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INTRODUCTION

1. Definition of artificial intelligence
Artificial intelligence (AI) pertains to the develop-

ment of computer systems and robots that can perform 
tasks usually requiring human intelligence or maneu-
verability [1]. Artificial intelligence is generally defined 
by the ISO/IEC TR 24028:2020 as the “capability of an 
engineered system to acquire, process and apply knowl-
edge and skills.” The term AI was originally coined by 
John McCarthy in 1955 at the Dartmouth Summer 
Research Project on Artificial Intelligence [2]. AI is 

applied in medicine with the use of algorithms that 
are developed from data analysis to help in improving 
healthcare-related outcomes and experiences. Advances 
in computer science, medical informatics, robotics, and 
the need for personalized medicine have paved the way 
for AI to play an integral role in modern healthcare [3]. 
AI applications are being developed to support physi-
cians in inpatient, outpatient, and surgical settings 
and to help deliver patient-centered precision medicine. 
AI has already been applied throughout many medi-
cal fields, with up to 12,517 articles published since the 
2000s on the health care of patients, and only a few, 
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fields of medicine. Advances in computer science, medical informatics, robotics, and the need for personalized medicine 
have facilitated the role of AI in modern healthcare. Similarly, as in other fields, AI applications, such as machine learning, 
artificial neural networks, and deep learning, have shown great potential in andrology and reproductive medicine. AI-based 
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recently, in the field of andrology (Fig. 1).
AI, in which machines or computerized devices ac-

quire the ability to learn and display intelligence, con-
tinues to develop rapidly. AI applications, such as ma-
chine learning (ML), artificial neural networks (ANN), 
and deep learning (DL), show great potential in repro-
ductive medicine. Its advances are fueled by the grow-
ing amount of data available in this field. The analysis 
of big data using the various branches of AI, such as 
ML, ANN, DL, robotics, natural language processing, 
etc., yields valuable and practical applications in the 
different aspects of reproduction, including sperm clas-
sification, oocyte, and embryo selection, prediction of 
outcomes, robotic surgery, clinical decision systems, 
cost-effectiveness, and sperm selection [4,5]. Many re-
cent reviews have highlighted the uses and implemen-
tations of AI in reproductive medicine and fertility 
treatment [4,6-8]. In andrology, AI is applied in automa-
tion for evaluating sperm motility and morphology. AI 
can also serve as a support system in making medical 
decisions via supervised machine learning (sML) algo-
rithms, which are ML-based prediction models.

AI-based prediction models and automated semen 

analysis are set to become valuable tools that could 
support and aid in diagnosing and treating male infer-
tility and improve the accuracy of patient care. These 
automated, AI-based predictions could offer consistency 
and efficiency in terms of time and cost in infertility 
research and clinical management [9].

ARTIFICIAL INTELLIGENCE: 
MACHINE LEARNING, NEURAL 
NETWORK AND DEEP LEARNING

1. Machine learning
ML is one of the subfields of AI, which detects the 

underlying links between inputs and outputs to cre-
ate an automated algorithm [10]. To develop ML, large 
datasets are critical for training the algorithm to find 
complicated patterns and associations faster than tra-
ditional statistical models that usually focus only on 
a small number of variables, with better or, at least, 
comparable accuracy [11,12]. Differences between data 
analysis and statistical analysis are shown in Table 1 
[13].

The principle in ML modeling consists of three pro-
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Fig. 1. Number of articles on artificial 
intelligence and health care (A), and on 
artificial intelligence and andrology (B) 
published since the 2000s (source: Sco-
pus; accessed on January 2023).
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cesses: data set preparation, model selection with data 
fit, and model evaluation or validation [12]. In ML, 
there are four commonly used learning methods: su-
pervised, unsupervised, semi-supervised, and reinforce-
ment learning [10,12]. Each technique can be used to 
solve different tasks. For example, supervised ML is 
mainly used for pattern recognition, while unsuper-
vised ML is more beneficial for clustering [12].

In recent years, AI and ML have been extensively 
studied to assist physicians in diagnostic and therapeu-
tic approaches [14-16].

The distinguished feature of ML algorithms has 
also led to its applications in andrology, both for male 
infertility [14,15,17]. There are several instances of ML 
application in andrology. Supervised ML is used to 
develop a scoring calculator to identify patients with 
Klinefelter syndrome among azoospermic patients 
[18]. A random forest model has also been designed to 
predict improvement in post-varicocelectomy sperm 
analysis with superior performance compared to tra-
ditional logistic regression [9]. Other than that, several 
studies have also shown the benefit of ML for auto-
mated sperm classification, sperm selection, fertility 
prediction, and prediction of in vitro fertilization (IVF) 
outcomes [5,19,20].

2. Neural network and deep learning
Neural networks are a subtype of AI mainly inspired 

by the work of the human brain, which mimics a set 
of algorithms comprised of four key components: in-
puts, weights, bias or threshold, and output. The neural 
network will use a training dataset, then it recognizes 
the patterns in these data sets and formulates algo-
rithms that can be used to predict the output of a test-
ing data set. The basic operation is given a weight for 
each input and set a threshold to decide whether the 
output is true or false. For instance, training data sets 
of thousands or millions of hand-written data sets are 
fed into the neural network to recognize hand-written 
digits. The neural network will recognize the pattern 
and develop several algorithms that can be used if a 
small series of hand-written digits are fed. The neural 
network will precisely identify these digits. Hence, the 
basic structure of a neural network is an input (data to 
be analyzed), hidden layers (series of nodes/algorithms 
which process the input and produce an output of true 
or false to the next layer), and the output (the final 
output whether to accept or reject the question).

In contrast, DL is an extensive neural network with 
multiple hidden layers, hence the name "deep." It refers 
to the depth of layers in a neural network that, if they 

Table 1. Differences between Big Data (Data Science) and Statistics [13]

Domain Data science Statistics

Definition Process of screening, meticulous inspection, presen-
tation, and displaying of simple reports of big data 
sets to non-technical people

Science-based on the collection and mathematical 
interpretation of quantitative data

Process The problems are tackled by a modeling process. 
The latter focuses on the predictive accuracy of the 
model. The data scientist compares the predictive 
accuracy of different machine learning methods 
and selects the most accurate model

Statisticians begin with a simple model and the data 
is tested to find out if it is consistent with the as-
sumption of that model. The analysis is completed 
when the statistician is sure that all assumptions 
have been tested and none of them are violated

Quantifying uncertainty Rarely applied in machine learning Extensively applied
Data Size and Nature A huge database usually cannot be stored on one PC 

and retrieved from a data warehouse
It is considered an information asset with high vol-

ume, velocity, and variety, that needs to be trans-
formed into value [1,2]

Usually, small dataset

Could be retrospective (historical) or prospective

Data Collection The precision of data collection and source is not a 
primary concern

The precision of data collection and its quality is a 
major concern

Nature of the studied problems Related to making predictions and optimizing the 
search of large databases

Draws a conclusion about what causes what, based 
on the quantification of uncertainty

Human resources Usually, engineers Usually, mathematicians
Tools Learning

Example instance
-



Ramy Abou Ghayda, et al: Artificial Intelligence in Andrology

5www.wjmh.org

consist of more than 3 layers inclusive of inputs and 
outputs, can be considered a DL algorithm [21]. Conse-
quently, DL or deep neural networks deal with complex 
and sophisticated problems compared to standard neu-
ral networks, for instance, image and voice recognition. 
Deep neural networks are feed-forward flowing in one 
direction from input to output. DL automates much of 
the process's feature extraction, eliminates some of the 
manual human intervention required, and enables the 
use of large data sets, earning the title of "scalable ma-
chine learning" [22].

3. Decision tree and random forest
The mechanisms by which a ML algorithm works 

could generally be divided into three different classes, 
namely supervised, unsupervised, and reinforcement 
learning [10]. In supervised learning, the input contains 
the data and the desired result, and the algorithm will 
detect the relationship, so it can predict the outcome 
if raw data is provided. A real example of supervised 
learning is when smartphones are trained to know 
fingerprints, so they can later identify the correct fin-
gerprint and reject others. However, in unsupervised 
learning, only the input data is provided. Thus, the al-
gorithm works on its own to discover information such 
as a pattern/structure in a set of uncategorized data 
(clustering) or relationships between variables in larger 
databases (association).

A decision tree is a supervised learning algorithm 
that diagrammatically solves a question based on spe-
cific attributes [23]. Its shape is an inverted tree with 
the top/starting position being the root (root node), and 
the branches are the outcome of a decision (leaf nodes). 
A decision goes through several levels if a particular 
characteristic is present until a final answer is reached. 
A random forest algorithm is a collection of decision 
trees. Instead of using a single decision tree to answer 
a question, multiple trees are randomly selected. The 
final question is answered based on the most selected 
answers by individual trees to yield more accurate re-
sults [23].

4. Radiomics
Radiomics is a medical approach that aims to extract 

a large number of quantitative features from medi-
cal images using data characterization algorithms. It 
can be done manually, semi-automatically, or fully 
automatically using AI. The main tasks performed by 

radiomics software are quantification tasks, includ-
ing region segmentation or performing automated 
measurements. The overall imaging and evaluation 
by radiomics not only present the characteristics of 
the lesion (e.g., tumor), such as volume, shape, surface 
area, density, intensity-based features, texture, localiza-
tion, and elongation but also indicates its surrounding 
microenvironment. This makes it possible to guide the 
targeted agents before a procedure or to be aligned 
with a biopsy to maximize the clinical implications [24].

Radiomics can be used for many imaging modalities, 
including radiography, ultrasound, computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and posi-
tron emission tomography (PET) studies. Radiomics is 
based on improvements in quantitative image software 
analysis, applying automated, or semi-automated high-
throughput extraction of substantial amounts of quan-
titative features of medical images. After stratification 
processes, the obtained digital dataset can be linked to 
additional genomic or proteomics data, and histopatho-
logic markers obtained by other novel radiographic 
techniques. Compared to traditional imaging, radiomics 
provides quantitative information on meaningful bio-
logical characteristics and the application of DL, which 
sheds light on the complete automation imaging diag-
nosis [25].

Radiomics can increase diagnostic accuracy, prog-
nosis assessment, and treatment response prediction, 
especially in combination with clinical, biochemical, 
and genetic data. Various imaging studies in different 
fields have been published, highlighting the potential 
of radiomics to enhance clinical decision-making. This 
technique has been used in a variety of fields in the 
health care system such as in brain tumor/pathology 
[26,27], colorectal carcinoma [28-31], coronary heart dis-
ease [32,33], and diabetes [34].

Still, it could potentially be applied in the field of 
male infertility, e.g., characterization of the testicular 
parenchyma with objective and reliable quantitative 
parameters using testicular ultrasound. The technique 
allows the evaluation of testicular spermatogenesis 
and hypothalamic-pituitary axis effects during image 
segmentation, image preprocessing, and texture fea-
tures extraction image analysis. Image analyses were 
performed using Biolab [35].

One of the most critical problems in male infertility 
is assessing the normal or pathological status of the 
different portions of the seminal tract (mainly epididy-
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mides, prostate, and seminal vesicles) for their possible 
implications on semen quality (motility, leukocytosper-
mia, sperm DNA fragmentation [SDF], reactive oxygen 
species, etc.). In the present era, where non-invasive 
diagnostic procedures are almost mandatory; radiomics 
might provide precious information otherwise un-
achievable. However, the field faces several significant 
challenges, mainly due to various technical factors in-
fluencing the extracted radiomics characteristics [36].

MRI plays a role in predicting testicular sperm ex-
traction (TESE) in men with non-obstructive azoosper-
mia (NOA). Karakus and Ozyurt [37] found choline and 
creatine peaks to be the most important metabolites 
obtained by spectroscopic examination of five NOA pa-
tients with mTESE sperm retrieval. The testicular nor-
malized apparent diffusion coefficient (ADC), obtained 
using a conventional monoexponential model, is a pa-
rameter that reflects the diffusion movement of water. 
The latter mainly correlates with tissue cell density 
and extracellular space [38]. The restriction in water 
diffusion in the testis arises from the seminiferous tu-
bules, compact connective tissue, and interstitial tissue 
that contain Leydig cells, blood, and lymphatic vessels. 
Tsili et al. [39] found that the ADC is an additional di-
agnostic tool that was most useful for identifying NOA 
patients who have foci of spermatogenesis in a study 
of 20 NOA patients. Patients with a Johnsen score (JS) 
≥8 have a significantly higher mean ADC compared to 
patients with a lower JS.

ARTIFICIAL INTELLIGENCE IN 
ANDROLOGY RESEARCH AND 
LABORATORY

1. Computer-assisted semen analysis systems
Clinical decision-making can be influenced by the 

subjectivity of the evaluation of microscopic sperm 
parameters (concentration, motility, and morphology) 
as well as by human error and intra-operator variabil-
ity. All of this factors can affect the accuracy of the 
results. In the past 25 years, the classic semen analy-
sis was flanked by computer-assisted semen analysis 
(CASA) to provide reliable and less subjective results 
[40]. CASA systems are automated instruments that 
use cameras and software to analyze the microscopic 
findings and give sperm parameter results [41]. CASA 
systems may be used to evaluate sperm kinematic pa-
rameters and hyperactivation, as described in the 2021 

WHO lab manual for examining and processing hu-
man semen (WHO, 2021). Furthermore, the use of the 
CASA system is more objective and reproducible than 
the assessment of motility performed by the operator. 
Additionally, it is superior for assessing sperm kine-
matic parameters, which are predictors of IVF together 
with sperm count, compared to manual methods [42].

Some uncertainties that are still not clarified have 
unfortunately prevented its routine use. A systematic 
review showed a high correlation of sperm concentra-
tion and motility between manual and CASA-based se-
men analysis, but only for samples with average sperm 
concentrations (15–60 million/mL), with residual vari-
ability depending on the tool used [41]. Unfortunately, 
sperm morphology remains challenging to assess with 
CASA due to the high number of different types of ab-
normalities and the various classification systems [41]. 
In the future, artificial intelligence optical microscopic 
(AIOM) technologies could be helpful in also overcom-
ing this problem, helping the CASA systems to "learn" 
how to classify sperm morphology correctly. Nowadays, 
DL networks can have over 100 layers and billions of 
nodes, far away from the first VGG-16 algorithm tech-
nologies. However, further studies are needed.

2. Artificial intelligence in semen analysis
Semen analysis is considered a fundamental and es-

sential diagnostic test for male infertility. However, 
most sperm parameters are calculated manually, which 
is a time-consuming process, especially in the context of 
a busy lab. Nonetheless, it requires a lengthy training 
process, is highly subjective, and is prone to intra-ob-
server variability and human error [41]. Obstacles, such 
as those mentioned above, could be overcome using AI.

An automated model of AI was developed using mi-
croscopic optical technology for sperm concentration, 
motility, and seminal pH assessment, and the results 
were compared with manual assessment. A high de-
gree of correlation in concentration, progressive motil-
ity, and progressively motile sperm concentration was 
observed between the automated AI model and the 
manual analysis [43,44]. However, some other studies 
have found a poor correlation between AI analysis by 
other similar devices and manual semen analysis [45]. 
Further limitations of studies focusing on AI in the 
context of assisted reproduction and the prediction of 
sperm motility include having small datasets and an 
unclear evaluation procedure [46].
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3.  Artificial intelligence and sperm DNA 
fragmentation

Among the available methods of SDF measurement, 
Comet assay and sperm chromatin dispersion test do 
not use flow cytometry in their protocol [47]. Hence, the 
evaluation of SDF with these techniques depends on 
a manual measurement under the microscope, which 
is highly subjective [48]. AI could potentially improve 
these techniques by making them more objective.

Several studies have used AI to quantify the amount 
of DNA damage or alternative markers, particularly in 
cancer cases [49-51].

A disadvantage of the Comet assay is that it lacks 
standard protocols or a cut-off line [52]. The high ac-
curacy of this method was demonstrated and later 
applied to a DL-based system for SDF evaluation. A 
convolutional neural network (CNN) was used to pre-
dict the single-cell DNA fragmentation index in semen. 
This method allows for selecting sperm with the high-
est DNA integrity [53].

4.  Artificial intelligence in capacitation scores 
and sperm hyperactivation

AI can be used to detect sperm capacitation as a 
complementary test for sperm function. For example, 
CASA, through specific gating methods, can detect ki-
nematic properties of sperm motility, including sperm 
hyperactivation. To improve the CASA system, AI was 
used to classify sperm motility patterns occurring dur-
ing capacitation by creating a training set of different 
motility tracks based on mice sperm models and load-
ing them into the CASA machine. The CASA then cre-
ated support vector machine equations that accurately 
detect motility patterns specific for capacitation [54]. 
AI was also used to predict fertilization during IVF in 
normozoospermic men by combining sperm parameters, 
such as membrane potential, motility of hyperacti-
vated spermatozoa, and intratesticular sperm pH [20]. 
However, more research is needed to investigate the 
ability of AI to predict male fertility potential and the 
success of IVF/intra-cytoplasmic sperm injection (ICSI) 
by incorporating sperm capacitation with other semen 
parameters in different patient groups [20].

5.  Artificial intelligence and sperm selection 
for assisted reproductive techniques

Although assisted reproductive techniques (ART) use 
single spermatozoa to fertilize oocytes, there is still no 

universally accepted system for selecting the function-
ally best male gametes [55]. An ideal method for sperm 
selection to be used for ART should be non-invasive 
and cost-effective, should allow the identification of 
high-quality sperm, and obtain a high and reproducible 
success rate in terms of pregnancy and birth rates [56]. 
Similarly, ML can improve the information available 
to physicians for better decision-making in selecting 
the best spermatozoon. The ability of ML algorithms 
to process large amounts of data offers the potential to 
correlate sperm quality metrics, such as morphology, 
DNA integrity, protein expression, or chromosomal an-
euploidy at the level of an individual sperm [5].

Several steps must be undertaken to realize a clini-
cal ML algorithm for sperm selection [20,57]. The so-
lution to this problem is offered by the development 
of advanced imaging methods. A high-speed off-axis 
holographic system [58] or automatic magnification 
switching method [59] can be useful for obtaining high-
resolution images of moving spermatozoa [5].

ANN are mathematical models based on human neu-
ral networks [60]. A multilayer perceptron (MLP) net-
work (a type of ANN with an architecture of several 
layers of neurons, i.e., perceptrons) was used to predict 
sperm concentration and motility from questionnaire-
based lifestyle and environmental factors. These pre-
dictions could help diagnose seminal disorders early 
or when selecting potential donor candidates [61]. 
Lifestyle and environmental factors input could also 
be used to predict semen quality by applying other AI 
techniques such as support vector machine (SVM) and 
particle swarm optimization on fertility parameters [62] 
or fuzzy radial basis functional neural network [63].

A newer approach to predicting fertility in men is to 
use the sperm whale algorithm optimization method 
along with ANN (MLP network) to tackle optimiza-
tion issues via its adaptable search mechanisms that 
can yield more than 99.96% accuracy in predicting 
men’s fertility status [64]. Another ANN-based study 
used data from eleven survey questions to generate an 
initial assessment and prediction tool of semen profile 
and sperm concentration for evaluating male infertili-
ty or potential sperm donors [65]. The back propagation 
neural network model (a type of ANN) was used with 
various categories of semen parameters as inputs to 
predict parameters, such as total protein, fructose, zinc 
content, and glucosidase activity in seminal plasma. 
These biochemical marker predictions could potentially 
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assist in diagnosing male infertility in ART centers [66].
The use of ML is rapidly extending into numerous 

biomedical applications. The ability of ML to process 
and analyze large amounts of data, particularly image 
data, will greatly assist in sperm selection. Embryolo-
gists, using properly trained ML algorithms, could im-
prove and standardize sperm selection, thereby improv-
ing the ART success rate [5].

6. Big data in andrology
Big data refers to a large data set in terms of volume, 

speed, and variety whose computation requires specific 
technologies and methods to derive predictive values. 
Therefore, processing these data requires sophisticated 
computational methods to manage a large amount of 
data, establish links between the various phenomena, 
and predict future outcomes. Big data can be used for 
numerous purposes, including in andrology.

AI has the potential to classify sperm motility [54] 
and morphology [67] as well as predict biochemical 
markers, e.g., zinc [66], leptin [68], and/or chromosomal 
abnormalities [69]. It also considers the role of environ-
mental and/or lifestyle factors that can affect sperm 
quality [61]. AI methods can take into account all this 
amount of data and predict their effect on fertility 
[70]. These predictive models can therefore help screen 
infertile patients and early identification of men with 
subfertility who could benefit from an intervention to 
prevent their fertility from decreasing over time [15].

7.  Artificial intelligence for medical records 
and data meaning

Healthcare services are constantly growing, expand-
ing relentlessly with innovative modalities. This cre-
ated a need for comparable data management systems 
to cope with such a complex realm. Many researchers 
have advocated the implementation of AI and ML us-
ing many of the stored electronic medical record (EMR) 
data, which encompass all patients’ details spanning 
from administrative functionalities to precise medi-
cally related whereabouts. AI offers the benefit of 
processing and analyzing tremendously larger data 
and enables a higher precision in classifying disease 
states [71]. One of the challenges faced with AI is the 
sensitivity of the handled material with privacy con-
cerns. Hence, simultaneous data security is mandatory 
[72]. Structured health-related data, being the set of 
information recorded based on a fixed template, is con-

sidered the most commonly used data structure for AI 
use, unlike unstructured data with text and images, 
which is regarded as unpredictable, and hence may 
offer limitations towards ML [71]. Such unstructured 
data sets are typically used by natural language pro-
cessing (NLP) when extracting and processing mean-
ingful information from unstructured data sets and 
transforming them into structured, analyzable data [73]. 
It is believed that AI-integrated hospitals, also known 
as smart hospitals, are more efficient and cost-reducing 
when it comes to patient experience and operational 
activity [74].

8.  Artificial intelligence in animal 
andrological studies

Considering the employment of AI in animal andro-
logical studies, CASA has enabled significant potential 
in sperm evaluation of animal models, namely pigs and 
bulls. CASA has been claimed to contribute to a more 
objective and standardized assessment of spermatozoa 
and, in turn, of the overall male fertility status [75]. 
An automated, quantitative method aided by SVM 
in terms of supervised ML was the first AI model de-
veloped to assess and classify five motility patterns of 
mouse spermatozoa, captured and evaluated by CASA. 
This appeared effective even in a large and heteroge-
neous population, such as spermatozoa featuring severe 
motility defects due to mutations [76]. AI further plays 
an essential role as a clinical diagnostic tool aiming to 
predict sperm parameters and reproductive outcomes. 
ANNs have been trained to accurately estimate the 
impact of varicocele on rat fertility as well as post-
thaw motility before freezing in bulls [77]. Recently, 
a computerized staging system of spermatogenesis in 
mice enabled the evaluation of the quality of the sper-
matogenic process and the detection of developmental 
defects facilitating a less laborious assessment [78].

ARTIFICIAL INTELLIGENCE IN 
CLINICAL ANDROLOGY

1.  Diagnostic trees for andrological 
evaluation and management

Decision trees and random forests are powerful al-
gorithms useful in classification and forecasting. A 
decision tree includes various nodes, consisting of sev-
eral tests to predict the class label, and is computed 
to obtain the probability [61]. Andrologists and other 
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physicians prefer decision trees as a white box model. 
This is easier to interpret and understand than differ-
ent algorithms, such as neural networks. Furthermore, 
people can improve the performance of this model by 
combining it with other decision-making techniques [4].

Current CASA systems [54] can analyze motility per-
centage, kinetic parameters, and subpopulations of hu-
man spermatozoa with an overall accuracy of 89.92% 
and predict chromosomal abnormalities. Data includ-
ing height, total testicular volume, follicle-stimulating 
hormone, luteinizing hormone, total testosterone, and 
ejaculate volume were combined to predict chromosom-
al abnormalities more than 95% accurately. In addi-
tion, environmental factors and lifestyle data can also 
support predictions of sperm quality by specific neural 
networks [61].

In 2014, Sahoo and Kumar [62] used five AI tech-
niques and eight feature selection methods to increase 
accuracy in predicting male fertility rates. In particu-
lar, selecting features contributes to improved perfor-
mance, data visualization, size reduction, and effective 
noise removal.

AI systems can predict fertility potential and suc-
cessful sperm retrieval leading to a paradigm shift in 
the treatment of infertile males [28]. AI algorithms 
may soon be fully used in computing sperm retrieval 
for ART optimization .

A combination of SVM equations (a type of super-
vised ML) and a multiclass decision tree was used to 
develop the human CASA nova model that classifies 
sperm motility patterns reflecting those of washed hu-
man spermatozoa [54]. AI technology is also involved 
in the smartphone-based home assessment of sperm 
parameters. Using a combination of AI image recogni-
tion algorithm and cloud computing technology, sperm 
motility-related parameters (such as motility and 
concentration of motile spermatozoa) were accurately 
measured by a smartphone-based home sperm motil-
ity measurement system composed of a microscope and 
microfluidic modules adaptable to different smart-
phone models [79]. This form of motility analysis could 
potentially be used in assessing sperm quality, detect-
ing infertility, and monitoring its treatment [79]. An-
other study showed how the analysis of sperm motility 
parameters could be automated using DL, CNN, and 
multimodal data analysis to examine sperm recordings 
and predict motility variables such as progressive, non-
progressive, and immotile spermatozoa [19].

Sperm morphology imaging can be used to identify 
spermatozoa with normal shapes. The SVM approach 
was used to help with sperm morphology analysis by 
classifying sperm images using one-dimensional wave-
forms and gray-level characteristics to achieve 88.9% 
accuracy from 10 training samples and test samples 
of 160 spermatozoa (80 normal and 80 abnormal) [80]. 
Principal component analysis was used to perform fea-
ture extraction for sperm image recognition and the k-
nearest neighbor classification algorithm (a simple but 
effective, lazy-learning ML algorithm), which provided 
a healthy diagnostic accuracy of 95.7% from 10 training 
samples and 160 test samples (80 normal+80 abnormal) 
[81]. The SVM approach has also been used in automat-
ing the analysis of sperm morphology classification 
and in selecting spermatozoa for use in IVF techniques 
[82]. Human spermatozoa could also be classified using 
DL methods. For example, CNN could classify sperma-
tozoa into WHO categories based on head shape using 
freely available sperm head datasets to achieve a 94% 
true positivity rate [83].

2. Natural language processing
NLP is part of AI. It is the knowledge that focuses 

on building a machine or computer's ability to under-
stand human language rather than equations or pro-
grams [73,84]. NLP was developed in the 1950s at the 
confluence of linguistics and AI [85]. Its application in 
medicine is crucial in analyzing large-scale data, such 
as physicians' narrative writings in the EMR [86].

This technology enables machines to extract classifi-
cations, such as International Classification of Diseases 
(ICD) diagnosis codes, from unstructured data, hence 
enabling physicians to write more naturally rather 
than having to input specific formatted text or num-
bers for data analysis [84]. As with other AI, NLP is 
a self-learning tool that will increase the utility of its 
predictions along with the growing number of datasets. 
This, therefore, enables NLP to become more “natural” 
and representative of the patient population [84]. NLP 
enables raw data extraction to structured data, which 
ML models will then analyze. Furthermore, NPL using 
CNN, recurrent neural network (RNN), or as the supe-
rior algorithm, bidirectional RNN processing algorithm 
was shown to help optimize data extraction processes 
for reduced disease-coding errors in different special-
ties in medicine [86].

In reproductive medicine, NLP has been studied and 
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used for research purposes, sperm classification, oocyte 
selection, embryo selection, clinical decision-making 
systems, cost-effective assessment, surgery outcome 
prediction, and robotic surgery development [4]. For 
example, Osadchiy et al. [87] used NLP in social media 
to study patients’ perceptions of hypogonadism and its 
treatments. With more research to come, the applica-
tion of AI, particularly NLP, will help physicians and 
patients with obtaining a better diagnosis and treat-
ment of andrological cases.

ARTIFICIAL INTELLIGENCE IN 
THE SURGICAL MANAGEMENT OF 
ANDROLOGICAL DISEASES

1. Augmented reality
Augmented reality (AR) assisted surgery is based 

on the overlay of medical images on the surgical field 
during a surgical procedure, particularly in minimally 
invasive surgery [88]. AR has several applications, in-
cluding surgical planning, guidance, and navigation. It 
also has a role in education and surgical training [89].

Few studies have evaluated the use of AR during 
surgery for andrological diseases. Interestingly, Porpi-
glia et al. [90] published a prospective study including 
patients with localized prostate cancer who underwent 
AR-robotic assisted radical prostatectomy (AR-RARP). 
The authors concluded that AR-enabled the surgeon 
to tailor the surgical procedure to the specific anatomy 
and assist in locating the cancer. However, further re-
search is mandatory to confirm these findings. Another 
recent study described using AR to guide the surgeon 
to the stenosis area during endoscopic surgery for ure-
thral or ureteral strictures [91]. Potential perspectives 
of AR could be its implementation in microsurgical tes-
ticular sperm extraction (micro-TESE) to guide naviga-
tion and improve the detection of functional seminifer-
ous tubules.

2. Robotic fertility surgery
Robotic fertility surgery for male infertility has 

several potential practical benefits, including reduced 
tremor, three-dimensional visualization, and decreased 
need for skilled surgical assistance [92]. The first ro-
botic male infertility microsurgery was studied in an 
animal model in 2004 [93]. Since then, a number of 
small retrospective studies have described the use of 
robotic-assisted reversal of vasectomy with clinical 

outcomes similar to that of the traditional microsurgi-
cal approach. However, these studies have reported a 
reduction in operative time [92,94,95].

Several robotic-assisted varicocelectomy studies 
were also reported with the advantage of excellent 
visualization and potential reduction of physiological 
hand tremors. Still, these studies are limited by their 
retrospective nature, single-institution experience, and 
lack of comparison groups [95]. The studies of robotic-
assisted micro-denervation of the spermatic cord were 
similar to robotic-assisted varicocelectomy and had the 
advantage of excellent visualization but did not show 
better results than the conventional microsurgical ap-
proach [95]. One robotic-assisted micro-TESE report 
shows the safety and effectiveness of this procedure 
but the patient characteristics, operative time, and 
sperm retrieval rates were not reported [96]. Additional 
studies are needed to assess the robotic micro-TESE 
and determine its added value [95]. Although robotic 
fertility surgery procedures are evolving, no substan-
tial clinical evidence suggests improved outcomes [96,97]. 
Parekattil and Gudeloglu performed robotic TESE pro-
cedures without any complications. They stressed the 
safety and the feasibility of the approach in surgical 
sperm retrieval and described the technique as being 
marginally easier in terms of tissue handling and dis-
section compared to micro-TESE [98]. However, sperm 
retrieval rate and immediate and long-term complica-
tions were not reported. In the future, more rigorous 
studies are needed to compare robotic fertility surgery 
with conventional microsurgery and evaluate outcomes 
and cost-effectiveness.

3. Microsurgical surgery
While it has not been a century since the emergence 

of microsurgery, its rapid progress has made it usable 
in numerous surgeries. In the urological field, micro-
surgical techniques have been used in many proce-
dures since the mid-1970s, paving the way for improve-
ment in the development of further procedures. It is 
believed that in the 1980s, the Vasovasostomy Working 
Group, chaired by Belker et al. [99], reported the results 
of more than 1,400 microsurgical vasectomy reversals, 
sparking interest in urological microsurgery. In androl-
ogy, microsurgical techniques have been applied to 
various surgical problems, including treating male in-
fertility. Vasectomy reversal, vasoepididymostomy for 
obstructive azoospermia, testicular autotransplantation 
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for high undescended testis, penile revascularization, 
varicocele treatment, and microdissection TESE are 
some of these procedures. The application of microsur-
gery in urology is likely to become widespread with 
the increasing use of the DaVinci surgical robot, espe-
cially for vasectomy reversal and orchialgia treatment 
[100,101].

Krenz et al. [18] evaluated the potential of using 
sML algorithms to differentiate between azoospermic 
patients with or without Klinefelter syndrome (47, 
XXY karyotype) to improve the diagnosis rate and 
treatment. A prior study employed logistic regression 
to identify possible predictors and develop an ML neu-
ral network to detect chromosomal abnormalities in 
azoospermic patients [69]. A retrospective cohort study 
showed that an ML model could be used to accurately 
predict (area under the curve=0.8) the presence/absence 
of sperm by TESE in patients with non-obstructive 
azoospermia [102].

As we move further ahead into the future, new pro-
cedures are likely to emerge with greater technological 
advances. With the development of the growing uro-
logical microsurgery cohort and technological advance-
ments, the future of microsurgery is set to expand fur-
ther.

ARTIFICIAL INTELLIGENCE IN 
ANDROLOGICAL RADIOLOGY

1.  Ultrasound testis, epididymis, prostate, 
and seminal vesicle

AI in andrological ultrasonography has been mainly 
applied in prostate cancer studies using transrectal 
prostate ultrasound. Prostate cancer’ diagnosis, treat-
ment, and monitoring require accurate prostate vol-
umes and boundaries segmentation. In this respect, ul-
trasonography is inexpensive, does not emit radiation, 
and allows for real-time monitoring. However, it has a 
low signal-to-noise ratio and speckle noise that compli-
cates the automatic segmentation of ultrasound images 
[103].

To improve the diagnostic power of prostate ultraso-
nography, some studies have used AI to achieve auto-
matic segmentation of transrectal ultrasound images to 
facilitate the diagnosis of cancer, image-guided surgical 
planning, and even therapy planning [4,104-108].

In contrast, very few studies, to date, have evaluated 
the application of AI on testicular ultrasonography. 

A study investigated the use of an SVM classification 
system on testicular contrast-enhanced ultrasound 
images to classify 10 benign and 10 malignant le-
sions, demonstrating that this method allows for the 
correct identification of the disease in 100% of cases. 
Despite the low number of cases, this study suggests 
that AI may play a role in testis-sparing surgery [109], 
a therapeutic approach that is increasingly used [110]. 
Another study, using a radiomics approach, evaluated 
the usefulness of 44 textural features derived from 
the echogenicity of testicular images. Of these, 13 cor-
related with semen parameters resulting in predictive 
sperm concentration, total count, progressive and total 
motility, and morphology. Furthermore, many of these 
features also had a predictive value on gonadotropin 
levels but not testosterone levels. The authors of this 
pilot study suggested the possibility of predicting the 
gonadal function of patients using a subjective evalu-
ation (testicular echogenicity) and turning it into an 
objective evaluation based on numerical values [35]. In 
contrast, no studies to date have evaluated the use of 
AI in ultrasound imaging of inflammation of the epi-
didymis and seminal vesicles.

2.  Artificial intelligence, computed 
tomography, and magnetic resonance 
imaging

Applications of AI in brain MRI scans for Alzheim-
er's, Parkinson's, and attention deficit hyperactivity 
disorder (ADHD) are established and help predict the 
diagnosis and stage of disease [111]. In urology, AI is 
combined with MRI to create algorithms that can as-
sist the radiologist with lesion detection and classifica-
tion to improve diagnostic performance and avoid un-
necessary biopsies.

In CT image reconstruction, AI may offer the pos-
sibility of a further dose reduction through improved 
image quality [112]. Similar to MRI, the methods used 
in CT image reconstruction are ML and DL [112]. The 
current international literature offers very limited 
data on the application of AI in andrological radiology, 
but the horizon perspectives of such applications are 
very promising. Some examples of AI applications in 
CT image reconstruction include abdominal and pelvic 
imaging. More incidental findings are identified with 
the rapid growth in medical imaging, especially CT. AI 
may assist in the characterization of these lesions as 
benign or malignant, prioritizing in this way the treat-
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ment and the follow-up evaluation of these lesions [113]. 
Nevertheless, further computational advances are still 
needed to use AI algorithms in CT image reconstruc-
tion in clinical practice.

Some studies have found a better detection rate by 
AI. In terms of predicting clinically significant cancer, 
Winkel et al. [114] compared the results of 4 supervised 
ML models (namely gradient boosting machines, neural 
networks, random forest, and SVM) with that of Pros-
tate Imaging Reporting and Data System, version 2.1 
(PI-RADS v2.1) assessment scores as determined by ex-
pert radiologists. The PI-RADS v2.1 is used to standard-
ize the multi-parametric MRI reporting of the prostate. 
They found that the assessment by ML models outper-
formed that of the established PI-RADS v2.1 . Others, 
such as Sanford et al. [115], reported similar results in 
detection rates of malignant lesions between AI and 
qualitative evaluation by an expert radiologist. They 
created a CNN model of DL and compared it with pre-
vious radiology advice with moderate agreement. As 
ML continues to develop, and as more information is 
fed into the databases, AI continues to improve. Thus, 
it is hoped that we may eventually transition to AI-
assisted precision medicine in the future.

3. Shear wave elastography
 Shear wave elastography (SWE) is a medical imag-

ing modality that uses ultrasound or MRI tracking 
technology to display elastic images in real-time. The 
technique allows the non-invasive assessment of tissue 
mechanical properties. In particular, it can give indica-
tions of the stiffness of the tissue by using various col-
ors [116]. Ultrasound-based SWE is widely used in the 
diagnosis of breast and thyroid cancers, lymph node 
diseases, and other surface organ diseases. It is a valu-
able addition to the uses of conventional ultrasound 
[117].

Ultrasound-based SWE was also used to detect and 
quantify testicular stiffness in cases of  varicocele 
[118], undescended testes [119], and testicular microli-
thiasis [120]. More recently, the technique was used to 
study the relationship between testicular stiffness and 
male infertility with satisfactory preliminary results 
[121,122]. In 2022, Cui et al. [30] conducted a cross-sec-
tional study on 1,116 consecutive patients undergoing 
IVF/ICSI treatment. They concluded that ultrasound-
based SWE was an effective supplement to differen-
tiate between obstructive and non-obstructive azo-

ospermia and also between severe oligozoospermia and 
non-obstructive azoospermia from other groups. More 
studies are needed to evaluate further and perfect this 
new AI-based modality.

LIMITATIONS AND CHALLENGES 
OF ARTIFICIAL INTELLIGENCE IN 
ANDROLOGY

AI has been established in many areas of technol-
ogy and industry, but its use in medicine is still early 
[67,123]. The currently available models are limited 
and, therefore, have to be developed for each specific 
application, in this instance, andrology. Although the 
utilization of AI in andrology is promising, it faces 
several challenges to overcome. Data Science does not 
focus on overcoming uncertainty. Also, data sources 
are often inaccurate or incomplete. Second, there are 
no standardized protocols to run the limited number 
of AI models that are currently available. In addition, 
the approval of AI for medical applications is not stan-
dardized across governing bodies [124]. Third, AI may 
limit the autonomy of patient care. Currently, most 
clinicians value a combination of patient-centric and 
evidence-based decision-making. Nevertheless, a recent 
survey of German healthcare providers demonstrates 
a willingness to adopt AI technology in medical care 
[125]. Fourth, the cost of developing and validating an 
AI model in andrology is a significant challenge due to 
the lack of widely available funding [126]. This is par-
ticularly true given the relatively small size of the an-
drology specialty compared to other areas of medicine. 
Finally, ethical concerns are raised regarding the ap-
plicability of AI models to all patients, especially when 
significant individual variations are likely [127]. Gener-
ally, an ethical dilemma that can arise with the intro-
duction of novel and expensive tools is the allocation of 
payment for and beneficiaries of this technology, given 
the disparity of  insurance and financial resources 
across the medical landscape in many countries [126].

SWOT ANALYSIS ON THE USE OF 
ARTIFICIAL INTELLIGENCE IN 
ANDROLOGY

The strengths and weaknesses of AI in andrology are 
summarized through a SWOT analysis (SWOT stands 
for strengths [S], weaknesses [W], opportunities [O], 
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and threats [T]) (Fig. 2). The "strengths" (S) and "weak-
nesses" (W) are related to the internal environment. At 
the same time, the "opportunities" (O) and "threats" (T) 
are all external factors that can respectively enhance 
or hinder the development of AI in andrology [85].

CONCLUDING REMARKS AND 
FUTURE DIRECTIONS OF 
ARTIFICIAL INTELLIGENCE IN 
ANDROLOGY

1. Summary and conclusions
AI applications can be utilized in several important 

fields [4,14,15,19,35,43,54,69,109,128,129]. A summary of 
AI applications in andrology is provided in Table 2 
[9,43,44,57,61,63,79,82,130-141].

2. Significant big data analytics
AI can create high-quality evidence by collecting 

data in a variety of ways. It can create an intercon-
nected network of patient data from around the world. 
Additionally, AI has the potential to change the way 
medicine is practiced through the combination of medi-
cal data from EMRs, medical images, lab tests, genetic 
information, and medical records. This will be reflected 
in many benefits for the healthcare sector. These in-
clude:

•  Stronger evidence for guidelines to be used by the 

scientific bodies and societies;
•  More data and information for national and inter-

national healthcare centers;
• Better evidence for high-quality research;
•  Health services could leverage AI for adequate use 

of electronic health record data. It can predict data 
heterogeneity across hospitals and practices, verify 
outliers, perform clinical tests on data, unify patient 
representation, improve future models that predict 
diagnostic tests, and analyses, and create transpar-
ency with a benchmark for the analysis of the ser-
vices provided.

3. The diagnostic decision system
AI can help clinicians make better clinical decisions 

based on patient clinical data using dynamic program-
ming, reinforcement learning techniques, and massive 
amounts of data to build models. The models can be 
continuously optimized by comparing the diagnoses of 
expert healthcare professionals and ultimately be ap-
plied to AI-assisted diagnosis. Through this field of AI, 
many advantages can be achieved. These include:

• Achieve better and more specific diagnoses;
•  Support the training of  personnel working in 

health services;
•  Reduce the cost of health care;
•  Compensate for international shortages of medical 

personnel;

Fig. 2. Strengths, Weaknesses, Opportu-
nities, and Threats (SWOT) analysis.
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•  Bridging the gap in health services between urban 
and rural areas and also between developing and 
developed countries.

4.  Medical expert system and predictive 
medicine

AI-assisted diagnosis is one of AI’s most important 
uses of AI that can help doctors solve complex medical 
problems. In this way, AI is an auxiliary tool for clini-
cal practice. Indeed, it can identify meaningful rela-
tionships in raw data, can support outcome prediction 
in many medical situations, and enable clinicians to 
proactively manage disease onset.

5.  Future applications of AI in reproductive 
medicine

The efficiency of ART can be effectively improved by 
integrating new technologies for non-subjective selec-
tion of spermatozoa and embryos, oocyte denudation by 
the mechanical removal of cumulus cells, oocyte place-
ment, fertilization, oocyte culture embryo, and monitor-
ing the development of the embryo in an automated 
device. Therefore, further use and development of AI 
will bring more benefits to infertile couples.

AI will bring major innovation in reproductive medi-
cine and healthcare through improved treatment op-
tions for infertile patients, better procedure planning, 
and ultimately higher ART success rates, thereby re-
ducing the costs of treatment, and enabling predicting 
which patient with azoospermia requires further ge-
netic testing, thus limiting the delay to early diagnosis. 
Other cutting-edge developments include the 3D print-
ing of viable testicular spermatozoa to develop male 
gametes for use in ART and the use of AI in robotic 
andrology surgeries to improve patient outcomes.

Many automated methods of semen analysis have 
started to be used and have the potential for future 
development such as AI optical microscopic-based tech-
nology, an advanced CASA with the web-based pro-
gram to have a better estimation of sperm kinematic 
parameters and hyperactivation would play an impor-
tant role in future objective evaluation of spermatozoa. 
In addition, automatic semen analysis based on ML can 
become a valuable tool in male infertility investigation 
and research.

Furthermore, AI will play a role in the testicular 
evaluation of different diseases. AI will be able to im-
prove the accuracy of sperm retrieval prediction in pa-

tients with non-obstructive azoospermia by using leptin 
and ANN. AI can enable testicular biopsy evaluation 
using computer-assisted testicular histology, using 
ultrasound texture as a mirror of the hypothalamic-
pituitary-gonadal axis function in terms of reproduc-
tive aspects, and can use relevant perfusion patterns 
from contrast-enhanced ultrasound data to classify a 
testicular lesion as benign or malignant.
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