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Abstract

How to optimize the allocation of enzymes in metabolic pathways has been a topic of study for many decades.
Although the general problem is complex and non-linear, we have previously shown that it can be solved by
convex optimization. In this paper, we focus on unbranched metabolic pathways with simplified enzymatic rate
laws and derive analytic solutions to the optimization problem. We revisit existing solutions based on the limit
of mass-action rate laws, and present new solutions for other rate laws. Furthermore, we revisit the known
relationship between flux control coefficients and enzyme abundances in states of maximal enzyme efficiency.
We generalize this relationship to models with density constrains on enzymes and metabolites, and present a
new local relationship between optimal enzyme amounts and reaction elasticities. Finally, we apply our theory
to derive kinetics-based formulae for protein allocation during bacterial growth.
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1 Introduction

The idea that living beings show optimal shapes or behaviour has a very long history. A process like evolution,
which combines random mutations with a selection for favorable properties, could potentially lead to optimization,
but the question of if and/or when should we expect living beings to function optimally has been widely debated
and is far from solved. In pratice, it is often useful to invoke optimality principles to seek insights and design
principles that might be relevant also in naturally evolved systems [1]. Specifically, cellular metabolism has been
often studied using this approach [2, 3], probably thanks to the powerful mathematical models that we have to
describe it. But although natural selection has been the main inspiration for this study, the evolutionary aspects
of pathway optimization are not discussed here, and are rather left for the reader to reflect upon.

Within cells, protein expression is arguably the most important and central resource, both in terms of contributing
to fitness, but also since it requires large amounts of energy, metabolic precursors, and ribosomes and the proteins
themselves occupy a significant portion of cellular space. Therefore, a cell should generally save protein wherever
it can. This notion, specifically for enzymes, has been mathematically applied in genome-scale metabolic models
[4, 5], models of core metabolism [6], and direct comparison between pathways [7, 8]. Interestingly, even a very
simple linear chain model with two reactions, representing metabolism and protein synthesis, and a bound on
the total protein budget has been successful in explaining bacterial growth laws and overflow metabolism [9, 10].
However, these bacterial growth law models did not consider enzyme kinetics.

Here, we focus on a special case of this cost/benefit analysis: the efficient use of metabolic enzymes in unbranched
pathways operating at steady-state, giving priority to scenarios that can be solved analytically. We explore several
possible kinetic rate laws and introduce the idea of bounding the total metabolite concentration (which is required
in some cases). To define states of maximal enzyme efficiency, we consider two equivalent optimality problems:
maximizing a production flux at a given enzyme budget or minimizing protein usage at a given required production
flux. In both cases we, maximize production flux per enzyme usage within the given constraints. If the product
of the pathway is directly tied to biomass, the overall enzyme efficiency, called “biomass/enzyme efficiency”, can
serve as a proxy for cell growth [6]. Furthermore, this optimality problem is also relevant in other contexts, such
as metabolic engineering of synthetic pathways using a set of existing and/or new-to-nature enzymes with known
kinetic parameters [11, 12].

Another perspective often used to analyze metabolic systems is through their control, e.g. the effect of changes in
a level of an enzyme on the pathway flux [13]. In optimal metabolic states, each enzyme has an opportunity cost,
and this cost must be balanced by a marginal benefit, given by the flux control coefficient – as defined in Metabolic
Control Analysis (MCA) [14, 15, 13]). Hence, for systems in optimal states, there are simple relationships between
enzyme abundance and flux control [16, 17, 18]. We will recapitulate these results in the following sections and
demonstrate them using some of our analytic solutions.

Finally, we show how the analytic solutions derived here might be useful for modeling high-level phenomenon such
as the Monod curve (i.e. the relationship between the concentration of a limiting nutrient and the growth rate of
bacteria [19]). We use this model to demonstrate how each kinetic parameters should affect the growth rate under
different conditions.

In summary, this paper revisits the question of optimal enzyme allocation and adds to previous results. We focus
on unbranched metabolic pathways, extend the optimality problem, discuss new optimality conditions, and present
analytic solutions that directly show how different factors determine optimal enzyme levels and fluxes. We discuss
general principles, in particular how optimal enzyme levels reflect flux control and local reaction elasticities, and
use our theory to derive formulae for kinetics-based bacterial growth.

2 Results

2.1 Optimality of linear unbranched pathways

One of the first attempts at finding an analytic solution to the enzyme allocation problem was published by Waley
[20], who studied short pathways of 2-3 reactions while assuming the concentrations of metabolites (which were
denoted linking intermediates) are much below saturation, and therefore affected the flux linearly. Given the total
amount of catalytically active protein (bounded by εtot), the relative enzyme concentrations should be such that
they maximize rate (see Figure 1). Based on these assumptions, one can derive simple formulae for the optimal
enzyme levels and maximal pathway flux. Later studies repeated this result and generalized it to linear chains of
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Figure 1: Optimal enzyme levels in unbranched metabolic pathways. In the basic optimality problem in this paper,
we consider a chain of reactions and ask how a given protein budget should be spent on metabolic enzymes for
a maximal steady-state flux. If the turnover rates of all the enzymes were known, the steady-state flux would
determine the enzyme levels, and there would be nothing to optimize. Here we assume that the enzyme efficiencies
can be adjusted by choosing the metabolite concentrations (not shown), and we search for the optimal metabolite
and enzyme profile. The aim is to maximize the flux at a given total enzyme amount (bottom) and possibly under
a constraint on metabolite concentrations (top). The flux ratios between reactions are predefined, for example
assuming equal fluxes in all the reactions (right).

arbitrary size [21, 17, 18]. Here, we will present this general solution and further expand it to other types of rate
laws beyond the one considered by Waley [20] (which, from now on, we will refer to as mass-action).

Consider the following unbranched pathway [22] (Figure 1):

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn (1)

In a kinetic model, each variable si represents the concentration of a metabolite i and each variable εi represents
the level (molar concentration or mass concentration) of the enzyme catalyzing reaction i. Imagine that the total
enzyme level in the pathway is bounded by εtot, i.e.∑

i

εi ≤ εtot . (2)

What would be the optimal strategy for distributing this resource between the reactions in the pathway in order to
maximize the steady state flux? To answer this question, we require more information as the rate of each reaction
depends on the levels of enzyme, substrate, product, as well as kinetic parameters. For some rate laws, we can
solve the optimization problem and obtain an analytic solution which describes exactly how much of each enzyme
should be allocated. Below, we will also consider a variants of this problem with an extra bound on the sum of
metabolite levels or with fixed initial and final metabolites (s0 and sn).

Since single analytic solutions are rare but instructive, we explore them in this article. In this paper we consider
four different rate laws (summarized in Figure 2): the general Haldane rate law (saturable and reversible) which
has now analytic solution, and three solvable approximations derived from it. As explained above, “enzyme levels”
εi can either refer to molar concentrations or mass concentrations (depending on the modeler’s preference). In
the case of molar concentrations, the kcat values are catalytic constant (e.g. in units of 1/s). In the case of mass
concentrations, kcat are specific activities (e.g. in units of µmol × min−1 × mg−1).

• Reversible saturable rate law (“Haldane”) As a general type of rate law for a reaction S ↔ P, we
consider here the reversible saturable rate law

v = ε
kcat+ s/KS − kcat− p/KP

1 + s/KS + p/KP
(3)
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Haldane
——————————

v = εkcat (1− e−θ)︸ ︷︷ ︸
ηrev

s
KS

1 + s
KS

+ p
KP︸ ︷︷ ︸

ηkin

Michaelis-Menten
——————————

v = εkcat
s

s+KS︸ ︷︷ ︸
ηkin

Thermodynamic
——————————
v = εkcat (1− e−θ)︸ ︷︷ ︸

ηrev

Mass-action
——————————
v = εkcat (1− e−θ)︸ ︷︷ ︸

ηrev

s

KS︸︷︷︸
ηkin

p ≪ KP, ηrev = 1 ηkin = 1 a ≪ KS, p ≪ KP

Figure 2: The Haldane rate law and some simplified rate laws. Simplified rate laws are obtained as limiting
cases by setting efficiency terms ηrev or ηkin to 1 or another constant value (see Figure 3) or by assuming small
reactant concentrations (in the case of the mass-action rate law). For the enzyme optimality problem in unbranched
pathways, we do not know of any analytic solutions for the Haldane rate law. We report here solutions for the
other, simplified rate laws (where the solution for the thermodynamic rate law contains an unknown auxiliary
parameter).

with Michaelis-Mention constants KS and KP, which can be factorized into

v = ε kcat+ (1− e−θ)︸ ︷︷ ︸
ηrev(θ(s,p))

s/KS

1 + s/KS + p/KP︸ ︷︷ ︸
ηkin(s,p)

, (4)

with the driving force θ(s, p) = ln(Keq s/p), the thermodynamic efficiency ηrev and the kinetic efficiency ηkin

(see Figure 3). The two efficiency terms can assume values between 0 and 1. These two formulations of the
Haldane rate law are equivalent, based on the constraint that Keq = kcat+ /kcat− ·KP/KS, which is commonly
known as the Haldane relationship (see [23] for more details).

This rate law is the most realistic one that we discuss in this work, as it requires only a few assumptions.
However, it is also the most mathematically complex and therefore most questions we raise don’t have analytic
solutions. So, in addition, we will consider three simplified rate laws as limiting cases.

• Mass-action rate law One of the most common approximations for enzymatic rate laws (the one also made
by Waley [20]) is based on the limit of low metabolite concentrations (s ≪ KS and p ≪ KP). In this case,
the concentration-dependent terms in the denominator (i.e., s/KS + p/KP) are negligible so we get:

v = ε (kcat+ s/KS − kcat− p/KP) (5)

There are many equivalent ways to write down this rate law. For instance, we can apply the same approxi-
mation to the factorized form in Eq. (4) to get v = ε kcat+ (1− e−θ) s/KS, and we can further replace θ with
its explicit definition based on the reactant concentrations and write v = ε kcat+ /KS (s− p/Keq).

Another common form for this rate law is based on the “first-order rate constants” k+ ≡ kcat+ /KS and
k− ≡ kcat− /KP. Using them in Eq. (5) looks like this: v = ε (k+s − k−p). As it resembles mass-action
(although here the enzyme level appears as a prefactor) we will refer to this as the “mass-action” rate law.
Throughout this paper we will switch between these four different notations based on convenience.

• Thermodynamic rate law If ηkin is approximated by 1 (e.g. in the limit s ≫ KS and p ≪ KP), we obtain:

v = ε kcat+

(
1− p

s

1

Keq

)
= ε kcat+ (1− e−θ). (6)

We will also consider a special case of this rate law where p/s ≈ Keq, i.e. the reaction is close-to-equilibrium
and therefore θ → 0. In this case the rate law becomes v = ε kcat+ θ.
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Figure 3: The Haldane rate law and approximations assuming constant efficiency terms. (a) The Haldane rate law.
In the factorized form (right), thermodynamic and saturation effects are described by separate efficiency factors.
(b) The thermodynamic efficiency as a function of θ (driving force). (c) The kinetic efficiency as a function of the
product of the substrate (in log-scale), assuming b ≪ KB. (d) A surface plot showing the rate (v) as a function of
θ and the product of the two reactants (in log-scale). The parameters are Keq = KA = kcat = ε = 1 and KB = 10.
(e) A surface plot showing the enzyme demand for a given rate (v = 1), all kinetic parameters are the same as in
(d).

• Irreversible saturable rate law (“Michaelis-Menten kinetics”) If we assume that p ≪ s Keq (which
means that θ → ∞ and therefore ηrev can be approximated by 1) and also p ≪ KP (so we can drop p/KP

from the denominator in ηkin), we obtain the Michaelis-Menten rate law

v = ε kcat+

s

s+KS
. (7)

Originally, Michaelis and Menten [24] developed this rate law by assuming that the rate of enzyme-substrate
binding is very fast compared to catalysis, and that the catalytic step is irreversible. The assumptions made
here lead to the same result but are less stringent.

In the approximations, we may assume that the thermodynamic or saturation efficiencies (one of them or both)
are approximated by constant numbers smaller than 1; this has the same effect as setting the efficiency to 1, but
instead of the kcat value we obtain a smaller apparent value in the approximated rate law.

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.30.547243doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.30.547243
http://creativecommons.org/licenses/by/4.0/


2.2 Metabolic states - what formulae are we interested in?

How can we characterize metabolic states? The aim here is to do this by using analytic formulae. For an unbranched
pathway with a given type of rate laws (e.g. mass-action or Michaelis-Menten rate laws), we are interested in
formulae for the following quantities:

1. Metabolic steady state Given the enzyme levels, external metabolite concentrations, and kinetic constants,
can we directly compute the stationary fluxes and internal metabolite concentrations. For general metabolic
networks, no explicit formulae are known, but for unbranched pathways with some simple rate laws, explicit
formulae exist.

2. Stability of steady state If the Jacobian in a steady state has positive eigenvalues, the state is asymptot-
ically unstable and is not able to persist under (inevitable) noise in the cell. Stability is also a prerequisite
for metabolic control coefficients being defined. A sufficient (but not necessary) condition for stable steady
states in unbranched metabolic pathways is given in Appendix D.7.

3. Metabolic control The response coefficients are defined as derivatives between steady-state concentrations
or fluxes and model parameters (e.g. the enzyme levels). If two model parameters act (specifically) on the
same reaction, their response coefficients towards all fluxes and steady-state concentrations will be the same
(up to a proportional scaling). The control coefficients take this into account: they describe the same type
of derivatives, but for a set of hypothetical parameters that individually act on reaction rates. In practice,
assuming that reaction rates are proportional to enzyme levels, that each reaction is catalyzed by a single
enzyme, and that each enzyme catalyzes a single reaction, we can define them as CX

il /(vl/el).

The control coefficients can be computed from the stoichiometric matrix and the elasticity matrix, and they
satisfy summation and connectivity theorems. Therefore, the metabolic control coefficients can be computed
in two ways: if an analytic formula for the metabolic steady state is known (as is the case in some unbranched
pathway models studied below=, we may differentiate symbolically by the enzyme levels; otherwise, in theory,
we may compute (symbolically) the elasticity coefficient matrices by differentiating the rate laws, and then
compute the control coefficient matrices from them; however, since this involves a matrix inversion, the
analytic formulae for this may be extremely complicated. Another way to compute control coefficients, which
only works in optimal states, is described below.

4. Optimal metabolic states Below, in our basic metabolic optimality problem, we define optimal states as
states in which a given enzyme budget (fixed sum of enzyme levels) is allocated to maximize a production
flux. Kinetic constants and external metabolites are given, and we compute the optimal metabolite profile,
the optimal enzyme profile, and the optimal flux. If the flux distribution is known (e.g. a steady flux in
an unbranched pathway) and can only increase or decrease proportionally, this problem is equivalent to the
ECM problem of minimizing the enzyme demand at a given (unit) flux. This (convex) problem can be solved
numerically, but analytic solutions were known only for very few cases. Below we present some new analytic
solutions. Formulae for optimal enzyme levels and the optimal achievable flux are shown below, in table
1. We also consider a related problem, maximizing the flux under a constraint on the total enzyme plus
metabolite investment.

5. Metabolic control in optimal states The control coefficients tell us how a metabolic system responds
physically to perturbations (resulting in a perturbed state that is again stationary, but probably non-optimal).
For optimal states (with a constraint on the sum of enzyme levels), the enzyme-control rule states that enzyme
levels and flux control coefficients must be proportional. Since we also know (from the summation theorem)
that the control coefficients must sum to 1, we can conclude: whenever there is an analytic formula for
optimal enzyme levels, we obtain a formula for the control coefficients.

2.3 Optimal metabolic states: analytic solutions

What are the general principles behind optimal enzyme allocation? One important principle, valid in optimal
metabolic states, has been shown for pathways with mass-action rate laws [21] and later been confirmed for general
rate laws [17]: in optimal states – where the metabolic flux has been maximized at a fixed enzyme budget enzyme
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Name
(assumptions)

Enzymatic rate law:
vi/εi =

Comments / definitions Optimal enzyme
allocation: εi

∗ ∝
Minimum pathway cost

per flux: εtot/J
∗ =

Trivial
(irreversible, saturated) kcati αi ≡ 1/kcati αi ||α||1

Michaelis-Menten
(irreversible, saturable) kcati

si−1

si−1 + KM,i

βi ≡ KM,i/k
cat
i∑

i si ≤ stot
αi +

√
βi ||β|| 1

2
/stot ||α||1 + ||β|| 1

2

/
stot

Thermodynamic
(reversible, unsaturable) kcati ·

(
1− si

si−1K
eq
i

) s0 = const, sn = const
Find Ψ s.t. 1

2 ln (s0K
eq
tot/sn) =∑

i ln
(√

Ψαi +
√
1 + Ψαi

) αi

(
1
2 + 1

2

√
1 + (Ψαi)−1

) ∑
i αi

(
1
2 + 1

2

√
1 + (Ψαi)−1

)

Thermodynamic
Keq

tot s0/sn → 1
kcati · ln

(
si−1K

eq
i

si

)
s0 = const, sn = const

√
αi ||α|| 1

2

/
ln (Keq

tot s0/sn)

Mass-action [20]
(reversible, unsaturable) kcati ·

(
1− si

si−1K
eq
i

)
si−1

KM,i

s0 = const, sn = const
γi ≡ βi ·

∏n
j=i K

eq
j

√
γi ||γ|| 1

2

/
(s0 − sn/K

eq
tot)

Haldane
(reversible, saturable) kcati ·

(
1− si

si−1K
eq
i

)
si−1/KS,i

1+si−1/KS,i+si/KP,i

No known solution,
use convex optimization solver

Table 1: A summary of all rate laws considered in this paper, along with their solution for optimal enzyme allocation
and minimum pathway cost per flux. The rate laws are roughly ordered by increasing level of complexity. The
“trivial” rate law does not have its own section in the text, but is rather mentioned as the limit of the Michaelis-
Menten rate law when si−1 ≫ KM,i, as well as the thermodynamic rate law when Keq

tot s0/sn → ∞. Note that
although the “mass-action” rate law appears in this table in a modified form (for the purpose of using the same set
of kinetic parameters as the other rate laws), it is equivalent to the form used in previous studies [20, 16, 17]. In
order to calculate the absolute optimal enzyme levels from the relative ones (given in the column titled Optimal
enzyme allocation), one can use ε∗i = εtot

xi∑
j xj

where xi are the relative values.

levels and flux control coefficients must be proportional1:

εi
∗ ∝ CJ

i

∗
. (8)

Here the star ∗ denotes variables in the optimal state. Together with summation theorem for flux control coefficients
[14, 15],

∑
i C

J
i = 1, we obtain the conversion formulae

CJ
i =

εi
∗∑

j εj
∗ , εi

∗ = εtot C
J
i . (9)

The enzyme-control rule (8) provides a condition for metabolic states, independent of the type of rate laws con-
sidered. Importantly, it holds only in states of maximal flux, given a fixed total enzyme amount and no other
constraints. More realistic models employ also bounds on metabolite levels [22, 5, 25] for different reasons. First,
metabolite levels are bounded in real cells: while metabolite molecules may be small, there concentrations are
high, and they contribute much more than macromolecules to osmotic pressure. Second, as we will see below,
some models without metabolite bounds lead to paradoxical results. We will present a generalized version of the
enzyme-control rule that takes metabolite bounds into account.

But what are the general shapes of optimal enzyme profiles, i.e. how do enzyme levels vary across the network? And
on what factors (kinetic, thermodynamic, or cost factors) does this depend? To answer this, the enzyme-control
rule alone would not be enough (because kinetic details do not appear in the rule). Also numerical studies would
not be enough (because they apply to single cases and yield no general laws). Hence, to study this, it would be
good to consider analytic solutions. Unfortunately, analytic solutions are not known for general metabolic model,
but solutions exist for unbranched pathways with simple rate laws (mass-action rate law and saturable kinetics.

We now present analytic formulae for optimal metabolic states with different types of rate laws. We discuss the
rate laws in increasing order of difficulty. An overview of all analytic solutions is given in Table 1.

1To explain this rule, we note that in an optimal state all enzymes have the marginal cost (contribution to the enzyme budget, per
mol of enzyme), which must be balanced by the same marginal benefit (contribution to the production flux, per mol of enzyme). This
means that all enzymes must have the same (unscaled) flux response coefficients dvst/del, and so the (unscaled) flux control coefficients
dvst/del/(

v
el
) must be proportional to the enzyme concentrations el.
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2.3.1 Michaelis-Menten rate law

The first rate law we consider is the Michaelis-Menten rate law (i.e. irreversible reactions with simple saturation
kinetics):

vi = εi · kcati

si−1

si−1 +KM,i
. (10)

In an unbranched pathway, at steady-state all rates must be equal. To describe them, we introduce a new variable
J called the pathway flux, and assume that ∀i vi = J . Now we can use Eq. (10) to find a relationship between the
substrate and the enzyme level:

εi =
J

kcati

·
(
1 +

KM,i

si−1

)
= J

(
αi +

βi

si−1

)
(11)

where we define αi ≡ 1/kcati and βi ≡ KM,i/k
cat
i for convenience.

Combining this equation with the upper bound on total enzyme from Eq. (2) we get that:

εtot ≥
∑
i

εi =
∑
i

J

(
αi +

βi

si−1

)
= J

(∑
i

αi +
∑
i

βi

si−1

)
. (12)

and by rearranging we get:
J ≤ εtot∑

i αi +
∑

i
βi

si−1

(13)

Maximizing J would mean that we reach the upper bound and therefore we can treat this as an equality. Since
εtot is constant and the only free variables are the metabolite concentration, the maximal flux is reached when the
denominator on the right-hand side is minimized. The problem is that it is a monotonically decreasing function in
si (for each i) and since metabolite concentrations are unbounded, the optimum is at si = ∞. In reality, of course,
the range of physiological osmotic pressure does impose some constraint on the concentrations of small molecules.
As a proxy for this effect, we can add another constraint to bound the sum of all metabolite concentrations,∑

i si ≤ stot. Thus, one can show (see Appendix D.1) that the optimal allocation of enzymes will obey:

εi
∗ ∝ αi +

√
βi ·

√
||β|| 1

2

stot
(14)

where β is the vector of all βi and || · || 1
2

is the l1/2 norm. In this case, the maximal flux would be:

J∗ = εtot ·
(
||α||1 + ||β|| 1

2
/stot

)−1

. (15)

Note that the solution looks essentially the same even if we constrain the first metabolite (s0) to have a fixed
concentration (see Appendix D.1.4). We will revisit this case in section 2.5 in the context of a course-grained
model of a growing cell.

If the metabolite density constraint is not very tight (i.e. stot is large enough), we can ignore the second term in
Eq. (14) which would be equivalent to assuming all enzymes are substrate-saturated. In this case, the optimal
allocation of enzymes will be proportional to αi (or inversely proportional to kcati ) and therefore:

lim
stot→∞

J∗ = εtot · (||α||1)−1
. (16)

Interestingly, ||α||1, which is equal to the sum of kcat reciprocals, is in fact the inverse of the Pathway Specific
Activity as originally defined by Bar-Even et al. [11]. Indeed, the idealized scenario considered in that study (where
all enzymes are irreversible and saturated) provides a sort of upper bound on the maximal flux achievable.

One reason that the irreversible Michaelis-Menten model is unrealistic is that it ignores reactions that are close to
equilibrium and therefore suffer from a counter-productive reverse flux. This is yet another reason why it might be
impossible for some metabolites to reach very high concentrations: they might be products of unfavorable reactions.
In most metabolic networks, about half of the reactions are reversible and therefore it would be more realistic to
use a reversible rate law like such as Haldane’s. However, using the Haldane equation would typically create a
system of equations with an infinite number of solutions. So, first, we will now consider reversible rate laws that
reverse fluxes into account.
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2.3.2 Thermodynamic rate law

Irreversible rate laws like the Michaelis-Menten kinetics depend only on the substrate concentration; in the formula
there is no product-dependent reverse term that decreases the total rate or could make it become negative. However,
according to thermodynamics, such laws can only be approximations: thermodynamically feasible rate laws must
contain a reverse term and must depend on the thermodynamic imbalance of substrate and product concentrations
expressed by the thermodynamic force. Some rate laws can even be written as functions of the thermodynamic
driving force alone. Here we describe a “thermodynamic” rate law, where v is proportional to the thermodynamic
efficiency 1− e−θ, while the kinetic efficiency ηkin is assumed to be constant:

vi = εi k
cat
i

(
1− e−θi

)
= εi k

cat
i

(
1− si

si−1

1

Keq
i

)
. (17)

This type of kinetics approximates cases where all reactions are saturated (si ≫ KM,i). The parameters here are
the turnover numbers (kcati ) and the equilibrium constants (Keq

i ). However, as we will soon learn, the individual
Keq

i do not change the result, and only the overall equilibrium constant (Keq
tot =

∏
i K

eq
i ) matters.

As before, we can define the steady-state pathway flux J and apply the upper bound on the total enzyme to get:

εtot ≥
∑
i

εi =
∑
i

J

kcati (1− e−θi)
= J ·

(∑
i

1

kcati

· 1

1− e−θi

)

J ≤ εtot ·

(∑
i

1

kcati

· 1

1− e−θi

)−1

.

(18)

Unfortunately, there is no closed-form analytic solution for the maximal rate of this thermodynamic rate law. But,
we do have something very close which requires rather simple computations. First, we need to invert the functional
relationship between the overall driving force (θtot) and an auxiliary variable Ψ which is defined by the inverse
function of:

ln

(
s0
sn

Keq
tot

)
= θtot = 2

∑
i

ln

(√
Ψ/kcati +

√
1 + Ψ/kcati

)
. (19)

The expression on the right is analytic and strictly increasing in the range Ψ ∈ [0,∞), so there is a unique solution
which can be found by simple numerical methods. Then, we can use that value to directly calculate the optimal
driving forces, enzyme levels and pathway flux:

θi
∗ = 2 ln

(√
Ψ/kcati +

√
1 + Ψ/kcati

)
εi

∗ = J∗ ·
(
1

2
+

1

2

√
1 + kcati /Ψ

)/
kcati

J∗ = εtot ·

(∑
i

(
1

2
+

1

2

√
1 + kcati /Ψ

)/
kcati

)−1

.

(20)

The full derivation of this solution can be found in Appendix D.2.2. An example of what the relationship between
the driving force and the optimal flux looks like for a pathway with two enzymes is illustrated in Figure 4(a) and
4(b).

These formulae cannot be directly evaluated because of the unknown parameter Ψ. To obtain solutions that do
not depend on this parameter, we now consider two limiting cases in which Ψ is either infinitely high (very high
driving force) or infinitely low (very low driving force).

When the driving forces are very high (i.e. θtot → ∞), the solution for Ψ in Eq. (19) will approach infinity and the
optimal flux becomes

lim
θtot→∞

J∗ = lim
Ψ→∞

εtot∑
i 1/k

cat
i ·

(
1
2 + 1

2

√
1 + kcati /Ψ

) =
εtot∑
i 1/k

cat
i

= εtot · (||α||1)−1 (21)

where we use the same definition as before for the set of parameters αi = 1/kcati . This solution indeed makes sense
as it is equivalent to the fully saturated limit in the Michaelis-Menten case (see Section 2.3.1, Eq. (16)).

However, when there is a limited amount of driving force in the pathway (Ψ has a finite positive value), enzymes
with a higher kcati value will pay a higher penalty due to their driving force being closer to 0. On the other
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(a) kcat1 = 3s−1 kcat2 = 100s−1
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Figure 4: The relationship between the maximal flux per enzyme and overall driving force for the thermodynamic
rate law. Even though we do not have a closed-form solution for J∗ as a function of θtot, we can still plot J∗(Ψ)
against θtot(Ψ) for varying values of Ψ using Eq. (19) and Eq. (20). Here, we show this relationship for a pathway
with 2 steps. The parameters are: εtot = 1, Keq

i = 1, kcat1 = 3 s−1, and the kcat of the second enzyme is either (a)
kcat2 = 100 s−1 or (b) kcat2 = 2 s−1. The magenta dashed line represents the approximations for very small driving
forces based on Eq. (23), and similarly in cyan for very large driving forces – Eq. (21).

hand, slow enzymes will have more driving force, which will help them by having a smaller fraction of reverse flux.
Notably, the distribution is not dependent on the reaction equilibrium constants (only on the overall Keq

tot). Perhaps
it is not that surprising if we consider the fact that the concentrations intermediate substrates and products are
unconstrained and therefore we have enough degrees of freedom to adjust to any value of Keq

i as long as the total
driving force stays the same.

One can also consider the other extreme where all reactions are close to equilibrium, which means that θtot is close
to 0 (and therefore also each θi → 0). In this case, we can approximate Eq. (18) by:

J ≤ εtot ·

(∑
i

1

kcati

· 1

1− e−θi

)−1

≈ εtot ·

(∑
i

1

kcati θi

)−1

(22)

Maximizing J under the constraint
∑

i θi = θtot yields the solution (see the full derivation in appendix D.2.3):

θi
∗ = θtot

√
1/kcati∑

i

√
1/kcati

J∗ =
θtot εtot(∑
i

√
1/kcat

)2 = εtot ·
θtot
||α|| 1

2

.
(23)

2.3.3 Mass-action rate law

Next, we consider the same unbranched pathway but assuming mass-action rate laws:

vi = εi k
cat
i /KM,i (si−1 − si/K

eq
i ) = εi β

−1
i (si−1 − si/K

eq
i ) . (24)

Where, as before, we define βi ≡ KM,i/k
cat
i . Note that instead of Eq. (5) we use a form of the mass-action rate

law that does not require the turnover rate and KM of the product (and instead uses Keq
i ), to avoid confusing

indexation of forward and backward parameters.

Like with the previous rate laws, we can define the pathway flux J and apply the upper bound on the total enzyme
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levels:

εtot ≥
∑
i

εi =
∑
i

J βi

si−1 − si/K
eq
i

= J
∑
i

βi

si−1 − si/K
eq
i

J ≤ εtot ·

(∑
i

βi

si−1 − si/K
eq
i

)−1

.

(25)

Again, we maximize the flux at a constrained total enzyme level. Optimization with Lagrange multipliers yields the
following expressions for the optimal individual enzyme levels (εj∗) and the maximal flux (J∗) (see full derivation
in Appendix D.3):

εj
∗ = εtot

√
γj

||γ|| 1
2

J∗ = εtot ·
s0 Keq

tot − sn
||γ|| 1

2

(26)

where γj and || · || 1
2

are defined as

γi ≡ βi

n∏
j=i

Keq
j and ||γ|| 1

2
≡

 n∑
j=1

√
γj

2

. (27)

Of course, the exact value of this maximum would depend on all the different system parameters. However, it is
interesting to consider a naïve assumption where all the γj parameters are identical (i.e., where all Keq

i = 1). In
such a case, the flux in the pathway would decrease quadratically with the number of steps [26]. Of course, we
know that in real metabolic pathways the equilibrium constants are typically not close to 1, and therefore this
approximation might not have many applications in biology.

What would happen if a mutation improved the catalytic rate of only one of the enzymes εi by a factor of a (i.e. βi

decreases by a factor of a, but the equilibrium constant Keq
i remains the same). In this case, γi would be divided

by a but the optimal enzyme concentration for this reaction εi
∗ would only decrease by a factor of

√
a. This saving

would then be distributed proportionally among all the n enzymes and contribute to an increase in the pathway
flux J . On the flip side, if for some reason the activity of one enzyme is decreased by a multiplicative factor b, it
would need to “pay” (increase its concentration) only by a factor

√
b, and this increase would be “funded” by all of

the enzymes together in order to keep the same εtot, thus lowering J .

2.3.4 Haldane rate law

So far we analyzed three cases where all enzymes could be described by a special kinetic rate law: mass-action,
Michaelis-Menten, or thermodynamic. Although these rate laws can reliably describe some enzymes in specific
conditions, it is very unlikely that such an approximation would apply to all the reactions in a single pathway
(except for the trivial case of a 1-reaction pathway). A more realistic model would allow all reactions to be
reversible and saturable. Here, we will analyze such a case based on the factorized rate law with one substrate
and one product. Note, that although it is equivalent to Eq. (3), we prefer this formulation because it is easier to
separate thermodynamics from saturation effects.

vi = εi · kcati ·
(
1− e−θi

)
· si−1/KS,i

1 + si−1/KS,i + si/KP,i
. (28)

As always, we can assume all fluxes are equal to J and use the total enzyme budget to get an upper bound:

εtot ≥
∑
i

εi =
∑
i

J

kcati · (1− e−θi) · si−1/KS,i

1+si−1/KS,i+si/KP,i

= J ·

(∑
i

1

kcati

(
1− e−θi

)−1
(
1 +

KS,i

si−1
+

siKS,i

si−1KP,i

))

J ≤ εtot ·

(∑
i

1

kcati

(
1− e−θi

)−1
(
1 +

KS,i

si−1
+

siKS,i

si−1KP,i

))−1

(29)
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where we can now appreciate how this is a generalization of both Eq. (13) (Michaelis-Menten) and (71) (thermody-
namic). We can see that the maximal pathway flux would be realized when the term in parentheses is minimized
with respect to the si, i.e.:

minimizes
∑
i

1

kcati

(
1− e−θi(s)

)−1
(
1 +

KS,i

si−1
+

siKS,i

si−1KP,i

)
. (30)

Unfortunately, as we have already discussed, this problem is not solvable analytically in the general case.

2.4 Optimal metabolic states: insights from Metabolic Control Analysis

2.4.1 Enzyme-control rule and enzyme-elasticity rule

We start with some further observations about the enzyme-control rule. The enzyme-control rule Eq. (8) states
that enzyme levels adn flux control coefficients must be proportional: ε∗i ∝ CJ

i
∗. From the summation theorem,

we know that the flux control coefficients must sum to 1; therefore, the optimal enzyme levels must be given by
the flux control coefficients, multiplied by the (predefined) total enzyme level. For optimal states, we obtain the
simple conversion CJ

i = εi
εtot

and εi = εtot CJ
i . When the aim is to compute control coefficients in optimal states

(at a given enzyme budget εtot), the enzyme-control rule comes in handy. To what types of optimality problems
does the rule apply? If the metabolic system is not an unbranched pathway, but a general network with one target
flux, the rule will still hold (where the flux control coefficients refer to this target flux. This also hold for models
with metabolite dilution. In the basic forma of the rule we put a constraint on the enzyme mass, and assume that
enzyme levels are mass densities. If the enzyme levels are molar concentrations, and differently weighted in the
constraint, the weights can be taken into account by modifying the rule

However, there are some limitations. Importantly, the rule holds only in states in which control coefficients are
well-defined. This condition may seem unproblematic, but below we will see that it is actually violated in the
chain with Michaelis-Menten rate laws because in the optimal state, any variation of a single enzyme level would
not only make the state non-optimal, but would in fact break the steady state (the reason being that in this case,
the optimal state, all internal metabolite elasticities are zero). We discuss this in Appendix A.1. One way of
avoiding this problem is to introduce a bound on metabolite levels. For example, we may consider a problem with
a generalized density constraint on enzyme levels and metabolite concentrations

Maximize z · v s.t. a · ε+ b · s ≤ ρ

with a linear flux objective a · ε instead of a single target flux, and enzyme weights al and metabolite weights bi,
and an upper ρ on the molecule density. This problem leads to a generalized form of the enzyme-control rule. For
an unbranched pathway with equal weights (e.g. molecular masses) a for enzymes and b for metabolites,

ε∗l = ε∗tot C
J∗
l − J∗ b

a

∑
i

Csi∗
l . (31)

where ε∗tot is the sum of enzymes emerging in the optimal state (for derivation and details, see Appendix A.3).

The enzyme-control rule has a direct and useful consequence. Since enzyme levels (in optimal states) are propor-
tional to flux control coefficients, they need to satisfy a connectivity theorem. Connectivity theorems relate the
elasticities of of a given metabolite i to the control coefficients of reactions around this metabolite. In the case
of flux control coefficients, the right-hand side of the theorem is zero, and we obtain an equation of exactly the
same form for the optimal enzyme levels. We call this formula the enzyme-elasticity rule (see Appendix B). A
similar rule for small adaptations of enzyme levels, instead of enzyme levels themselves, has been shown in [27].
For a linear chain, the enzyme-elasticity rule entails a simple result: in an optimal state, for each metabolite i and
its producing reaction j = i − 1 and its consuming reaction i, the ratio of enzyme levels εi

εj
must be equal to the

inverse ratio of the elasticities E
vj
ci /E

vi
ci , where the negative sign of Evj

ci is ignored. An example of this, with the
mass-action rate law, is explicitly shown in Appendix B. In contrast to the enzyme-control rule (where there is
only one for the entire pathway), there is an enzyme-elasticity rule for every internal metabolite, which determines
the ratio of the enzyme levels around this metabolite. Together with the known sum of enzyme levels, these rules
therefore determine the entire optimal enzyme profile (of course, given all the elasticities in the optimal state). In
Appendix B, we show the explicit derivation for a concrete example, the mass-action rate law.
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2.4.2 Analytic formulae for different rate laws

We learned that enzyme levels in optimal states (under a constraint on total enzyme, and for a maximization of
steady-state flux) satisfy two general laws, the enzyme-control rule and the enzyme-elasticity rule. Hence, whenever
we have a formula for the optimal enzyme levels and can trust the enzyme-control rule, we also know the flux control
coefficients. The enzyme-elasticity rule (which comes from the connectivity theorem) relates optimal enzyme levels
to elasticities. All this holds generally whenever the rules apply. However, for didactic reasons, we computed some
of the control coefficients for different rate laws (also demonstrating different ways to compute them) and checked
some of the rules. Here we summarize this only briefly, details can be found in the Appendix.

• Michaelis-Menten rate law In metabolic pathways with irreversible rate laws, the flux control coefficients
are simple: 1 for the first reaction, 0 for all remaining reactions (assuming that we are in a steady state. But
under an optimization, all metabolite levels go to infinity and all elasticities go zero. Mathematically, the op-
timal state doe not exist (because it would entail infinite concentrations), but even if we assume that enzymes
can be completely saturated, any enzyme variation would break the steady state: the control coefficients are
not defined, and so the enzyme-control rule does not apply (see Appendix A.1). To obtain meaningful results,
we therefore consider a different optimality problem with enzyme and metabolite constraints. In this case,
metabolite levels remain finite and the control coefficients remain defined.

• Thermodynamic rate law With the thermodynamic rate law, we can derive a simple formula for the flux
control coefficients that contains only the enzyme levels, the kcat values, and the flux (for which we don’t
have an explicit formula). Nevertheless we can verify that the flux control coefficients satisfy summation and
connectivity theorems, and that the enzyme-control rule is satisfied in the optimal state. In the metabolic
chain with thermodynamic rate laws, we do not have a closed formula for the flux as a function of enzyme
levels, and so it seems impossible to find a closed formula for the flux control coefficients. However, a formula
can be obtained with a trick. From the rate law, we obtain a relation between enzyme levels, external
metabolite levels, kinetic constants, and flux:

n∏
i=1

(1− J/εik
cat
i ) =

sn
s0

1

Keq
tot

(32)

(see Eq. (68) in the Appendix for the derivation). While we cannot solve this for the flux J directly, we can
obtain the response coefficients RJ

εl
= ∂J/∂εl by implicit differentiation. This directly yields the flux control

coefficients (derivation in Appendix D.2.5):

CJ
l =

(εl k
cat
l − J)−1∑n

i=1(εi k
cat
i − J)−1

(33)

The control coefficients are proportional to (εl kcatl − J)−1 and normalized to a sum of 1, as required by
the summation theorem. For didactical reasons, we explicitly checked the connectivity theorem (Appendix
D.2.4) and the enzyme-control rule (Appendix D.2.7).

• Mass-action rate law With the reversible mass-action rate law, we can explicitly compute the flux control
coefficients and verify that they satisfy summation and connectivity theorems. To verify that the enzyme-
control rule is satisfied in the optimal state, we use the explicit formula (25) for the steady state flux and
take derivatives to obtain the flux control coefficients

CJ =
γl/εl∑
j γj/εj

(34)

with γl defined as above (derivation in Appendix D.3.3). The coefficients sum to 1 as required by the
summation theorem. Again, we also verified the connectivity theorem (Appendix D.3.4) and the enzyme-
control rule (Appendix D.3.5) for didactical reasons.

2.5 A cell model with enzyme kinetics and metabolite constraints

As an illustrative example, we apply our formulae to a simple model of a growing cell, as shown in Figure 5. The
model comprises an unbranched chain of 3 reactions describing overall transport, overall metabolism, and protein
synthesis, as well as two upper bounds: one on the sum of enzyme levels (εtot) and another for metabolite levels
(stot). The fluxes (i.e. steady-state flux J) are proportional to the cell growth rate.
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Ssugar S1 S2 S3
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Figure 5: A growing cell described as a chain of reactions. Top: Following the “bacterial growth law” cell model
in [9], we assume a fixed protein budget, consisting of a fixed fraction and fractions for transporters, metabolic
enzymes, and ribosomal proteins. The proportions of the last three fractions can be optimized to maximize growth.
Bottom: We describe a cell as a chain of reactions, each catalyzed by one of the protein fractions. For a constant
biomass production, the three reactions must be in steady-state.

Obviously, none of the rate laws that we considered in this work can fully capture the dynamics of a growing
cell. Having one single reaction representing metabolism is a gross oversimplification (and likewise for transport
and translation). Nevertheless, we might still be able to draw insights from this model if we make the right
assumptions. This approach has been successful in the past, for instance by assuming enzyme efficiencies are
constant (i.e. completely independent of growth rate and metabolite concentrations), Basan et al. [10] were able
to show how overflow metabolism in E. coli corresponds to the optimal allocation of enzymes. For our model,
we chose to use the Michaelis-Menten approximation, so that metabolite concentrations (as extra variables) can
be adjusted and become part of the optimization problem. We then apply the formulae derived in the previous
sections of this paper to find the optimal allocation of enzymes and thereby maximize the growth rate of the cell.
Importantly, all calculations are completely based on analytic expressions.

In section 2.3.1, we derived formula for the optimal allocation and maximal flux in the case where all metabolite
levels are free variables (including s0, which is denoted here by ssugar). However, since in this cell model ssugar
represents the concentration of an external nutrient that is not subject to optimization, we would like to treat it
as a constant system parameter (and later show how the optimum responds to changes in it). Fortunately, adding
this assumptions changes the optimal solution only slightly, as described in Appendix D.1.4, and thus the optimal
growth rate as a function of ssugar can be written in the following simple form:

J∗ = µmax · ssugar
ssugar +KMonod

(35)

where we define

µmax ≡ εtot

1/kcatt + 1/kcatm + 1/kcatr +
(√

KM;m/kcatm +
√
KM;r/kcatr

)2
/stot

KMonod ≡ KM;t/k
cat
t

1/kcatt + 1/kcatm + 1/kcatr +
(√

KM;m/kcatm +
√
KM;r/kcatr

)2
/stot

.
(36)

As implied by the symbol for KMonod, this form corresponds to empirical observations by Monod [19] (and further
followed up by others [28]) which stated that growth rate increases with the nutrient concentration until reaching a
saturation level where growth is fastest. Interestingly, the value of KMonod (e.g. the level of ssugar for which growth
rate is half of its maximum) is not determined solely by the kinetics of the transporter.
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Figure 6: The optimal achievable flux (J∗) for a given total enzyme εtot. The model contains three irreversible
steps based on Michaelis-Menten kinetics. The default parameters are kcatt = kcatm = kcatr = KM;t = KM;r = 1,
KM;m = 2, and the upper bounds are set to stot = 1, εtot = 1. The panel on the upper-left corner plots the
maximal flux as a function of ssugar for the default parameters. In each other panel, only one of the parameters
is changed. The vertical dotted lines mark the KMonod (i.e. the concentration of ssugar where the flux is 50% of
the maximum). Note that the x-axis is plotted in log-scale, and therefore the curves have a sigmoid-shape (rather
than the familiar Monod-style). See Figure C for plots of the enzyme demands.

To better understand how changes in the model parameters affect the growth rate, we constructed a toy example,
where all constants are set to a default value of 1 (except for KM;m = 2). In Figure 6, we plot the value of J∗ as
a function of ssugar (based on Eq. (35-36)), each time changing one of the parameters. In almost all cases, we find
a trade-off between growth and affinity, namely that improving the kinetics (or relaxing a constraint) improves
the maximal growth rate, while increasing KMonod (i.e. making it worse). The three exceptions are the response
to changes in εtot which only affects µmax, in Kt, which only affects the KMonod, and in kcatt , which can improve
both growth parameters at the same time. Indeed, by observing the formulae in Eq. (36), one can see that all
parameters that are only in the denominator should affect µmax and KMonod in the same fashion (which leads to
a trade-off since higher KMonod is worse for the growth), while the three parameters in the numerators have each
their own unique effect.

3 Discussion

This study is an attempt to address the enzyme allocation problem analytically by considering several different
rate-law approximations. Along the way, we learned that each approximation comes with its own idiosyncrasies.
For instance, the irreversible Michaelis-Menten chain leads to inherently uncontrollable states and essentially cannot
be analyzed using metabolic control analysis. in this case, formulating a meaningful allocation problem requires
adding some type of upper bound on metabolite levels (here, we bounded the sum of all their concentrations).

For historical reasons, we solve the optimality problem under the assumption that there is a bound on the sum
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of enzyme abundances –
∑

i εi ≤ εtot – without explicitly specifying the units. The common interpretation would
be that εi are molar concentrations (and where the symbol kcati represent the turnover numbers in units of 1
over time). However, the total mass concentration of all pathway enzymes should be a better proxy for the cost
since crowding effects in the cytoplasm are often limiting gene expression. Furthermore, fast growing cells are
often limited by the rate of protein elongation, and the molecular mass is nearly proportional to the gene length.
Therefore, we usually think of εi as mass concentrations (e.g. in g × m−3) and of kcati as specific activities (e.g.
in mol × s−1 × g−1). Nevertheless, the analytic derivation and solutions provided here are agnostic to the choice
of units and are equally valid for both these interpretations. Moreover, one could imagine a completely different
set of linear weights for the enzyme cost function (i.e.

∑
i wi εi ≤ εtot, as in Figure 5) which essentially can be

thought of as scaling factors for the kcat values. Therefore, the provided solutions will still hold (while making use
of the new “effective” kcat values).

Previous studies focused on the “mass-action” rate law, justifying it by saying that the general reversible form
derived by Haldane can be approximated at the limit of low concentrations. However, it is quite rare to have all
the substrates and products of an enzyme at concentrations that are way below their KM values [29]. Furthermore,
the limit of all reactants concentrations going to zero is not very meaningful because, in the first place, Haldane
derived his rate law assuming enzymes are much less abundant than metabolites [30]. Interestingly, just being
close-to-equilibrium is not enough for this approximation, since the product can still affect the rate non-linearly
via ηkin (see Figure 2). Here we tried to more comprehensively consider all the different approximations that yield
an analytic solution to optimal enzyme allocation in unbranched pathways (see Table 1).

One of these approximations is the Michaelis-Menten rate law, which is a widely used in enzymatic assays and
metabolic modeling of irreversible reactions. Curiously, using it for the simple optimality problem with linear chains
leads to paradoxical results: the metabolite concentrations go to infinity, the elasticities vanish, and flux control
coefficients are not defined. For solving this problem, we introduced an new upper bound on the total metabolite
concentration in order to obtain realistic results and derive analytic solutions based on this rate law. Although it
is very reasonable to assume that concentrations of small molecules (and not just enzymes) are restricted in cells,
this fact is often ignored in metabolic models. One of the rare cases where this constraint was taken into account is
the work of Dourado et al. [31], who found empirical evidence to the fact that there is a balance between enzymes
and substrates when minimizing the total mass concentration. In addition to an analytic solution, we also found
a new enzyme-control rule for models with a constraint and enzyme and metabolite concentrations: in this case,
the enzyme amounts do not only reflect the flux control coefficients, but a sum of flux and concentration control
coefficients.

Besides “mass-action” and Michaelis-Menten kinetics, we discussed a solution for one other rate law which we
call thermodynamic, as the rate is only affected by metabolite levels through the thermodynamic driving force
(i.e. ignoring any saturation effects). One advantage of this approach is that it does not require knowing the KM

values (which are often difficult to come by). The thermodynamic-only approximation was also used for deriving
the Max-min Driving Force (MDF) method D.2.8, which similarly aimed to quantify the efficiency of metabolic
pathways [32]. But, unlike the solution presented here, MDF does not explicitly optimize a simplified version of a
kinetic rate law, but rather applies a heuristic based on the assumption that higher driving forces bring diminishing
returns and thus should be distributed as evenly as possible.

All throughout this paper, we only considered pathways with uni-uni reactions (one substrate, one product, with
stoichiometric coefficients of 1). In reality, many reactions involve co-factor pairs or other substrates or products.
Instead of deriving results for this general case, we here assume that these extra reactants may exist, but with fixed
concentrations. In this case, the rate laws contain extra terms, but these terms can be rearranged to yield simple
formulae that are equivalent to the uni-uni case with effective kinetic constants. We demonstrate this for the case
of two substrates and two products following convenience kinetics [33] in appendix D.5. Notably, the same logic
also applies for more than two substrates and products as well as to enzyme activation or inhibition with constant
activator or inhibitor levels.

This paper can be seen as an exercise in solving the enzyme allocation problem and describing the optimal states
analytically using the MCA approach. Although some might argue that the required approximations are not
realistic, they do represent a step forward compared to the very common approach of assuming metabolites have
no effect on enzyme efficiency at all. On the other hand, adding metabolite concentrations as extra variables greatly
increases the complexity of models and typically renders them unsolvable. Therefore, the solutions provided here
might be handy, as the assumption of metabolite steady-state combined with the optimality argument give us
analytic expressions that only depend on the initial and final metabolites in the pathway. We demonstrate this
result using a toy example for a course-grained model of cell growth, and show how the analytic solutions provide
valuable insights about the effects of changes in each parameter – all this without the need to simulate the metabolic
network or use non-linear solvers. We hope that future studies will continue to use this approach in other, more
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complex models.
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A Revisiting the enzyme-control rule

A.1 Why the enzyme-control rule fails with Michaelis-Menten kinetics

Curiously, we will see that the enzyme-control rule fails in a very simple case, the unbranched metabolic pathway
with Michaelis-Menten rate laws. Since the rate law is irreversible, the rate in each reaction depends only on the
substrate and enzyme level in this reaction (and not on anything that happens downstream). In steady state, the
rate in every reaction is fixed by the stationary flux. Taken together, this means that the flux depends only on
the pathway substrate and the level of the first enzyme, which suggests that this enzyme has full flux control and
all other enzymes have zero control. However, according to the enzyme-control rule, this also means that the first
enzyme is the only enzyme that should be expressed. This is obviously, because without the other enzymes, no
steady flux would be possible. So how can this be?

In fact, an optimal steady state with irreversible rate laws has some pathological properties. To maximize enzyme
efficiency, all metabolite levels must go to infinity, the enzymes are completely saturated, and the metabolite
elasticities are all zero. As a result, the flux in every reaction is given by vi = εi kcati , so the stationary flux
completely determines all enzyme levels. If an enzyme level deviates from its value, its reaction rate will no longer
match the other rates and the steady state breaks down2. Now we can see the catch: in the optimal state, any small
change of an enzyme level will not just make the state non-optimal, but will break the steady state; this means that
the control coefficients are not even defined, and the enzyme-control rule does not apply. For the enzyme-control
rule to hold, control coefficients must be defined; if a variation of an enzyme level does not lead to a new steady
state, this is not the case3.

In the case of the Michaelis-Mention rate law, the practical solution to this problem is simple. Since the optimal
state requires infinite metabolite concentrations, and since this is not realistic, we need to change our assumptions.
We could either consider slightly reversible rate laws (which would penalize high product concentrations) or we
could introduce an extra density constraint that penalizes high metabolite levels explicitly. We discuss a new
enzyme-control rule with this extra constraint in section D.6.

A.2 A sufficient condition for stable states in unbranched pathways

Hence, before we can apply the enzyme-control rule, we need to check whether control coefficients even exist. A
metabolic steady state can be stable or unstable. In an unstable state, the systems would not be able to remain
close to its original state even under small perturbations. Usually, in MCA we are only interested in stable states,
because unstable states are not able to persist even under small (for example chemical) noise, and mathematically,
control coefficients for unstable states are not even defined. Mathematically a metabolic state is asymptotically
stable if the Jacobian N Ec in this state has only negative eigenvalues. But what does this mean in practice? In
Appendix D.7, we derive a sufficient (but not necessary) condition for stable steady states in unbranched metabolic
pathways, based on Gershgorin’s theorem: A steady state in an unbranched metabolic pathway is stable if (but
not only if) the first reaction 1 is not completely irreversible (i.e. it has a non-zero product elasticity), the last
reaction is not completely saturated (i.e. it has a non-zero substrate elasticity), and in all reactions in between, the
substrate elasticity is larger than the (absolute) product elasticity. For a reversible mass-action rate law, the latter
condition is satisfied if Keq

i > 1, and the first two conditions are generally satisfied.

A.3 An enzyme-control rule for models with general density constraints

A way to obtain meaningful optimal states, even with Michaelis-Menten kinetics, is to constrain the metabolite
concentrations. This change in the optimality problem leads to different solutions, which must satisfy different
enzyme-control rules.

High metabolite concentrations along with high enzyme levels may put an extra burden on cells. In our optimality
problems, a constraint on metabolite concentrations will change the optimal solutions. Setting up such optimality
problems raises a couple of questions: should we use a single density constraint or rather separate constraints

2In fact, there are a number of similar arguments why the enzyme-control rules fails in this case: first, the state with infinite
concentrations does not exist mathematically, so formally we cannot even refer to it as a metabolic state; second, even if this state
existed, all elasticities would vanish, and the Jacobian would not be invertible, so the control coefficient would not be defined; third,
even if we argued that, logically, the first enzyme must have full flux control, the same argument would also apply to all other enzymes:
each of the enzymes would have full flux control, thus violating the summation theorem.

3In in fact, this does not only occur with the Michaelis-Menten rate law, but with any irreversible, saturable rate law.
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on enzyme levels and on metabolite concentrations? How should the different compounds be weighted? In fact,
the resulting problems are not very different, and we demonstrate here one specific approach: we describe all
compounds (enzymes and metablites) by concentrations and consider a joint bound on their weighted sum (where
weights may have different meanings, for example molecular masses if the constraint concerns total cellular mass
density). With a general cost function h(ε, the weights in the formulae would be given by the enzyme prices
∂h/∂εi.

We thus consider the optimality problem

Maximize z · v s.t. a · ε+ b · s ≤ ρ (37)

where v, s, and ε denote reaction fluxes, metabolite concentrations, and enzyme levels, and stationarity (of v)
and rate laws (between v, s, and ε must be satisfied as constraints. The maximization objective is a linear
benefit function scoring the fluxes, z · v with linear weights zi, while the constrained density is linear in all the
concentrations, with linear weights4 al (for enzymes) and bi (for metabolites), e.g. representing effective5 molecule
sizes. To derive the enzyme-control rule, we now reformulate the optimality problem with enzyme levels as the
only free variables, and steady-state fluxes and concentrations depending on them (satisfying stationary and the
rate laws). We obtain

Maximize z · vsteady(ε) s.t. a · ε+ b · ssteady(ε) ≤ ρ (38)

This optimality problem leads to a new enzyme-control rule (proof in Appendix D.6)

ε∗⊤ diag(a) diag(v)−1 =

[
1

λ
z⊤Cv∗ − b⊤Cs∗

]
. (39)

In a simple linear chain, we have same steady-state flux J in all the reactions, a benefit function given by J , and
a density constraint with equal weights a for all enzymes, and equal weight b for all the metabolites. In this case,
Eq. (39) simplifies to

ε∗l ∝ CJl∗ − λ
a b

v

∑
i

Cci∗
l (40)

which replaces the enzyme control rule (8). Given the sum of enyzme levels in the optimal state, called ε∗tot, we
can also write this as

ε∗l = ε∗tot C
J∗
l − b

a
J∗ ∑

i

Csi∗
l . (41)

Since the Lagrange multiplier λ arises from an upper bound in a maximization problem, it is negative in the optimal
state, the second term including the minus sign will be positive.

Compared to the enzyme-control rule (8), the right hand side now contains an extra term: it is given by the
metabolite control coefficients, summed over all metabolites, and with an unknown prefactor (a product of the
shadow price from the density constraint and the protein and metabolite weights, divided by the flux). If either
the shadow price or one of the weights is small (compared to the flux), the second term can be neglected and we
obtain again our original enzyme-control rule.

In the general case (network with non-uniform flux distribution v, a more complicated flux benefit function with
derivatives ∂z

∂vi
, and individual weights al and bi for all enzymes and metabolites, all these vectors enter the formula

as weights.

B The enzyme-elasticity rule

The connectivity theorem for flux control coefficients

∀i
∑
j

CJ
j · Ej,i = 0 (42)

4Instead of a linear flux objective, a nonlinear function z(v) could be used. In this case, the end result remains the same, but the
vector weight z is replaced by the gradient ∇vz(v). Likewise, in a model with separate density constraints a · ε ≤ ρε and b · s ≤ ρc,
we obtain again the same formulae, but with separate Lagrange multipliers for the two constraints, which also appear in the resulting
formulae.

5In the simple case of a constraint on the total mass, the weights would be simply molecular weights. This could be a proxy
for excluded volume (which would still ignore, for example, hydration shells). However, a "density constraint" does not necessarily
represent space demand; it may also be related to osmotic effects or other opportunity costs (e.g. energy demand for production of
compounds in growing cells. Therefore the meaning of the weights in this constraint may differ from model to model.
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relates the flux control coefficients CJ
j (between enzyme εj and the pathway flux) to the unscaled elasticities

Ej,i =
∂vj
∂si

(between metabolite si and reaction rate vj). In optimal state, the enzyme-control rule tells us that
control coefficients and enzyme levels must be proportional. Therefore we can replace CJ

j with εj in the equation
above. For each metabolite i, we obtain an equation∑

j

εj · Ej,i = 0 . (43)

For a linear chain, where each metabolite has only one producing and one consuming reaction (with indices i and
i+ 1, we obtain the equality

εi+1

εi
= −

Evi
si

E
vi+1
si

=
|Evi

si |
E

vi+1
si

. (44)

In the last step, we used the fact that the backward (product) elasticity Evi
si is negative and the forward (substrate)

elasticity E
vi+1
si is positive.

Example: mass-action rate law In a linear pathway, there will only be two non-zero derivatives in the
sum (for j = i and j = i + 1). Specifically, with the mass-action kinetic rate law (see Appendix D.3), namely
vj = εj · (kjsj−1 − k−jsj), Eq. (45) will become:

∀i 0 = εi ·
∂vi
∂si

+ εi−1 ·
∂vi−1

∂si
= εi · (−εik−i) + εi+1 · (εi+1ki+1) (45)

which by rearranging leads us to the following relationship:

∀i εi+1

εi
=

√
k−i

ki+1
=

√
ai+1

ai
(46)

(where we remind ourselves of the definition ai ≡ k−1
−i

∏i
j=1 k−j/kj). Applying this equation recursively, we can

see that εi/ε1 =
√
ai/a1, which means that εi is proportional to

√
ai. Since we know that the sum of all enzyme

demands gives εtot, we can obtain the explicit formula for εi:

εi = εtot

√
ai∑

j

√
aj

= εtot

√
ai

||a|| 1
2

. (47)

This is the exact same result we got by directly optimizing the pathway flux in Appendix D.3 (see Equation 102).

C A cell model with enzyme kinetics and metabolite constraints

The model is described by three irreversible reactions:

Ssugar
εt−−⇀↽−− S1

εm−−⇀↽−− S2
εr−−⇀↽−− S3 (48)

The optimal achievable flux (J∗) for a given total enzyme εtot is given in Eq. (35-36). Figure C plots the individual
enzyme demands for the three steps, as a function of the external sugar concentration and J∗:

εt
∗ = J∗ ·

(
1/kcatt +KM;t/k

cat
t · (1/ssugar)

)
εm

∗ = J∗ ·
(
1/kcatm +

√
KM;m/kcatm

(√
KM;m/kcatm +

√
KM;r/kcatr

)/
stot

)
εr

∗ = J∗ ·
(
1/kcatr +

√
KM;r/kcatr

(√
KM;m/kcatm +

√
KM;r/kcatr

)/
stot

)
.

(49)

Note, that also εm
∗ and εr

∗ change with ssugar even though it does not explicitly appear in the equations, because
J∗ itself is a function of ssugar.
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Figure S1: The default parameters are kcatt = kcatm = kcatr = 1, KM;t = KM;r = 1, KM;m = 2 (we chose another value
in order prevent the curves for εm and εr from overlapping), and the upper bounds are set to stot = 1, εtot = 1. In
each panel only one of these parameters is changed.

D Mathematical proofs and derivations

This appendix contains many of the detailed mathematical proofs and derivations used in the manuscript for
metabolic steady-states, minimum enzyme demand / maximal flux, connectivity theorem, and enzyme control
rules. The derivations are grouped by the corresponding rate law in the following order: (1) Michaelis-Menten; (2)
Thermodynamic; (3) Reversible mass-action; (4) Haldane. An overview of useful equations is given in Table D.

D.1 Michaelis-Menten kinetics

The Michaelis-Menten rate law is an approximation of the Haldane rate law for irreversible reactions:

vi = εi k
cat
i

si−1

si−1 +KM,i
. (50)

with reactant elasticities

∂vi
∂sj

= δj,i−1 εi k
cat
i

KM,i

(sj+KM,i)2
. (51)
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ssteadyi (s0, sn, ε) J(s0, sn, ε) si(s0, J, ε) Elasticities Cs CJ

Michaelis-Menten Eq. (52) v1(s0) Eq. (53) Eq. (51) Eq. (54)
Thermodynamic (const ηkin) Eq. (32) Eq. (32) Eq. (90)
Thermodynamic (substrate sat) sec D.2.5
Mass-action Eq. (25) Eq. (99) Eq. (107) sec D.3.3
Haldane - - Eq. (19) in [17] e.g. [34] - -

Table S1: Overview of formulae for steady state variables and control coefficients. This table summarizes formulae
for unbranched metabolic pathways with different rate laws (rows). The columns refer to the steady-state con-
centrations and flux (as a function enzyme levels and metabolite concentrations); the steady-state concentrations
as a function of enzyme levels, pathway substrate concentration, and steady-state flux (but not of the product
concentration); the reaction elasticities; and the concentration and flux control coefficients.

D.1.1 Steady-state concentrations

Computing the steady-state metabolite concentrations in a pathway with Michaelis-Menten kinetics is possible by
inverting Eq. (50).

si−1 =
vi

εi kcati

(si−1 +KM,i)

⇒ si−1

(
1− vi

εi kcati

)
=

vi
εi kcati

KM,i

⇒ si−1 =
viKM,i

εi kcati (1− vi

εi kcat
i

)
=

KM,i

εi kcati /vi − 1
.

(52)

The steady-state concentration as a function of the pathway flux is given by replacing vi with J for all reactions.
Therefore, for any two reactions (i and j), we can relate between their substrate levels by replacing vi in Eq. (52)
with J and using the rate law for J = vj from Eq. (50)

si−1 =
KM,i

εi kcati /J − 1
=

KM,i

εi kcati /
(
εj kcatj

sj−1

sj−1+KM,j

)
− 1

=
KM,i

εikcat
i

εjkcat
j

(
1 +

KM,j

sj−1

)
− 1

. (53)

In fact, applying this condition to all metabolites is a sufficient condition for having a steady-state. Specifically, if
we start with a given concentration s0 and enzyme abundances ε, there is only one solution for the steady-state
flux and for the metabolite levels (s) which support it.

D.1.2 Flux control coefficients

We can compute the flux control coefficients directly by taking derivatives: given that J = v1 and that v1 depends
only on the external substrate, described by a fixed parameter and therefore not dependent on ε, the flux control
coefficients read

CJ
l =

∂J

∂El
· εl
J

=
∂v1
∂εl

εl
v1

= δl1. (54)

As expected, due to the irreversible rate laws, only the first enzyme can have control (except for the pathological
case where metabolites concentrations become infinite and flux control is not defined).

D.1.3 Minimum enzyme demand / maximal flux

We can also use Eq .(50) at steady-state (with flux J) to express the enzyme demands:

εi =
J

kcati

·
(
1 +

KM,i

si−1

)
= J

(
αi +

βi

si−1

)
(55)

where we define αi ≡ 1/kcati and βi ≡ KM,i/k
cat
i . Now we can take the sum of all enzyme demands and equate it

to εtot:

εtot = J

(
n∑

i=1

αi +
n∑

i=1

βi

si−1

)
= J

(
||α||1 +

n∑
i=1

βi

si−1

)
. (56)
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This inverse relationship between εtot and the metabolite concentrations means that in order to minimize εtot for
a given flux, all si should be as large as possible. Obviously, infinite concentrations are not feasible. To avoid
non-physical solutions, we can simply add a constraint on the total concentration of metabolites

∑n−1
i=0 si ≤ stot.

Now, using Lagrange’s method, we define L = J (||α||1 +
∑

i βi/si−1) + λ (stot −
∑

i si) and derive it:

0 =
∂L

∂si−1
=

βiJ
∗

s2i−1
∗ − λ

si−1
∗ =

√
J∗

λ

√
βi.

(57)

To find λ, we can now use the constraint on the sum of all metabolites (assuming the upper bound is realized):

stot =
n−1∑
i=0

si
∗ =

√
J∗

λ

(
n−1∑
i=0

√
βi

)
=

√
J∗

λ

√
||β|| 1

2
(58)

where β is the vector of all βi, and || · || 1
2

is the l1/2 norm. Therefore, we can replace
√
J∗/λ with stot/

√
||β|| 1

2
in

Eq. (57) and find an explicit expression for si−1
∗:

si−1
∗ =

stot√
||β|| 1

2
· βi

. (59)

Using the results from Eqs (56) and (59), we can see that:

J∗ =
εtot

||α||1 +
∑

i
βi

si−1
∗

=
εtot

||α||1 +
∑

i

√
βi·||β|| 1

2

stot

=
εtot

||α||1 +
||β|| 1

2

stot

(60)

and similarly we can also find the optimal enzyme levels:

εi
∗ = J∗

(
αi +

βi

si−1
∗

)
= εtot

αi +
√
βi ||β|| 1

2
/stot

||α||1 + ||β|| 1
2
/stot

. (61)

D.1.4 Case where the first substrate has fixed concentration.

If our pathway model represents a cell growing on an external substrate (S0), then it would be unrealistic to
assume that the concentration s0 is subject to optimization. Instead, we can assume it is fixed (e.g. based on
the environmental conditions) and that the cell can optimize only the internal concentrations of enzymes and
metabolites.

From Eq. (60) we can see that:

J =
εtot

||α||1 +
∑

i βi/si−1
=

εtot
||α||1 + β1/s0 +

∑n
i=2 βi/si−1

. (62)

Since s0 is fixed, we consider the term β1/s0 to be part of the constant part of the denominator (usually just∑
1/kcati ). Furthermore, we can redefine ||β|| 1

2
to exclude the value for the first enzyme (β1) and that the upper

bound stot is only imposed on the sum of the internal metabolites. In this case, the solution we got in Eqs (57)-(58)
will still be applicable, and therefore we can write:

J∗ =
εtot

β1/s0 + ||α||1 + ||β|| 1
2
/stot

= µmax · s0
s0 +KMonod

(63)

where we define

µmax ≡ εtot
||α||1 + ||β|| 1

2
/stot

KMonod ≡ β1

||α||1 + ||β|| 1
2
/stot

(64)

As we can see, the solution provides a prediction for the Monod constant – i.e., the concentration of substrate
(s0) where the growth rate is half of its maximum. If the transporter turnover rate (kcat1 ) is indeed much slower
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than all other enzymes (and therefore its control coefficient is 1), we will get KMonod = KM,1, which is the naïve
assumption. However, if the control is distributed along the pathway, the Monod constant can become significantly
smaller than KM,1.

We can also write expressions for the individual enzyme levels, using Eq. (61). Because s0 is fixed, the demand for
the first enzyme is can be simply expressed as:

εi
∗ = J∗

(
αi +

βi

si−1
∗

)
(65)

For the first enzyme, the substrate (s0) is fixed so the expression is simply ε1
∗ = J∗ (α1 + β1/s0), while for all

other enzymes (∀i > 0) we can use the solution for si−1
∗ from Eq. (59), i.e. εi

∗ = J∗(αi +
√

βi ||β|| 1
2
/stot).

This result might have implications for the design of optimal enzyme regulation. We can imagine that ε1 is
a membrane transporter that imports s0 into the cell (e.g., a glucose transporter), and that all downstream
cytoplasmic enzymes are part of a catabolic pathway (glycolysis, for instance). Now consider a shift from an
environment with low glucose to high glucose. If the cell indeed has a constant amount of total enzyme resource, it
would make sense for it to “spend” less on the transporter and shift the freed resources to the glycolysis enzymes.
What we showed here, is that the optimal proportions within the pathway are constant no matter what the level
of glucose is outside. Only the ratio between the transporter and the rest of the enzymes will change.

In fact, the design principle described above can be shown to be true in a much more general case. As long as
one section of the metabolic network is “isolated” from the rest (i.e., connected only by irreversible steps), changes
in the upstream parameters will affect the incoming flux but would not change the optimal allocation of enzymes
(and the absolute metabolite concentrations).

D.2 Thermodynamic rate law with fixed kinetic efficiency

The thermodynamic rate law with fixed kinetic efficiency reads:

vi = εi k
cat
i

(
1− e−θi

)
= εi k

cat
i

(
1− si

si−1 Keq
i

)
. (66)

where θi ≡ ln
(

si−1K
eq
i

si

)

D.2.1 Steady-state concentrations

Assuming steady-state (i.e. all fluxes are equal to J), we can find a simple recursion formula for the concentration
of si:

si = si−1K
eq
i (1− J · (εikcati )−1) . (67)

Solving the recursion for sn we get:

sn = sn−1K
eq
n (1− J · (εnkcatn )−1) = . . . = s0

n∏
i=1

Keq
i (1− J · (εikcati )−1) = s0K

eq
tot

n∏
i=1

(1− J · (εikcati )−1) , (68)

where we used the fact that Keq
tot =

∏i
j=1 K

eq
i .

The driving force of the entire pathway, which we denote by θtot, is the sum of all the individual driving forces:

θtot =
n∑

i=1

θi =
n∑

i=1

ln

(
si−1K

eq
i

si

)
= ln

(
n∏

i=1

si−1/si

)
+ ln

(
n∏

i=1

Keq
i

)
= ln (s0/sn) + ln (Keq

tot) . (69)

Since θtot depends only on Keq
tot, s0, and sn – all of which are constant – it is a constant as well. Therefore, we can

use this result to rewrite Equation (68) as:

θtot = −
n∑

i=1

ln (1− J · (εikcati )−1) . (70)
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D.2.2 Minimum enzyme demand / maximal flux

Directly solving the flux maximization problem using Equation (70) would be difficult, because it cannot be solved
analytically to find an expression for J as a function of enzyme levels. However, it is rather simple to do the
opposite and express the enzyme levels as functions of J and the other parameters, sum them up and compare to
the total (εtot):

εi =
J

kcati (1− e−θi)
= J

αi

1− e−θi

εtot
J

≥ 1

J

∑
i

εi =
∑
i

αi

(
1− e−θi

)−1
(71)

where we define αi ≡ 1/kcati for simplicity.

Minimizing εtot/J is an optimization problem that can be solved directly using the si as variables, but it can be
easier to solve if we consider the θi to be the independent variables instead. This variable switch is justified because
there is a linear homomorphism between the two sets {ln si}n−1

i=1 and {θi}ni=1, given fixed s0 and sn and under the
constraint that

∑
θi = θ.

Now, we want to find an optimal set of values for the driving forces, denoted θi
∗, that sum up to θ and maximize

J (similarly, J∗ and εi
∗ would be the corresponding values of J and εi at the optimum).

Lemma D.1. The values of xi that minimize the function
∑

i αi

(
1− e−θi

)−1 under the constraint
∑

i xi = xtot,
satisfy

xi = 2 sinh−1
(√

Ψαi

)
(72)

for some Ψ ∈ R.

Proof. Using Lagrange’s method, we first define L =
∑

i
αi

1−e−xi
+ λ (

∑
i xi − xtot)

0 =
∂L
∂xi

=
αie

−xi

(1− e−xi)2
+ λ = αi

(
exi/2 − e−xi/2

)−2

+ λ√
−αi

λ
= exi/2 − e−xi/2 = 2 sinh(xi/2)

xi = 2 sinh−1

(√
αi

−4λ

) (73)

and if we define Ψ = − 1
4λ , we can see that it proves the lemma.

Using Lemma (D.1), one can see that the optimal distribution of driving forces satisfies the following relationship,
for some value of Ψ

θi
∗ = 2 sinh−1

(√
Ψαi

)
(74)

where the exact value of Ψ can be determined by applying the constraint on the sum of θi from Eq. (69):

ln

(
s0
sn

Keq
tot

)
= θtot =

∑
i

θi
∗ = 2

∑
i

sinh−1
(√

Ψαi

)
= 2

∑
i

ln
(√

Ψαi +
√
1 + Ψαi

)
. (75)

Unfortunately, there is no analytical solution to this equation. Nevertheless, the function on the left-hand side
is strictly monotonically increasing with Ψ (in the entire range Ψ ∈ R), so solving it numerically should be
straightforward. Nevertheless, we can still express

(
1− e−θi

)−1 as a function of Ψ:(
1− e−θi

)−1
=
(
1− e−2·sinh−1(

√
Ψαi)

)−1

=
1

2
+

1

2

√
1 + (Ψαi)−1 , (76)

where we use the fact that 1− e−2·sinh−1(x) = 2/(1+
√
1 + x−2). Therefore, the solutions for the maximal flux and

individual enzyme allocations would be:

J∗ =
εtot∑

i αi (1− e−θi)
−1 =

εtot∑
i αi

(
1
2 + 1

2

√
1 + (Ψαi)−1

)
εi

∗ = J∗αi

(
1

2
+

1

2

√
1 + (Ψαi)−1

)
.

(77)
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D.2.3 Limit of small driving forces

If we further assume that the total driving force θtot is small (and therefore also each one of the reaction driving
forces θi is even smaller), then we can write:

J ≤ εtot ·

(∑
i

1

kcati

· 1

1− e−θi

)−1

≈ εtot ·

(∑
i

1

kcati θi

)−1

(78)

As we did before, the solution for J∗ can be found by minimizing εtot/J under the constraint
∑

i θi = θtot, using
the Lagrange method: L =

∑
i

1
kcat
i θi

+ λ(
∑

i θi − θtot).

0 =
∂L
∂θi

= − 1

kcati · (θi∗)2
+ λ (79)

θi
∗ =

1√
λkcati

. (80)

By applying the constraint θtot =
∑

i θi
∗ = λ−1/2

∑
i

√
1/kcati ⇒

√
λ = θ−1

tot · (
∑

i

√
1/kcati ), we can write:

θi
∗ = θtot

√
1/kcati∑

i

√
1/kcati

J∗ = εtot ·

(∑
i

1

kcati θi
∗

)−1

=
θtot εtot(∑
i

√
1/kcati

)2 =
θtot εtot
||α|| 1

2

(81)

and furthermore, we can see that:

εi
∗ =

J∗

kcati θi
∗ ∝ 1

kcati θi
∗ ∝ 1

kcati

√
1/kcati

=
√
1/kcati =

√
αi . (82)

D.2.4 Connectivity theorem

The unscaled metabolite elasticities for the thermodynamic rate law read

Evl
si ≡ ∂vl

∂si
=

∂

∂si
εlk

cat
l

(
1− e−θl(s)

)
= εl k

cat
l e−θl

∂θl
∂si

=
(
εl k

cat
l − J

) ∂θl
∂si

. (83)

In the last step we used the fact that εl k
cat
l e−θl = εl k

cat
l − εl k

cat
l (1 − e−θl) = εl k

cat
l − J . With flux control

coefficients proportional to (εl k
cat
l − J)−1, we can now derive the connectivity theorem for each metabolite si,∑

l

CJ
l EJl

si ∝
∑
l

(εl k
cat
l − J)−1(εl k

cat
l − J)

∂θl
∂si

=
∑
l

∂θl
∂si

=
∑
l

nil

si
= 0. (84)

Here we used θl = θ◦l +
∑

i nil ln si with derivative ∂θl
∂si

= nil

si
(in the second but last step), and the fact that our

reactions are uni-molecular, with stoichiometric coefficients of 1 for substrate and products (in the last step).

D.2.5 Flux control coefficients

Turning Eq. (69) to an equality constraint:

Y ≡
n∏

i=1

(
1− J(εi k

cat
i )−1

)
− sn

s0

1

Keq
tot

= 0. (85)

This equation implicitly determines the flux J (given the enzyme levels εi and the external concentrations s0 and
sn). Since J ≤ εi k

cat
i , all product terms are positive and decreasing in J , and so the entire product is a decreasing

function of J . This means that there can be only one solution with a positive flux. While Eq. (85) cannot be solved
for J directly, it determines J implicitly and is sufficient for computing the flux response coefficients. For doing
this we use the following lemma:

27

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.30.547243doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.30.547243
http://creativecommons.org/licenses/by/4.0/


Lemma D.2. We consider two variables x and y, constrained by an equality f(x, y) = 0. We assume that for
each given value of x, the constraint is satisfied by a single value of y, which we call y = g(x). To compute the
derivative ∂g(x)/∂x directly f(x, y), without an explicit expression for g(x), we insert g(x) and write the constraint
as h(x) = f(x, g(x)) = 0. With the chain rule, we can write this as 0 = ∂h(x)

∂x = ∂f(x,y)
∂x |y=g(x)+

∂f(x,y)
∂y |y=g(x)

∂g(x)
∂x ,

which yields

∂g(x)

∂x
= −∂f(x, y)/∂x

∂f(x, y)/∂y
|y=g(x) (86)

To compute the flux control coefficients, we read Eq. (85) as a constraint between εi and J , given all other enzyme
levels, which is solved by a function J(εi). To compute the derivative ∂J/∂εi (assuming all other enzyme levels
are constant), we set x → εi; y → J ; g(x) → J(εi); and f(x, y) → Y(εi, J), and obtain:

RJ
εl
=

∂J

∂εl
= −∂Y

∂εl

(
∂Y
∂J

)−1

= −
∏

i ̸=l(1− J · (εi kcati )−1)∏n
i=1(1− J · (εi kcati )−1)

·
−J · (kcatl )−1 · ε−2

l∑n
i=1

−(εi kcat
i )−1

1−J·(εi kcat
i )−1

= − 1

1− J · (εl kcatl )−1
·

J · (kcatl )−1 · ε−2
l∑n

i=1(εi k
cat
i − J)−1

= − J

εl
· (εl k

cat
l − J)−1∑n

i=1(εi k
cat
i − J)−1︸ ︷︷ ︸

CJ
l

.

(87)

The result is simple: the control coefficients (CJ
l ) are proportional to (εl k

cat
l − J)−1 and are normalized to a sum

of 1 as required by the summation theorem.

D.2.6 Concentration control coefficients

Using Eq. (68), which we can solve for any sj in the same way as for sn, we obtain sj = s0
∏j

i=1 K
eq
i (1−J ·(εikcati )−1)

Rsj
εl

=
∂sj
∂εl

= s0

j∏
i=1

Keq
i (1− J · (εikcati )−1)︸ ︷︷ ︸

sj

·
∂
∂εl

(1− J · (εlkcatl )−1)

1− J · (εlkcatl )−1︸ ︷︷ ︸
Z

(88)

if l ≤ j (otherwise 0). The first product term is simply sj . The second product term can be rewritten as:

Z = −
∂J
∂εl

· (εl kcatl )−1 + J · (kcatl )−1ε−2
l

1− J · (εlkcatl )−1
= −

R
sj
εl + Jε−1

l

εlkcatl − J

=

J
εl

(εl kcat
l −J)−1∑n

i=1(εi kcat
i −J)−1 − J

εl

εlkcatl − J
=

J

εl
·

(εl kcat
l −J)−1∑n

i=1(εi kcat
i −J)−1 − 1

εlkcatl − J
=

J

εl
·

1∑n
i=1(εi kcat

i −J)−1 − εl k
cat
l + J

(εl kcatl − J)−2

(89)

Putting all this together, we obtain the concentration control coefficients

C
sj
l =

R
sj
εl

J/εl
= sj

[ 1∑n
i=1(εi kcat

i −J)−1 − εl k
cat
l + J

(εl kcatl − J)−2

]
. (90)

Again, this holds only for l ≤ j (otherwise C
sj
l = 0).

D.2.7 Enzyme-control rule

To show that the control coefficients Eq. (33) satisfy the enzyme-control rule, we assume that the rule is correct,
insert our formula for control coefficients, derive an expression for the enzyme levels, and compare the result to our
known formula Eq. (77). We do this now step by step. Starting from the proportionality

CJ
l ∝ 1

εl kcatl − J
∝ εl (91)
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we obtain

⇒ 1

ε2l kcatl − J εl
= const = 1/a

⇒ ε2l kcatl − J εl − a = 0

⇒ ε2l −
J

kcatl

εl −
a

kcatl

= 0

⇒ εl =
J

2 kcatl

±

√(
J

2 kcatl

)2

+
a

kcatl

=
J

kcatl

(
1

2
± 1

2

√
1 + kcatl

4 a

J2

)
(92)

The solution with a minus sign is physically meaningless and can be discarded. Remember that we defined
αi ≡ 1/kcati , so we can rewrite Eq. (92) as

εi = Jαi

(
1

2
+

1

2

√
1 + (Ψαi)−1

)
(93)

Where we also replaced J2/(4a) with Ψ by comparing this solution to Eq. (77) (and due to the fact that the value
of this constant is uniquely determined by the constraint

∑
i εi = εtot).

D.2.8 A note on Max-min Driving Force

The Max-Min Driving Force method (MDF) is a heuristics for finding realistic metabolite concentrations in a
metabolic model with known flux directions. It relies on the fact that very small driving forces lead to very large
enzyme demands and should be avoided. This heuristics can be seen as a way to reduce enzyme cost. To see this,
we start from the thermodynamic rate law and compute the enzyme demand:

εl =
vl
kcatl

1

1− e−θl
≥ vl

kcatl

max(1,
1

θl
). (94)

where we use the fact that e−x ≥ max(0, 1−x). Let us now consider an unbranched pathway with a steady forward
flux and a given overall driving force θ. In this case, we obtain the constraints θl ≥ 0 and

∑
l θl = θ. The forces

θl are not free variables, but a function θl = lnKeq
l − (ln cl − ln cl−1) of the metabolite concentrations, which in

turn are constrained by physiological ranges. Let us see how the MDF principle can be derived from our present
optimality problem, flux maximization at a fixed enzyme budget. Since pathway flux and total enzyme demand
scale proportionally at given metabolite concentrations, this flux maximization is equivalent to minimizing the total
enzyme demand

∑
l εl at a given flux. With Eq. (94), we can approximate this demand as

∑
l

εl ≥
n∑

l=1

vl
kcatl

+
∑

l:θl<1

vl
kcatl

(
1

θl
− 1

)
≤

n∑
l=1

vl
kcatl

+ maxl:θl<1
vl
kcatl

(
1

θl
− 1

)
. (95)

The first term describes a constant enzyme demand, representing a hypothetical model in which all enzymes work
at their maximal speed. The second term concerns reactions with driving forces smaller than 1 (if such reactions
exist) and denotes the maximal value of vl

kcat
l

(
1
θl

− 1
)

among these reactions. To minimize the overall enzyme
demand, we choose the heuristics of minimizing this term. This is equivalent to maximizing

minl:θl<1
kcatl

vl
θl. (96)

where l runs over all reactions with a driving force smaller than 1. Thus, in the resulting state, the smallest
driving force across the pathway (weighted by kcat

l

vl
), should be as large as possible. The original MDF driving

force method employs some additional simplifications. First, we neglect the prefactor kcat
l

vl
(assuming that nothing

is known about enzyme kinetics. Second, if all the reactions have driving forces larger than 1, we let the index l
run over all reactions, assuming that the smallest driving force will still cause the largest enzyme cost.
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D.3 Reversible mass-action kinetics

D.3.1 Steady-state concentrations

Here we will show the full derivation of the optimal solution in the reversible mass-action case. We start by
reminding ourselves that the rate law for each reaction is given by:

vi = εi β
−1
i (si−1 − si/K

eq
i ) . (97)

and the pathway flux is thus (as in Eq. (25)):

J = εtot

(∑
i

βi

si−1 − si/K
eq
i

)−1

. (98)

where we replaced the inequality by an equality since we are looking for the maximal flux.

While J can in theory be maximized by equating the gradient with respect to all metabolite levels to 0, the resulting
system of equations would be difficult to solve. Instead, we will use a different approach that involves finding an
expression for J as a function of the different enzyme levels (rather than metabolite levels).

First, we use Eq. (97) to generate a formula for si, and by equating vi = J and applying it recursively we get:

s1 = Keq
1

(
s0 −

Jβ1

ε1

)
s2 = Keq

2

(
s1 −

Jβ2

ε2

)
= Keq

2

(
Keq

1

(
s0 −

Jβ1

ε1

)
− Jβ2

ε2

)
= s0K

eq
1 Keq

2 − J

(
β1

ε1
Keq

1 Keq
2 +

β2

ε2
Keq

2

)
s3 = s0K

eq
1 Keq

2 Keq
3 − J

(
β1

ε1
Keq

1 Keq
2 Keq

3 +
β2

ε2
Keq

2 Keq
3 +

β3

ε3
Keq

3

)
...

sn = s0

n∏
i=1

Keq
i − J

n∑
j=1

βj

εj

n∏
i=j

Keq
i = s0 Keq

tot − J
n∑

j=1

γj
εj

(99)

where we use the fact that Keq =
∏n

i=1 K
eq
i (i.e. the equilibrium constant of the pathway net reaction), and

substituting γj ≡ βj

∏n
i=j K

eq
i . Solving for J we get:

J =
s0 Keq

tot − sn∑n
j=1 γj(εj)

−1
. (100)

D.3.2 Minimum enzyme demand / maximal flux

Now, in order to maximize J we need to minimize the denominator (the numerator is a constant). The variables
(εj) have to satisfy the constraint

∑
j εj ≤ εtot. To find the minimal value for the denominator, we can use the

Lagrange method:

0 =
∂

∂εj

 n∑
j=1

γj(εj)
−1 − λ

∑
j

εj − εtot


εj∗

= −γj(εj
∗)−2 − λ (101)

which leads us to conclude that εj
∗ ∝ √

γj . Since we know the sum of all the enzyme levels, εtot, we can also find
the proper scaling factor, i.e.:

εj
∗ = εtot

√
γj∑n

j=1

√
γj

= εtot

√
γj

||γ|| 1
2

(102)

where γ is the vector of all γj , and || · || 1
2

is the l1/2 norm.

30

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.30.547243doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.30.547243
http://creativecommons.org/licenses/by/4.0/


Furthermore, we can calculate the maximal achievable flux J∗ by plugging in the εj
∗ values:

J∗ =
s0 Keq

tot − sn∑n
j=1 γj(εj

∗)−1
=

s0 Keq
tot − sn∑n

j=1 γj
1

εtot

√
||γ|| 1

2

γj

= εtot
s0 Keq

tot − sn√
||γ|| 1

2

∑n
j=1

√
γj

= εtot
s0 Keq

tot − sn
||γ|| 1

2
(103)

Another useful perspective that we can draw this optimization, is looking at optimal ratios between consecutive
enzymes:

εj
∗

εj−1
∗ =

√
γj

γj−1
=

√
βj

βj−1 Keq
j

=

√
KM,j kcatj−1

KM,j−1 kcatj Keq
j

. (104)

Interestingly, the ratio depends only on the KM and kcat values of the two reactions and is independent of all other
enzymes in the system. This might be a design principle supporting for the existence of regulatory mechanisms
that ensure these ratios are maintained even if the total expression level changes, or when some sub-pathways are
re-used in different contexts of metabolism.

D.3.3 Flux control coefficients

The steady-state flux is given by Eq. (100). By taking the partial derivative with respect to enzyme levels, we
obtain the response coefficients

RJ
εl
=

∂

∂εl

s0 Keq
tot − sn∑n

i=1 γi/εi
= −s0 Keq

tot − sn
(
∑n

i=1 γi/εi)
2
·
(
− γl
ε2l

)
= J

γl/ε
2
l∑n

i=1 γi/εi
. (105)

After dividing by the enzyme elasticities Evl
εl

= J/εl, we obtain the control coefficients

CJ =
RJ

εl

Evl
εl

=
γl/εl∑n
i=1 γi/εi

. (106)

D.3.4 Connectivity theorem for flux control coefficients

The connectivity theorem for flux control coefficients reads CJ Ev
c = 0. Here we show this explicitly for an

unbranched pathway with reversible mass-action kinetics. With the control coefficients Eq. (106) and the metabolite
elasticities for the reversible mass action rate law

Evl
ci = εl β

−1
l (δi,l−1 − δil/K

eq
l ). (107)

we obtain

(CJ Ev
c )i =

∑
l

γl/εl∑
j γj/εj

εl β
−1
l (δi,l−1 − δil/K

eq
l ) ∝

∑
l

γl β
−1
l (δi,l−1 − δil/K

eq
l )

= γi+1 β−1
i+1 − γi β

−1
i · 1/Keq

i

=
n∏

j=i+1

Keq
j −

n∏
j=i

Keq
j · 1/Keq

i

=
n∏

j=i+1

Keq
j −

n∏
j=i+1

Keq
j = 0 .

(108)

D.3.5 Enzyme-control rule

The enzyme levels in optimal state Eq. (26) read

ε∗l = εtot

√
γl

||γ|| 1
2

. (109)
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By inserting this into the formula Eq. (106) for control coefficients, we obtain (where the constant denominator is
a normalisation term)

CJ
l

∗ ≡
γl

(
εtot
√

γl

||γ|| 1
2

)−1

const
∝ √

γl, (110)

which is proportional to the enzyme level ε∗l itself.

D.4 Haldane rate law

D.4.1 Steady-state concentrations

For this derivation, we first use the notation in the original publication by Heinrich and Klipp [17]. For a unbranched
chain at steady-state (with flux J in all reactions), the Haldane rate law dictates that:

J =
vmax
+l sl−1/K

S
l − vmax

−l sl/K
P
l

1 + sl−1/KS
l + sl/KP

l

. (111)

Using this formula, we can solve for sl given all other parameters (including sl−1) and get the following recursion:

sl = sl−1
KP

l

KS
l

vmax
+l − J

vmax
−l + J

− J
KP

l

vmax
−l + J

(112)

which can be solved to give:

ssteadyl = s0

(
l∏

i=1

KP
i

KS
i

vmax
+i − J

vmax
−i + J

)
− J

l∑
i=1

KS
i

vmax
+i − J

l∏
j=i

KP
j

KS
j

(vmax
+j − J)

(vmax
−j + J)

(113)

From now on, we will replace vmax
±i with εi · kcat±i in order to better match the notation of this paper. If we use the

solution for the steady-state concentration of sn we can write:

f(J ; ε) ≡ s0

(
n∏

i=1

KP
i

KS
i

εik
cat
+i − J

εikcat−i + J

)
− J

n∑
i=1

KS
i

εikcat+i − J

n∏
j=i

KP
j

KS
j

(εik
cat
+j − J)

(εikcat−j + J)
− sn = 0 . (114)

Solving this equality (i.e., finding the roots of f(J ; ε)) would give us an expression for J(ε) – the flux as a function
of the enzyme levels. This can be used in different ways. First, we can determine the flux response coefficients
by implicit differentiation (Lemma D.2: RJ

εi = −∂f/∂εi
∂f/∂J ), and by dividing by J/εi we obtain the flux control

coefficients. Second, we can find an optimal metabolic state by minimizing
∑

i εi at a given flux J , and requiring
Eq. (114) as a constraint (with Lagrange multiplier λ). Optimization using the Lagrange method would lead to
the optimality condition ∂f/∂εi = λ. However, since the derivatives are complicated and J and λ are unknown,
this is hard to solve.

The most efficient method we currently have for solving this optimization problem is, unfortunately, not analytical.
First, we start by writing εtot/J as a function of the metabolite concentrations:

εtot
J

=

∑
i εi
J

=
∑
i

1 + si−1/K
S
i + si/K

P
i

kcat+i si−1/KS
i − kcat+i si/KP

i

. (115)

We showed previously that this function is convex with respect to the metabolite log-concentrations (ln s) and
therefore has a single (global) minimum which is simple to find numerically [35, 36].

D.5 Reactions with several substrates and products: effective kinetic constants

The pathways we consider in this paper consist of uni-uni reactions S ↔ P. Here we show how the results can be
applied to reactions with several substrates and products, assuming that only one of the substrates and one of
the products have variable concentrations, while all other concentrations are fixed. As an example, we consider a
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reaction with stoichiometric coefficients of 1, substrates s (variable) and a (constant), and products p (variable)
and b (constant). There are various ways to generalize the Haldane rate law to reactions with several substrates
or products. One of them, the convenience kinetics [33], for this reaction reads

v = ε
kcat+ s/KS a/KA − kcat− p/KP b/KB

(1 + s/KS)(1 + a/KA) + (1 + p/KP)(1 + b/KB)− 1
. (116)

Setting σ = a/KA and π = b/KB, we obtain

v = ε
kcat+ σ s/KS − kcat− π p/KP

(1 + s/KS)(1 + σ) + (1 + p/KP)(1 + π)− 1

= ε
kcat+ σ s/KS − kcat− π p/KP

(1 + σ) + (1 + π)− 1 + (1 + σ)s/KS + (1 + π)p/KP

= ε
σ

1+σ+πk
cat
+ s/KS − π

1+σ+πk
cat
− p/KP

1 + 1+σ
1+σ+π s/KS + 1+π

1+σ+π p/KP

(117)

and by defining

K̂S =
1 + σ + π

1 + σ
KS, K̂P =

1 + σ + π

1 + π
KP

k̂cat+ =
σ

1 + σ
kcat+ , k̂cat− =

π

1 + π
kcat−

(118)

we can write this in the form of our uni-uni rate law:

v = ε ·
k̂cat+ s/K̂S − k̂cat− p/K̂P

(1 + s/K̂S) + (1 + p/K̂P)− 1
(119)

with effective (̂·) parameters. From the Haldane relationship, we obtain the effective equilibrium constant:

K̂eq =
k̂cat+

k̂cat−
· K̂P

K̂S

=
σ

π
����(1 + π)

����(1 + σ)

kcat+

kcat−
· ������
(1 + σ + π)

������
(1 + σ + π)

����(1 + σ)

����(1 + π)

KP

KS
=

a

b

kcat+

kcat−

KPKB

KSKA
=

a

b
Keq , (120)

where we used the Haldane relationship for the original reaction: Keq =
kcat
+

kcat
−

KPKB

KSKA
.

The driving force θ = lnKeq − ln p b
s a of a reaction, as a thermodynamic quantity, cannot depend on how the rate

law is written. With the original rate law, it depends on the (true) equilibrium constant as well as on all four
reactant concentrations. But if we ignore A and B in the rate law and simply define our equilibrium constant
as the ratio beq/aeq in some imagined equilibrium state, the resulting driving force would be different from our
original driving force and the term 1 − e−θ will be wrong or, even worse, the new θ will have the opposite sign
and be opposite to the flux direction. To avoid this problem, there are two possibilities: either we use the effective
equilibrium constant Eq. (120), which contains the constant ignored concentrations, or we compute the driving
force with an "external" extra term,

θ = lnKeq − ln
b

a︸︷︷︸
θext

− ln
p

s
. (121)

If we compare the thermodynamic force to voltage in an electric circuit, A and B would act like an external voltage
source.

D.6 Enzyme-control rule in models with constraints on enzyme and metabolite levels

We assume an unbranched metabolic pathway in steady state. The steady state fluxes v = vsteady(ε) and steady-
state metabolite concentrations s = ssteady(ε), differentiated by εl, yield the response coefficients Rvi

εl
= ∂vsteadyi /∂εl

and Rsi
εl

= ∂ssteadyi /∂εl. We now consider the optimality problem (same as in 37):

Maximize z · v s.t. a · ε+ b · s ≤ ρ
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where v, s, and ε denote reaction fluxes, metabolite concentrations, and enzyme levels. The maximization objective
is a linear benefit function scoring the fluxes, z · v with linear weights zi, while the constrained density is linear
in all the concentrations, with linear weights al (for enzymes) and bi (for metabolites), e.g. representing effective
molecule sizes. Optimization with a Lagrange multiplier λ yields

Maximize L(ε) = z⊤vsteady(ε)− λ
[
a⊤ε+ b⊤ssteady(ε)− ρ

]
, (122)

where z is the flux weight vector, a and b are the molecular masses of the enzymes and metabolites (respectively),
and ρ is the upper bound on the total density. The Lagrangian yields the optimality condition:

0 =
∂L
∂ε

= z⊤
∂vsteady

∂ε
− λ

[
a⊤ + b⊤ ∂ssteady

∂ε

]
= z⊤Rv

ε − λ
[
a⊤ + b⊤Rs

ε

]
⇒ a⊤ =

1

λ
z⊤Rv

ε − b⊤Rs
ε .

(123)

By splitting the response matrices into control and enzyme elasticity matrices, Rx
ε = CxEv

ε = Cx diag(v) diag(ε)−1,
we next obtain

a⊤ =

[
1

λ
z⊤ Cv − b⊤Cs

]
diag(v) diag(ε)−1

⇒ ε⊤ diag(a) diag(v)−1 =

[
1

λ
z⊤Cv − b⊤Cs

]
.

(124)

In the case of an unbranched pathway, i.e. with the same steady-state vsteadyi = J in all reactions, we can arbitrarily
chose a benefit function z⊤ = (1, 0, . . . , 0) which will give use z⊤v = v1 = J . In this case z⊤Cv will simply be the
first column of the Cv matrix, which we will refer to as CJ . In addition, we can chose density constraints with
uniform weights for all enzymes and for all metabolites (a = a1, b = b1). Then, the enzyme profile becomes:

ε =
J

a

[
1

λ
CJ − b 1⊤Cs

]
(125)

Our new enzyme-control rule thus reads, as a proportionality (and marking again the optimal state by ∗)

ε∗l ∝ CJ∗
l − λ b

∑
i

Csi∗
l . (126)

In our density constraint in Eq. (37), with a predefined overall density ρ, there is no explicit bound εtot on the
sum of enzyme levels. However, given the sum of enzyme levels ε∗tot that emerges from the solution, we obtain an
explicit enzyme-control rule with no unknown parameters. To derive it, we write Eq. (125) in the form

ε∗l =
J

a λ
CJ∗

l − bJ∗

a

∑
i

Csi∗
l (127)

We can then sum over l and get:

ε∗tot =
∑
l

ε∗l =
J∗

a λ

∑
l

CJ∗
l − bJ∗

a

∑
i

∑
l

Csi∗
l =

J∗

a λ
· 1− bJ

a
·
∑
i

0, (128)

where in the last step we used the summation theorems for fluxes and metabolite concentrations. Since λ =
J∗ (aεtot)

−1, the optimal enzyme levels read

ε∗l = ε∗tot C
J∗
l − b

a
J∗ ∑

i

Csi∗
l . (129)

D.7 Sufficient condition for stable states in unbranched pathways

Here we show, for an unbranched metabolic pathway, that a steady state is stable if (but not only if) the first
reaction 1 is reversible (i.e. has a non-zero product elasticity), if the last reaction is not completely saturated
(i.e. has a non-zero substrate elasticity), and if in all other reactions the substrate elasticity is larger than the
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(absolute) product elasticity. For a reversible mass-action rate law, the first two conditions are satisfied and the
latter condition is satisfied if k+i > k−(i−1).

Proof A state is asymptotically stable if all the Jacobian eigenvalues are negative (i.e. they have negative real
parts). A sufficient (but not necessary) condition for stable metabolic states can be obtained from the Gershgorin’s
disc theorem, which we recall here:

Theorem D.3. Let A be a square matrix. Each diagonal element aii is associated with a closed disc si =
Di(aii,

∑
j |aij |)) in the complex plane, with center aii and radius

∑
j |aij |. The theorem states that all eigenvalues

of A must lie in the union of all these discs. Since the theorem applies both two A and to its transpose, each
diagonal element gives rise to two discs with the same center, but different radii

∑
j |aij | and

∑
j |aji|.

For a real-valued matrix, this means: our system is stable if for all i, aii+
∑

j |aij | < 0 or if for all i, aii+
∑

j |aji| < 0.

As an example, we now consider an unbranched metabolic chain with 4 reactions and 3 internal metabolites A, B,
C:

S
1→ A

2→ B
3→ C

4→ P (130)

The system has no conservation relations. From the stoichiometric matrix

N =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 (131)

and the metabolite elasticity matrix

Ec =


−g1A 0 0
g2A −g2B 0
0 g3B −g3C
0 0 g4C

 , (132)

where all g are positive, we obtain the Jacobian

A = N Ec

 −(g1A + g2A) g2B 0
g2A −(g2B + g3B) g3C
0 g3B −(g3C + g4C)

 . (133)

From the condition for matrix columns6, we obtain the sufficient stability conditions

−(g1A + g2A) + g2A < 0

−(g2B + g3B) + (g2B + g3C) < 0

−(g3C + g4C) + g3C < 0.

(135)

To guarantee a stable steady state, all three inequalities must be satisfied. The latter conditions are satisfied
whenever g1A > 0 (reaction 1 is not completely irreversible), g4C > 0 (reaction 4 is not completely saturated), and
g3B > g3C (the substrate elasticity of the reaction 3 is larger than its (absolute) product elasticity). For longer
metabolic chains, we obtain the same type of conditions: the steady state will be stable if (but not only if) the
first reaction is not completely irreversible, the last reaction is not completely saturated, and in every reaction in
between, the substrate elasticity is larger than the (absolute) product elasticity.

6From the condition for rows, we would obtain another (alternative) set of sufficient conditions

−(g1A + g2A) + g2B < 0

−(g2B + g3B) + (g2A + g3C) < 0

−(g3C + g4C) + g3B < 0.

(134)

These conditions are satisfied, for example, if all elasticities are non-zero, if the product elasticity of the first reaction is equal or bigger
than the product elasticity of the second reaction, if the substrate elasticity of the last reaction is equal or bigger that the substrate
elasticity of the second but last reaction, and if g2A − g2B < g3B − g3C . For a reversible mass-action kinetics v = e[k+s− k−p] the latter

condition would mean: ε2[k2+ − k2−] < ε3[k3+ − k3−] or ε3
ε2

>
k2
+−k2

−
k3
+−k3

−
=

vstd
2

vstd
3

where the “standard velocity” vstdl denotes the rate that

reaction l would show at unit metabolite and enzyme levels.
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