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Abstract—Tackling the difficult problem of estimating spatially
distributed hydrological parameters, especially for floods on un-
gauged watercourses, this contribution presents a novel seamless
regionalization technique for learning complex regional transfer
functions designed for high-resolution hydrological models. The
transfer functions rely on: (i) a multilayer perceptron enabling
a seamless flow of gradient computation to employ machine
learning optimization algorithms, or (ii) a multivariate regression
mapping optimized by variational data assimilation algorithms
and guided by Bayesian estimation, addressing the equifinality
issue of feasible solutions. The approach involves incorporat-
ing the inferable regionalization mappings into a differentiable
hydrological model and optimizing a cost function computed
on multi-gauge data with accurate adjoint-based spatially dis-
tributed gradients.

Keywords—Variational Data Assimilation, Distributed Hydro-
logical Modeling, Artificial Neural Networks, Bayesian Estima-
tion, Hydrological Regionalization

I. INTRODUCTION

Regardless of the improvements made in hydrological
forward models and available data, hydrological calibration
remains a challenging ill-posed inverse problem faced with
the equifinality (Beven, 2001) of feasible solutions. Most
calibration approaches aim to estimate spatially uniform model
parameters for a single gauged catchment, resulting in piece-
wise constant discontinuous parameters fields for adjacent
catchments. Moreover, these calibrated parameter are not
transferable to ungauged locations, which represents the ma-
jority of the global land surface (Fekete & Vörösmarty, 2007;
Hannah et al., 2011). Therefore, prediction in ungauged basins
remains a key challenge in hydrology (Hrachowitz et al.,
2013).

Regionalization approaches are employed to estimate hydro-
logical model parameters in ungauged locations by transfer-
ring hydrological information from gauged locations. In early
studies, the predominant method for regionalization involved
individually calibrating catchments and then using multiple
regression or interpolation techniques to transfer the calibrated

parameter sets from gauged to ungauged locations (Abdulla
& Lettenmaier, 1997; Seibert, 1999; Parajka et al., 2005;
Razavi & Coulibaly, 2013; Parajka et al., 2013). This process
can be referred to as post-regionalization (Samaniego et al.,
2010). However, post-regionalization approaches are limited
to lumped parameters by catchment, thus ignoring within-
catchment variabilities (Samaniego et al., 2010; Razavi &
Coulibaly, 2013). Furthermore, they are generally faced with
the issue of equifinal parameter sets and hence equifinal esti-
mated transfer laws, while spatial proximity is more adapted
to densely gauged river networks and regions (Oudin et al.,
2008; Reichl et al., 2009). A simultaneous regionalization
approach, which involves optimizing a mapping between
physical descriptors and model parameters (cf. Parajka et al.
(2005); Götzinger & Bárdossy (2007)), is able to overcome
most of the aforementioned problems and can be referred
as ”pre-regionalization”. Typically, a Multiscale Parameter
Regionalization (MPR) method, combining descriptors up-
scaling and pre-regionalization function in form of multi-
linear regressions, implemented within a spatially distributed
multiscale hydrological model (mHm), has been proposed
by Samaniego et al. (2010), and later applied to other grid-
ded hydrological models in several applicative studies (e.g.,
Mizukami et al. (2017); Beck et al. (2020)). In all the
above studies, state of the art optimization algorithms are
used, especially Shuffle Complex Evolution algorithm (SCE)
(Duan et al., 1992) in Mizukami et al. (2017) or Distributed
Evolutionary Algorithms (DEAP) (Fortin et al., 2012) in Beck
et al. (2020). Nevertheless, those optimization algorithms are
limited to low-dimensional controls, which imposes the use
of a limited number of descriptors in lumped multivariate pre-
regionalization mappings, and thus restricts the capability to
fully exploit the large amount of information available from
multiple data sources with flexible formulations and adequate
spatial rigidity.

In Huynh et al. (2023), efficient pre-regionalization al-
gorithms have been proposed for spatially distributed hy-



drological modeling based on descriptors-to-parameters map-
pings with neural networks or multivariate regressions in a
variational data assimilation framework. Despite the strong
spatial constrain and regularizing effect introduced via pre-
regionalization mappings, some sensitivity to prior remains
in context of equifinality (model structural equifinality plus
spatial equifinality) and its inference is explored here using the
Bayesian weighting approach proposed in Chelil et al. (2022);
Gejadze et al. (2022).

In this work, we present a novel seamless regionalization
method for learning the pre-regionalization mapping between
physical data and conceptual parameters of spatially dis-
tributed hydrological models using information from multi-
gauge river flow observations and high-resolution physical
descriptors. We explore two approaches to infer the pre-
regionalization mapping:

• Bayesian-Guided Multivariate Regional Regression
(BGM2R): a multivariate polynomial regression
approach, which combines high-dimensional optimization
algorithms guided by a Bayesian estimation on the first
guess;

• Artificial Neural Network Regionalization (ANNR) en-
abling a ”seamless flow of gradient computation” and
employing machine learning optimizers.

The proposed algorithms are implemented in the
SMASH platform (see online documentation and
tutorials at https://smash.recover.inrae.fr)
available on public GitHub (https://github.com/
DassHydro-dev/smash).

II. METHODOLOGY

The full forward model and the optimization process are
schematized in Figure 1.

A. Forward Model and Cost Function

Let us consider observed discharge time series Q∗
g(t) at NG

observation cells of coordinates xg ∈ Ω, g ∈ 1, .., NG with
NG ≥ 1. For each observation cell, the corresponding gauged
upstream sub-catchment is denoted Ωg so that Ωung = Ω \(
∪NG
g=1Ωg

)
is the remaining ungauged part of the whole spatial

domain Ω. Then, the rainfall and potential evapotranspiration
fields are respectively denoted as P (x, t) and E (x, t), ∀x ∈
Ω. The classical forward model Mrr is a dynamic operator
projecting the input fields P (x, t) and E (x, t), given an input
drainage plan DΩ (x), onto the discharge field Q (x, t) and
states fields h (x, t) written as a multivariate function:

(h, Q) (x, t) =Mrr[DΩ (x) ,P (x, t′) ,E (x, t′) ,

h (x, 0) ,θ (x) , t],∀(x, t′) ∈ Ω× [0, t]
(1)

where θ is the Nθ-dimensional vector of model param-
eters 2D fields that we aim to estimate regionally with
the new algorithms proposed below, and h is the NS-
dimensional vector of internal model states. In this study, the
distributed hydrological model Mrr is a parsimonious GR-
like conceptual structure with the parameters vector θ (x) =

(cp(x), cft(x), kexc(x), lr(x))
T
,∀x ∈ Ω, which is the ”gr-b”

structure presented in Colleoni et al. (2023).
Now, the full forward model M is composed of the dis-

tributed hydrological model Mrr on top of which is applied
a pre-regionalization operator FR to estimate hydrological
parameters θ such that:

M =Mrr [ . , θ (x) = FR(D (x) ,ρ)] , ∀x ∈ Ω (2)

This allows to constrain spatially and explain these spatial
fields of conceptual model parameters θ(x) from physical
descriptors D(x). The pre-regionalization operator FR be-
ing a descriptor-to-parameters mapping, with D the ND-
dimensional vector of physical descriptor maps covering Ω,
and ρ the vector of tunable regionalization parameters that
will be defined later.

A calibration cost function is defined in order to measure the
misfit between simulated and observed discharge time series,
respectively denoted Qg(t) and Q∗

g(t), for g ∈ 1..NG gauged
cells. A convex differentiable objective function is classically
defined as follows: J = Jobs + γJreg , with Jobs the observa-
tion term that measures the difference between observed and
simulated quantities and Jreg a regularization term weighted
by γ > 0. The observation term is Jobs =

∑NG

g=1 wgJ
∗
g with

wg a physical weighting function, J∗
g a local quadratic metric

”at the station” (e.g., 1 − NSE) involving the response of
the direct model. Thus, Jobs depends on the control vector
ρ through the direct model M. The multi-site calibration
corresponds to NG > 1 while NG = 1 is a classical calibration
on a single station where w1 = 1. For NG > 1, several
physical weighting expressions wg are possible with the single
constraint that

∑NG

g=1 wg = 1. In this work, we simply use
use wg = 1

NG
for multiple gauges calibration. The regional

optimization problem writes as follows:

ρ̂ = argmin
ρ

J (ρ) (3)

B. Regional Calibration with BGMR

In this case, the pre-regionalization mapping FR ≡ P
with tunable parameter ρ consists in a multivariate polynomial
regression between input physical descriptors D(x) and hy-
drological model parameters θ(x,D,ρ) := P (D(x),ρ) such
that:

θk(x,D, ρk) := sk

(
αk,0 +

ND∑
d=1

αk,dD
βk,d

d (x)

)
,

∀k ∈ [1..Nθ],∀x ∈ Ω

(4)

with sk(.) a Sigmoid-based transformation imposing bound
constraints in the direct hydrological model. The lower
and upper bounds are assumed to be spatially uniform for
each parameter field θk of the hydrological model. The

optimization of the control vector ρ ≡
[
(ρk)

Nθ

k=1

]T
≡[(

αk,0, (αk,d)
ND

d=1

)Nθ

k=1

]T
, that is solving problem 3, is per-

formed using the L-BFGS-B algorithm (Zhu et al., 1997),
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Fig. 1. Flowchart of inverse algorithms for the full forward model consisting of a GR-based gridded hydrological model (spatio-temporal regular grid at
1 km2 and 1 h) and a pre-regionalization mapping.

adapted to high-dimensional controls, without bound con-
straints on the αk,., whereas the exponents βk,d is simply fixed
to 1 (multi-linear pre-regionalization). This algorithm requires
the gradient of the cost function with respect to the sought
parameters ∇ρJ . This gradient is computed by solving the
adjoint model, which is obtained by automatic differentiation
using the Tapenade engine (Hascoet & Pascual, 2013). The
entire process is implemented in the SMASH Fortran source
code, where the full forward model M ≡ Mrr (.,P (.))
is a composition of both the hydrological model and the
polynomial descriptors-to-parameters mapping. The conver-
gence criterion involves reaching a maximum iteration limit or
meeting conditions related to cost function change or gradient
magnitude.

It is worth noting that determining a background value
ρ∗ is important for the convergence of this algorithm.
It is used as a starting point for the optimization,
and is defined from a spatially uniform prior θ̄

∗ as
ρ∗ ≡

[
αk,0 = s−1

k

(
θ̄k

∗)
, (αk,d = 0, βk,d = 1)

]T
,∀(k, d) ∈

[1..Nθ] × [1..ND], where s−1
k (z) = ln

(
z−lk
uk−z

)
is the inverse

Sigmoid. The spatially uniform low-dimensional (LD) prior
θ̄
∗ is determined considering the cost function without pre-

regionalization, i.e., M ≡ Mrr and ρ := θ, and classically
using a global optimization algorithm (SBS in Michel (1989)).

A Bayesian-like estimator (cf. Gejadze et al. (2022); Chelil
et al. (2022)) is used to look at the mean of the posterior
distribution f (θ|Q∗) that is more stable in context of equifi-
nality than searching its mode (inverse problem 3, maximum
a posteriori probability (MAP) search is the essence of vari-
ational data assimilation). A prior probability distribution fθ̄
is used to generate a sample of spatially uniform parameter
sets θi,∀i ∈ 1..N within the hypercube defined by parameters
bounds [lk, uk],∀k ∈ 1..Nθ. The likelihood function is defined
as: Lα

i = e−2α(Ji/Jmin−1)2 , where α is a parameter controlling
the decay rate of this function that compares the value of
Ji = J (θi) to Jmin the minimum value of Ji over the
sample of N parameter sets. The posterior ensemble mean

and variance are computed as follows:

θ̄
∗,α

= 1
K

N∑
i=1

(
Li
α · θi ⊙ fθ̄ (θi)

)
Var

(
θ̄
∗,α)

= 1
K

N∑
i=1

(
Li
α ·
(
θi − θ̄

∗,α)⊙ (θi − θ̄
∗,α)⊙ fθ̄ (θi)

)
(5)

where K =

N∑
i=1

Li
α · fθ̄ (θi) and ”⊙ ” denotes the Hadamard

product - simple scalar product between vectors here but
usable with higher dimensional controls. The parameter α
is determined using the L-curve approach, considering a
parametric curve

{
J
(
θ̄
∗,α)

, Dα
}

, α = −1, ..., 10, where
Dα =

(
Var

(
θ̄
∗,α))−1 ⊙

(
θ̄
∗,α − θ̄

0
)
⊙
(
θ̄
∗,α − θ̄

0
)

is the

probabilistic (Mahalanobis) distance between the estimate θ̄∗,α

and the average prior θ̄
0
= 1

N

∑N
i=1 θi. The value of α is

sought in a L-curve ”corner” such that it minimizes both
J
(
θ̄
∗,α) and Dα.

C. Regional Calibration with ANNR

In this case, an ANN-based regional mapping FR ≡ N ,
consisting of a multilayer perceptron, aims to learn the
descriptors-to-parameters mapping such that:

θ(x,D,ρ) := N (D(x),W , b) ,∀x ∈ Ω (6)

where W and b are respectively weights and biases of the
neural network, whose output layer consists in a scaling trans-
formation based on the Sigmoid function in order to impose
bound constraints on each hydrological parameters. The re-
gional control vector ρ ≡ [W , b]

T is optimized by Algorithm
1, that uses spatial gradients computed by the adjoint model
to minimize the cost function J(ρ) = J

(
Q∗,Mrr(. , θ =

N (D,ρ))
)

in the present case.
The cost function depends on the forward model M ≡
Mrr (.,N (.)), which is composed of two components in
its numerical implementation: (i) an ANN implemented in
Python, which produces the output θ served as input for
(ii) the hydrological model Mrr implemented in Fortran.
To optimize J , we need its gradients with respect to ρ.



Algorithm 1 The proposed back-propagation at each training
iteration with ”opt func” denotes the update function of the
optimizer used (e.g., Adam), and ”hyper param” denotes its
hyper parameters (e.g., learning rate)
Input: descriptors D(x), initial/pre-updated weights and
biases ρ = (ρ1, ..., ρNL

)

θ ←
[
(N (D(x),ρ))x∈Ω

]T
▷ Forward propagation

∇A← ∇θJ =
(

∂J
∂θ1

, ..., ∂J
∂θNθ

)
▷ Initialize gradient

accumulation
for j = NL..1 do

∂J
∂ρj
←
(

∂θ
∂ρj

)T
∇A ▷ Compute gradients

∇A← ∇A.WT
j ▷ Update gradient accumulation

ρj ← opt func
(

∂J
∂ρj

, ρj ,hyper param
)

▷ Update weights and biases
end for

return ρ = (ρ1, ..., ρNL
) ▷ Updated weights and biases

The main technical difficulty here is achieving a ”seamless
flow of gradients” through back-propagation. To overcome
this, we divide the gradients into two parts. First, ∇θJ can
be computed via the automatic differentiation applied to the
Fortran code corresponding to Mrr. Then, ∇ρθ is simply
obtained by analytical calculus applicable given the explicit
architecture of the ANN, consisting of a multilayer perceptron.
The convergence criteria is simply determined by reaching the
maximum number of training iterations.

III. RESULTS

A. Numerical experiment

The proposed alorithms are tested on a highly challeng-
ing regionalization case from Huynh et al. (2023): a high-
resolution regional modeling of a flash flood prone area located
in the South-East of France, with heterogeneous physical prop-
erties including karstic areas. Multiple gauges downstream
of nested and independent catchments are simultaneously
considered, enabling multi-gauge optimization. A total of 11
gauged catchments are employed as ”donor” catchments for
calibration, while 9 other catchments are treated as pseudo-
ungauged for spatial validation to assess regionalization ca-
pabilities of the proposed algorithms. In this study, a set of
7 physical descriptors (see Table I) available over the whole
French territory is used to learn the regional transfer functions.

TABLE I
PHYSICAL DESCRIPTORS USED FOR PRE-REGIONALIZATION METHODS.

Descriptor Type Unit Source
Slope Topography m EU-DEM, Copernicus (2016)

Drainage density Morphology - Organde et al. (2013)
Karst index Influence % Caruso et al. (2013)

Woodland percentage Land use % CLC European Union (2012)
Urbanization rate Land use % CLC European Union (2012)
Soil water storage Hydrogeology mm Poncelet (2016)

Soil moisture storage Hydrogeology % Odry (2017)

In the following, we compare and analyze: (i) local uniform
ρ ≡ θ̄ and full spatially distributed ρ ≡ θ (x) calibra-
tions for each gauges, that are respectively under- and over-
parameterized hydrological optimization problems, but are
served as reference performances (”Uniform (local)” and ”Dis-
tributed (local)”); multigauge regional calibrations with (ii)
lumped model parameters ρ ≡ θ̄ which somehow represents
”level 0” regionalization (”UR”); (iii) a multivariate linear
mapping (i.e., ρ ≡ [αk,0, (αk,d, 1)]

T ) using a first guess
obtained by global optimization algorithm (”M2R”), or guided
by a Bayesian estimation (”BGM2R”); and (iv) a multilayer
perceptron (i.e., ρ ≡ [W , b]

T ) (”ANNR”).
Two study periods, namely P1 (August 2011 – August 2015)

and P2 (August 2015 – August 2019), are considered for split
sample testing. A two-fold cross-temporal calibration approach
is employed, where the models are calibrated on one period
and validated on the other period. In each case, we consider
three types of validation: spatial validation (performance in
pseudo-ungauged catchments during the calibration period),
temporal validation (performance in gauged catchments during
the validation period), and spatio-temporal validation (perfor-
mance in pseudo-ungauged catchments during the validation
period).

B. Regionalization performances and analysis

The performance of all calibration and regionalization meth-
ods is presented in Figure 2. Unsurprisingly, spatially uniform
calibration (UR) leads to limited performance in calibration
and poor performance in regionalization, especially when
compared to the reference local spatially distributed calibration
that is overparameterized. The pre-regionalization methods,
which incorporate information from multi-gauge discharge as
well as physical descriptor maps, all yield relatively satisfying
performances in calibration, temporal validation, and spatio-
temporal validation at pseudo-ungauged sites (median NSE
scores higher than 0.4 when calibrated on P1). The region-
alization approach based on ANN (ANNR) achieves the best
results for both gauged and pseudo-ungauged catchments.

Regarding the determination of prior parameter sets for
the multi-linear pre-regionalization mapping, the Bayesian
estimation approach (LDB-FG) demonstrates fairly good per-
formance, comparable to that obtained with the global heuristic
algorithm (SBS-FG), in calibration and spatial validation, with
only minor differences in temporal validation. We believe that
this is reflective of the importance of exploring a Bayesian
approach for the definition of the cost function, which would
enable intrinsic weighting of model misfits to different gauged
hydrological behaviors. Moreover, when considering the per-
formances of M2R and BGM2R on P1 (upper sub-figure of
Figure 2), the Bayesian approach exhibits markedly higher
performance in calibration and validations, while relatively
similar performances are observed on P2 (lower sub-figure
of Figure 2). This difference may be attributed to variations
in hydrological information on P1 and potentially higher data
errors, which have a lesser impact on the Bayesian approach.



Fig. 2. Performance of all calibration and regionalization methods when calibrated on P1 (upper sub-figure) and on P2 (lower sub-figure). BGM2R uses the
first guess obtained by Low-Dimensional Bayesian estimation (LDB-FG), while the first guess of M2R is obtained by the SBS algorithm (SBS-FG), which
also represents the solution of the regionalization method with lumped parameters (UR). n denotes the number of study catchments.

Table II represents several statistical quantities of the dis-
tributed parameter maps obtained through different regional-
ization approaches. All methods result in distinct parameter
maps and varying levels of temporal stability (see Figure
3). The ANNR leads to the most robust inference over P1
and P2, with remarkably stable average parameter values
as well as spatial standard deviation over time. The priors
inferred with SBS-FG or LDB-FG exhibit slight differences
and also lead to a different optimum during pre-regionalization
for P1. Interestingly, the opposite trend is observed for P2,
where data uncertainty and model adequacy might be better,
resulting in similar functioning points after regionalization
despite substantially different priors determined with SBS-FG
or LDB-FG.

Last but not least, during calibration on P1, M2R and
BGM2R lead to a negative exchange coefficient (kexc < 0),
despite starting from priors with positive exchange values
(3.04 for SBS-FG (P1) and 2.9 for LDB-FG (P1)); AANR also
lead to negative exchange. This intriguing result, of reaching
systematically significant negative exchange, is particularly
noteworthy because the exchange coefficient directly impacts
mass conservation. These findings relate to those on flash
floods water balance sensitivity and regionalization based on
geological descriptors presented by Garambois et al. (2015) for

catchments in the same and nearby areas. Their event process-
oriented and conservative model required an increase in mod-
eled soil volume, while pedological and geological descriptors
provided valuable constraining information, especially in the
context of flash floods.

IV. CONCLUSION

A Bayesian calibration algorithm has been tested in this
study, on top of our Hybrid Variational Data Assimilation
Parameter Regionalization (HVDA-PR) approach enabling
seamless regionalization in hydrology. The methods were
tested in a challenging flash flood-prone area in the South-East
of France, characterized by diverse physical properties and
hydrological responses. Overall, the methods demonstrated
satisfactory performance in several aspects: (i) accurate mod-
eling of discharge at both gauged and pseudo-ungauged sites,
and (ii) effective identification of conceptual parameters and
extraction of information from physical descriptors. Notably,
the ANN-based regionalization method outperformed other
approaches in terms of discharge accuracy and parameter
stability. Bayesian prior estimation exhibited good perfor-
mance and relative robustness, even in challenging cases like
calibration on the period P1, where data uncertainty and model
inadequacy were assumed to be higher. While the Bayesian
method is computationally more demanding than traditional



TABLE II
THE OPTIMAL PARAMETERS OBTAINED BY DIFFERENT METHODS FOR EACH CALIBRATION PERIOD. SPATIALLY DISTRIBUTED PARAMETERS ARE

REPRESENTED AS THE MEDIAN (MEAN, STD). THE ROWS IN ITALIC AND SMALLER TEXT PRESENT THE SPATIALLY UNIFORM FIRST GUESS OBTAINED BY
THE SBS ALGORITHM (SBS-FG) USED FOR M2R, AND THE LOW-DIMENSIONAL BAYESIAN ESTIMATION (LDB-FG) USED FOR BGM2R.

Method (Cal period) cp cft kexc lr
UR/SBS-FG (P1) 2000 470.88 3.04 55.12
UR/SBS-FG (P2) 322.68 239.65 -3.18 45.53

M2R (P1) 2000 (2000, 0) 113.57 (397.78, 436.27) -0.15 (-3.8, 8.35) 52.79 (83.63, 79.27)
M2R (P2) 398.64 (658.28, 623.15) 338.41 (433.16, 351.08) -0.53 (-1.56, 5.29) 94.16 (100.66, 75.71)

LDB-FG (P1) 1917.74 527.77 2.9 72.32
LDB-FG (P2) 138.53 517.6 -13.04 53.71
BGM2R (P1) 76.02 (700.93, 869.81) 599.93 (540.72, 404.87) -13.33 (-10.0, 9.94) 63.47 (92.67, 87.33)
BGM2R (P2) 396.71 (651.86, 607.05) 348.38 (439.31, 353.62) -0.57 (-1.47, 4.98) 95.65 (100.98, 78.13)
ANNR (P1) 369.87 (700.95, 737.21) 393.52 (492.71, 334.31) -3.63 (-6.92, 7.58) 56.63 (71.04, 62.52)
ANNR (P2) 404.13 (593.4, 477.85) 510.9 (444.66, 220.29) -2.23 (-2.12, 2.34) 62.72 (67.28, 32.5)

Fig. 3. Normalized temporal stability over the periods P1 and P2 of the optimal distributed parameters
θ̂
(P2)
k

−θ̂
(P1)
k

uk−lk
, k ∈ [1..Nθ], for the three regionalization

approaches using physical descriptors.

low-dimensional calibration algorithms, it can be efficiently
parallelized. Moreover, the Bayesian approach can be extended
to higher-dimensional contexts, such as determining semi-
distributed priors and exploring spatial equifinality using our
variational data assimilation algorithms. Interestingly, in con-
trast to the ANN, the regression methods provided insights into
more complex modeling situations and potential data-model
discrepancies. This highlights the importance of maintaining
both ”classical” approaches and AI-based solutions in research
and applications, particularly in the continuous development
of physically and mathematically interpretable methodologies.
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français: la méthode shyreg. Revue des Sciences de l’Eau,
26(1), 65–78.
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on régionaliser un modèle hydrologique conceptuel ? (Doc-
toral dissertation). Retrieved from http://www.theses
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