at the long-run
(the static Nash equilibrium), as well as through the transition period. Likewise, a stronger
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status concern for the conformist player induces more egalitarian contributions between the
two players, again at the long-run equilibrium and through the transition.

A second set of examples focuses on the overshooting period, when either one or both
players contribute above their long-run equilibrium. Overshooting can be so strong as to
temporarily lead intrinsic utility to below its value with zero contribution. This is also true
for global utility or social welfare that also takes into account the payoffs linked to status
concerns. This effect is more likely the more change-averse the conformist player is, and
assuming that she values public good more than the positional player.

In a final example we show that for specific parameter values, it is even possible that the
conformist player temporarily contributes more than the positional player. This can happen
when the positional player has a strong status concern and she is much more change-averse
than the positional.

We believe that an interesting extension would be to define a truly dynamic game, in
which agents decisions would be made dependent on the stock of contributions carried out
by the players up until a certain time. Another line for future research could introduce a
prosocial agent as a third type of player.
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A Proofs for Nash equilibria

Proof of Proposition 1. With the notation A = (αP−1+vP)/(αPε), h(vP) = αP−αC+αCvP,
introduced in the proposition, the potential interior solution can be written as:

gN
Pint =

1

2
(A +

h(vP)

αPvC

) , gN
Cint =

1

2
(A −

h(vP)

αPvC

) . (26)

Define function θi(x) = 1 − αi + αiεx ≥ 1 − αi ≥ 0 and remember that

B =
1 − αC

vC − αCε
, r =

vC − αCε

vC + αCε
.

The best-response functions are, from (10), (11)

gbP(gC) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if A ≤ gC ⇔ vP ≤ θP(gC)

A − gC if A −wP ≤ gC ≤ A ⇔ vP ∈ (θP(gC), θP(wP + gC))

wP if gC ≤ A −wP ⇔ vP ≥ θP(wP + gC).

gbC(gP) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 vCgP ≤ θC(gP)

r(gP −B) vC(gP −wC) ≤ θC(gP +wC) ∧ vCgP ≥ θC(gP)

wC vC(gP −wC) ≥ θC(gP +wC).

Remember that αi − 1 < 0, i = {P, C}, by Assumption 2. We have three main cases:

Case a. When vP ≤ 1 − αP ≡ θP(0) ≤ θP(gC), then gbP(gC) = 0, ∀gC ∈ [0,wC]. Then, for any
Nash equilibrium, gN

P = 0 and gN
C = gbC(0). Because αC − 1 < 0, gbC(0) = 0. In that case, the

unique Nash equilibrium is (gN
P , g

N
C) = (0,0). This proves statement c).

In the rest of this proof, we assume that vP > 1 − αP. Then A > 0 and since h(vP) > 0.
Consequently, from (15) and (16), gPint > gCint and gPint > 0.

Case b. Note first that in this case gP can not be 0 at the equilibrium. Indeed, if it were
the case, then gN

C ≥ A > 0 and gN
C = 0 is excluded. However, when computing gbC(0), only the

first case is satisfied since 0 ≤ θC(0). This is a contradiction, hence the impossibility.
Consider now the possibility that gN

C = 0. We have gbC(gP) = 0 iff vC ≤ θC(gP)/gP or equivalently
vC ≤ αCε + (1 − αC)/gP. From (10) gP ≤ min{A,wP}, and then gbC(gP) = 0 for all gP satisfying
the previous condition if:

vC ≤ αCε +max{
1 − αC

A
,
1 − αC

wP

} = vC(vP).

Then necessarily gN
C = 0 and gN

P = gbP(0). Accordingly, when vC ≤ vC(vP), there is a unique
Nash equilibrium which is:

(gN
P , g

N
C) =

⎧⎪⎪
⎨
⎪⎪⎩

aint ≡ (A,0) vP < θP(wP)

aP ≡ (wP,0) vP ≥ θP(wP).

This proves statement a).
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Case c. Assume finally that vP > 1−αP and vC > vC(vP). Under these conditions it is easy to
see that 0 < B < min{A,wP}. As a preliminary, we prove now that gN

Cint > 0 when gN
Pint ≤ wP.

Indeed, when A ≤ wP

gN
Cint > 0 ⇐⇒ vC >

h(vP)

αPA
=
αP − αC + αCvP

αPA
=
1 − αC + αCAε

A
.

This last condition is satisfied because vC > vC(vP). When A > wP, g
N
Cint ≤ 0 implies gN

Pint ≥ A
(because gN

Pint + g
N
Cint = A) which is a contradiction.

In this case one interior and three boundary equilibria are feasible. To analyse the condition
in vP and vC under which these equilibria are feasible we have (remember that h(vP) > 0)

gN
Pint ≤ wP ⇐⇒ εh(vP) ≤ vC[θP(2wP) − vP] ⇐⇒ θP(2wP) > vP ∧ vC ≥

εh(vP)

θP(2wP) − vP

∶= BP(vP).

(27)
Note that BP(vP) is an increasing function when vP < θP(2wP), goes to infinity when vP tends
to θP(2wP) from below and BP(vP) intercepts vC(vP) when vP = θP(wP).
Similarly,

gN
Cint > wC ⇐⇒ εh(vP) < vC[vP − θP(2wC)] ⇐⇒ θP(2wC) < vP ∧ vC >

εh(vP)

vP − θP(2wC)
∶= BC(vP).

(28)
Note that BC(vP) is a decreasing function when vP > θP(2wC), tends to infinity when vP tends
to θP(2wC) from above and its limit when vP goes to infinity is εαC.

Moreover, BP(vP) intersects BC(vP) when vP = θP(wP,wC) and B11(θP(W )) =
θC(W )
w1−wC

.

Now we can analyse the different equilibria. Remember that we are in the case where vP >

1 − αP and vC > vC(vP). In particular we know that gN
iint > 0, i = {P, C} and B < wP. In this

region

• (gN
Pint, g

N
Cint) is an equilibrium if and only if (27) and the negation of (28) hold:

[θP(2wP) > vP ∧ vC ≥
εh(vP)

θP(2wP) − vP

] ∧ [θP(2wC) ≥ vP ∨ vC ≤
εh(vP)

vP − θP(2wC)
] .

Note that when wP < wC the second bracket is not relevant because θP(2wC) > θP(2wP) >

vP is automatically satisfied. Indeed we knew that gN
Pint < wP implies gN

Cint < g
NPC
Pint < wC.

• (wP,wC) is an equilibrium if and only if

vP ≥ θP(W ) ∧ vC ≥
θC(W )

wP −wC

∶= BPC ∧wP > wC.

• (A −wC,wC) is an equilibrium if and only if

vP ∈ (θP(wC), θP(W )) ∧ vC(A − 2wC) ≥ θC(A).

Note that the second condition requires A − 2wC to be positive, that is vP > θP(2wC).
Then

vC(A − 2wC) ≥ θC(A) ⇐⇒ vP > θP(2wC) ∧ vC ≥ BC(vP) ⇐⇒ gN
Cint ≥ wC.

Note that θP(2wC) < θP(wP +wC) ⇐⇒ wP > wC. In consequence this equilibrium exists
when

wP > wC ∧ vP ∈ (θP(2wC), θP(W )) ∧ vC ≥ BC(vP).

28



• (wP, r(wP −B)) is an equilibrium if and only if

r(wP −B) ≤ A −wP ∧ vC(wP −wC) ≤ θC(W ) ∧ vC ≥
θP(wP)

wP

= αCε +
1 − αC

wP

.

The last inequality holds because vC > vC(vP) and we have that

r(wP −B) ≤ A −wP ⇐⇒ εh(vP) ≥ vC[θP(2wP) − vP] ⇐⇒ gN
Pint ≥ wP.

The first equivalence follows after some manipulations and the second one from (27).
Then this case is possible if and only if

[vC ≤ BPC ∨ wP ≤ wC] ∧ [vC ≤ BP(vP) ∨ vP ≥ θP(2wP))]

This concludes the proof.

Proof of Proposition 2.

i) The proof is straightforward in cases (wP,0) (G
N = wP ≤ A), (wP,wC) (G

N = W ≤ A),
and (A,0), (gbP(wC),wC) and (gPint, gCint) (GN = Gint = A). Case (wP, g

b
C(wP)) is

characterized by:

wP ≤ gPint
r>0
Ô⇒ gbC(wP) ≤ g

b
C(gPint) Ô⇒ wP + g

b
C(wP) ≤ gPint + g

b
C(gPint) = A.

ii) In case b) the conformist does not contribute and the positional does. In case c) four
equilibria are possible. For the interior equilibrium, (gPint, gCint), gPint > gCint ⇐⇒

αP − αC + αCvP > 0, which holds because vP > 1 − αP and αC < 1.

For equilibrium (wP, g
b
C(wP)), since 1 − r > 0 and −rB < 0 it follows that wP > g

b
C(wP).

Finally, in the equilibrium ((gbP(wC),wC), A −wC > wC ⇐⇒ αP(1 − αC) + αC[vP − (1 −
αP)] > 0, which again also holds true under (12).

Proof of Proposition 6.
The derivative of social welfare with respect to vC reads:

∂Uint

∂vC

=
∂Vint

∂vC

=
h(vP)[αP − αC − (2αP − αC)vP]

2α2
PvC

,

which sign is given by the sign of H = αP −αC − (2αP −αC)vP. To study the sign of H we can
distinguish 3 different situations:

i) αP > αC ⇒ 2αP > αC, then

H ≷ 0⇔ vP ≶
αP − αC

2αP − αC

∈ (0,1) .

iia) αP < αC ∧ 2αP > αC, then H < 0 for any vP ∈ (0,1).

iib) 2αP < αC ⇒ αP < αC, then

H ≷ 0⇔ vP ≷
αP − αC

2αP − αC

and
vP < 1 <

αP − αC

2αP − αC

⇒H < 0.
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B Proof that the static equilibrium is a fixed point of the
dynamical system

We present here the proof of Proposition 7. For the sake of compactness and symmetry, we
use the notation Ai, v

C
i , v

P
i , i = {P, C}. The correspondence with Proposition 7 is: vP

C = v
C
P = 0,

vC
C = vC, v

P
P = vP, AP = A, and αPεAC = αC − 1.

Proof. The best-response functions of the static case (see equations (10)–(11)) are:

rSi (g−i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

wi if rbi (g−i) ≥ wi

rbi (g−it) if 0 ≤ rbi (g−i) ≤ wi

0 if rbi (g−i) ≤ 0,

where rbi (g−i) =
Aiαiε + (v

C
i − αiε)g−i

vC
i + αiε

(29)

and the Nash static equilibrium verifies gi = r
S
i (g−i) for i ∈ {P, C}.

If the dynamic process has a steady state, at the steady state the reaction function reads
rD∞i (gi, g−i) = r

D
i (g−i; gi, g−i), with:

rD∞i (gi, g−i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

wi if r∞i (gi, g−i) ≥ wi

r∞i (gi, g−i) if 0 ≤ r∞i (gi, g−i) ≤ wi

0 if r∞i (gi, g−i) ≤ 0,

where r∞i (gi, g−i) =
Aiαiε + v

I
igi + (v

C
i − αiε)g−i

vI
i + v

C
i + αiε

,

(30)
and the steady state satisfies g∞i = r

D∞
i (g∞i , g∞

−i).
We are going to see that

g∞i = r
D∞
i (g∞i , g∞

−i) ⇐⇒ g∞i = r
S
i (g

∞

−i).

In fact

0 < r∞i (g
∞

i , g∞
−i) < wi ⇐⇒ 0 < g∞i =

Aiαiε + v
I
ig
∞

i + v
C
i g
∞

−i − αiεg
∞

−i

vI
i + v

C
i + αiε

< wi,

⇐⇒ wi(v
I
i + v

C
i + αiε) >

Aiαiε + v
C
i g
∞

−i − αiεg
∞

−i

vC
i + αiε

> 0 ⇐⇒ wi > r
b
i (g
∞

−i) > 0,

⇐⇒ 0 < g∞i =
Aiαiε + v

C
i g−i − αiεg−i

vC
i + αiε

< wi ⇐⇒ g∞i = r
S
i (g

∞

−i).

The same reasoning applies if ri(g
∞

−i) ≤ 0 or ri(g
∞

−i) ≥ wi.

C Analysis of the dynamics

C.1 The linear dynamical system

We derive here the equations of the dynamics defined in Section 5 when the successive myopic
Nash equilibria are interior. FOC in (19) and (20), can be rewritten in matrix form as:

(
εαP + ωP εαP

εαC εαC + ωC

)(
gPt

gCt
) = (

vI
P 0
vC vI

C

)(
gPt−1

gCt−1
) + (

ΦP

ΦC

) , (31)

where
ωP = v

I
P ωC = v

I
C + vC ΦP = αP − 1 + vP ΦC = αC − 1.
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Denote the matrices and vectors:

S ∶= (
εαP + ωP εαP

εαC εαC + ωC

) B ∶= (
vI
P 0
vC vI

C

) Φ ∶= (
ΦP

ΦC

) gt ∶= (
gPt

gCt
) .

The solution to (31) depends on whether matrix S is singular or not. The determinant of S
is:

D = ωPωC + ε(αCωP + αPωC). (32)

Since ε and the αi are assumed to be strictly positive, D = 0 can happen only if ωP = ωC = 0,
which is equivalent to vI

P = v
I
C = vC = 0. By Assumption 6, vC = 0 is excluded. Consequently,

D > 0 and matrix S is invertible.
Then, if M = S−1B and Γ0 = S−1Φ, the system (31) can be written as:

gt = Mgt−1 + Γ
0 . (24)

Explicitly, the matrix M and the vector Γ0 are:

M =
1

D
(
vI
PωC + ε(αCv

I
P − αPvC) −εαPv

I
C

vCωP + ε(αPvC − αCv
I
P) vI

C(ωP + εαP)
) Γ0

=
1

D
(
ωCΦP + ε(αCΦP − αPΦC)

ωPΦC + ε(αPΦC − αCΦP)
) . (33)

C.2 Eigenvalues of the dynamical system

The dynamical system (24) is affine: many of its properties are characterized by the eigenval-
ues of M = S−1B. Let λ be an eigenvalue. Then, for some non-zero vector u, S−1Bu = λu or
equivalently Bu = λSu. The matrix λS −B is therefore singular. Accordingly, the condition
for λ to be an eigenvalue of M is:

0 = (λεαP + λωP − v
I
P)(λεαC + λωC − v

I
C) − (λεαP)(λεαC − vC)

0 = (λωP − v
I
P)(λωC − v

I
C) + λε (αP(λωC − v

I
C + vC) + αC(λωP − v

I
P)) . (34)

Let χ(λ) be the polynomial in the right-hand side of (34).
The following proposition summarizes the principal properties of this polynomial.

Proposition 10 Under the assumption ε > 0 and αi > 0, i ∈ {P, C}, the eigenvalues λ1, λ2

of M, roots of χ(λ), have the following properties.

i) Because vC > 0 (by Assumpion 6) no eigenvalues is equal to 1; an eigenvalue is equal to
-1 if and only if vI

P = v
I
C = 0, that is, no inertia; an eigenvalue is equal to 0 if and only

if vI
P = 0 or vI

C = 0.

ii) When both eigenvalues are real, they lie in the interval [−1,1] and they have the same
sign.

iii) When they are both complex, their modulus is strictly less than 1.

Proof. As preliminary, remember that the product of the roots of χ is equal to the ratio of
the constant term of the polynomial to its leading term. Therefore, from (34),

λ1λ2 =
vI
Pv

I
C

ωPωC + ε(αPωC + αCωP)
=

vI
Pv

I
C

vI
P(v

I
C + vC) + ε(αP(vI

C + vC) + αCvI
P)

. (35)
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Next, we evaluate χ(1) = 2εαPvC, χ(−1) = 2v
I
P(2v

I
C+vC)+2ε(αPv

I
C+αCv

I
P) and χ(0) = vI

Pv
I
C.

From these values we conclude that i) holds.
We now turn to ii). Using the values above, we find that χ(1) ≥ 0 and χ(−1) ≥ 0. Through

elementary computations, we also find that χ′(1) ≥ 0 and χ′(−1) ≤ 0. This implies that both
eigenvalues are in the interval [−1,1]. They have the same sign since their product is positive.

Consider now iii). If vI
C = 0 or vI

P = 0, then λ = 0 is an eigenvalue, so that eigenvalues
are not complex. In the case where both eigenvalues are complex, they are conjugate and
∣λ1∣

2 = ∣λ2∣
2 = ∣λ1λ2∣. Then (35) implies:

∣λi∣
2
≤

vI
Pv

I
C

ωPωC

=
vI
Pv

I
C

vI
P(v

I
C + vC)

≤ 1.

In order to prove iii), we argue that the inequality is strict. Equality ∣λi∣ = 1 occurs if and
only if vI

Pv
I
C > 0 and

vI
Pv

I
C = ωPωC + ε(αCωC + αCωP)

or equivalently,

0 = vI
PvC + ε(αi(vC + v

I
C) + αCv

I
P),

and this in turns implies vI
P = v

I
C = vC = 0. Since this contradicts v

I
Pv

I
C > 0, the situation cannot

occur and iii) is proved.

C.3 Players without inertia

In this situation, no player has inertia: vI
P = v

I
C = 0. By Assumption 6, vC > 0. According to

Proposition 10 ii), one eigenvalue of M is equal to −1. Indeed, since ωP = 0 and ωC = vC, the
matrix M in (33) reduces to:

M =
1

εαPvC

(
−εαPvC 0
εαPvC 0

) = (
−1 0
1 0

) .

Accordingly, the first steps of the dynamical system (24) are

g0 = (
gP0

gC0
) g1 = (

−gP0 + Γ
0
P

gP0 + Γ
0
C

) g2 = (
gP0

−gP0 + Γ
0
P + Γ

0
C

) g3 = g1

and then g4 = g2k = g2, g2k+1 = g1 for all k ∈ N. Except for the initial value, the sequence
solution of (24) is a cycle of order 2. It is independent on gC0 but does depend on the initial
value gP0. We observe that the midpoint of the cycle is the point:

g∞ = (
1
2Γ

0
P

1
2Γ

0
P + Γ

0
C

) ,

which is precisely the fixed point of (24), (I −M)−1Γ0 and also the static Nash equilibrium
gint in accordance with Proposition 8.

In this case, a necessary and sufficient condition for the trajectory to lie in the set of
constraints is that g0, g1 and g2 be in this set. This leads to the following conditions:

Γ0
P −min{wC − Γ

0
C,wP} ≤ gP0 ≤ Γ

0
P +min{Γ0

C,0},

0 ≤ gi0 ≤ wi, i = P,C.
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C.4 Convergence of the dynamical system

Convergence occurs from any initial condition if and only if both eigenvalues have absolute
value less than 1. When it is the case, the convergence can be: monotone if both eigenvalues
are real and positive, oscillating if at least one of them is real and negative, and spiral if
both eigenvalues are complex. Using Proposition 10, we can now prove Proposition 8 and
Proposition 9.
Proof of Proposition 8.

According to Proposition 10, the modulus of both eigenvalues of matrix M is smaller than
1, whether they are real (Proposition 10 ii)) or complex (Proposition 10 iii)). Moreover, 1
cannot be an eigenvalue under Assumption 6 (Proposition 10 i)). This implies that the matrix
I −M is invertible and gN = (I −M)−1Γ0 is the fixed point of (24). Moreover, the distance
between gt and gN cannot increase with t. Since gN is in the interior of the rectangle of
constraints, there is a neighborhood of gN inside the rectangle which satisfies statement i).

Statement ii) is also a consequence of Proposition 10: under Assumption 6 and if vI
P /= 0

or vIC /= 0, then by Proposition 10 i), 1 and −1 are not eigenvalues, and from Proposition 10
ii) both eigenvalues are strictly smaller than 1 in modulus. This implies that ∣∣gt − g

N∣∣ <

ρ ∣∣gt−1 − g
N∣∣ for some ρ < 1. This in turn implies the convergence of gt to gN.

The proof of statement iii) is a consequence of Appendix C.3.

Proof of Proposition 9. Let ∆λ be the discriminant of the polynomial χ(λ). The roots
of χ are real when ∆λ ≥ 0 and complex conjugate if ∆λ < 0. This justifies statement c).
When the roots are real, they have the same sign according to Proposition 10 ii). This sign
is the sign of their sum, which is opposite to the sign of the ratio between the linear and
the quadratic coefficients of the quadratic polynomial, χ(λ). The leading term in (25) is
vI
P(vC + v

I
C) + ε (αP(vC + v

I
C) + αCv

I
P) > 0. The sign of eigenvalues is therefore the opposite of

that of the linear coefficient in χ, which leads to the conditions in a) and b).
For statement d), the speed of convergence is faster the smaller the spectral radius of M, that
is, the modulus of its largest eigenvalue. When ∆λ < 0 and eigenvalues are complex conjugate,
their modulus is given by ∣λi∣ = ∣λ1λ2∣

1/2, with ∣λ1λ2∣ given in (35). It is easy to see that this
is an increasing function of vI

P and vI
C, and a decreasing function of vC.
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