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Artificial intelligence for fish behavior recognition may unlock fishing gear selectivity
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Through the advancement of observation systems, our vision has far extended its reach into the world of fishes, and how they interact with fishing gears-breaking through physical boundaries and visually adapting to challenging conditions in marine environments. As marine sciences step into the era of artificial intelligence (AI), deep learning models now provide tools for researchers to process a large amount of imagery data (i.e., image sequence, video) on fish behavior in a more time-efficient and cost-effective manner. The latest AI models to detect fish and categorize species are now reaching human-like accuracy. Nevertheless, robust tools to track fish movements in situ are under development and primarily focused on tropical species. Data to accurately interpret fish interactions with fishing gears is still lacking, especially for temperate fishes. At the same time, this is an essential step for selectivity studies to advance and integrate AI methods in assessing the effectiveness of modified gears. We here conduct a bibliometric analysis to review the recent advances and applications of AI in automated tools for fish tracking, classification, and behavior recognition, highlighting how they may ultimately help improve gear selectivity. We further show how transforming external stimuli that influence fish behavior, such as sensory cues and gears as background, into interpretable features that models learn to distinguish remains challenging. By presenting the recent advances in AI on fish behavior applied to fishing gear improvements (e.g., Long Short-Term Memory (LSTM), Generative Adversarial Network (GAN), coupled networks), we discuss the advances, potential and limits of AI to help meet the demands of fishing policies and sustainable goals, as scientists and developers continue to collaborate in building the database needed to train deep learning models.

Introduction

In observing fishes, the human eye can efficiently distinguish swimming movements, where the fish is, how it is swimming, how it is interacting with other fishes and its environment [START_REF] He | Behavior of marine fishes : capture processes and conservation challenges[END_REF]. For ethologists, interpreting behaviors from visual observations come almost instantaneously. As developments of non-invasive and autonomous underwater video cameras continue to advance [START_REF] Graham | Review of technological advances for the study of fish behaviour in relation to demersal fishing trawls[END_REF][START_REF] Moustahfid | Advances in fisheries science through emerging observing technologies[END_REF], behavioral observations can now be derived from a plethora of high-resolution marine imagery and videos [START_REF] Logares | Oceans of big data and artificial intelligence[END_REF]. The reach of human vision continues to extend as cameras can be used in most conditions [START_REF] Shafait | Fish identification from videos captured in uncontrolled underwater environments[END_REF][START_REF] Christensen | Detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks; detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks[END_REF][START_REF] Jalal | Fish detection and species classification in underwater environments using deep learning with temporal information[END_REF], such as light, dark and muddy underwater conditions, and can go to greater depth and longer periods [START_REF] Torres | A time-extended (24 h) baited remote underwater video (BRUV) for monitoring pelagic and nocturnal marine species[END_REF][START_REF] Bilodeau | A low-cost, long-term underwater camera trap network coupled with deep residual learning image analysis[END_REF]Xia et al., 2022). Cameras can now provide vision in 2D or 3D into how fishes interact with fishing gears used to capture marine species (e.g., pots, lines, trawls and nets) where behavior can be recorded by an observation system. It allowed direct vision on how gear components affect catches and escapements [START_REF] Graham | By-catch reduction in the brown shrimp, crangon crangon, fisheries using a rigid separation nordmøre grid (grate)[END_REF][START_REF] Nian | ROV-based underwater vision system for intelligent fish ethology research[END_REF]Rosen et al., 2013;[START_REF] Williams | Automated measurements of fish within a trawl using stereo images from a camera-trawl device (CamTrawl)[END_REF][START_REF] Langlois | A field and video annotation guide for baited remote underwater stereo-video surveys of demersal fish assemblages[END_REF][START_REF] Sokolova | A deep learning approach to assist sustainability of demersal trawling operations[END_REF][START_REF] Lomeli | Use of artificial illumination to reduce pacific halibut bycatch in a U.S. West coast groundfish bottom trawl[END_REF] and has opened windows to observe behaviors of fishes in any kind of environmental condition [START_REF] Robert | A methodological framework for characterizing fish swimming and escapement behaviors in trawls[END_REF][START_REF] Cuende | Species separation efficiency and effect of artificial lights with a horizonal grid in the Basque bottom trawl fishery[END_REF].

This marked an important step to capture finer details in the process of fishing gear selectivity (i.e., the gear's ability to retain only targeted species, while avoiding bycatch of vulnerable, unwanted species or undersized individuals). Innovations in gear selectivity continue to bring in new types of selection and bycatch reduction devices added to gear designs (e.g., for review of selective and bycatch reductions devices, see [START_REF] Vogel | Seĺectivitédes engins de peĉhe[END_REF][START_REF] Matt | A review of bycatch reduction in demersal fish trawls[END_REF] for grid, see [START_REF] Brinkhof | Size selectivity and catch efficiency of bottom trawl with a double sorting grid and diamond mesh codend in the northeast Atlantic gadoid fishery[END_REF], for mesh size: [START_REF] Kim | Herding and escaping responses of juvenile roundfish to square mesh window in a trawl cod end[END_REF][START_REF] Aydin | Selectivity of diamond, square and hexagonal mesh codends for Atlantic horse mackerel Trachurus trachurus, European hake Merluccius merluccius, and greater forkbeard Phycis blennoides in the eastern Mediterranean[END_REF]Cuende et al., 2020b;[START_REF] Cuende | Species separation efficiency and effect of artificial lights with a horizonal grid in the Basque bottom trawl fishery[END_REF], for panels: Bullough et al., 2007;[START_REF] Ferro | Separating species using a horizontal panel in the Scottish north Sea whitefish trawl fishery[END_REF]. By observing the influence of these modifications, finer selectivity patterns have been unraveled, highlighting how the visual, hearing and tactile cues that species are sensitive to are key in the capture process of fishes [START_REF] Arimoto | AIAl7dAS&sig=2gJyoWORuHB8iycWs3bu6s_BJug&redir_esc=y#v=onepage&q&f= false[END_REF][START_REF] Yan | Hearing in marine fish and its application in fisheries[END_REF]. As studies in fish vision show differences in behavior across species in relation to their spectral sensitivity [START_REF] Glass | Studies on the use of visual stimuli to control fish escape from codends. i. laboratory studies on the effect of a black tunnel on mesh penetration[END_REF][START_REF] Carleton | Seeing the rainbow: Mechanisms underlying spectral sensitivity in teleost fishes[END_REF], gears continue to be developed with visual components, such as light and color, that aim to make them more or less detectable [START_REF] Ellis | Application of an in situ infrared camera system for evaluating icthyofaunal utilization of restored and degraded mangrove habitats: developing a set of reference conditions from a NERRS site[END_REF][START_REF] Sarria | Studying the behaviour of Norway lobster using RFID and infrared tracking technologies[END_REF][START_REF] Underwood | The response of mesopelagic organisms to artificial lights[END_REF]. Mesh and panel configurations affect tactile cues and herding behavior that can differ among species [START_REF] Ryer | Influence of illumination and temperature upon flatfish reactivity and herding behavior: Potential implications for trawl capture efficiency[END_REF]. Thus, they are continually being tested across different fishing zones [START_REF] Ferro | Separating species using a horizontal panel in the Scottish north Sea whitefish trawl fishery[END_REF]Cuende et al., 2020a) as environmental conditions such as depth and light penetration change fish behavior [START_REF] Blaxter | Sensory performance, behavior, and ecology of fish[END_REF]. Observations of how visual, acoustic, or mechanosensory stimuli elicit fish movement have been extensively studied (e.g., [START_REF] Forlim | Automatic realistic real time stimulation/ recording in weakly electric fish: Long time behavior characterization in freely swimming fish and stimuli discrimination[END_REF][START_REF] Popper | An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes[END_REF][START_REF] Xu | A detailed analysis of the effect of different environmental factors on fish phototactic behavior: Directional fish guiding and expelling technique[END_REF]. Quantifying reactions of fishes to stimuli or gear modifications requires an assessment of their swimming patterns that are highly variable and nonlinear as they are under stress, in constant locomotion [START_REF] Kim | Optomotor response and erratic response: quantitative analysis of fish reaction to towed fishing gears[END_REF][START_REF] Kim | Basic modelling of fish behaviour in a towed trawl based on chaos in decision-making[END_REF] and are affected by several environmental factors [START_REF] Schwarz | The behavior of fishes in their acoustic environment[END_REF][START_REF] Baatrup | Measuring complex behavior patterns in fish -effects of endocrine disruptors on the guppy reproductive behavior[END_REF][START_REF] Yu | Identification methodology of special behaviors for fish school based on spatial behavior characteristics[END_REF][START_REF] Xu | A detailed analysis of the effect of different environmental factors on fish phototactic behavior: Directional fish guiding and expelling technique[END_REF]. Moreover, their movement often differ between individual and group behavior [START_REF] Viscido | Individual behavior and emergent properties of fish schools: a comparison of observation and theory[END_REF][START_REF] Stienessen | The effect of disparate information on individual fish movements and emergent group behavior[END_REF][START_REF] Harpaz | Discrete modes of social information processing predict individual behavior of fish in a group[END_REF][START_REF] Schaerf | The effects of external cues on individual and collective behavior of shoaling fish[END_REF].

As of today, automated tools in fish recognition have been mostly driven by economical frameworks such as in monitoring their welfare on fish farms. [START_REF] Zhou | Near-infrared imaging to quantify the feeding behavior of fish in aquaculture[END_REF][START_REF] Muñoz-Benavent | Automatic bluefin tuna sizing using a stereoscopic vision system[END_REF][START_REF] Cheng | Abnormal water quality monitoring based on visual sensing of three-dimensional motion behavior of fish[END_REF][START_REF] Måløy | A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture[END_REF][START_REF] Bekkozhayeva | Automatic individual noninvasive photo-identification of fish (Sumatra barb Puntigrus tetrazona) using visible patterns on a body[END_REF][START_REF] Yang | Computer Vision Models in Intelligent Aquaculture with Emphasis on Fish Detection and Behavior Analysis: A review[END_REF], in directing migratory trajectories in river passageways [START_REF] Stuart | Can a low-gradient verticalslot fishway provide passage for a lowland river fish community?[END_REF][START_REF] Cooke | Water resource development and sturgeon (Acipenseridae): state of the science and research gaps related to fish passage, entrainment, impingement and behavioural guidance[END_REF][START_REF] Eickholt | Advancements towards selective barrier passage by automatic species identification: Applications of deep convolutional neural networks on images of dewatered fish[END_REF][START_REF] Jones | Using knowledge of behaviour and optic physiology to improve fish passage through culverts[END_REF] and stock assessments [START_REF] Mellody | Robust methods for the analysis of images and videos for fisheries stock assessment: Summary of a workshop robust methods for the analysis of images and videos for fisheries stock assessment[END_REF][START_REF] Myrum | An automatic image-based system for detecting wild and stocked fish (NIK: Norsk Informatikkonferanse)[END_REF][START_REF] Connolly | Improved accuracy for automated counting of a fish in baited underwater videos for stock assessment[END_REF][START_REF] Ovchinnikova | Exploring the potential to use low cost imaging and an open source convolutional neural network detector to support stock assessment of the king scallop (Pecten maximus)[END_REF]. Artificial Intelligence (AI) has thus become a multi-purpose data processing tool in marine science that is integrated in model simulations, predictions of physical and ecological events [START_REF] Chen | Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety[END_REF] and imagery data processing from large-scale to fine-scale observations [START_REF] Beyan | Setting the stage for the machine intelligence era in marine science[END_REF]). Yet, observations are often focused on the temporal aspects of swimming behavior on a 2D-scale [START_REF] Lee | Contour matching for a fish recognition and migration-monitoring system. Two-and Three-Dimensional Vision Systems for Inspection[END_REF][START_REF] Wang | Automatic recognition of fish behavior with a fusion of RGB and optical flow data based on deep learning recognition of fish behavior with a fusion of RGB and optical flow data based on deep learning[END_REF] with lack of spatial depth and 3D components of the real world, providing only a narrow window of their actual behavior as a whole. These movements and their complexity need to be transformed into meaningful metrics derived from video observations [START_REF] Aguzzi | Coastal observatories for monitoring of fish behaviour and their responses to environmental changes[END_REF]Pereira et al., 2020). This requires a tremendous amount of time, focus, effort and is subject to error and incomplete manual observations [START_REF] Huang | Modeling and analysis in marine big data: Advances and challenges[END_REF][START_REF] Guidi | Big data in marine science[END_REF]. This is where AI methods enter [START_REF] Packard | Applications of artificial intelligence to animal behavior[END_REF]: the principle is to translate what the human eye sees and what the brain interprets into computer vision (or machine vision) and artificial neural networks [START_REF] Van Gerven | Editorial: Artificial neural networks as models of neural information processing[END_REF]Boyun et al., 2019). For computer vision, images of fishes and their corresponding features (temporal and spatial) must therefore be translated to numerical units that the computer can understand [START_REF] Aguzzi | Coastal observatories for monitoring of fish behaviour and their responses to environmental changes[END_REF].

Studies and innovations on fish observations over the past decade have successfully generated models that can automatically see fishes on videos, identify taxa and follow their swimming direction with considerable accuracy [START_REF] Hsiao | Real-world underwater fish recognition and identification, using sparse representation[END_REF][START_REF] Nasreddine | Shape-based fish recognition via shape space[END_REF][START_REF] Ravanbakhsh | Automated fish detection in underwater images using shape-based level sets[END_REF][START_REF] Boudhane | Underwater image processing method for fish localization and detection in submarine environment[END_REF][START_REF] Qin | DeepFish: Accurate underwater live fish recognition with a deep architecture[END_REF]Marini et al., 2018;[START_REF] Xu | Underwater fish detection using deep learning for water power applications[END_REF][START_REF] Salman | Real-time fish detection in complex backgrounds using probabilistic background modelling[END_REF][START_REF] Cai | A modified YOLOv3 model for fish detection based on MobileNetv1 as backbone[END_REF][START_REF] Cui | Fish detection using deep learning[END_REF][START_REF] Jalal | Fish detection and species classification in underwater environments using deep learning with temporal information[END_REF][START_REF] Raza | Fast and accurate fish detection design with improved YOLO-v3 model and transfer learning[END_REF][START_REF] Yuan | Underwater image fish recognition technology based on transfer learning and image enhancement[END_REF][START_REF] Ben Tamou | Multi-stream fish detection in unconstrained underwater videos by the fusion of two convolutional neural network detectors[END_REF][START_REF] Cao | Learning-based low-illumination image enhancer for underwater live crab detection[END_REF][START_REF] Crescitelli | NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep neural networks[END_REF][START_REF] Li | Deep neural network-based real time fish detection method in the scene of marine fishing supervision[END_REF][START_REF] Lopez-Marcano | Automatic detection of fish and tracking of movement for ecology[END_REF][START_REF] Knausgård | Temperate fish detection and classification: a deep learning based approach[END_REF]. Despite recent advancements, it remains challenging to train existing AI models (e.g., Convolutional Neural Network, CNN; Faster Recurrent CNN, Faster RCNN; Residual Network, ResNet; Long Short-Term Memory, LSTM; Convolutional 3-dimensional network, C3D, etc.) that could recognize fish behaviors from their swimming movements in 3D [START_REF] Li | Recent advances in intelligent recognition methods for fish stress behavior[END_REF] given the myriad of variability occurring at sea [START_REF] Christensen | Detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks; detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks[END_REF]. Artificial Intelligence may help to further improve the sustainability of fishing as the classical selective studies are reaching a plateau due to bottleneck in data collection inherent to the challenge of obtaining direct, in situ observations. This paper addresses common stimuli that trigger fish reactions from selective devices in fishing gears and how these behavioral responses are transformable into quantifiable metrics with selectivity modeling and classification methods that can be pipelined in AI methods (Section 2). Section 3 presents current state and limitations of AI applied to fish gear interactions through a bibliometric analysis and the recent developments in automatic behavior recognition. The fourth section addresses the hurdles of observing interactions of fishes across fishing gear selectivity studies and how AI methods may help face these challenges.

2 Observing stimuli-response in fishing gears: The teaching base of AI models for behavior recognition "Researchers now realised that, like the rest of the vertebrate kingdom, fishes exhibit a rich array of sophisticated behaviour and that learning plays a pivotal role in behavioural development of fishes. Gone, or at least redundant, are the days where fishes were looked down upon as pea-brained machines whose only behavioural flexibility was severely curtailed by their infamous 3-second memory" [START_REF] Brown | Fish cognition and behavior[END_REF] 

Observations of fish behavior in fishing gears

Early testing, through manual counting, size measurement, and quantification of catches/retention, has paved the way for selective devices and gear modifications to be integrated in the design of commercial fishing gear. Mesh modifications were suggested through empirical approaches by studying catch retention (e.g., catch comparison or covered codend methods) [START_REF] Dealteris | Escapement and survival of fish from the codend of a demersal trawl[END_REF][START_REF] Ordines | Diamond vs. square mesh codend in a multi-species trawl fishery of the western Mediterranean: effects on catch composition, yield, size selectivity and discards[END_REF]Aydin and Tosunòlu, 2010b;Anders et al., 2017b), tank experiments for manual observations of fish passing through meshes [START_REF] Glass | Behavioural studies of the principles underlying mesh penetration by fish[END_REF][START_REF] Glass | Studies on the use of visual stimuli to control fish escape from codends. i. laboratory studies on the effect of a black tunnel on mesh penetration[END_REF] and even numerical approaches which estimates catches a posteriori (e.g., SELECT; [START_REF] Fonseca | Gill-net selectivity off the Portuguese western coast[END_REF]. Optic and sonar imaging rapidly came into play to directly estimate catches during capture (Silicon Intensified Target, SIT camera system, [START_REF] Krag | A study of fish behaviour in the extension of a demersal trawl using a multi-compartment separator frame and SIT camera system[END_REF]acoustic imaging, Ferro et al., 2007), then applied to observe species behavior in gears [START_REF] Mortensen | Effectiveness of fully documented fisheries to estimate discards in a participatory research scheme[END_REF]. Over the years, observing fishes became achievable in various conditions with the breadth of available technology that can be autonomously deployed for ecological and fisheries monitoring [START_REF] Durden | Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding[END_REF][START_REF] Moustahfid | Advances in fisheries science through emerging observing technologies[END_REF].

Example of technological solution to observe behavior in real world condition are presented in Table 1.

Interesting behaviors from fishes have since been unearthed such as anti-predatory responses [START_REF] Rieucau | School density affects the strength of collective avoidance responses in wild-caught Atlantic herring Clupea harengus: a simulated predator encounter experiment[END_REF], encounters of fish with nets [START_REF] Jones | The influence of towing speed and fish density on the behaviour of haddock in a trawl cod-end[END_REF][START_REF] Rudstam | Size selectivity of passive fishing gear: A correction for encounter probability applied to gill nets[END_REF], differences in swimming speed [START_REF] He | Swimming speeds of marine fish in relation to fishing gears[END_REF][START_REF] Breen | Swimming endurance of haddock (Melanogrammus aeglefinus l.) at prolonged and sustained swimming speeds, and its role in their capture by towed fishing gears[END_REF][START_REF] Spangler | Lake Huron fish community structure based on gill-net catches corrected for selectivity and encounter probability[END_REF]Collins, 2011), avoidance (de Robertis and[START_REF] De Robertis | Fish avoidance of research vessels and the efficacy of noise-reduced vessels: A review[END_REF], exhaustion (Krag et al., 2009), orientation (Odling-Smee and[START_REF] Odling-Smee | The role of learning in fish orientation[END_REF][START_REF] Holbrook | Separate encoding of vertical and horizontal components of space during orientation in fish[END_REF][START_REF] Haro | Evaluation of visible light as a cue for guiding downstream migrant juvenile Sea lamprey[END_REF], escapement [START_REF] Glass | Behavioural studies of the principles underlying mesh penetration by fish[END_REF][START_REF] Mandralis | Learning swimming escape patterns for larval fish under energy constraints[END_REF], herding behavior [START_REF] Ryer | Influence of illumination and temperature upon flatfish reactivity and herding behavior: Potential implications for trawl capture efficiency[END_REF], and unique social behaviors (Anders et al., 2017a) from which selectivity studies in gears are based on. Knowledge of fish reaction and escape behavior has thus grown, leading to the development of novel gears with more open meshes, careful placement of sorting grids, and other devices to improve both size and species selectivity [START_REF] Stewart | A review of studies of fishing gear selectivity in the meditteranean[END_REF][START_REF] Watson | Pelagic longline fishing gear: A brief history and review of research efforts to improve selectivity[END_REF][START_REF] Vogel | Seĺectivitédes engins de peĉhe[END_REF][START_REF] O'neill | Discard avoidance by improving fishing gear selectivity: Helping the fishing industry help itself[END_REF]. Gear selectivity might also be improved by triggering active species responses, using light, sound, and physical stimuli (O'Neill and Mutch, 2017).

Current observations of fish stimuli-response 2.2.1 Responses to light and color stimuli

Fish responses to light has been mainly studied in controlled environments and in aquaculture. It is challenging to observe light responses at sea as light attenuation limits the direct observations of fish behavior. The response to light-i.e., phototaxis-can improve gear selectivity as fishes greatly depend on vision for sensory information [START_REF] Guthrie | Role of vision in fish behaviour (75-113[END_REF]. Depending on the species and the development stage [START_REF] Kunz | Review of development and aging in the eye of teleost fish[END_REF], fishes can exhibit either positive (swimming towards light source) or negative phototaxis (swimming away) to different wavelength and intensities of light [START_REF] Raymond | Behavioral responses of two deep-sea fish species to red, far-red, and white light[END_REF][START_REF] Underwood | The response of mesopelagic organisms to artificial lights[END_REF]. Thus, artificial illumination is 

Condition of observation Technological Solutions Limitation Examples

High Turbidity High spatial acuity cameras, laser-imaging, Cameras with polarized filters or light sources High cost [START_REF] Lu | Underwater optical image processing: a comprehensive review[END_REF] Backscatter of natural light Dark environment Far-red illumination (680 nm LED), near-infrared illumination Less features in images; narrow range of view [START_REF] Chidami | Underwater infrared video system for behavioral studies in lakes[END_REF][START_REF] Shcherbakov | Near-infrared orientation of Mozambique tilapia Oreochromis mossambicus[END_REF] Species-level recognition High-definition cameras High cost, limited to RGB cameras [START_REF] Crescitelli | NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep neural networks[END_REF][START_REF] Murugaiyan | Fish species recognition using transfer learning techniques[END_REF] Abrupt changes in animal orientation, fast-swimming species High shutter speed (> 200 frames per second) High cost [START_REF] Catania | Water shrews detect movement, shape, and smell to find prey underwater[END_REF] 

Continuous recordings of species distribution

Long-battery/low-energy/cabled cameras Limited spatial range (Rosen and Holst, 2013;[START_REF] Decelles | Development of a video trawl survey system for New England groundfish[END_REF] Collective behavior, capturing large elements or objects Stage-wide cameras/multiple set-up cameras, far-range sonars, hydroacoustic

High cost; logistically demanding [START_REF] Wei | Monitoring fish using imaging sonar: Capacity, challenges and future perspective[END_REF] Capture depth/3D features 3D/holographic/stereo cameras, cameras with distancecompensated structured lighting, Optical-Acoustic Hybrid Imaging Heavy computational cost; logistically demanding [START_REF] Sawada | Development of an acoustic-optical system to estimate target-strengths and tilt angles from fish aggregations[END_REF][START_REF] Negahdaripour | Calibration of DIDSON forward-scan acoustic video camera[END_REF][START_REF] Pautsina | Infrared reflection system for indoor 3D tracking of fish[END_REF] Small compartments/space Compact/micro cameras Low image resolution [START_REF] Duecker | RGB-D camera-based navigation for autonomous underwater inspection using low-cost micro AUVs[END_REF] taking considerable attention for behavioral guidance of fishes to dissuade fishes from entering the gear [START_REF] Larsen | Performance of the Nordmøre grid in shrimp trawling and potential effects of guiding funnel length and light stimulation[END_REF], or to help them escape from within [START_REF] Southworth | Artificial light improves escapement of fish from a trawl net[END_REF]. Illumination in gears take either the form of LED light installments (e.g., illuminated escape rings for non-targeted species, Watson, 2013; illuminated separation grids for ground fishes, O' Neill et al., 2018b) or with glow-in-the-dark netting material [START_REF] Karlsen | Exploring new netting material for fishing: The low light level of a luminous netting negatively influences species separation in trawls[END_REF]. In dark environments, near-infrared light or red light is usually used to observe the behaviors of fishes instead of white light that may disrupt behaviors of fishes [START_REF] Widder | Using red light for in situ observations of deep-sea fishes[END_REF][START_REF] Raymond | Behavioral responses of two deep-sea fish species to red, far-red, and white light[END_REF][START_REF] Underwood | The response of mesopelagic organisms to artificial lights[END_REF].

Responses of fish to color also play an important part as most bony fishes are tetrachromatic, allowing them to see colors more vividly than humans [START_REF] Bowmaker | Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmon trutta): Age-dependent changes[END_REF]. Some fishes may be more visually sensitive to certain kinds of light wavelength and intensity [START_REF] Lomeli | The effect of artificial illumination on Chinook salmon behavior and their escapement out of a midwater trawl bycatch reduction device[END_REF], other may be non-responsive [START_REF] Underwood | The response of mesopelagic organisms to artificial lights[END_REF]. Researchers thus use these species-selective traits to install light devices (LED lights, infrared light, laser beams) on gears or change the color of the fishing nets (white, transparent, black) depending on the selected species [START_REF] Simon | Using automated video analysis to study fish escapement through escape panels in active fishing gears: Application to the effect of net colour[END_REF][START_REF] Mehault | Using fish behavior to design a fish pot: Black seabream (Spondyliosoma cantharus) case study[END_REF] 

Responses to acoustic stimuli

Sound has been long used by fishers to scare fishes and gather them for bottom trawling. Yet, the response to sound-i.e., phonotaxis-can also be used for selectivity as hearing species are generally sensitive to specific frequencies [START_REF] Dijkgraaf | Hearing in bony fishes[END_REF]. Selectivity studies typically observe negative phonotaxis (i.e., avoidance) triggered by low-frequency sound [START_REF] Schwarz | Responses of pacific herring, Clupea harengus pallasi, to some underwater sounds[END_REF], which can be displayed by fishes in different ways [START_REF] Popper | Application of sound and other stimuli to control fish behavior[END_REF][START_REF] De Robertis | Fish avoidance of research vessels and the efficacy of noise-reduced vessels: A review[END_REF]. Similar to light responses, some fishes tend to be more sensitive to certain sound frequencies, some are called "hearing specialists" such as Atlantic herring and cod [START_REF] Chapman | A field study of hearing in the cod,Gadus morhua l[END_REF][START_REF] Doksaeter | Behavior of captive herring exposed to naval sonar transmissions (1.0-1.6 kHz) throughout a yearly cycle[END_REF][START_REF] Pieniazek | Comparative analysis of noise effects on wild and captive freshwater fish behaviour[END_REF]. [START_REF] O'neill | Discard avoidance by improving fishing gear selectivity: Helping the fishing industry help itself[END_REF] also suggested that passive acoustic approaches with sound reflectors can be designed with gears to make them more detectable for echo-locating species [START_REF] He | Behavior of marine fishes : capture processes and conservation challenges[END_REF]. Mainly, sound and light added to fishing gears can help attract the targeted species and help deter vulnerable or harmful animals such as mammals or fish predators [START_REF] Putland | Acoustic deterrents to manage fish populations[END_REF][START_REF] Lucas | A systematic review of sensory deterrents for bycatch mitigation of marine megafauna[END_REF]. Although fishing techniques with sound have been in practice since a while [START_REF] He | Behavior of marine fishes : capture processes and conservation challenges[END_REF], exploration for species selective sound devices are still at its early stages.

Responses to physical stimuli

The response to physical contact-i.e., thigmotaxis-shows the tendency of fishes to remain close to the seabed, or the lateral structure of gears [START_REF] Millot | Exploration behaviour and flight response toward a stimulus in three sea bass strains (Dicentrarchus labrax l.)[END_REF]. This behavior can be utilized to modify mechanical structures and panels in gears. Physical stimuli can play an important role for allowing fishes to escape [START_REF] Mandralis | Learning swimming escape patterns for larval fish under energy constraints[END_REF] or be sorted [START_REF] Larsen | Size selectivity of rigid sorting grids in bottom trawls for Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus)[END_REF][START_REF] Brinkhof | Size selectivity and catch efficiency of bottom trawl with a double sorting grid and diamond mesh codend in the northeast Atlantic gadoid fishery[END_REF]. These are usually installed in or on the gears after a series of behavioral trials on fish responses to different configurations [START_REF] Santos | Square mesh panels in demersal trawls: does lateral positioning enhance fish contact probability?[END_REF]. Physical stimuli are thus often drawn from the speciesspecific behavior [START_REF] Ferro | Separating species using a horizontal panel in the Scottish north Sea whitefish trawl fishery[END_REF]Cuende et al., 2020a).

Fishes tend to orient themselves to face the water flow to hold a stationary position and lower the amount of energy they spend; this is called rheotaxis [START_REF] Painter | The impact of rheotaxis and flow on the aggregation of organisms[END_REF]. The directional behavior due to water flow may be used to improve selectivity in trawls. For example, veil nets on shrimp fishery can modify the flow within gears, directing fishes to selective grids and net structures [START_REF] Graham | By-catch reduction in the brown shrimp, crangon crangon, fisheries using a rigid separation nordmøre grid (grate)[END_REF] and water jets projecting downward of forward can elicit early avoidance from fishes about to enter the gear [START_REF] Jordan | Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research[END_REF].

Other stimuli and combination of stimuli

Other stimuli relating to chemical responses (chemotaxis; [START_REF] Løkkeborg | Zebrafish aggression on the sub-second time scale: evidence for mutual motor coordination and multi-functional attack manoeuvres[END_REF] and electrosensory responses (i.e., electrotaxis; [START_REF] Sharber | Reducing Electrofishing-Induced injury of rainbow trout[END_REF][START_REF] O'connell | The emerging field of electrosensory and semiochemical shark repellents: Mechanisms of detection, overview of past studies, and future directions[END_REF] in fishes still need to undergo trials. Chemotaxis, which fishes use for foraging, may help fishes acquire information from greater distances [START_REF] Weissburg | The fluid dynamical context of chemosensory behavior[END_REF] and are used in baited fisheries [START_REF] Rose | Use of high-frequency imaging sonar to observe fish behaviour near baited fishing gears[END_REF]. Electrotaxis that elasmobranchs use to detect weak electromagnetic signals is exploited in longline fishing to reduce bycatch with electropositive metals and magnets [START_REF] Kadri | Field investigation of rare-earth metal as a deterrent to spiny dogfish in the pacific halibut fishery[END_REF][START_REF] Robbins | Assessment of permanent magnets and electropositive metals to reduce the line-based capture of Galapagos sharks, Carcharhinus galapagensis[END_REF][START_REF] O'connell | The emerging field of electrosensory and semiochemical shark repellents: Mechanisms of detection, overview of past studies, and future directions[END_REF]. Combination of multiple stimuli such as acoustic and visual signals also promote different responses from fishes, enhancing or impeding the responses to other cues [START_REF] Lukas | Acoustic and visual stimuli combined promote stronger responses to aerial predation in fish[END_REF]. Overall, understanding multi-sensory modalities of marine animals may help adjust selective devices, reducing bycatch and focusing catches to targeted species [START_REF] Walsh | Fish behaviour relevant to fish catchability[END_REF][START_REF] Jordan | Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research[END_REF].

AI application to fish stimuli

Studying fish responses to stimuli require empirical studies, which are often limited in terms of replicates due to logistical constraints and temporal demand to collect and process raw data. Stimuli have thus been studied manually, since automatization remains difficult to apply to in situ conditions due to heterogeneous, moving background and environmental conditions. Manual observations of stimuli response currently provide the reference point for behavior recognition which now faces more and more data to process from continued observations at sea. Applying AI models may ease the data processing and enable to exploit larger amount of data. As opposed to traditional tracking method applicable to controlled experiments (e.g., background subtraction and Kalman filters, [START_REF] Simon | Using automated video analysis to study fish escapement through escape panels in active fishing gears: Application to the effect of net colour[END_REF], deep learning models are less sensitive and may be applied to harsher conditions [START_REF] Sokolova | A deep learning approach to assist sustainability of demersal trawling operations[END_REF]. Computer vision can also be improved by selecting the observation system the most appropriate to produce imagery data for the fishing gear used; the variety of systems and data processing approaches for stimuli is presented in Table 2.

3 Artificial Intelligence for fish behavior applications 3.1 Bibliometric analysis

Bibliometric analysis methods

A bibliographic research was done in February 2022 on SCOPUS for scientific journals on 2 sets of 5 queries (Figure 1). Each of the query of the first set (256 articles) included AI-related keywords. The queries linked to the AI keywords were selected to obtain studies that focus on fish behavior, underwater observations, fishing gears, and in ecological studies. The second set had the same keywords as the first set but included keywords for both saltwater and freshwater ecosystems to exclude automatic detection and classification of fish species done onboard fishing vessels with the use of keywords in all the 5 queries. This narrowed down the number of extracted publications to 138 articles (Figure 1). However, both sets of publications still included studies not relevant to the topic, so a manual screening was undertaken. The screening was done one by one among the extracted studies to keep only the relevant studies which were cross analyzed with other pertinent studies that have not been included in the SCOPUS results but are mentioned in this review. The studies that were removed from the list focused on topology mapping, stock assessment, climatological studies, biochemical studies, and automatic identification for other marine fauna and flora such as sea cucumber and algae. A final list of 384 relevant studies was collected and reviewed to extract the studies with automated fish detection, counting, species classification, motion tracking and behavior recognition with deep learning models in underwater systems.

Bibliometric analysis results

The gathered studies show that the automation of tasks such as fish detection, species classification, fish counting, fish tracking, and behavior recognition is progressively materializing in the 21 st century (Figure 2). The onset of ecological studies of fishes based on AI and computer vision has surfaced in the past 10 years (87 publications in relation to fish detection and classification; 36 in relation to fish behavior recognition extracted from bibliography search in SCOPUS). Developments are still on their early stages but are gaining attention rapidly, particularly for automatic detection and Panels, mesh size and shape, netting grids

For comprehensive summary of fishing gears, see [START_REF] He | Classification and illustrated definition of fishing gears[END_REF].

classification techniques thanks to the rise of deep learning [START_REF] Lecun | Deep learning[END_REF]. Studies are fewer for automatic motion tracking of fishes and behavior recognition compared to detection and classification studies as they build on the AI methods of the latter and require more complex processing. While fish detection is being widely applied in marine habitats for several years (Fisher et al., 2016), automatic tracking and behavior recognition of fishes during capture process has yet to be applied. The following sections expand the results from the bibliometric analysis and give a brief explanation of AI and examples on the current applications of behavior recognition that can be transferred to selectivity studies.

Introduction to Artificial Intelligence

As current observations of fish behaviors in fishing gears now step into the era of AI and deep learning along with other domains in marine science [START_REF] Malde | Machine intelligence and the data-driven future of marine science[END_REF][START_REF] Logares | Oceans of big data and artificial intelligence[END_REF][START_REF] Packard | Applications of artificial intelligence to animal behavior[END_REF], Internet of Underwater Things (IoUT) and Big Data coupled to AI will inevitably revolutionize the field [START_REF] Jahanbakht | Internet Of underwater things and big marine data analytics -a comprehensive survey[END_REF]. Today, behavioral studies in fisheries science stand on top of highly evolving tools to automatize analysis and processing of data. They are curated from interdisciplinary fields among marine science, computer science, neuroscience, and mechanical science among many other disciplines that are now coagulating because of AI [START_REF] Xu | Artificial intelligence: A powerful paradigm for scientific research[END_REF]. Some useful references for AI in marine science and reviews can be found in [START_REF] Beyan | Setting the stage for the machine intelligence era in marine science[END_REF]; [START_REF] Malde | Machine intelligence and the data-driven future of marine science[END_REF] and [START_REF] Goodwin | Unlocking the potential of deep learning for marine ecology: overview, applications, and outlook[END_REF].

In marine sciences, neural networks used for object detection are usually "supervised" [START_REF] Cunningham | Supervised learning[END_REF], meaning that they are trained using ground-truth objects, manually located in images, and classified into pre-defined classes. These objects, defined using the four coordinates of their bounding boxes and their associated classes (see Figure 3 for examples of bounding boxes), are then used to train the model to localize and classify these target objects within new images. Indeed, objects are assigned to one or several categories based on the probability of belonging to each of the classes used to train the model [START_REF] Pang | Deep learning to frame objects for visual target tracking[END_REF][START_REF] Ciaparrone | Deep learning in video multi-object tracking: A survey[END_REF]. Once object detection is done on different frames (Figure 4E,F), the tracking model pairs the bounding boxes among frames to reconstruct the track of each object through time and space [START_REF] Belmouhcine | Robust deep simple online real-time tracking[END_REF][START_REF] Park | Multiple object tracking in deep learning approaches: A survey[END_REF]. During the training, if the model can predict classes and bounding boxes that match the groundtruth validation data with a minor error, depending on the given parameters, it can be considered an accurate model. However, if the model has poor predictive performances, then the learning continues.

Broadly speaking, images are streamlined into computer algorithms to extract information. These algorithms contain artificial neural networks that apply a sequence of mathematical operations (convolution, pooling, etc.) to perform object detection. Those operations are linked together to orchestrate a pipeline, so that image processing is not interrupted (Figure 4G). The operations can detect objects because they determine patterns in pixels (i.e., binary trait of computers; [START_REF] Shaw | Arithmetic operations in a binary computer[END_REF][START_REF] Pietikäinen | Computer vision using local binary patterns[END_REF] from the input images that define features [START_REF] Blum | Selection of relevant features and examples in machine learning[END_REF]. Features are measurable variables that can be interpreted from images, such as shapes and textures of objects [START_REF] Chandrashekar | A survey on feature selection methods[END_REF]. Algorithms trained to detect patterns from features automatically are called detection models. Before training the model, images are preprocessed to be enhanced (i.e., neutralize discriminations and scale dimensions) so that models can learn better [START_REF] Nawi | The effect of data preprocessing on optimized training of artificial neural networks[END_REF]Calmon et al., 2017), since data are generally noisy when captured in the real-world conditions. Recent artificial neural networks contain attention modules [START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Gupta | DFTNet: Deep fish tracker with attention mechanism in unconstrained marine environments[END_REF] to capture long-range dependencies and understand what is going on in an image globally [START_REF] Grauman | Visual object recognition[END_REF].

Current deep learning methods are mostly "black boxes" since humans cannot see how individual neurons work together to compute the final output (e.g., why a fish in an image has been detected or not), so improving the accuracy of models relies on better inputs and comparison of trainings [START_REF] Lecun | Deep learning[END_REF]. However, unsupervised learning is gaining more interest as it allows the transition from recognition to cognition [START_REF] Forbus | Companion cognitive systems: A step toward human-level AI[END_REF][START_REF] Xu | Artificial intelligence: A powerful paradigm for scientific research[END_REF]. This means that innovations in the AI domain are now making interpretable models that can figure out why and how they localize and classify objects on a scene [START_REF] Ribeiro | Why should i trust you?" explaining the predictions of any classifier[END_REF][START_REF] Hoffman | Metrics for explainable AI: Challenges and prospects[END_REF][START_REF] Gilpin | Explaining explanations: An overview of interpretability of machine learning[END_REF]. Among unsupervised learning models, Generative Adversarial Neural Networks (GAN) are composed of two networks: a generator that generates synthetic data and a discriminator that classify the data as real or fake. The generator learns how to fool the discriminator by learning the real data distribution and generating synthetic data that follow this distribution. The discriminator should not be able to distinguish real from synthetic data. Thus, object detection models can now be coupled to a GAN and learn by themselves, in a semi-supervised manner, by artificially generating new sets of images (from the generator model) that feed through another model: the object detector (e.g., generator model produces synthetic images of fishes for another model to detect them; [START_REF] Creswell | Generative adversarial networks: An overview[END_REF]. Applying these AI methods to fish interactions with fishing gears would enable us to decipher which behaviors lead to the catch and escapement of fish at more significant scales than what could be reached until today. For a comprehensive review on available deep learning-based architectures, see [START_REF] Aziz | Exploring deep learning-based architecture, strategies, applications and current trends in generic object detection: A comprehensive review[END_REF].

AI for fish behavior

Tools for automatic behavior recognition are being developed mainly in aquaculture [START_REF] Valletta | Applications of machine learning in animal behaviour studies[END_REF][START_REF] Niu | Survey of fish behavior analysis by computer vision[END_REF] and in coastal fish communities (e.g., [START_REF] Kim | Numerical modeling of chaotic behavior for small-scale movements of demersal fishes in coastal water[END_REF]Fisher et al., 2016;[START_REF] Capoccioni | Fish movements and schooling behavior across the tidal channel in a Mediterranean coastal lagoon: An automated approach using acoustic imaging[END_REF][START_REF] Lopez-Marcano | Automatic detection of fish and tracking of movement for ecology[END_REF]Ditria et al., 2021a). Over the last decade, there has been an emergence of automatic fish detection, species classification, combined with tracking innovations, and this has contributed to a robust foundation for behavioral recognition. Behavioral studies of fishes in aquaculture looked at feeding behavior to monitor appetite and abnormal behaviors in intensive farming conditions [START_REF] Kadri | Field investigation of rare-earth metal as a deterrent to spiny dogfish in the pacific halibut fishery[END_REF][START_REF] Zhou | Near-infrared imaging to quantify the feeding behavior of fish in aquaculture[END_REF][START_REF] Niu | Survey of fish behavior analysis by computer vision[END_REF][START_REF] Måløy | A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture[END_REF][START_REF] Pylatiuk | DIY automated feeding and motion recording system for the analysis of fish behavior[END_REF][START_REF] Li | Automatic recognition methods of fish feeding behavior in aquaculture: A review[END_REF]. Behaviors that were automatically detected include: feeding movements at individual and school level, feeding intensity [START_REF] Zhou | Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision[END_REF], abnormal behaviors due to lack of oxygen or stress response (J. [START_REF] Wang | Anomalous behaviors detection for underwater fish using AI techniques[END_REF], and curiosity by showing inspection behaviors when interacting with bait or objects in experimental set-up [START_REF] Papadakis | A computer-vision system and methodology for the analysis of fish behavior[END_REF]. In laboratory experiments, goal-directed behaviors of fishes have also been recognized by computer vision and are automatically detected [START_REF] Long | Automatic classification of cichlid behaviors using 3D convolutional residual networks[END_REF] such as construction of spawning nests by cichlid fishes that either form mounds or burrow in the sand. This type of complex behavior can be distilled into recognizable patterns such as manipulation of their physical environment (cichlid fish use its mouth and fins to move sand) and distinct fish movements such as quivering (usual mating movement observed from cichlid fishes). Automatically recognizing these behavior patterns contributes to systematic analysis of these traits across taxa [START_REF] York | Evolution of bower building in lake Malawi cichlid fish: Phylogeny, morphology, and behavior[END_REF] and can be an effective metric for measuring natural variations [START_REF] Long | Automatic classification of cichlid behaviors using 3D convolutional residual networks[END_REF]. Artificial Intelligence methods trained to recognize fish behavior have multiple components that are all connected in branching streams of mathematical and statistical operations. From a video of swimming schools of fishes, the attributes of what is happening in the scene would be broken down into features of the fishes, their appearance in terms of shape, texture, or color, and their reaction to different types of stimuli translated into quantifiable metrics. Some additional examples of applications can be found in Spampinato et al. 

AI-based automatic behavior recognition for fishes

Fish detection by AI models is when individuals or species are recognized on a single image [START_REF] Sung | Vision based real-time fish detection using convolutional neural network[END_REF]). An algorithm is trained to identify features of fishes and localize regions in a scene. The YOLO (You Only Look Once; [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF] object detection framework has been frequently used for fish detection and species classification on 2D images [START_REF] Cai | A modified YOLOv3 model for fish detection based on MobileNetv1 as backbone[END_REF][START_REF] Jalal | Fish detection and species classification in underwater environments using deep learning with temporal information[END_REF][START_REF] Mcintosh | Movement tracks for the automatic detection of fish behavior in videos[END_REF][START_REF] Raza | Fast and accurate fish detection design with improved YOLO-v3 model and transfer learning[END_REF][START_REF] Bonofiglio | Machine learning applied to big data from marine cabled observatories: A case study of sablefish monitoring in the NE pacific[END_REF][START_REF] Knausgård | Temperate fish detection and classification: a deep learning based approach[END_REF]. The YOLO algorithm and its different versions are widely used since its detecting speed on an entire image are faster and more accurate than classic object detectors (for technical specifications, see: [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF]. A trained detection model can thus differentiate targeted and non-targeted species, and identify differences between their morphology (i.e., round vs flat fish). Moreover, a cluster of individual detections can also illustrate herding behavior from crowd movements.

Identifying different swimming patterns between targeted and non-targeted species, however, requires tracking the spatial alignments of trajectories inside gears and directions of swimming through time, i.e., tracking. Fish tracking is done using motion algorithms based on successions of images with multiple or individual fish until they are no longer seen on the footage [START_REF] Li | Deep neural network-based real time fish detection method in the scene of marine fishing supervision[END_REF]. To track fishes, algorithms are thus trained as a single network or are coupled into a pipeline of networks for more complex behavior interpretations (Table 3). Different implementations of deep learning-based tracking have been used across studies, depending on their tracking objectives or available resources (for object detection: Faster R-CNN, for instance segmentation: Mask R-CNN, for tracking based on loss: Minimum Output Sum of Squared Error (MOSSE), for tracking based on comparing similarity among masks (similarity learning): Siamese Mask (SiamMask), and for tracking based on Non-Maximum Suppression (NMS) applied to sequences: Seq-NMS). Their differences lie on the way they compute detections from frame to frame and associate them to new or existing tracks of detected fishes [START_REF] Lopez-Marcano | Automatic detection of fish and tracking of movement for ecology[END_REF]. Coupled networks in AI pipelines are thus used for tracking to interpret finer details in behavior (Table 3).

To decipher underlying behavioral patterns of fishes from manual or automatically generated fish tracks, repeated patterns can be translated into sets of labelled classes (i.e., n number of trajectory moving in an x, y direction = escaping to upper panel), representing one or several specific behaviors. In AI, classes that can be labelled and quantified (i.e., fish passing a mesh) can be learned by a deep learning model so manual behavior classification can then be automated. In aquaculture, swimming behavior have been manually classified and fed through an algorithm that learns how to recognize the behavioral classes from computer vision [START_REF] Long | Automatic classification of cichlid behaviors using 3D convolutional residual networks[END_REF]J. Wang et al., 2020;[START_REF] Yu | Identification methodology of special behaviors for fish school based on spatial behavior characteristics[END_REF] . In commercial fishing, the challenge lies in deciphering these patterns as fishes interact with different structure of gears, modified parts, and selective devices. To have AI models classify these types of interactions, a systematic approach may thus be needed first in controlled environment, such as fish tanks or behavioral chambers. This would allow stimuli to be restricted and localized [START_REF] Skinner | The generic nature of the concepts of stimulus and response[END_REF] rather than being enhanced or inhibited by spatiotemporal conditions [START_REF] Ryer | Avoidance of an approaching net by juvenile walleye pollock theragra chalcogramma in the laboratory: The influence of light intensity[END_REF][START_REF] Owen | Light colour influences the behaviour and stress physiology of captive tench (Tinca tinca)[END_REF][START_REF] Maia | Environmental light color affects the stress response of Nile tilapia[END_REF][START_REF] Heydarnejad | Influence of light colours on growth and stress response of pearl gourami trichopodus leerii under laboratory conditions[END_REF][START_REF] Lomeli | Use of artificial illumination to reduce pacific halibut bycatch in a U.S. West coast groundfish bottom trawl[END_REF].

Recurrent AI models based on LSTM architecture targeting fish tracking are getting more attention since they are designed to give more weight to significant movement patterns among chaotic ones as they are trained. This adds a more cognitive ability to the learning of AI models. For instance, Gupta et al. ( 2021) investigated different visionbased object-tracking algorithms for multiple fishes in underwater scenes both in controlled and uncontrolled environments. They combined an object tracker designed with two complex networks (a siamese network and a recurrent network) named DFTNet (for Deep Fish Tracking Network). The first network used two identical neural networks to reidentify fish, and the second network is an LSTM that allows the AI model to learn from the fish's chaotic motions.

In fishing activities, AI architecture with attention and memory is thus particularly important to address the chaotic patterns seen among species during capture process. Tracks can show swimming angles or abrupt changes in movement that measure distance from gear structures [START_REF] Santos | Quantifying the performance of selective devices by combining analysis of catch data and fish behaviour observations: Methodology and case study on a flatfish excluder[END_REF], mean trajectory in relation to the stimuli source [START_REF] Peterson | The persistent-pursuit and evasion strategies of lionfish and their prey[END_REF], selective device placement or difference in position of group or individual trajectories within gears. The visual features from automatic detection (i.e., color, texture, shape among species, group, or individual level) and the spatiotemporal features from tracking (i.e., swimming direction, angle, speed) (Figure 4H, I) can then be combined to define the behavior classification (Figure 4J, K).

Behavioral classes tailored with AI architecture

Fish behavior recognition is when a model can recognize a behavior based on tracking features identified as events. An event is a scene (Figure 4A,B) directly observed from videos, for example, when a group of fish swims out from fishing gear. The combination of fish detections and tracks (swimming patterns) can be categorized as a class "escapement", and behavioral metrics can be derived from such events (see Figure 4J). Automatic behavior recognition is thus trained from classified sets of tracking features and is the final step in synthesizing chaotic fish swimming into distinguished sets of behaviors.

Classes of behaviors are defined by scientists and are used to label an image sequence or a video clip that shows a defined behavior. For example, a class label of escapement behavior can be defined from a clip of a fish passing through a mesh. This can be defined as when the detected body of the fish overlaps or touches the mesh. A behavior class of a fish not escaping is when the detected trajectory of the fish stays within the mesh barrier, or a class can consequently show it has escaped if the tracked fish is detected outside the gear. The option to label whether a fish has escaped is a detail that depends on the study's classification decisions (i.e., either when the fish's body is entirely outside the gear or as the fish passes through the mesh). Classes can also be separated into action, and non-action classes (see Table 3), where a defined behavior present in a video clip is labeled as the action class, and another clip presenting unchanged or normal fish movement is labeled with the non-action class. McIntosh et al.

(2020) defined four features that translate the startling behavior of sablefish from their trajectories into measurable metrics: direction of travel, speed, aspect ratio, and Local Momentary Change metric. They combined the four features into a form suited to train an AI-based classifier with an LSTM architecture (i.e., tensor data). Like applying LSTM for tracking, an AI behavior recognizer with LSTM remembers important features efficiently to classify swimming movements [START_REF] Niu | Survey of fish behavior analysis by computer vision[END_REF]L. Yang et al., 2021). Behavior classes have been defined in selectivity studies as events classified in empirical models [START_REF] Santos | Square mesh panels in demersal trawls: does lateral positioning enhance fish contact probability?[END_REF][START_REF] Santos | Quantifying the performance of selective devices by combining analysis of catch data and fish behaviour observations: Methodology and case study on a flatfish excluder[END_REF] or video tracking software (Noldus et al., 2001). J. [START_REF] Wang | Anomalous behaviors detection for underwater fish using AI techniques[END_REF] proposed a method for real-world detections of anomalous behavior for multiple fish under high stress with a 3-stage pipeline. Examples of AI pipelines are summarized in Table 3, with the underwater scene, light source, and type of underwater observation system used included for comparison.

The problem of occlusion emphasized in the crowded scenes of fishing

The occlusion problem is when fishes overlap or swim behind one another, leading to a loss of fish detections and fragmentation of tracks [START_REF] Gupta | DFTNet: Deep fish tracker with attention mechanism in unconstrained marine environments[END_REF]. Multiple objects tracking on videos is challenging since overlaps are flattened in a 2D view (See Figure 4C,D,F). This problem occurs when studying behaviors in crowded scenes of fishing. In 2D images and videos, training models to recognize the body parts of fish can help to overcome occlusion. In general, if a detector fails to locate an entire fish, a tracker can still follow the movement according to other features of the fish (i.e., fisheye, fins, tail). For example, [START_REF] Liu | 3-d video tracking of multiple fish in a water tank[END_REF] simultaneously track the fish head and its center body so the head can be detected even when the center body is hidden. Therefore, trackers can maintain fish identity after occlusion happens if more appearance features are learned by the model [START_REF] Qian | Automatically detect and track multiple fish swimming in shallow water with frequent occlusion[END_REF]. Fish heads have relatively fixed shapes and colors, so tracking them from frame to frame can still be done even after frequent occlusions (L. Yang et al., 2021). The darker color intensity of the head behind another and its elliptical shape can be characterized as a blob and still be tracked. Three-dimensional tracking from stereo cameras or multiple camera systems where 3D components can be triangulated can help address occlusion problems. By reconstructing trajectories on a 3D view, fish trajectories are seen with depth, improving reidentifying a fish after an occlusion [START_REF] Cachat | Deconstructing adult zebrafish behavior with swim trace visualizations[END_REF][START_REF] Huang | A hierarchical 3Dmotion learning framework for animal spontaneous behavior mapping[END_REF] . However, AI models trained to recognize 3D trajectories demand computationally intensive algorithms to associate the deconstructed features together (L. Yang et al., 2021).

Transfer learning for data-deficient environments

We have shown that assessing fish behavior relies on analyzing trajectories. Considering tracks instead of detections generates even larger amounts of data than single detections of fishes on frames. Thousands to millions of such fish trajectories have likely been generated worldwide. These data may now be used to train models to detect fishes, at species level or as generic fish, in unseen environments. We provide a few examples of available published datasets that have been used to train models (Table 4).

For tropical fishes, Fish4Knowledge (F4K; Fisher et al., 2016), a project that started in 2010, garnered millions of images from GoPro cameras that were set-up in coral reef areas of Taiwan. The project resulted to 87K hours of video (95 TB) and 145 million fish identifications. It has then made the successfully curated database available to the rest of the world and most of the developments in automatic classification and identification tools for fishes have used the database to train deep learning models (see in Table 4 uses of F4K: [START_REF] Spampinato | Automatic fish classification for underwater species behavior understanding[END_REF][START_REF] Palazzo | Fish species identification in real-life underwater images[END_REF][START_REF] Shafait | Fish identification from videos captured in uncontrolled underwater environments[END_REF][START_REF] Jalal | Fish detection and species classification in underwater environments using deep learning with temporal information[END_REF][START_REF] Murugaiyan | Fish species recognition using transfer learning techniques[END_REF]. For temperate fishes, only a few commercial species can be automatically identified by existing models but are nonetheless gaining more recognition. [START_REF] Bonofiglio | Machine learning applied to big data from marine cabled observatories: A case study of sablefish monitoring in the NE pacific[END_REF] trained an AI pipeline to detect and track sablefish, Anoplopoma fimbria, in an underwater canyon in North America on ~650 hours of video recording with ~9000 manual annotations. Due to growing fish databases and application of image processing techniques, AI models can now detect fishes with human-like accuracy in some species such as Scythe butterfly fish [START_REF] Benson | Field programmable gate array (FPGA) based fish detection using haar classifiers[END_REF], some tropical species [START_REF] Spampinato | Automatic fish classification for underwater species behavior understanding[END_REF], and mesopelagic species (Allken et al., 2021a).

Studying fish-gear interactions is particularly difficult due to the unique and challenging conditions often met at sea. Pipelines of automatic detections have applied transfer learning and data augmentation techniques to cope with the lack of available data. For example, [START_REF] Knausgård | Temperate fish detection and classification: a deep learning based approach[END_REF] applied transfer learning to train an AI system to identify temperate fishes that are commercially valuable, such as wrasses (Ctenolabrus rupestris, C. exoletus and Sympohodus melops) and gadoids (Gadus morhua, Pollachius virens, P. pollachius, Molva molva, and Melanogrammus aeglefinus). Using models pre-trained on available public datasets (see Table 4, e.g., Fish4Knowledge and ImageNet), they obtained high accuracies in object detection and classification using their fine-tuned models (86.96% and 99.27%, respectively). Transfer learning from preexisting object detection algorithms coupled with existing data from other environments can thus be a promising approach for the automatic analysis of fish species even from environments that still lack data (Fisher et al., 2016;[START_REF] Siddiqui | Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data[END_REF][START_REF] Knausgård | Temperate fish detection and classification: a deep learning based approach[END_REF], additional augmentation methods, such as generating synthetic datasets, may help overcome the insufficiency of small datasets for training models [START_REF] Allken | Fish species identification using a convolutional neural network trained on synthetic data[END_REF][START_REF] Villon | Automatic underwater fish species classification with limited data using few-shot learning[END_REF].

Discussion

Insights from AI applications for behavior recognition from other domains

Automated behavior recognition has been applied to several domains outside of fisheries. Dynamic systems of fish schools, just as any large groups of moving individuals such as birds or insects [START_REF] Chapman | Flight orientation behaviors promote optimal migration trajectories in high-flying insects[END_REF][START_REF] Altshuler | Comparison of visually guided flight in insects and birds[END_REF], will produce a bundle of condensed and interloping trajectories when tracked. Directional patterns of behavior (i.e., individual or collective) can be interpreted from them [START_REF] Sinhuber | Three-dimensional time-resolved trajectories from laboratory insect swarms[END_REF], but visual details of targets can be lost in footages due to occlusions or motion blur [START_REF] Liu | Automatic 3D tracking system for large swarm of moving objects[END_REF]. Conveniently, apart from data enhancement methods, there are already available algorithms and AI methods that particularly addresses this challenge in natural systems of humans, social animals and insects (i.e., Swarm Intelligence; Ahmed and Glasgow, 2012, Boids algorithms;[START_REF] Alaliyat | Optimisation of boids swarm model based on genetic algorithm and particle swarm optimisation algorithm (Comparative study)[END_REF]. Algorithms to track behavior in congested human crowds have been developed based on motion capture and optical flow techniques [START_REF] Krausz | Analyzing pedestrian behavior in crowds for automatic detection of congestions[END_REF]. Different types of human behavior can now be recognized by AI in all sorts of environment due to the considerable attention in the domain and since high performing models learn from a gigantic amount of training database of diverse human behavior [START_REF] Popoola | Video-based abnormal human behavior recognitiona review[END_REF][START_REF] Vinicius | Video-based human behavior understanding: A survey[END_REF].

Three-dimensional motion capture techniques can also provide more information such as depth and detailed tracking of animal paths [START_REF] Wu | Tracking-reconstruction or reconstruction-tracking[END_REF]. Moreover, 3D trajectories can provide the analytics (i.e., positions, velocities, accelerations) to study cohesive and unique behaviors [START_REF] Sinhuber | Three-dimensional time-resolved trajectories from laboratory insect swarms[END_REF]. For instance, [START_REF] Liu | Automatic 3D tracking system for large swarm of moving objects[END_REF] proposed an automatic tracking system that can reconstruct 3D trajectories of fruit flies using three high-speed cameras that can be generally adapted to large swarms of moving object. [START_REF] Dollaŕ | Pedestrian detection: An evaluation of the state of the art[END_REF] made use of features of human pedestrians to geometrically quantify their overlaps and distances on a 2D scale. The AI models that recognize facial features and postures of humans or other animals therefore have the algorithmic backbone to extract behavior. Since algorithms can be scalable and adaptable (see Section 3.3.4 [START_REF] Boom | A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage[END_REF]Fisher et al., 2016[START_REF] Rathi | Underwater fish species classification using convolutional neural network and deep learning[END_REF][START_REF] Pramunendar | Fish classification based on underwater image interpolation and back-propagation neural network[END_REF][START_REF] Wang | Underwater object recognition based on deep encoding-decoding network[END_REF][START_REF] Alshdaifat | Improved deep learning framework for fish segmentation in underwater videos[END_REF][START_REF] Guo | Few-shot fish image generation and classification[END_REF][START_REF] Murugaiyan | Fish species recognition using transfer learning techniques[END_REF][START_REF] Prasetyo | Multi-level residual network VGGNet for fish species classification[END_REF][START_REF] Knausgård | Temperate fish detection and classification: a deep learning based approach[END_REF] Images 

on transfer

Towards smart fishing

The way we fish is constantly evolving. The more we understand the impact of fishing, the more we look for ways to make our fishing gears more selective. We are not just modifying the components of gears anymore but also adding devices and camera systems to them to create intelligent fishing gears. This turns fishing operations into interactive, fine-scale observations platforms rather than catch-thensee operations (Rosen et al., 2013;[START_REF] Kyllingstad | SMARTFISH H2020 D5.3: FishData analysis[END_REF]. Performances of modified fishing gears can almost be assessed realtime which can elevate the plateau of gear selectivity studies by exploring fish-gear interactions at finer scales. The challenge now lies on obtaining consistent findings from these direct observations. In highly stimulating, crowded, and stressful scenes in fishing activities, subtle movements of fishes may turn into sharp and chaotic escapes where learned behavior and predispositions are overcome by survival instincts [START_REF] Manière | Editorial: From stimulus to behavioral decisionmaking[END_REF]. Large volumes of fishes can also be influenced by herding behavior and individuals may tend to follow swimming routes of the group [START_REF] Måløy | A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture[END_REF]. Addressing this herding constrain currently relies on applying complex pipelines, often coupled with stereovision (Rosen et al., 2013;[START_REF] Kyllingstad | SMARTFISH H2020 D5.3: FishData analysis[END_REF]. Handling such data in real-time is one of the current bottlenecks because it has to be processed within embedded AI systems. To equip fishing gears, these embedded systems have to remain as light as possible, with controlled size, memory and power consumption. These issues will be partially solved as the algorithms presented above (see Section 3.3: The problem of occlusion emphasized in the crowded scenes of fishing and Table 3) keep improving in handling the occlusion problem, and as the observation systems keep improve to meet the image quality required for AI applications (see Section 2.1 Observations of fish behavior in fishing gears and Table 1).

In the meantime, AI may already facilitate the assessment of fishing gear modification. When a fishing gear is designed with a new stimulus (e.g., [START_REF] Southworth | Artificial light improves escapement of fish from a trawl net[END_REF][START_REF] Ruokonen | The effect of LED lights on trap catches in Finnish inland fisheries[END_REF] or when its parts are modified (e.g., [START_REF] Feekings | An evaluation of European initiatives established to encourage industry-led development of selective fishing gears[END_REF], the certainty that they dominantly cause a change in behavior of fishes leading to escapes or retention is impossible to single out due the large variability in external and internal factors affecting the fishes' responses. It is also unlikely that the exact movements by the same community of fishes can be observed upon two successive occasions [START_REF] Ryer | Influence of illumination and temperature upon flatfish reactivity and herding behavior: Potential implications for trawl capture efficiency[END_REF][START_REF] Ryer | Flatfish herding behavior in response to trawl sweeps: a comparison of diel responses to conventional sweeps and elevated sweeps[END_REF][START_REF] Lomeli | The effect of artificial illumination on Chinook salmon behavior and their escapement out of a midwater trawl bycatch reduction device[END_REF]. Applying automatic behavior recognition in such situations would enable to process much larger amount of data on fine-scale differences than what could be done manually, even if it comes with some levels of errors inherent to using any fully automatic recognition algorithm [START_REF] Faillettaz | Imperfect automatic image classification successfully describes plankton distribution patterns[END_REF][START_REF] Villon | Automatic underwater fish species classification with limited data using few-shot learning[END_REF]. Complementary laboratory studies may also help collect consistent findings [START_REF] Hannah | Evaluating the behavioral impairment of escaping fish can help measure the effectiveness of bycatch reduction devices[END_REF], which are needed to gather a database of automatically classifiable behaviors. For example, the influence of light intensity on juvenile walleye pollock Theragra chalcogramma were studied in laboratory conditions and in situ and showed that juveniles either struck the nets more often or swam closer to them in darkness than at the highest illumination [START_REF] Olla | Differences in orientation and swimming of walleye pollock Theragra chalcogramma in a trawl net under light and dark conditions: concordance between field and laboratory observations[END_REF]. Such Images systematic behavioral responses could thus be used to train an AI model which could then be used to automatically analyze replicates of additional trials. Similarly, AI applications would enable to amplify the number of replicates of sea or laboratory trials, for example when assessing how changes in the positions of stimuli influences species behaviors [START_REF] Larsen | Performance of the Nordmøre grid in shrimp trawling and potential effects of guiding funnel length and light stimulation[END_REF][START_REF] Yochum | Evaluating the role of bycatch reduction device design and fish behavior on pacific salmon (Oncorhynchus spp.) escapement rates from a pelagic trawl[END_REF].

Sharing and collaboration for the sake of fishes

Transferred learning of adaptable deep learning models from other behavioral studies and sceneries is key for automated fish behavior recognition, but technically executing this requires collaboration among the scientific community. The advances of fish behavior recognition in aquaculture and in situ environments often stem out of joint efforts between ecologists and computer scientists. AI practitioners mostly have the knowledge on which algorithm or AI network can be appropriated to specific study cases, while marine scientists provide the underlying ecological question and the inherent parameters (i.e., classification of fish behaviors, metrics for quantification) to fine-tune the algorithms. Automated behavior recognition models that are successful have benefited from huge streams of imagery data and unprecedented fundings in terms of technological specifications. Existing and previous data mining and collection practices included outsourcing efforts. Fish4Knowledge branched out to volunteers, subprojects, and gamifying techniques (Fisher et al., 2016). Popular datasets such as ImageNet and COCO used Amazon Analytics to crowdsource annotations of objects [START_REF] Gauen | Comparison of visual datasets for machine learning[END_REF]. [START_REF] Mcclure | Artificial intelligence meets citizen science to supercharge ecological monitoring[END_REF] discussed that citizen science is beneficial for AI applied in ecological monitoring as it can fast track data collection since AI is now within reach because of integration in mobile devices and user-friendly platforms. The phytoplankton world is benefitting from citizen science as online portals are used by volunteers to do simple classification tasks that has led to millions of plankton ID's to be verified [START_REF] Robinson | A tale of two crowds: Public engagement in plankton classification[END_REF]. Moreover, scientists are adapting FAIR (Findability, Accessibility, Interoperability, and Reuse) data principles to realize the full value of fish behavior data and to carefully curate a unifying database [START_REF] Guidi | Big data in marine science[END_REF][START_REF] Bilodeau | A low-cost, long-term underwater camera trap network coupled with deep residual learning image analysis[END_REF].

Bridging the gap between computer and marine sciences can accelerate the development of powerful tools for automated fish monitoring [START_REF] Goodwin | Unlocking the potential of deep learning for marine ecology: overview, applications, and outlook[END_REF]. User-friendly software platforms for image processing and analysis of animal tracks and events are publicly accessible and designed for non-AI experts [START_REF] Dawkins | An open-source platform for underwater image & video analytics[END_REF]. So even if observations of fish-gear interactions are more demanding in terms of observation requirements that can produce small sizes of data and are distinctly case-specific, training models can still be aided by means of data transfer, open-access databases, and participatory platforms. This will be beneficial for everyone as endtools that grow in performance will also grow in scalability thanks to shared data. If there are enough collaborations across domains, extensive engagement with fish ethologists to construct behavioral classifiers, consistent sharing of reproducible, understandable, and scalable data then it might become possible to quantify, in near completeness, what a fish is doing or how it is interacting with its environment in any conditions.

Limitation of AI: A critical view

AI-adapted electronic fishing is still fairly new to fisheries so practical applications to improve selectivity of fishing gears may not be seen directly. AI models are dependent on the quality of the training data and imagery is still currently lacking. Contrary to fisheries-based observation, land-and air-based behavior studies have more opportunity to use AI for automatic behavior recognition as aerial and terrestrial devices can be smaller and lighter than underwater camera systems (e.g., Rosen and Holst (2013) for an underwater example; [START_REF] Liu | Automatic 3D tracking system for large swarm of moving objects[END_REF] for a land example).

The environmental impact of these developing hardware and software systems in fisheries must not also be taken for granted. They may reduce operational energy consumption with automation but if intelligent tools are eventually applied in a commercial level, this may imply significant extraction of heavy metals to manufacture the hardware and increase in the carbon footprint of storage servers [START_REF] Gupta | Chasing carbon: The elusive environmental footprint of computing[END_REF]. Scientists should be cautious to not be swept away by the promise of intelligent fishing without also seeking the environmental cost of making and maintaining it. AI application may tip the scale in favor of fishes but the integration of AI to fisheries must be accompanied by environmental impact assessments and an active search for alternative materials for machines.

Furthermore, our perception of animal behavior can be anthropomorphic, and this bias may be transferred to artificial tools. Researchers have consistently indicated the possible transfer of human bias into artificial intelligence that can be worsened by training models with limited data [START_REF] Horowitz | Naturalizing anthropomorphism: Behavioral prompts to our humanizing of animals[END_REF]. As of today, human still need to be cautious in identifying behavioral both in manual and automatic methods; unsupervised learning may help get rid of anthropomorphic biases [START_REF] Sengupta | Techniques to elimenate human bias in machine learning[END_REF].

Another critical view of the use of AI in fisheries sustains the reality that it can be a double edge sword. On one hand, it may help scientists understand fish behavior and reduce bycatch (e.g., [START_REF] Knausgård | Temperate fish detection and classification: a deep learning based approach[END_REF][START_REF] Sokolova | A deep learning approach to assist sustainability of demersal trawling operations[END_REF]. On the other hand, it may help the fishing industry to increase their catch with the use of automated tools [START_REF] Walsh | To catch or conserve more fish: the evolution of fishing technology in fisheries science[END_REF]. As with any other technological advancement, the practical nature of it stems on how humans decide to use them [START_REF] Bostrom | The ethics of artificial intelligence[END_REF]. It is therefore in the hands of stakeholders to discuss among one another, to stress both the negative and positive impacts of AI, and to lay down ethical practices to prevent mishandling of this new technology. Debates in using AI tools in fisheries arise but if we go forward with the intention to help address ecological problems and emphasize its use for selectivity, then it may build the tools for a sustainable use of our resources.

Navigating a rapidly evolving field of research

The main challenge of studying fish-gear interactions is not of lack but of abundance. The growing data in fish behavior and existing footages of their interactions with gears carry with them the vital information for better gears waiting to be synthesized. Automating the methods of data collection and process not only unlatches the time and effort given by scientists from laborious practices but also liberates the focus unto deeper scientific and creative endeavors. Userfriendly platforms that translate complex AI algorithms into software tools can encourage interest even from non-practitioners to participate in model training and fish tracking.

As we write this review, powerful and cognitive AI models in the field of computer science are advancing in an unparalleled speed. This will inevitably pour into the development of models for fisheries. AI applied in other sectors have cognitive understanding allowing machines to have higher level of ability of induction, reasoning and acquisition of knowledge. The evolution of future AI models for automatic recognition of fish-gear interactions now depends on multiple factors:

-First is the careful and accurate classification of fish trajectories that considers 3D components in a moving world.

-Second is the adaptation and re-training of pre-trained models from different human and animal behavioral studies.

-Third is the production of scalable and adaptable models for different case studies in gears and the shareability of fish behavior data among scientists.

-Fourth is the reliance on a continued and harmonious engagement of both marine scientists and AI practitioners to develop cognitive AI for fish-gear interaction systems.

There is no magic gear that completely selects targeted species, allow all unwanted species to escape, and has no economic and biological losses. However, equipping fishing gear with state-of-theart technologies may help address ecological problems, understand overlooked species' behavior and make our fishing practices more sustainable, laying the right track as we step into a technological era.

FIGURE 2

 2 FIGURE 2Number of publications between 1989 and 2022 for the 3 categories. The number of publications in all categories is from the cross-analysis between bibliographic search in SCOPUS and manual search in both Google Scholar and Web of Science. The final list includes 388 relevant articles reviewed one by one and categorized by the authors according to the methods included in each study.

FIGURE 1

 1 FIGURE 1Visualization of bibliographic search. Top photo: Set of queries in SCOPUS and number of resulting articles. Fish*W/2 ecology keyword was used to focus the search on ecologically-based studies. Bottom photo: Bibliometric landscape of topics from articles (Linkage of keywords, occurrence > 5).

FIGURE 3

 3 FIGURE 3 Examples of bounding boxes of fishes. Top panel: Tracking of fishes on the open-source VIAME platform for image and video analysis (Dawkins et al., 2017). Bottom left: multiple trajectories of black seabreams around a fixed bait. Bottom right: In situ detections of sardines and horse mackerel inside a gear (Game of Trawls Project).

  FIGURE 4General process from in situ observations to behavior classification. (A), Representation of a section of an active gear (i.e., pelagic net) with a whitecolored material that act as a clear background for video capture. (B), Representation of a passive gear (i.e., baited gear)-baitfish prototype fixed on the seafloor with a remote underwater video set-up. (C), Field of vision of a camera secured attached on one side of the pelagic net section. (D), Field of vision of a camera facing the bait. (E, F), Frames from video footage of the underwater observation systems. (G), General workflow for deep learning model application on object detection. (H, I), Sample of fish detections with bounding boxes and fish tracking with bounding boxes and line trails (Game of Trawls and Baitfish)., (J) Representation of behavior classification labels inside active gear. The "region of interest" labels the section of the gear near the exit and "escaping" labels the fishes that are exiting. (K), Representation of behavior classification labels with passive gear. The "region of interest" labels the area in proximity of the bait and "approaching" labels the fish within this proximity. 3D model of baited gear credit to BAITFISH project and image of fishes inside the pelagic net credit to Game of Trawls project.

  (2010); Fouad et al. (2014); Hernańdez-Serna and Jimeńez-Segura (2014); Iqbal et al. (2021) and Lopez-Marcano et al. (2021).

TABLE 1

 1 Example of technological solution to observe behavior in varying conditions.

TABLE 2

 2 Examples of fish behavior studies exploring species' responses to stimuli using AI and their application on fisheries.

		Behavioral studies		Data Processing		Fishery Potential Application
	Stimuli	Taxi (Response)	Short-term Behavior	Current Observation Systems (Computer vision)	Behavioral Data Pro-cessing	AI application	Advantage/ Limitation of Computer Vision	Fishing gears	Selective Device/ Method
	Chemical	Chemotaxis	Attraction,	Baited Remote	Automated	Cascade Faster R-CNN	Zero to low	Baited gears	Natural or artificial
			repulsion,	Underwater		(Mehault et al., 2022),	visibility of	(fish pots,	baits
			feeding,	Videos (BRUV),		C3D Model (G. Wang	chemical	hook-and-line,	
			herding	Optical (RGB) or		et al., 2021), Dual	diffusion in water	longline,	
				Infrared) and		Stream Recurrent	that can be seen	gillnets,	
				Hydroacoustic		Network (Måløy et al.,	by computer	trawling)	
				camera		2019)	vision		
	Light	Phototaxis	Attraction,	Optical cameras,	Automated	C3D Model (G. Wang	Light attenuation	Any type of	LED lights, laser
			repulsion,	Hydroacoustic		et al., 2021), YOLOv2	in water	gears (Pots,	beams
			herding	camera		+ behavioral metric		longline,	
						pipeline (Barreiros		Gillnet,	
						et al., 2021)		Surrounding	
								nets, Lift nets,	
								Seine, Trawl,	
								Dredge)	
	Sound	Phonotaxis	Attraction	Optical cameras	Automated	C3D Model (G.	Sound diffusion	Gillnet, Purse	Acoustic beams
			or repulsion	(RGB or		Wanget al., 2021),	can only be	Seine	(Gan et al., 2012),
				Infrared),		YOLOv2 + behavioral	detected with		pingers/sonar
				Hydroacoustic		metric pipeline	acoustic cameras,		reflectors, fish
				camera		(Barreiros et al., 2021)	stimuli origin not		calling devices
							visible to optical		(donburi, payao)
							cameras		(Yan et al., 2010)
	Water	Rheotaxis	Change in	Optical cameras	Manual	Particle image	Requires	Any type of	Bait diffusion from
	current		orientation,	(RGB or		velocimetry (PIV)	additional	gears (Pots,	source, Water jets,
			herding, or	Infrared),		(Oteiza et al., 2017)	measurement for	longline,	gear panels
			speed	Hydroacoustic			speed of current	Gillnet,	
				camera				Surrounding	
								nets, Lift nets,	
								Seine, Trawl,	
								Dredge)	
	Physical	Thigmotaxis	Herding,	Optical cameras	Automated	Motion influence map	Requires wide	Any type of	
	barriers/		sheltering	(RGB or		+ RNN (Zhao et al.,	angles of video	gears (Pots,	
	touch		behavior	Infrared),		2018)	recording and	longline,	
				Hydroacoustic			image capture	Gillnet,	
				camera				Surrounding	
								nets, Lift nets,	
								Seine, Trawl,	
								Dredge)	

TABLE 3

 3 Summary of AI pipelines for fish behavior recognition in different underwater environments.

							Underwater		
				Behavior		Light	Observation	Database	
	AI & Pipelines	Application	Results	classes	Scene	source	System	Source	Reference
	YOLOv3 + dense	Response of	Best accuracy achieved	Olfactory	Lab	Low-	Infrared video	Own dataset +	Banerjee
	optical flow method	zebrafish	among tested	response		light	camera	PASCAL VOC	et al., 2021
	+ trajectory image	(Danio rerio) to	classifiers of 0.867			intensity		and MS-COCO	
	compression with	odorants	with data						
	VGG19 + data		augmentation and						
	augmentation		decision tree classifier						
	generative sampling								
	+ binary behavior								
	classification								
		Grazing	Recall, precision and	Grazing/non	In situ open	Natural	Action cameras	Own dataset	Ditria et al.,
		behavior of	F1 score between 0.73	grazing	water	light	(Haldex Sports	(RGB videos)	2021b
	Pre-trained ResNet50 flow data algorithm for optical + Motion estimation	free-swimming patches sea grass tricuspidata) on luderick (Girella	and 0.79 (without between 0.84 and 0.87 precision, F1 score filtering); Recall, spatiotemporal				Action Cam HD 1080p)		
			(with spatiotemporal						
			filtering)						
	YOLOv3 +	Quantify	Precision of 0.897, a	Separate	Fish tank	120	Go-pro Hero 7	Own dataset	Hu et al.,
	MobileNetv2	feeding and	recall of 0.884, an	feeding and		light-	Black	(RGB videos)	2021
	backbone +	stress behavior	intersection over	hypoxia		emitting			
	improved detection	of carps	union of 0.892	experimental		diodes			
	method with	(Carassius		conditions					
	pyramid pooling	auratus) and							
	block and multiscale	catfish							
	feature extraction	(Pelteobagrus							
	technique	fulvidraco)							
		Characterized	Identification accuracy	Fighting	Lab	light	Video camera -	Own dataset	Laan et al.,
	Idtracker.ai hybrid	mutual motor	of 0.98	behavior		intensity	not specified		2018
	system (Gaussian	coordination				of 200-			
	mixture model +	and multi-				300 lx at			
	greedy acceleration	functional				the water			
	minimization	maneuvers in				surface			
	principle)	zebrafish							
		(Dania rerio)							
		Behavior of	Accuracy for behavior	Construction,	Lab	Artificial	RaspberryPi	Own dataset	Long et al.,
		cichlids	recognition of	feeding,		light	camera v2	(RGB videos)	2020
	3D Residual	(foraging,	construction behavior	mating		source			
	Networks	construction,	of 0.76						
		and social							
		behavior)							
		Characterizing	Detection F1 score of	Tracking	In situ rocky	Natural	Action cameras	Own dataset	Lopez-
		movement	0.91, 120 of 169	angles:	(rocky reefs	light	(1080p Haldex	(RGB videos)	Marcano
	Mask RCNN + 3	behavior of	individuals correctly		and seagrass		Sports Action		et al., 2021
	different trackers	yellowfin	identified, 0.78		meadows)		Cam HD)		
	(MOSSE, Seq-NMS,	seabreams	tracking accuracy						
	SiamMask)	(Acanthopagrus	(MOSSE and						
		australis)	SiamMask) and 0.84						
			(Seq-NMS)						
	Dual-Stream	Tracking if	Behavior prediction of	Feeding/Non	Breeding	Natural	Video camera	Own dataset	Måløy et al.,
	Recurrent Network	feeding	0.80	feeding	cages at sea	light	(not specified)	(RGB videos)	2019
	(DSRN) (Spatial	behavior of							
	Network + 3D CNN	salmon (Salmo							
	+ LSTM)	salar)							
		Identifying	Average precision of	Startle/non-	In situ, open	Natural	Fixed in situ	Own dataset	McIntosh
	networks YOLOv3 + LSTM	(Anoplopoma in sablefish startle behavior	0.85	on video clips startle event	tropical water,	light	camera	(RGB videos)	et al., 2020
		fimbria)							
									(Continued)

TABLE 3 Continued
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							Underwater		
				Behavior		Light	Observation	Database	
	AI & Pipelines	Application	Results	classes	Scene	source	System	Source	Reference
		Detection of	Less than 21 frames,	Net inspection	Lab	Artificial	Charge coupled	Own dataset	Papadakis
	Module Vision Development LabView software + Built-in algorithms in	speed and changes in (Sparus aurata) seabream gilthead	day recorded frames per number of 778,378 were lost from a total equivalent to 2.3 s,	and net biting		light	cameras device (CDD)		et al., 2012
		position							
		Influence of	Accuracy of 0.80 for	Typhoon/non	In situ	Natural	GoPro cameras	Fish4Knowledge	Spampinato
	2 converging streams	typhoons on	fish detection, 0.95 for	typhoon		light		dataset	et al., 2014
	of event classifier	mixed coral reef	tracking, 0.97 for event	videos					
	with SVM +	fish behavior in	detection						
	trajectory-based	tropical							
	algorithms	underwater							
		scenes							
	Dual-stream 3D	Behavior of	Mean correct behavior	5 behavioral	Lab	Artificial	HD digital	Own dataset	G. Wang
	convolutional	spotted knifejaw	recognition of 0.950	states:		light	camera	(RGB and	et al., 2021
	network with State	(Oplegnathus		Feeding,		source	(HikvisionDS-	optical flow	
	Definition +	punctatus) in		Hypoxia,			2CD2T87E(D)	videos)	
	Tracking Encoding +	high stress		Hypothermia,			WD-L)		
	Decoding by	environments		Frightening,					
	Directed Cycle Graph			Normal					
	(DSC3D)								
		Detection,	Accuracy for detection	Unusual (3	Aquaculture	Artificial	Charge coupled	Own dataset	Zhao et al.,
		localization,	(0.98), location (0.92),	behavioral	tank	light	device (CDD)	(RGB images)	2018
		recognition of	recognition (0.90)	subcategories			cameras (DS-		
	Motion influence	unusual local		of sudden			2CD6233F-SDI,		
	map + RNN	behavior in		movements)			Hikvisio)		
		tilapia							
		(Oreochromis							
		niloticus)							
		Analyze of	Accuracy of 0.945	Temporal	Aquaculture	Near-	Industrial	Own dataset	Zhou et al.,
		feeding		feeding states		infrared	camera (Mako	(infrared	2017
	Clustering index with	behavior of		before, during		light	G-223B NIR)	images)	
	near-infrared images	carps (Cyprinus		and after (t=5,		source			
		carpio var.		15,30,60 s)					
		specularis)							
		Assessing fish	Accuracy of 0.90	Fish appetite	Aquaculture	Near-	Industrial	Own dataset	Zhou et al.,
	CNN structure LeNet5 7 layered	(Oreochromis tilapia appetite of		weak) medium, (none, strong,		light infrared	G-223B NIR) camera (Mako	images) (infrared	2019
		niloticus)							

Full terms of included abbreviations, LSTM, Long Short-Term Memory; CNN, Convolutional Neural Network; MOSSE, Minimum Output Sum of Squared Error; RNN/RCNN, Recurrent Neural Network/Recurrent Convolutional Neural Network; Seq-NMS, Sequential Non-Maximum Suppression; SiamMask, Siamese Mask; SVM, Support Vector Machine; YOLO/v3, You Only Look Once version 3.

TABLE 4

 4 Summary of public datasets of fish images and videos for AI model training merged from open access database, from collection of generic image datasets (with other objects not focused on fishes) and from[START_REF] Ditria | Deep learning for automated analysis of fish abundance: the benefits of training across multiple habitats[END_REF];[START_REF] Saleh | A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis[END_REF] andPedersen et al. (2021).

	Dataset	Access	Size	Included Fishes	Labels	Location	Source	References for model train-ing	Content type
	BYU (Brigham	http://roboticvision.groups.et.byu.	12 labelled species (2.5 GB)	90 Asian Carp, 110 Crucian Carp, 74	Species	Not specified	Lillywhite and	Chua et al., 2011; Rasheed, 2021;	Images
	Young	net/Machine_Vision/BYUFish/		Predatory Carp, and 89 Colossoma and			Lee, 2013	Simons and Lee, 2021	
	University) Fish	BYU_Fish.html		four non-invasive species (120 Cottids,					
	dataset			137 Speckled Dace, 172 Whitefish, and					
				240 Yellowstone Cutthroat image)					
	Croatian Fish	http://www.inf-cv.uni-jena.de/fine_	~700 images of 12 different fish	Mixed	Species	Adriatic Sea in	Jäger et al.,	Okafor et al., 2018; Qiu et al., 2018;	Images
	Dataset	grained_recognition.html#datasets	species in real life conditions			Croatia	2015	Zhao et al., 2018; Guo et al., 2020;	
		(currently not accessible)	(120 images in training set and					Yan et al., 2021; Pang et al., 2022	
			674 in testing set)						
	DeepFish	https://github.com/alzayats/	~40,000 annotated classification	Mixed in situ	Fish/no	Coastal marine	Saleh et al.,	Laradji et al., 2020; Saleh et al., 2020	Images
		DeepFish	labels, collected from 20		fish	environments in	2020		
			different habitats			Australia			
	Deep Vision	http://metadata.nmdc.no/metadata-	Two surveys 2017 to 2019 from	Blue whiting, Atlantic herring, Atlantic	Species	In situ from	Allken et al.,	Allken et al., 2021b	Images
	Fish Dataset	api/landingpage/	Deep Vision system	herring, other mesopelagic fishes		surveys +	2021b		
		01d102345aef4639f063a13ea20cd3f3				synthetic data			
	FathomNET	http://fathomnet.org	~80,000 images of marine	Mixed	Mixed	Worldwide	Boulais et al.,	Katija et al., 2021b	Images and
			animals, 106 000 localizations,				2020; Katija		Videos
			26 000 h videos, 6.8 million				et al., 2021a		
			annotations, 4 349 terms						
	Fish4Knowledge	http://www.perceivelab.com/	3.5k bounding fishes/700k 10-	Species of tropical fishes	Fish/no	Taiwan coral			
	(F4K)	datasets	minute video clips		fish	reefs			

TABLE 4 Continued
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	Content	type	Videos				Images			
	References for model train-	ing	Pedersen and Mohammed, 2021				Li et al., 2021			Pang et al., 2022
	Source	Pedersen and	Mohammed,	2021		Everingham	and Winn,	2012	Zhuang et al.,	2021
	Location	Stocked fish and	freshwater wild	species in	Norway	Unspecified			Mixed
	Labels	Species				Fish/no	fish		Species
	Included Fishes	Brown trout species				Unspecified			Mixed
	Size	39 images of brown trouts in	288 frames			17,000 annotated fishes			~2000 fish categories with	103,034 wild fish images based	on several professional fish	websites (e.g., Fish Base,	Encyclopedia of Life, Fishes of	Australia)
	Access	Not retrievable				http://host.robots.ox.ac.uk/pascal/	VOC/voc2012/		https://github.com/PeiqinZhuang/	WildFish
	Dataset	TROUT39				VOC2012/	PASCAL Visual	Object Class	WildFish
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