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Abstract
We propose a model, which nests a susceptible-infected-recovered-deceased (SIRD)
epidemic model into a dynamic macroeconomic equilibrium framework with agents’
mobility. The latter affect both their income and their probability of infecting and being
infected. Strategic complementarities among individual mobility choices drive the
evolution of aggregate economic activity, while infection externalities caused by indi-
vidual mobility affect disease diffusion. The continuum of rational forward-looking
agents coordinates on the Nash equilibrium of a discrete time, finite-state, infinite-
horizon Mean Field Game. We prove the existence of an equilibrium and provide a
recursive construction method for the search of an equilibrium(a), which also guides
our numerical investigations. We calibrate the model by using Italian experience on
COVID-19 epidemic and we discuss policy implications.

Keywords Mean field game · Strategic complementarities · ESIRD · COVID-19

JEL Classification E1 · H0 · I1 · C72 · C73 · C62

1 Introduction

We propose an integrated assessment model, denoted by ESIRD, encompassing
a susceptible-infected-recovered-deceased (SIRD) epidemic model and a dynamic
macroeconomic equilibrium economic model, where mobility choices of forward-

The work of Giorgio Fabbri is partially supported by the French National Research Agency in the
framework of the “Investissements d’Avenir” program (ANR-15-IDEX-02) and of the center of
excellence LABEX MME-DII (ANR-11-LABX-0023-01). Salvatore Federico, Davide Fiaschi, and
Fausto Gozzi were supported by the Italian Ministry of Education, University and Research (MIUR), in
the framework of PRIN projects 2015233N54 006 Deterministic and Stochastic Evolution Equations and
2017FKHBA8 001 “The Time-Space Evolution of Economic Activities: Mathematical Models and
Empirical Applications”.

B Giorgio Fabbri
giorgio.fabbri@univ-grenoble-alpes.fr

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00199-023-01485-1&domain=pdf
http://orcid.org/0000-0003-3316-8929


G. Fabbri et al.

looking agents affect both income (and consumption) and the spread of epidemic. A
calibrated version of the model illustrates the possibilities to use the model to design
an efficient policy of state-of-epidemic-dependent mobility restrictions.

Pandemic crisis has shown that sudden drops in individual mobility have a substan-
tial negative consequence on aggregated income and consumption (OCDE 2020). The
decrease of individual mobility along the COVID-19 crisis has been the joint outcome
of individual decisions, caused by the diffusion of infection, and of containment mea-
sures imposed by national authorities (lockdown, curfew, etc.). In turn, a reduction in
individual mobility brings down individual income (Huang et al. 2020) as well as epi-
demic dynamics, being higher individual mobility associated to a higher probability of
infecting and being infected (Nouvellet et al. 2021). Therefore, entangled externalities
and “equilibrium” effects are at work; more precisely, individual mobility decisions
display i) strategic complementarities with mobility choice of other agents, because
the marginal impact on individual income of individual mobility is increasing in the
mobility (Bulow et al. 1985; Cooper and John 1988); and, ii) negative externalities on
contagion dynamics, because of agents in their mobility choices internalize the risk
of being infected, but not the effect of infecting other people (Bethune and Korinek
2020).1

In the model we focus on short-term mobility. Epidemic dynamics is driven by a
generalized version of the SIRD model, where the average number of contacts per
person per time is endogenous, as well as the transition rate (i.e., the flow of new
infected), and depends on the mobility choices of agents.

Agents maximize an inter-temporal discrete time utility function considering con-
sumption and mobility costs. Their choice of mobility for work (respectively for
consumption) depends on their state (susceptible, infectious, or recovered), the aggre-
gate level of economic activity, the current and future policies on mobility restrictions,
and on their future utility, which, in turn, depends on the probabilities of being infected
in the future and on the future economic dynamics. At each time, aggregate economic
activity (consumption) depends on the state of the epidemic and on the individual
mobility choices.

We set the agent’s problem as a game with a continuum of players in a finite
state space (the four states of agents) and, in particular, the model can be seen as a
discrete time, finite state, infinite horizon Mean Field Game (MFG) (Lasry and Lions
2007). The notion of equilibrium used in the paper is basically borrowed – even if
re-elaborated – from Jovanovic and Rosenthal (1988) (Definition 5.2), which we show
to be equivalent to the more common notion of Nash equilibrium of our Mean Field
Game (Proposition 5.3). We then provide the proof of the existence of the equilibrium
for our Mean Field Game (Theorem 5.4), and finally propose a recursive algorithm to
identify and then numerically simulate such equilibrium (Sect. 5.2 and Theorem 5.7).

MFG literature deals with the behavior of Nash equilibria in differential games as
the number of agents becomes large. There is extensive recent research activity on
MFGs starting from the pioneering works of Huang, Malhamé and Caines (Huang
et al. 2006) and, independently, at the same time by Lasry and Lions (Lasry and Lions
2006a, b, 2007). In the large population limit, one expects to obtain a game with a

1 Another possible source of externality, the healthcare congestion, is analyzed by Jones et al. (2021).
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continuum of agents where, like in our case, the effects on the decision of any agent
from the actions of the other agents are experienced through the statistical distribution
of states. Since perturbations from the strategy of an agent does not influence the
statistical states’ distribution, the latter acts as a parameter in each agent’s control
problem.

We calibrate the model by using Italian experience on COVID-19 epidemic in the
period February 2020-May 2021. Numerical explorations under different configura-
tions of state-of-epidemic-dependent mobility restrictions highlight the presence of
a trade-off between economic losses and fatalities due to the pandemic, that is, of a
pandemic possibilities frontier as in Kaplan et al. (2020) andAcemoglu et al. (2020).
However, we argue that policy evaluation should take into account two additional
directions. The first is related to the share of susceptible at the end of the period of
evaluation, which can favor a new outbreak of epidemic in the future without an effi-
cient vaccine. The second is the social feasibility of prolonged mobility restrictions
(Vollmer et al. 2020).

Our paper makes four main contributions to literature. The first is to the
epidemiological-macroeconomic literature, which has recently boomed following the
COVID-19 outbreak. Its main goal is to produce integrated assessment models, where
the economic dynamics complements epidemiological models. In particular, a strand
of literature focuses on optimal policy problem from a planner’s perspective without
modeling individual behavior (see, e.g., Alvarez et al. 2021; Piguillem et al. 2020;
Moser and Yared 2022; Atkeson 2020), while another one considers forward-looking
agents and market determination of good and factor prices, as in Eichenbaum et al.
(2021), Toxvaerd (2020), Jones et al. (2021) and Kaplan et al. (2020). With respect
to these contributions, we explicitly consider agents’ (short-term) mobility. There are
several good reasons for this focus: (i) in the epidemiological literature, mobility is
(not surprisingly) identified as the key variable in containing an epidemic (Nouvel-
let et al. 2021); (ii) mobility is an easily measurable variable and many datasets are
freely available; and, (iii) since mobility was/is the primary focus of several restrictive
policies imposed by governments, the proposed framework is a natural candidate to
evaluate past and future policies on mobility restrictions. As already argued, focusing
on mobility implies taking into account non-market interactions among individual
choices: the presence of strategic complementarities in individual decisions is another
element of novelty in our epidemiological-macroeconomic model. This introduces
substantial difficulties in the mathematical study of the model, which arise e.g. from
proving the existence of a Nash equilibrium.

An advantage of our analysis is to consider individuals with a long (infinite) time
horizon. This is crucial for understanding the interaction between the change in death
risk (whose effects should be evaluated over years), and the epidemic dynamics (whose
effects should be measured over days). For example, in a two (or three)-period model
(as for instance Bandyopadhyay et al. 2021 or Bhattacharya et al. 2021), a strategy
to reduce mobility (and consumption) in the short run so that to decrease the death
risk and wait for the end of the epidemics cannot be correctly evaluated. Similar
situation applies for the non-linear dynamics of the epidemics and bringing the model
to empirical data, which would also be problematic.
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The second contribution is onmethodology.Wehavediscussed above that ourmodel
belongs to the class of discounted infinite horizon, discrete time, finite state space
MFG. To the best of our knowledge, this does not fall into the classes already studied
in the literature, among which Gomes et al. (2010), Doncel et al. (2019), Hadikhanloo
and Silva (2019), and Bonnans et al. (2021); Wiecek (2020). Hadikhanloo and Silva
(2019) and Bonnans et al. (2021) consider only finite horizon problems, while Gomes
et al. (2010) (and similarlyWiecek 2020) consider infinite horizon problems of ergodic
type or with entropy penalization, where the dependence of the agents’ utility from
the choices of the other agents is more regular than in our model. Doncel et al. (2019)
consider an infinite horizon MFG, but where agents’ cost does not depend on the
strategies of the other agents, which instead happens in our model for the presence of
strategic complementarities. Hence, our theorems of existence of an equilibrium and
the recursive construction of an equilibrium are to be considered a novelty.

We also contribute to the literature focusing on the endogenous determination of the
infection rate and the reproduction rate of an epidemic (Avery et al. 2020). Infection
rate depends on many aggregate factors (climate, geography, health system, etc.), but
also crucially revolves around individual choices. Several approaches have been pro-
posed to endogenize infection rates, among which a purely epidemiological approach
as Fenichel (2013), and a behavioral approach as, for example, in Engle et al. (2020)
and Bisin and Moro (2021). Farboodi et al. (2021), Toxvaerd (2020), and Eichen-
baum et al. (2021) are instead more in line with our approach, developing settings
where forward-looking individuals chose their actions facing an epidemic-economic
trade-off. However, no paper directly models mobility choices of individuals while
considering strategic complementarities and negative externalities in an infinite hori-
zon equilibrium setting as a way to explain the dynamics of infection rate during the
pandemic. The advantage of our approach is evident in the interpretation of results,
allowing to directly correlate mobility and infection rates, and in the possibility to
bring the model to data.

The final contribution is to the literature on the effect of epidemics diffusion on
mobility (see, e.g., Goolsbee and Syverson (2021) and Meloni et al. (2011) and Nou-
vellet et al. (2021) for an epidemiological perspective). Our contribution provides a
theoretical framework to evaluate restrictive policies going beyond the simple trade-
off economic losses/fatalities as prospected in Kaplan et al. (2020), Acemoglu et al.
(2020), and Gollier (2020). It makes it possible, for instance, to take into account other
key dimensions regarding the social feasibility of policies in the evaluation, such as
the fragility of post-lockdown situations with a high risk of new outbreaks, and the
sustainability of health systems (see, in particular, Sects. 6 and 7).

The paper is organized as follows: Sect. 2 presents the model, Sect. 3 focuses on the
agent’s optimization problem while Sect. 5 provides a recursive construction method
for the search of an equilibrium(a). Section6 calibrates themodel to Italian data; Sect. 7
uses the model to investigate the effects of policies aiming at mitigating epidemics
and their effects on economic activity; Sect. 8 concludes.
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2 The epidemiologic-economic dynamic model

We consider an infinite horizon discrete time (t = 0, 1, 2...) world with a continuum
set of agents, whose individual mass is equal to zero so that the actions of a single
agent do not modify the evolution of the global epidemic state and of the aggregate
economic variables.

As in the classical SIRD framework (Chowell et al. 2016), at each time, the health
status k of an agent can be: susceptible (k = S); infected (k = I ); recovered (k = R);
and deceased (k = D). We then denote the set of possible health status by K, i.e.

K := {S, I , R, D} .

We denote by μ(t, k) the share of the population in the health status k at time t
and by μ(t) the four-dimensional vector μ(t) = (μ(t, S), μ(t, I ), μ(t, R), μ(t, D))

representing the health status distribution of the population.2

2.1 The agents’utility

Each agent chooses at each time t their mobility rates (whose maximal value is w.l.o.g.
normalized to 1) for production, ϑp(t), and for consumption, ϑc(t).

The instantaneous utility at time t of the agent in the health state k(t) ∈ K, undertak-
ing the actions ϑ(t) := (ϑp(t), ϑc(t)) ∈ [0, 1]2 is equal to 0 if k(t) = D, otherwise,

u(t, c(t), k(t),ϑ(t)) := ln c(t) − γp (t, k(t),μ(t)) ϑp(t) − γc (t, k(t),μ(t)) ϑc(t) − M .

In the above expression, c(t) is the individual consumption, M ∈ R is the (exogenous)
constant utility of state deceased, which “normalizes the utility of nonsurvival to zero”
(Rosen 1988, p. 2), and γp (t, k(t),μ(t)) and γc (t, k(t),μ(t)) are, respectively, the
marginal utility cost to move into the labour market (and in general for the movements
related to the productive activities of the agent) and to move into the consumption
market (or, in general, for the movements related to the individual consumption).

The cost of movingmust be understood in a broad sense, taking into account several
elements: the cost in the narrow sense, e.g., for gasoline, but also the difficulties in
the movement related to the status "infected", i.e., direct virus-related impediments;
moreover, the stress generated by the likelihood of coming into contact with the virus,
i.e., the “psychological” costs of bearing the risk to become infected; and, finally, the
penalties related to legal constraints, i.e., government-imposed restrictions to move-
ments.

In particular, the functions γp and γc will be used to model public policies for
mobility restriction. For this reason, they may depend explicitly on time t (in the case
of policies that intervene at exogenously fixed times) or on the state of the epidemic (for
example, in the case of policies that change endogenously depending on the severity

2 The sum of the components of μ(t) is always equal to 1; hence, μ(t) is can be seen as a probability
measure on K. Roughly speaking, this means that our state of the world is described up to sets of agents of
measure zero.
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of the epidemiological situation). The mobility cost structure is known by agents who
will incorporate, in their inter-temporal choices, future policy changes (both exogenous
and endogenous). We make the following assumptions on the marginal utility cost of
mobility:

γp(t, R,μ) ≤ γp(t, S,μ) ≤ γp(t, I ,μ) and γc(t, R,μ)

≤ γc(t, S,μ) ≤ γc(t, I ,μ),

for any μ and t . This ranking naturally follows from the broad view underlining
the mobility costs in our model. While we expect that the costs in the narrow sense
associated with mobility do not depend on the agent’s status, the “psychological”
costs associated to the possibility of coming into contact with the virus are greater in
susceptibles than in recovered agents (first inequality). On the other hand, both the
possibly massive physical impediments associated with an ongoing infection, and the
greater legal penalties (quarantine), suggest that the marginal cost for the infected
agents is greater than for the other agents (second inequality).

As described in detail in Sect. 2.4, at each time any susceptible individual has a
certain probability of becoming infected, and each infected individual has a certain
probability of dying and of recovering; hence, the evolution of the individual health
status k(t) is represented by a discrete stochastic process. The goal of each agent will
be to maximize their total expected inter-temporal utility given by:

E

[ ∞∑
t=0

(1 − ρ)t u(t, c(t), k(t),ϑ(t))

]
, (1)

where (1 − ρ) ∈ (0, 1) is the exogenous discount factor.

2.2 Consumption andmobility

We suppose that the opportunity to move into the consumption market produces a
benefit for agents. Moving can indeed allow access to a greater number of goods and
services and to a wider variety, satisfying more precisely the needs of the agent or
finding equivalent goods with inferior prices. Alternatively, we can suppose that the
effective consumption is affected by the mobility/time dedicated to the consumption
activity (Steedman 2001). To formalize this idea as simply as possible, we suppose that
the “generalized cost” faced by the agent for one unit of consumption good depends
on its (consumption-related) mobility choice ϑc(t), in particular:

G(ϑc(t)) = 1

P0 + P1ϑc(t)
,

where

P0, P1 ≥ 0
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are exogenous constants. P0 reflects the presence of some baseline/no-movement cost,
while P1 measures the the decline in the cost due to movement. As will become clear
below, the specific form chosen forG responds to a particularly simple and transparent
specification of the model.

In the model, we do not consider the saving (and therefore the dynamics of accu-
mulation of capital) and therefore we impose, at every time, that the individual income
is entirely destined to the expenditure for consumption, i.e.

y(t) = G(ϑc(t))c(t),

where we denoted by y(t) the individual income at time t . This implies that:

c(t) = (P0 + P1ϑc(t)) y(t), (2)

i.e. the consumption is decided by the level of income, but also by the mobility for
consumption.

2.3 Income andmobility

As for the need of mobility for consumption, we assume that mobility affects agent’s
income, in particular a greater mobility positively contributes to income. The idea
here is intuitive: some jobs/activities require the presence of the worker and can, or
cannot, only be partially carried out by remote work. We also suppose that income
is affected by health conditions of agents (obviously, sick people are less productive
than healthy ones), and that productivity, and therefore, agent’s income also depends
on the macroeconomic conditions, so that a greater macroeconomic activity, ceteris
paribus, will lead to higher agent income. In the model, Z(t) will denote the level
of macroeconomic activity at time t and its dependence on agents’ choices will be
discussed shortly. All in all, we suppose that the individual income has the following
form:

y(t) = Z(t)
(
Ak
0 + Ak

1ϑp(t)
)

, (3)

where Ak
0 and Ak

1 are positive exogenous constants, depending on the health status
k of the agent. This specification represents in the simplest (bilinear) way the com-
plementarity between the individual contribution

(
Ak
0 + Ak

1ϑp(t)
)
and the aggregate

economic activity level Z(t). In Eq. (3) the individual contribution has a linear spec-
ification that captures the mechanism described without increasing excessively the
formal complexity of the model.

We will suppose that AS
1 = AR

1 so we will denote this value by ASR
1 , and we will

suppose that

0 < AI
0 ≤ ASR

0 and 0 ≤ AI
1 ≤ ASR

1 ,

123



G. Fabbri et al.

where the second inequalities reflect the fact that healthy (susceptible or recovered)
agents are more productive than infected.

From (2), the consumption of the agent in the health state k, when the epidemic
is in the state μ(t) and they undertake the production-consumption choices ϑ(t) =
(ϑc(t), ϑc(t)), is then given by

c(t) = Z(t)
(
Ak
0 + Ak

1ϑp(t)
)

(P0 + P1ϑc(t)) . (4)

The level of macroeconomic economic activity Z(t) depends on the choices of all
agents on their mobility for the participation in the productive activities, and thus it
presents strategic complementarities. More precisely, we will suppose that it has the
following shape:

Z(t) := φ

(
μ(t, S)ϑ̄p(t, S), μ(t, I )ϑ̄p(t, I ), μ(t, R)ϑ̄p(t, R)

)
, (5)

where φ : [0, 1]3 → (0,∞) is non-decreasing in all the components and such
that φ(0, 0, 0) > 0 and ϑ̄p(t, S) (respectively ϑ̄p(t, I ) and ϑ̄p(t, R)) is the average
productive-mobility choice of susceptible (respectively infected, recovered) agents.
In the following, we will focus on symmetric equilibria where all individuals of the
same health status behave in the same way; hence, along the equilibrium, ϑ̄p(t, S),
ϑ̄p(t, I ) and ϑ̄p(t, R) will also be the (optimal) choice of any single agent.

2.4 Agents mobility and epidemic dynamics

We model the evolution of the size of health classes, that is, the shares of population
with different health status, following a standard SIRD model without vital dynamics
(newborns are not considered and people die only because of the virus) adjusted for
the mobility choices of the agents.

To make the point clearer, we recall that in the standard SIRD model the number
of new infected agents is given by

β
I (t)S(t)

N (t)
, (6)

where I (t) (respectively S(t), N (t)) is the number of infected agents (respectively
susceptible agents, total number of agents) at time t and β is an exogenous factor
representing the average number of contacts per agent per time.

In the standard SIRD model, β is constant and is exogenous with respect to the
state of epidemics and agents’ choices. The idea behind this formulation is that people
meet by chance independently of their epidemiological status; hence, the probability
of a susceptible agent meeting an infected agent and getting infected at time t is

β
I (t)

N (t)
= βμ(t, I ).
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As a result, in the standard SIRD model, the share of the new infected individuals at
time t is

β
I (t)

N (t)

S(t)

N (t)
= βμ(t, I )μ(t, S).

Based on the idea that the number of contacts depends on the mobility of agents, we
enrich this formulation adjusting the parameter β for the agents’ mobility choices.
In particular, we observe that it is natural to suppose that the number of contacts is
proportional to the distance covered by agents; for example, an agent walking 200ms
in a street would meet twice as many other agents than if they walked 100ms. For the
same reason, the number of contacts is proportional to the average distance covered
by other agents given the mobility of the agent.

Therefore, since the maximal mobility is normalized to one and distinguishing the
mobility for production and for consumption, the probability of a susceptible agent
withmobility (ϑp(t), ϑp(t))meeting an infected agent and getting infected ismodeled
as

τ(t) = (
βpϑ̄p(t, I )ϑp(t) + βcϑ̄c(t, I )ϑp(t)

)
μ(t, I ), (7)

where βp, βc > 0 are given constants that we assume to satisfy the condition
βp + βc < 1.

Taking the average over the population of susceptibles, and multiplying by the
portion of susceptibles among the population, we find the share of the new infected
agents; the latter represent the (negative) variation in the share of the susceptible
population, that is3

μ(t + 1, S) = μ(t, S) − β(t)μ(t, S)μ(t, I ), (8)

where

β(t) := βpϑ̄p(t, I )ϑ̄p(t, S) + βcϑ̄c(t, I )ϑ̄c(t, S). (9)

Therefore, in our ESIRD (economic SIRD) model, β(t) of (9) is the counterpart of β

in the SIRD model of (6).
Apart for the role of mobility in β(t), we will stick to the classic structure of the

SIRDmodel, andwe suppose thatπD (respectivelyπR) is the probability of an infected
agent to die (respectively to recover) at each time. At the aggregate level, this means
that a portion πD (respectively πR) of infected agents die (respectively recover) at
each time. Hence, the evolution of the health status distribution of population in our
model is as follows:

μ(t + 1) = Q(t)μ(t), (10)

3 The assumptions of zero mortality for reasons different from the virus and of the zero natality are implicit
in (8).
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where

Q(t) :=

⎛
⎜⎜⎝
1 − β(t)μ(t, I ) 0 0 0

β(t)μ(t, I ) 1 − πR − πD 0 0
0 πR 1 0
0 πD 0 1

⎞
⎟⎟⎠ .

From (9) we observe that the dependence of β(t) on agents’ mobility is proportional
to the product of individual mobilities, which generates strategic complementarities
in the mobility choices4 with aggregate negative effects. In particular, infected agents
do not internalize the effect of their mobility choice on the infection rate of susceptible
agents, and both susceptible and infected agents do not internalize the effect of the
increased spread of the pandemic on the level of macroeconomic activity Z(t). There-
fore, in the decentralized equilibrium, the agents’ mobility is too high with respect to
the optimal social mobility.

3 The agent’s optimization problem

Wenow look at the optimization problemof a single agent.As previously discussed, the
zero-mass agent assumption implies that the individual choices of any specific agent
do not modify the macro variables and, in particular, the evolution of the epidemic
according to (10). The latter only depends on the average choices of each group defined
by agents’ health status. This means that agents take the average strategies ϑ̄(t) and the
dynamics of μ(t) as given when they make their decisions, that is, we are considering
a Mean Field Game (Lasry and Lions 2007). At the equilibrium, we will impose that
optimal individual decisions coincide with the average decisions of the corresponding
group defined by agents’ health status.

The epidemic dynamics μ(t) does not depend on the choices of the single agent;
however, the evolution of their epidemic status does. In particular, as we have already
discussed in Sect. 2, the probability of a susceptible agent getting infected is given by
the endogenous probability τ(t) defined in (7), while the probabilities of an infected
agent dying and recovering are exogenous and equal to πD and πR , respectively.
Hence, the state of the agent k(t) is represented by a controlled Markov Chains,
whose transition kernel at each time t is given by:

q(t) =

⎛
⎜⎜⎝

pSS(t) pI S(t) pRR(t) pDS(t)
pSI (t) pI I (t) pRI (t) pDI (t)
pSR(t) pI R(t) pRR(t) pD(t)
pSD(t) pI D(t) pRD(t) pDD(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 − τ(t) 0 0 0

τ(t) 1 − πR − πD 0 0
0 πR 1 0
0 πD 0 1

⎞
⎟⎟⎠ ,

4 In the model the individual mass is zero, hence individual decisions do not affect the dynamics of the
aggregate variables. Here, we refer to mobility choices in the sense of the average mobility choices. This
fact will be further stressed in the next section.
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where pk1k2(t) is the probability to switch from the status k1 at time t to the status
k2 at time t + 1. Even if not emphasized in the notation, q depends on the individual
decisions ϑ(t) and on the average decisions of other agents ϑ̄(t).

Since we rely on dynamic programming, we let the initial time and state vary.
Hence, we assume that the agent starts at time t0 ∈ N in the state k(t0) ∈ K, where
(t0, k(t0)) ∈ N × K, and that they choose their strategies in the set:

A(t0) :=
{
ϑ = (ϑp, ϑc) : {t0, t0 + 1, ...} × K → [0, 1]2 s.t. ϑ(·, D) = (0, 0)

}
.

In general, the set of admissible strategies depends on the time t0 and we should
denote the set of strategies byA(t0). At each time, the strategy ϑ can be chosen from
all pairs (ϑp, ϑc) ∈ [0, 1]2, so with a slight abuse of notation (making abstraction of
the translation, for which the strategy at time t0 is defined only for t ≥ t0) we will
denoteA as the set of admissible strategies. In the set of strategies, each agent includes
a complete plan of action for: i) the initial health states different from the actual one
of the same agent; and, ii) all possible future health statuses, even though some of
these are not attainable; for example, recovered agents cannot become susceptible or
infected in the future.

The counterpart of the target (1) starting from (t0, k(t0)) depending on the initial
health status distribution μ(t0) and on the average strategies ϑ̄(t, k) specified for all
t ≥ t0 and k ∈ K is

J (t0, k(t0),μ(t0), ϑ̄(·, ·);ϑ(·, ·)) := E

[ ∞∑
t=t0

(1 − ρ)t−t0u(t, c(t), k(t),ϑ(t, k(t)))

]
,

where c(t) is just an abbreviation.5

The value function of the agent is defined as

V (t0, k(t0),μ(t0), ϑ̄(·, ·)) := sup
ϑ(·,·)∈A

J (t0, k(t0),μ(t0), ϑ̄(·, ·);ϑ(·, ·)).

According to the dynamic programming principle, the value function is a solution
(possibly not unique) to the Bellman equation (with unknown v)
v(t0, k(t0)) = sup

ϑ∈[0,1]2
∑
k∈K

pk(t0)k(t0)
[
u(t0, c(t0), k(t0),ϑ) + (1 − ρ)v(t0 + 1, k)

]
.

(11)

4 The limits of our modelling strategies

In ourmodel formulation, we adopt some shortcuts that needmore detailed discussion.
The positive relationship between utility and individual mobility is to be considered

5 In particular, from (4), c(t) = Z(t)
(
Ak0 + Ak1ϑp(t)

)
(P0 + P1ϑc(t)) and Z(t) is given by (5). Hence,

c(t) does depend on ϑ̄ and μ.
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a reduced form of the result of solving the equilibrium of an economy populated
by firms producing heterogeneous goods and services in different locations and by
consumers with heterogeneous preferences incurring moving costs in their search for
the best consumption basket. In equilibrium, the reduced mobility should determine
higher prices as the result of lower competition among firms; additionally, the same
quantity of consumption should also lead to a lower utility for the possible mismatch
between the consumers’ heterogeneous preference and the specific local supply of
goods and services. A complementary explanation of the positive effect of mobility
on individual utility is that reduced mobility constrains the capacity of expenditure of
individuals,which turns out as forced saving. In our framework,where saving is absent,
the reduced mobility, therefore, corresponds to an increasing gap between income and
consumption, that is, between the latter and utility. Also, the relationship between
mobility and individual income is to be taken as a reduced form of the equilibrium
of an economy, where the place of residence and place of work differ (i.e., there
exists commuting); where the production activity needs some mobility, for example,
the need to transport commodities among different plants; and where the place of
production and the place of sale differ, which is the most common case. As a result,
in equilibrium, reduced mobility leads to a decrease in economic activity. Overall,
considering all these phenomena would add considerable complexity to our analysis,
but no significant insight given our focus on short-run dynamics.

5 Equilibrium: existence and recursive construction

In this section, first we provide the definition of an interteporal equilibrium for our
economy, which poses particular hidden difficulties (see Sect. 5.1) and then provide a
theorem of the existence of an equilibrium. Finally, we discuss a recursive construction
of equilibrium (see Sect. 5.2), which is the basis for our numerical simulations.

5.1 The definition and existence of equilibrium

First, we give the definition of a symmetric Nash equilibrium for our Mean Field
Game. Let P(K) be the set of probability distributions on K, that is μ(t) ∈ P(K) for
every t ≥ 0.

Definition 5.1 (Symmetric Nash equilibrium of the Mean Field Game) Let μ(0) ∈
P(K) be the health status distribution of a population at t = 0. A Nash equilibrium
for the Mean Field Game is a strategy ϑ̄(·, ·) ∈ A such that,

V (0, k(0),μ(0), ϑ̄(·, ·)) = J (0, k(0),μ(0), ϑ̄(·, ·); ϑ̄(·, ·)) ∀k ∈ K. (12)

Definition 5.1 states that, at equilibrium, the optimal mobility choice of an agent,
when the average mobility choice of the other agents is ϑ̄(·, ·), is exactly ϑ̄ , that is, the
equilibrium is symmetric for all agents belonging to the same health status. Focusing
on symmetric Nash equilibria among all possible Nash equilibria is very common in
the Mean Field literature (see, e.g., Carmona and Delarue 2018,Sec. 6.1.1.).
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From another perspective, our Mean Field Game can be viewed as an ”anonymous
sequential game with a continuum of players, in which agent players affect their
opponents in ways that are insignificant at the individual level but significant when
aggregated, and in which factors that are stochastic at the individual level become
deterministic when aggregated” (Jovanovic and Rosenthal 1988). In particular, the
following notion of equilibrium can be formulated:

Definition 5.2 (Equilibrium of the anonymous sequential game) An equilibrium start-
ing from μ(0) ∈ P(K) is a couple (v(·, ·), ϑ̂(·, ·)), with v : N × K → R and
ϑ̂(·, ·) ∈ A, such that, along the trajectory of the health status distribution starting at
μ(0) as a result of the average strategy ϑ̂(·, ·), one has that:
(i) v is bounded and satisfies6 the Bellman equation (11) for every (t0, k(t0)) ∈ N×K;
(ii) ϑ̂(t0, k(t0)) is an optimizer of the right hand side of (11) for every (t0, k(t0)) ∈

N × K when ϑ̄(t0, k(t0)) = ϑ̂(t0, k(t0)).

According to Definition 5.2, the notion of equilibrium requires that for each t0 > 0,
each agent optimizes their objective functional given its health status k(t0) and the
health status distributionμ(t0) (Point (ii) in Definition 5.2) and that such optimization
is sequentially consistent; that is, k(t0 + 1) and μ(t0 + 1) are the outcome of the
optimizing behavior at time t0; then, k(t0 + 2) and μ(t0 + 2) are the outcome of the
optimizing behavior at time t0 + 1; etc. (Point (i) in Definition 5.2).

The importance of Definition 5.2 of equilibriumwill be clarified further in Sect. 5.2,
where we will deal with the recursive construction of the equilibrium, the basis of our
numerical investigation of the properties of equilibrium. Notably, the use of Defini-
tion 5.2 in the rest of the analysis is legitimated by its equivalence with Definition 5.1,
as proven in Proposition 5.3.

Proposition 5.3 Definitions 5.1 and 5.2 are equivalent.

Proof (a) Letμ(0) ∈ P(K), let (v, ϑ̂) be an equilibrium in the sense of Definition 5.2,
and let k(0) ∈ K. By standard verification arguments in optimal control, it is clear
that, since v is bounded, it coincides with the value function (of the agent) and that the
control ϑ̂ ∈ A is optimal (for the agent) when ϑ = ϑ̂ . Hence, (12) is verified showing
that ϑ̂ is a Nash equilibrium in the sense of Definition 5.1.

(b) Letμ(0) ∈ P(K) and let ϑ̂ be a Nash equilibrium in the sense of Definition 5.1.
Set, for each t0 ≥ 0, v(t0, k(t0)) := V (t0, k(t0),μ(t0),ϑ) with ϑ = ϑ̂ and consider
the couple (v, ϑ̂). By the dynamic programming principle, v(t0, k(t0)) satisfies (11)
at each t0 ≥ 0, so part (i) of Definition 5.2 is satisfied. Part (ii) of the same definition
is satisfied by (12). �	

Proposition 5.3 states that Definitions 5.1 and 5.2 identify the same equilibria,
i.e. when our Mean Field Game is viewed as an anonymous sequential game, its
equilibrium is a Nash equilibrium and vice versa.

We conclude the section with a result of existence of an equilibrium given in The-
orem 5.4.

6 The trajectory of health status distribution starting at μ(0) enters into (11) by the sequence of pk(t0)k , in
turn depending on τ(t0) of (7), that is, the probabilities to change individual health status pk(t0)k depend
on the share of infected agents on population μI .
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Theorem 5.4 Given the Definition 5.2 of the equilibrium of our Mean Field Game,
such equilibrium exists for each μ(0) ∈ P(K).

Proof See “Appendix A”. �	
Remark 5.5 The proof of existence is based on the Tikhonov’s fixed point Theorem
(see Theorem A.1 in “Appendix A”), which however does not guarantee the unique-
ness of equilibrium. In MFG theory, the usual condition to guarantee uniqueness are
monotonicity conditions on the costs promoting a disaggregation dynamics (see, e.g.,
Cardaliaguet and Porretta (2020)). Even if our model does not fall in the standard
families of MFG theory, one can expect that the aggregation push due to the term Z(t)
leads to possible multiple equilibria.

5.2 The recursive construction of the equilibrium

In Algorithm 5.6, we illustrate a recursive algorithm, inspired by Definition 5.2, which
allows to compute an equilibrium of our Mean Field Game. The importance of Algo-
rithm 5.6 is shown by Theorem 5.7, which states the conditions for the computed
equilibrium to be both a Nash equilibrium and an anonymous sequential game equi-
librium, that is, to satisfy Definitions 5.1 and 5.2.

Algorithm 5.6 (The algorithm for the computation of an equilibrium) .

1. At time 0, set μ̂(0) = μ(0), v̂(0, D) = 0, and arbitrarily assign v̂(0, k) for k ∈
{S, I , R}.

2. At time t ≥ 0, given μ̂(t) and v̂(t, ·), according to the corresponding optimization
in the Bellman equation (cf. (20)-(21)), we set, for k ∈ {R, I },7

ϑ̂(t, k) : =
(((

1

γp(t, k, μ̂(t))
− Ak

0

Ak
1

)
∨ 0

)
∧ 1,

((
1

γc(t, k, μ̂(t))
− P0

P1

)
∨ 0

)
∧ 1

)
. (13)

3. Then, to perform the optimization in the Bellman equation for k = S (cf. (22)), we
set

â(t) := μ̂(t, I )ϑ̂p(t, I ), b̂(t) := μ̂(t, I )ϑ̂c(t, I ).

and, fixing the difference ξ := v(t0 + 1, S) − v(t0 + 1, I ) as a parameter, we set

ϑ̂
ξ
(t, S) = (ϑ̂ξ

p(t, S), ϑ̂ξ
c (t, S)),

where

ϑξ
p(t, S) = 1

γp(t, S, μ̂(t)) + (1 − ρ)â(t)ξ
− AS

0

AS
1

,

7 Hereafter, given a, b ∈ R, we denote a ∨ b = max{a, b}, a ∧ b = min{a, b}.
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ϑξ
c (t, S) = 1

γc(t, S, μ̂(t)) + (1 − ρ)b̂(t)ξ
− P0

P1
.

Then, (22) can be rewritten in terms of ξ leading to the algebraic equation

v̂(t, S) = (1 − ρ)v̂ξ (t + 1, I ) + (1 − ρ)ξ + f (t, ξ), (14)

where:

f (t, ξ) = u(t, ĉξ (t, S), S, ϑ̂
ξ
(t, S)) − (1 − ρ)

(
βpâ(t)ϑ̂ξ

p(t, S) + βcb̂(t)ϑ̂
ξ
c (t, S)

)
ξ, (15)

4. Given the parametric value ξ := v(t0 + 1, S) − v(t0 + 1, I ), we set the value of
the corresponding variables:

Ẑ ξ (t) = φ

(
μ̂(t, S)ϑ̂

ξ
p(t, S), μ̂(t, I )ϑ̂p(t, I ), μ̂(t, R)ϑ̂p(t, R)

)
;

ĉξ (t, k) = Ẑ ξ (t)
(
Ak
0 + Ak

1ϑ̂p(t, k)
) (

P0 + P1ϑ̂c(t, k)
)

, for k = R, I ;
ĉξ (t, S) = Ẑ ξ (t)

(
Ak
0 + Ak

1ϑ̂
ξ
p(t, S)

) (
P0 + P1ϑ̂

ξ
c (t, S)

)
;

v̂ξ (t + 1, R) = 1

1 − ρ

(
v̂(t, R) − u(t, ĉξ (t, R), R, ϑ̂(t, R)

)
;

v̂ξ (t + 1, I ) = 1

1 − πR − πD

[
v̂(t, I ) − u(t, ĉξ (t, I ), I , ϑ̂(t, I ))

1 − ρ
− πR v̂ξ (t + 1, R)

]
;

v̂ξ (t + 1, S) = ξ + v̂ξ (t + 1, I ).

5. Assuming that (14) admits a unique solution ξ̂ , we set

ϑ̂(t, S) = ϑ̂
ξ̂
(t, S), (16)

and the values of the variables at time t + 1 as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v̂(t + 1, R) = v̂ξ̂ (t + 1, R),

v̂(t + 1, I ) = v̂ξ̂ (t + 1, I ),

v̂(t + 1, S) = v̂ξ̂ (t + 1, S),

v̂(t + 1, D) = 0,

(17)

and

μ̂(t + 1) = Q̂(t)μ̂(t),

where

Q̂(t) :=

⎛
⎜⎜⎝
1 − β̂(t)μ̂(t, I ) 0 0 0

β̂(t)μ̂(t, I ) 1 − πR − πD 0 0
0 πR 1 0
0 πD 0 1

⎞
⎟⎟⎠ ,
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where

β̂(t) := βpϑ̂p(t, I )ϑ̂p(t, S) + βcϑ̂c(t, I )ϑ̂c(t, S).

6. We repeat steps 2–4 with the updated μ̂(t + 1) and v̂(t + 1, ·).

Theorem 5.7 Letμ(0) is the initial health status distribution and let v̂(0, ·) be assigned
with v̂(0, D) = 0. Consider Algorithm 5.6 and assume that ξ̂ is well defined for every
t ∈ N and that v̂ is bounded. Then the couple (v̂, ϑ̂) is an equilibrium starting at μ(0)
according to Definition 5.2.

Proof See “Appendix A”. �	

The logic behind the use of Algorithm 5.6 together with Theorem 5.7 is that the
search for the equilibrium of our Mean Field Game can be traced back to the search
for the initial value v(0, ·) such that the implied dynamics of v(t, ·), starting from
the initial health status distribution μ(0), is consistent with the optimal conditions
and v(t, ·) is both non negative (we have normalized v(t, D) = 0 for each t by an
appropriate choice of M) and bounded from above.

6 Calibration of themodel

In the calibration of the model, we focus on the recent Italian experience with COVID-
19. Italy was unfortunately the first Western country severely hit by COVID-19; the
epidemic shock was sudden and unexpected as well as the deep impact on Italian
mobility and production (see Fig. 1 below). At the same time, Italy was also the first
Western country to adopt strict restrictions in mobility in March 2020. Overall, this
makes the Italian case particularly well-adapted to calibrate/estimate the relationship
between mobility, production and dynamics of epidemic.8

The first step in the numerical calibration of the model is to specify the Z(t) in
(3). To minimize the number of model’s parameters, we consider the following one-
parameter specification:

Z(t) ≡ 1 − exp
(−g

[
ϑ̄p(t, S)μ(t, S) + ϑ̄p(t, I )μ(t, I ) + ϑ̄p(t, R)μ(t, R)

])
,

(18)

where g measures the sensitivity of individual income to aggregate mobility, i.e. the
complementarities between individual and aggregate mobility in determining the level
of individual income. In this respect, we expect that g is greater than 0. Taking (18)
into account, overall we have to set 19 parameters, which are listed in Table 1. Below,
we provide more details on the method used to set their values.

8 Data and codes are available at https://people.unipi.it/davide_fiaschi/ricerca/.
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6.1 Calibration of the epidemiological parameters

The calibration of the epidemiological parameters focuses on daily dynamics as stan-
dard in epidemiology (Ferguson et al. 2020). Several studies provide basic information
onCOVID-19main epidemiological characteristics. In particular,Voinsky et al. (2020)
report that the average number of days for recovering from COVID-19 is 14, which
implies πR = 0.07142. Flaxman et al. (2020), instead, document an overall probabil-
ity to die once infected of 0.94% in Italy and an average number of days from infection
to death of 18, which implies πD = 0.00052.

Finally, for setting βp and βc we assume that they are equal, so that observed
infection rate is the product between βp (βc) and the average mobility of infected
agents once mobility of susceptible is normalized to one in an economy without
infected, that is, ϑ̄(0, S) = (1, 1) (see System of (10)). Day (2020) report that the
prevalence rate of symptoms of COVID-19 in infected people is about 30%, i.e. 70%
of infected people are asymptomatic. Assuming that the latter maintain the same
mobility, we set average mobility of an infected agent 30% less than the one of a
susceptible, that is, ϑ̄(0, I ) = (0.7, 0.7). Since the observed infection rate at time
0 can be expressed as β(0) = (πD + πR) R0, then β(0) = βpϑ̄p(0, S)ϑ̄p(0, I ) +
βcϑ̄c(0, S)ϑ̄c(0, I ) = (πD + πR) R0, therefore 2βpϑ̄p(0, I ) = (πD + πR) R0, and,
finally, βp = βc = (1/1.4) (πD + πR) R0 = 0.14902, given a basic reproduction rate
R0 of COVID-19 equal to 2.9 for Italy.9

6.2 Calibration of the economic part

The calibration of parameters governing the relationship between income andmobility
are based on the Italian experience in the period February 15, 2020–May 31, 2021
reported in Fig. 1.

Italian economic activity as estimated by OECDWeekly Tracker of GDP growth10

appears very correlatedwithmobility for workplaces as reported by theGoogleMobil-
ity Trend. 11 The strong drop in mobility in the period between February 23, 2020 and
March 8, 2020 (almost −10%) well before the first introduction of mobility restric-
tions at national level in theweek ofMarch 8, 2020, supports our idea of an endogenous
response of agent to epidemic evolution, which burst in Italy at the end of February
2020. The severe restrictions on mobility imposed in two steps in March 2020 led
to a drop in mobility and economic activity of about 70% and 25% with respect to
reference period, respectively. The relaxed restrictions in May 2020 led to a bounce
back in both variables, but recovery was not complete. In the autumn of 2020, as a
result of the second pandemic wave, Italy again experienced newmobility restrictions,
with associated reduction in economic activity.

Normalizing economic activity and mobility to 1 in an economy with only suscep-
tible, and taking (3) and (18) to formulate a (nonlinear) relationship between mobility
and economic activity, a nonlinear estimation procedure produces an estimate of g,

9 https://en.wikipedia.org/wiki/Basic_reproduction_number.
10 https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/.
11 https://www.google.com/covid19/mobility/).
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Fig. 1 The relationship between weakly mobility for workplace and weakly economic activity in the period
February 15, 2020–May 31, 2021 (Italian holiday weeks are not reported). Dashed lines indicate weeks of
new imposed mobility restrictions at national level (March 9, 2020, March 22, 2020, October 8, 2020 and
October 24, 2020) and of a relaxation in mobility restrictions (May 4, 2020, May 18, 2020, and November
24, 2020). Source: GoogleMobility Trend (https://www.google.com/covid19/mobility/) andOECDWeekly
Tracker of GDP growth (https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/)

ASR
0 and ASR

1 of 0.70229, 0.29805 and 7.74162, respectively. AI
0 and AI

1 are set to
0.49160 and 0.29805 to accommodate the assumption that mobility of an infected
agent is 70% of the susceptible one.

As regards to P0 and P1, they are set to indicate that, according to (3) and (4), average
propensity to consume can be expressed as a function of consumption mobility, P0,
and P1. Taking the mobility for retail and recreation from Google Mobility Trend12 as
a proxy for consumption mobility, and the quarterly average propensity to consume
from Italian national accounts, we estimate P0 = 0.47187 and P1 = 0.12828. Finally,
the utility of state deceased M is set equal to −1.3 to avoid that, independent of state
of epidemic and economic activity, lifetime utility of survival agents can be negative.

6.3 SIRD versus economic SIRD (ESIRD) model

Table 2 and Fig. 2 highlight the importance of considering endogenous mobility
choice in the analysis. In particular, the comparison between the “naïve” SIRD (where
mobility of susceptible, infected and recovered is maintained constant for the whole
period of simulation and equal to their initial baseline values), and the ESIRD model
(where individualmobility is decided in anoptimizing frameworkwithout any imposed
restriction), points out the 30% more cumulative deaths of naïve SIR as opposed to a
lower drop in mobility and production (both as peak and as cumulative impact). After

12 https://www.google.com/covid19/mobility/.
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Fig. 2 Comparison between “naïve” SIRDmodel versus SIRDmodel with endogenousmobility. Numerical
experiments based on the parameters reported in Table 1

425 days from its outbreak, the epidemic is substantially ended in both models, that
is, μ(I ) is almost zero, but the optimized mobility of an agent in ESIRD has led to a
non-negligible mass of susceptibles equal to 31.4% in day 425 and substantially lower
death rate (0.5% versus 0.7%).

7 Questioning the ESIRD

In this section, we discuss how our framework could be used to evaluate alternative
policies ofmobility restriction.Thehighpeakprevalence reported forESIRD inTable 2
explains why several countries imposed strong mobility restrictions in 2020. A peak
of infected of 5,858,062 agents would correspond to a need of about 398,749 beds
in hospitals, taking 6.8% the proportion of infected individuals hospitalised (Verity
et al. 2020). For example, Italy in February 2020 had about 190,000 available beds in
hospital, making ”laissez faire” approach to COVID-19 not practical (not considering
the advantage to take time in waiting for a vaccine).

In the following, we therefore study some mitigation strategies as defined in Fergu-
son et al. (2020) (page 3), that is, ”to use NPIs (non-pharmaceutical intervention) not
to interrupt transmission completely, but to reduce the health impact of an epidemic”
in the hope (as it effectively happened) of a rapid development of a vaccine. We will
focus on policies that, by increasing mobility costs (γ s), reduce individual mobility
and therefore the infection rate and the peak prevalence. In this regard, Nouvellet et al.
(2021) provides strong evidence that reducing mobility is the key factor for bringing
down COVID-19 transmission, while Vollmer et al. (2020) present scenario analysis
based on different mobility in Italy.

At the same time, reducing mobility negatively impacts production, putting policy
makers before a trade-off between economic losses and fatalities due to COVID-19,
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Fig. 3 Trade-offs in alternative scenarios of mobility restrictions and exit from these restrictions. Numerical
experiments based on the parameters reported in Table 1

that is, it is possible to point out a pandemic possibilities frontier as in Kaplan et al.
(2020) andAcemoglu et al. (2020). However, we add two dimensions in the discussion.
The first is related to the share of remaining susceptible at the end of the period of
analysis, which could facilitate a new outbreak of epidemic in the future. The second
related to the social feasibility of some policies based on a long reduction of individual
mobility.

Table 3 reports the effect of different policies increasing (in the same percentage)
the cost of mobility for production and consumption with respect to the baselinemodel
when the share of infected individuals exceeds 3% and to maintain this increase until
the share of infected individuals gets down to 0.5% or to 0.1% in the more severe
scenario (mrs).

Peak prevalence decreases up to a rise of 30% in mobility cost and then it is almost
rigid to further increment (see Table 3). Peak prevalence of 1,275,206 individuals
would amount to a need of 86,801 beds in hospitals. Non-reported numerical inves-
tigations show that to decrease this peak prevalence would require to start mobility
restrictions with a lower share of infected individuals than 3%.

However, increasing mobility costs have also a growing negative impact both on
economic activity and on the death rate. This trade-off is represented in Fig. 3a, which
corresponds to the pandemic possibilities frontier discussed in Kaplan et al. (2020)
and Acemoglu et al. (2020), but calculated in a very different theoretical framework.
We can appreciate from Fig. 3a how a scenario with 30% of additional costs and an
exit threshold of 0.1% from mobility restriction Pareto dominates the scenarios both
with 40% and 50% of additional costs and an exit threshold of 0.5%.

However, the former scenario presents two additional non-favorable characteristics
with respect to the latter. First, as reported in Fig. 3b, the share of susceptibles after
425 days from the outbreak of the epidemics is substantially higher (82.4% versus
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Fig. 4 Dynamics of infection rate in different scenarios of mobility restriction (severity of lockdown) and
exit from these restrictions (threshold for relaxing the restrictions). Numerical experiments based on the
parameters reported in Table 1

73.3%); moreover, as highlighted by Figs. 4e and 5e, it requires a prolonged period
of mobility restrictions (almost one year!). In this respect, scenarios with 30% of
additional cost and an exit threshold of 0.5% or with 50% of additional costs and an
exit threshold of 0.1% endogenously present a succession of periods with and without
mobility restrictions, making this scenario more socially feasible.

We conclude by observing that, even though individuals are perfectly informed of
restriction policy and of the behavior of the pandemic, several scenarios include waves
of infections, as a result of the endogenous switching between a regime with mobility
restrictions and one without any restrictions (see, e.g., Fig. 5c–f).

8 Concluding remarks

We provided a dynamic macroeconomic equilibrium model with pandemic, denoted
ESIRD, where perfect-foresight forward looking agents’ (short-term) mobility pos-
itively affects their income (and consumption), but also contributes to the spread
of the pandemic in an extended SIRD model. Dynamics of economy and pandemic
is jointly driven by strategic complementaries in production and negative external-
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Fig. 5 Dynamics of epidemics and of main economic variables in alternative scenarios of mobility restric-
tions and exit from these restrictions. Numerical experiments based on the parameters reported in Table 1

ities on infection rates of individual mobilities. We therefore addressed one of the
main economic-driven leverages of compartmental epidemiological models, that is,
the endogenization of reproduction rate of epidemic (Avery et al. 2020). After having
proven the existence of a Nash equilibrium and studied the recursive construction of
equilibrium(a), we conducted some numerical investigations on the forward-backward
system resulting from individual optimizing behavior, calibrating model’s parameters
on Italian experience on COVID-19 in 2020–2021.

In our ESIRD model, the forward-looking behavior of agents tended to smooth
the peak prevalence of pandemic compared to the simplest SIRD model with “naïve”
agents, but in our numerical explorations peak prevalence appeared to be still too high
to be sustainable for the Italian health system (e.g., in relation to the number of available
beds in hospitals). Once we established that self-regulation of individual mobility
decisions was not sufficient to manage the pandemic13, we evaluated different regimes
of mobility restrictions, which could be easily accommodate within our theoretical
framework.

13 The model allows to give an answer to the provocative question posed, among others, by Cochrane
(2020) on the viability of a containment policy based only on self-confinement of individuals free of any
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In particular,we argued that regimes compatiblewith the saturation of the healthcare
systemmust be evaluated in terms of a trade-off between economic losses and fatalities
as proposes, e.g., by Kaplan et al. (2020); Acemoglu et al. (2020), but also for their
social feasibility of maintaining prolonged periods of mobility restrictions and for
leaving higher shares of susceptible at the end of the period,whichmakes newoutbreak
of epidemic more likely. In this respect, we pointed out that successive small waves
of epidemic can be the result of an efficient regime of mobility restrictions.

Our analysis raises a series of issues for future research.
We ignore heterogeneity of population in terms of ”risk groups” (typically, in case

of COVID-19, age cohorts, see Salje et al. (2020) and Acemoglu et al. (2020)), and
therefore we cannot evaluate any policy conditioned to individual characteristics, as,
for instance, done by Brotherhood et al. (2020) or Gollier (2020). We also focus on a
world before the vaccine, that is standard in this kind of models (Boppart et al. 2020)
and consistent with the period used to calibrate the model. However, in a world with
vaccine, or with an expected date of its availability, different questions arise for the
timing, targets and costs of vaccination (Hung and Poland 2021) as well as for the
timing of mobility restrictions. Finally, we did not include other non-pharmaceutical
interventions, and in particular we do not model testing policies, as, for instance, in
Eichenbaum et al. (2022).

Some extensions of empirical analysis appear very promising. Firstly, this is the
possibility to study scenarios where mobility restrictions are (mostly) focused on
mobility for production or on mobility for consumption. For example, in Europe
the second waves of restrictive measures in the period Oct 2020–May 2021, largely
revolved around mobility for consumption.14 A second extension concerns the more
precise estimation of the relationship between individual mobility, aggregate mobility
and production in the presence of strategic complementarities, which poses non trivial
issue of identification (Manski 2000).

We also neglect the possibility of introducing masking and using alternative pro-
tective equipment against the epidemic. In case their use is mandatory, it should be
equivalent to an exogenous reduction of βp and βc in Eq. (7) that, by reducing the
infection rate, would lead to an increase in the individuals’ mobility. Much more com-
plicated is the case in which their use is an individual choice, and their use involves
a cost. We should consider a possible free-riding problem because the net benefits of
using a mask are decreasing if other individuals are already using a mask.

From the theoretical point of view, we leave open the question of the uniqueness
of equilibrium and to obtain stronger properties of the equilibria. A possible answer
is to look at theMaster Equation associated to our model, as suggested in Section 1.4
in Cardaliaguet and Porretta (2020).

Footnote 13 continued
governmental restrictions on mobility. At least for the Italian experience in 2020, our model suggested that
a policy only based on self-confinement would have resulted in a peak prevalence of nearly six million
infected people (see Sect. 7), which corresponds to a need of about four hundred thousand beds in hospitals.
This would have been unsustainable for a country having, in February 2020, about 190,000 beds in hospitals,
most of them already occupied by patients with COVID-19 independent pathologies.
14 See for instance, for France, JORF 0080, 3 April 2021, Text 28, https://www.legifrance.gouv.fr/jorf/id/
JORFTEXT000043327303.
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Appendix A. Proofs

Theorem A.1 (Tikhonov’s fixed point Theorem) Let V be a locally convex topological
vector space, letQ ⊆ V be a nonempty compact convex set, and let F : Q → Q be a
continuous function. Then F has a fixed point.

Proof See, e.g., Theorem (1.10), p. 147 of Granas and Dugundji (2003). �	
Proof of Theorem 5.4 Fix μ(0) ∈ P(K) and k(0) ∈ K. Consider the space of
sequences

V :=
{
q = (qR, qI , qS, qD) : N → R

8
}

endowed with the topology of pointwise convergence. The latter is a locally convex
topological vector space, since the topology is induced by the family of seminorms

pt (q) = |q(t)|R8, t ∈ N,

where q(t) is the t−th component of q. Then, consider

Q :=
{
q = (qR, qI , qS, qD) : N → [0, 1]2 × [0, 1]2 × [0, 1]2 × {(0, 0)}

}
⊂ V.

Q is convex and, by Tikhonov’s compactness Theorem, it is compact inV .We consider
the one-to-one correspondence M : Q → A defined by

(Mq)(t, k) ≡ qk(t), (t, k) ∈ N × K.

Let μq be the solution to (10) associated to ϑ = M(q) and let

F : Q → Q, F(q)(t, k) := (ϑ̂p(t, k; q), ϑ̂c(t, k; q)), (t, k) ∈ N × K.

where ϑ̂(t, k; q) = (ϑ̂p(t, k; q), ϑ̂c(t, k; q)) is the unique the maximizer over [0, 1]2
of

ϑ �→
∑
k′∈K

pkk′ (t)
[
u(t, c(t), k, ϑ(t)) + (1 − ρ)V (t + 1, k′, μq(t + 1), (Mq)(t + 1, k′))

]
.

Clearly, if q∗ is a fixed point of F , then (V (·, ·,μ(0),M(q∗)),M(q∗)) is an equilib-
rium according to Definition 5.2. Given a sequence (qn) ⊂ Q converging to q ∈ Q,
we have

V (t, k,μqn (t),M(qn)) → V (t, k,μq(t),M(q))

for each t ≥ 0. Consequently, by strict concavity and regularity of ϑ �→
u(t, c(t), k,ϑ), we also have the convergence ϑ̂(t, k; qn) → ϑ̂(t, k; q). This shows
that F is continuous. We conclude by Theorem A.1. �	
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Proof of Theorem 5.7 We show that (i) and (ii) of Definition 5.2 hold for the couple
(v̂, ϑ̂), which is assumed to be well defined by induction (as ξ̂ is so at each step).

We preliminarily notice that, given (t0, k(t0)) ∈ N × {S, I , R}, the function

[0, 1]2 → R, ϑ = (ϑp, ϑc) �→ u(t0, c(t0), k(t0),ϑ)

is strictly concave, since

Dϑu(t0, c(t0), k(t0),ϑ) =
(

Ak(t0)
1

Ak(t0)
0 + Ak(t0)

1 ϑp

− γp(t0, k(t0), μ(t0)),

P1
P0 + P1ϑc

− γc(t0,k(t0), μ(t0))

)
,

and

D2
ϑu(t0, c(t0), k(t0),ϑ) =

⎛
⎜⎜⎜⎝

− (Ak(t0)
1 )2

(Ak(t0)
0 + Ak(t0)

1 ϑp)2
0

0 − P2
1

(P0 + P1ϑc)2

⎞
⎟⎟⎟⎠ .

Nowwe fix t0 ∈ N and show that v̂(t0, ·) solves the dynamic programming equation
on the various occurrences of k(t0) ∈ K and that ϑ̂(t0, ·) defined as in the algorithm
are the maximizers of the right hand side of (11).

• Case k(t0) = D. In this case the unique admissible control is ϑ(t0, D) := (0, 0)
and the Bellman equation reduces to

v(t0, D) = u(t0, 0, D, (0, 0)) + (1 − ρ)v(t0 + 1, D) = (1 − ρ)v(t0 + 1, D).

(19)

It is clear that the above constructed v̂ is always zero on D and hence satisfies
the above equation. The maximizer ϑ̂(t0, D) is the unique admissible control, i.e.
ϑ̂(t0, D) = (0, 0).

• Case k(t0) = R. In this case the Bellman equation reduces to

v(t0, R) = sup
ϑ∈[0,1]2

(
u(t0, c(t), R,ϑ) + (1 − ρ)v(t0 + 1, R)

)
= (1 − ρ)v(t0 + 1, R) + sup

ϑ∈[0,1]2
u(t0, c(t), R,ϑ). (20)

The optimization above leads to the unique maximum point

ϑ̂ = (ϑ̂p, ϑ̂c) = (
(ϑ̃p ∧ 1) ∨ 0, (ϑ̃c ∧ 1) ∨ 0

)
,

123



G. Fabbri et al.

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϑ̃p = AR
1 − γp(t0, I ,μ(t0))AR

0

γp(t0, R,μ(t0))AR
1

= 1

γp(t0, R,μ(t0))
− AR

0

AR
1

,

ϑ̃c = P1 − γc(t0, R,μ(t0))P0
γc(t0, R,μ(t0))P1

= 1

γc(t0, R,μ(t0))
− P0

P1
.

We therefore get

v(t0 + 1, R) = v(t0, R) − u(t0, c(t0), R, ϑ̂)

1 − ρ
.

Hence v̂(t0, ·) defined as in (17) satisfies by construction the Bellman equation
(11) with maximizer ϑ̂(t0, R) given by (13).

• Case k(t0) = I . In this case the dynamic programming equation reduces to

v(t0, I ) = sup
ϑ∈[0,1]2

(
u(t0, c(t0), I ,ϑ) + (1 − ρ) ((1 − πR − πD)v(t0 + 1, I )

+πRv(t0 + 1, R))
)

= (1 − ρ) ((1 − πR − πD)v(t0 + 1, I ) + πRv(t0 + 1, R))

+ sup
ϑ∈[0,1]2

u(t0, c(t0), I ,ϑ). (21)

The optimization above leads to the unique maximum point

(ϑ̂p, ϑ̂c) = (
(ϑ̃p ∧ 1) ∨ 0, (ϑ̃c ∧ 1) ∨ 0

)
,

where

⎧⎪⎪⎨
⎪⎪⎩

ϑ̃p = AI
1 − γp(t0, I , μ̂(t0))AI

0

γp(t0, I , μ̂(t0))AI
1

= 1

γp(t0, I , μ̂(t0))
− AI

0

AI
1

,

ϑ̃c = P1 − γc(t0, I , μ̂(t0))P0
γc(t0, I , μ̂(t0))P1

= 1

γc(t0, I , μ̂(t0))
− P0

P1
.

We therefore get

v(t0 + 1, I ) = 1

1 − πR − πD

[
v(t0, I ) − u(t0, c(t0), I , ϑ̂)

1 − ρ
− πRv(t0 + 1, R)

]
.

Hence v̂(t0, ·) defined as in (17) satisfies by construction the Bellman equation
(11) with maximizer ϑ̂(t0, I ) given by (13).
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• Case k(t0) = S. In this case the Bellman equation reduces to

v(t0, S) = sup
ϑ∈[0,1]2

(
u(t0, c(t0), S, ϑ) + (1 − ρ) ((1 − τ(t0))v(t0 + 1, S) + τ(t0)v(t0 + 1, I ))

)
,

(22)

which can be rewritten as

v(t0, S) = (1 − ρ)v(t0 + 1, I ) + (1 − ρ)(v(t0 + 1, S) − v(t0 + 1, I )) (23)

+ sup
ϑ∈[0,1]2

(
u(t0, c(t0), S, ϑ) − (1 − ρ)τ(t0)(v(t0 + 1, S) − v(t0 + 1, I ))

)
,

(24)

Set ξ := v(t0 + 1, S) − v(t0 + 1, I ) and consider the optimization above in terms of
the parameter ξ ∈ R+. The maximization leads to the unique maximum point

ϑ̂
ξ = (ϑ̂ξ

p, ϑ̂
ξ
c ) = (

(ϑ̃ξ
p ∧ 1) ∨ 0, (ϑ̃ξ

c ∧ 1) ∨ 0
)
,

where

ϑ̃ξ
p = 1

γp(t0, S, μ̂(t0)) + (1 − ρ)â(t0)ξ
− AS

0

AS
1

,

ϑ̃ξ
c = 1

γc(t0, S, μ̂(t0)) + (1 − ρ)b̂(t0)ξ
− P0

P1
,

where

â(t0) = μ̂(t0, I )ϑ̂p(t0, I ), b̂(t0) = μ̂(t0, I )ϑ̂c(t0, I ).

Recalling the definition of f given in (15),
the Bellman equation reduces to the algebraic equation in the variable ξ ∈ R

+

v(t0, S) = (1 − ρ)v(t0 + 1, I ) + (1 − ρ)ξ + f (t, ξ).

By assumption this equation has a unique solution ξ̂ . Hence v̂(t0, ·) defined as in (17)
satisfies by construction the Bellman equation (11) with maximizer ϑ̂(t0, S) given by
(16). �	

Appendix B. Procedure of simulation

NOTE: In this “Appendix” the notation is lightened from that used in the body of the
article to avoid making the formulas too heavy thinking and difficult to read.
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(A) The maximum in the lifetime utilities. As t goes to infinitum the num-
ber of infected agents converges to zero, i.e. limt→∞ μ (t, I ) = 0 and
limt→∞ μ (t, R) � 0 and the lifetime utilities is maximum in this state of no
pandemic. Then:

U (S)max = lim
t→∞U (t, S) = lim

t→∞
κ(t, μ(t, I ), SR) + ln(1 + Z(t))

ρ
=

= κ(∞, 0, SR) + ln
(
1 + 1/γp(∞, 0, SR) − ASR

0 /ASR
1

)
ρ

;

U (R)max = lim
t→∞U (t, R) = lim

t→∞
κ(t, μ(t, I ), SR) + ln(1 + Z(t))

ρ
=

= κ(∞, 0, SR) + ln
(
1 + 1/γp(∞, 0, SR) − ASR

0 /ASR
1

)
ρ

;

U (I )max = lim
t→∞U (t, I ) = ρκ(∞, 0, I ) + (1 − ρ)πRκ(∞, 0, SR)

ρ [1 − (1 − ρ) (1 − πR − πD)]
+

+ [1 − (1 − ρ) (1 − πR)] ln
(
1 + 1/γp(∞, 0, SR) − ASR

0 /ASR
1

)
ρ [1 − (1 − ρ) (1 − πR − πD)]

.

where:

κ(t, μI , SR) : = ln

(
ASR
1

γp(t, μI , SR)

)
+ γp(t, μI , SR)

ASR
0

ASR
1

+ ln

(
P1

γc(t, μI , SR)

)
+ γc(t, μI , SR)

P0
P1

− 2;

and

κ(t, μI , I ) : = ln

(
AI
1

γp(t, μI , I )

)
+ γp(t, μI , I )

AI
0

AI
1

+ ln

(
P1

γc(t, μI , I )

)
+ γc(t, μI , I )

P0
P1

− 2.

(B) The feasible set of individual lifetime utilities. From Point (A), together with
the appropriate choice of M in order to make U (t, k) ≥ 0 for t ≥ 0 and ∀k ∈ K,
the feasible set of individual lifetime utilities is defined as follows:

T := {
(x, y, z) ∈ (

0,U (R)max) × (
0,U (I )max) × (

0,U (R)max) : y ≤ x ≤ z
}
.

(25)

This gives a bound for the lifetime utilities in the spirit of Theorem 5.7.
(C) Set the health status distribution of population at time 0 as:

μ(0, S) = 1 − ε;
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μ(0, I ) = ε;
μ(0, R) = 0;
μ(0, D) = 0,

with ε very small.
(D) Set the initial value of utilities in the three states in the feasible set T by

choosing δ I , δS, δR ≥ 0.

U (0, R) = U (R)max(1 − δR);
U (0, S) = U (0, R)(1 − δS);
U (0, I ) = U (0, S)(1 − δ I )

(E) Calculate a(0) and b(0):

a(0) = βp × μ(0, I ) × ϑ p(0, μ(0, I ), I )

b(0) = βc × μ(0, I ) × ϑc(0, μ(0, I ), I ),

where

ϑ p(0, μ(0, I ), I ) = 1

γp(0, μ(0, I ), I )
− AI

0

AI
1

and

ϑc(0, μ(0, I ), I ) = 1

γc(0, μ(0, I ), I )
− P0

P1
.

(F) Find U (1, S, I ) := U (1, S)−U (1, I ) by solving the following implicit equa-
tion

0 = −(1 − ρ) (1 − πR − πD)U (1, S, I ) + (1 − πR − πD)U (0, S)

−U (0, I ) + πRU (0, R)+
− πRκ(1, μ(0, I ), R) + κ(1, μ(0, I ), I ) − (1 − πR − πD) χ (U (1, S, I ))

+ πD ln (1 + Z (U (1, S, I ))) ,

where

χ (U (1, S, I )) :=

ln

(
ASR
1

γp(1, μ(0, I ), S) + (1 − ρ)a(0)U (1, S, I )

)
+

+ ASR
0

ASR
1

{
γp(1, μ(0, I ), S) + (1 − ρ)a(0)U (1, S, I )

} +

+ ln

(
P1

γc(1, μ(0, I ), S) + (1 − ρ)b(0)U (1, S, I )

)
+
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+ P0
P1

{γc(1, μ(0, I ), S) + (1 − ρ)b(0)U (1, S, I )} − 2

and

Z(0) = Z (U (1, S, I )) = μ(0, S) ×
[

1

γp(1, μ(0, I ), S) + (1 − ρ)a(0)U (1, S, I )

−aSR0
aSR1

]
+

+ μ(0, I ) × θ p(0, μ(0, I ), I ) + μ(0, R) × θ p(0, μ(0, I ), R).

where

θ p(0, μ(0, I ), R) = 1

γp(0, μ(0, I ), R)
− aSR0

aSR1
and

θc(0, μ(0, I ), R) = 1

γc(0, μ(0, I ), R)
− P0

P1
,

where we setμ(1, k) ≈ μ(0, k) ∀k ∈ K, to simplify the calculations. This approx-
imation is more and more accurate as time scale of simulation is smaller, in the
limit of continuos time is exact.

(G) Calculate the movement of susceptible

ϑ p(0, μ(0, I ), S) = 1

γp(0, μ(0, I ), S) + (1 − ρ)a(0)U (1, S, I )
− ASR

0

ASR
1

;

ϑc(0, μ(0, I ), S) = 1

γc(0, μ(0, I ), S) + (1 − ρ)b(0)U (1, S, I )
− P0

P1
.

(H) Calculate the level of lifetime utilities at time 1

U (1, R) = U (0, R) − ln (1 + Z (0)) − κ(0, μ(0, I ), R)

1 − ρ
;

U (1, I ) = U (0, I ) − πRU (0, R) + πRκ(0, μ(0, I ), R) − κ(0, μ(0, I ), I ) − (1 − πR) ln (1 + Z (0))

(1 − ρ) (1 − πR − πD)
;

U (1, S) = U (1, S, I ) +U (1, I );

(I) Upgrade the health status distribution of population at time 1

μ(1, S) = μ(0, S)
[
1 − a(0)ϑ p(0, μ(0, I ), S) − b(0)ϑc(0, μ(0, I ), S)

]
,

μ(1, I ) = μ(0, S)
[
a(0)ϑ p(0, μ(0, I ), S) + b(0)ϑc(0, μ(0, I ), S)

]
+ μ(0, I )(1 − πR − πD),

μ(1, R) = μ(0, I )πR + μ(0, R),

μ(1, D) = μ(0, D) + μ(0, I )πD .
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(J) Check if Condition (25) is satisfied. If not start with a new set of δs at point
D. If Condition (25) is satisfied and the number of periods is lower of a given
threshold repeat points E-I by taking the new level of μs at point I.
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