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Extension de la NMF supervis ée pour l'int égration de donn ées omiques

Généralement acquis sur les mêmes échantillons, chacun de ces tableaux de données omiques illustre une partie seulement d'un système biologique complexe. L'intégration de ces données permet donc d'étudier ce système en globalité, et de mettre en lumière les relations existantes entre les divers acteurs moléculaires. Globalement, les méthodes statistiques d'intégration peuvent être regroupées en deux grandes familles : celles explorant les interactions éventuelles entre omiques, appelées méthodes non supervisées [START_REF] Meng | Dimension reduction techniques for the integrative analysis of multi-omics data[END_REF], Eicher et al., 2020] ; et celles qui visent à obtenir des interactions prédisant ou expliquant une donnée extérieure, tel un phénotype d'intérêt chez les échantillons étudiés, appelées méthodes supervisées [START_REF] Ritchie | Methods of integrating data to uncover genotype-phenotype interactions[END_REF], Eicher et al., 2020].

Ici, nous abordons la question sous un angle mixte, celui de l'analyse exploratoire d'omiques multiples dans laquelle une information complémentaire caractérisant ces individus (attribut clinique ou expérimental par exemple) est d'intérêt pour la compréhension du phénomène biologique. Il s'agit alors de mettre en lumière comment ces divers omiques interagissent selon la typologie clinique des individus. Dans notre cas, nous nous restreindrons au cas où l'attribut clinique est catégoriel, c'est-à-dire, au cas où les individus sont partitionnés en groupes distincts correspondant aux niveaux de cet attribut catégoriel. Ce problème est déjà abordé par la méthode DIABLO [START_REF] Singh | DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays[END_REF], dérivée de l'analyse généralisée des corrélations canoniques [START_REF] Tenenhaus | Variable selection for generalized canonical correlation analysis[END_REF] qui recherche des projections maximisant un critère de covariance entre paires d'omiques et avec l'attribut catégoriel.

Dans cette communication, nous proposons une extension de la Factorisation Matricielle Non-négative (NMF) [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF] et plus particulièrement de sa version supervisée [START_REF] Lee | Group nonnegative matrix factorization for EEG classification[END_REF]. En effet, cette méthode de réduction de dimension offre un cadre bien adapté au problème d'intégration de données omiques pour des individus structurés en groupe. D'une part, elle a été mise en oeuvre pour l'analyse de données positives, ce qui est le cadre naturel de nombreuses données omiques (données de comptages comme le RNA-seq ou les données métagénomiques, données compositionnelles comme en métabolomique ou protéomique, ...). D'autre part, relativement aux approches factorielles ou PLS, son interprétation est elle-même facilitée par la contrainte de positivité de la solution, la décomposition retenue s'expliquant aisément en termes de profils types et d'appartenance à ces profils de chacun des individus. De plus, la version supervisée intègre un critère imposant spécifiquement à la décomposition d'être prédictive de la variable catégorielle expliquant les groupes, ce qui rend son interprétation plus simple que des approches maximisant un critère global de covariance entre paires d'omiques. Enfin, son cadre d'optimisation flexible rend possible l'intégration de contraintes variées, permettant une bonne adaptation au problème pratique posé et utilisable même dans un cadre de grande dimension où les tailles d'échantillon sont souvent très petites devant le nombre de variables décrivant chaque type d'omiques.

Diverses variantes de la NMF avaient déjà été proposées pour l'analyse et l'intégration de données omiques : dans un cadre complètement non supervisé, [Zhang et al., 2011, Yang andMichailidis, 2016] l'ont utilisée pour l'intégration d'omiques. Une extension supervisée de la NMF, bien adaptée au cas où les individus sont partitionnés en divers groupes, a, par ailleurs, été proposée par [?, [START_REF] Leuschner | Supervised non-negative matrix factorization methods for MALDI imaging applications[END_REF], Li et al., 2022] qui l'ont principalement utilisée pour des problèmes de classification de textes et d'images mais cette version a aussi trouvé des applications en microbiologie cellulaire [START_REF] Shreeves | Nonnegative matrix factorization with group and basis restrictions[END_REF].

Nous proposons ici une variante intégrative à la méthode FR-lda de [START_REF] Leuschner | Supervised non-negative matrix factorization methods for MALDI imaging applications[END_REF]. Cette variante étend la méthode initiale selon deux angles : d'une part, en permettant l'analyse simultanée (l'intégration) de plusieurs omiques et, d'autre part, en améliorant l'approche de résolution du problème d'optimisation pour qu'elle conduise à une parcimonie exacte de la solution. Dans la suite, on notera X (j) ∈ R n×p j + (j ∈ {1, 2}), deux matrices à entrées positives contenant les mesures de deux types d'omiques sur les mêmes n individus (p j étant le nombre de variables mesurées dans chaque omique). On notera également y ∈ {0, 1} n le vecteur d'appartenance des individus aux groupes. Dans le cadre de cette communication, pour des questions de simplicité, la présentation est restreinte à deux groupes mais la méthode s'étend sans difficulté à un nombre plus important de groupes.

Dans la suite, nous introduisons le cadre général de la NMF ainsi que l'approche proposée par [START_REF] Leuschner | Supervised non-negative matrix factorization methods for MALDI imaging applications[END_REF] dans la section 2. Puis, dans la section 3, nous présenterons une nouvelle version intégrative et supervisée de la NMF et nous détaillerons la résolution du problème d'optimisation associé à cette dernière. Enfin, la conclusion aborde les questions ouvertes concernant la méthode proposée et les développements à venir.

NMF et NMF supervisée 2.1 NMF

Le but de la NMF est d'approximer une matrice X ∈ R n×p + tout en réduisant sa dimension, initialement très grande (n ≪ p). Pour se faire, X est décomposée en deux matrices nonnégatives tel que

X ≃ WH avec W ∈ R n×K + et H ∈ R K×p +
, où K est le nombre de composantes latentes construites par la méthode, choisi par l'utilisateur. [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF]] décrivent deux variantes de la NMF qui se fondent sur deux fonctions de coût distinctes : la divergence de Kullback-Leibler et la norme de Fröbenius. Le choix de la fonction de coût dépend de la distribution statistique que l'on attribue au terme d'erreur. En supposant que ce dernier suit une loi normale, on préfère utiliser la norme de Fröbenius (problème des moindres carrés) et la NMF conduit alors à résoudre le problème suivant : min

W,H≥0 1 2 ∥X -WH∥ 2 F .
La NMF est initialement une méthode non supervisée, conçue pour les analyses exploratoires. [START_REF] Leuschner | Supervised non-negative matrix factorization methods for MALDI imaging applications[END_REF] ont développé plusieurs variantes de la NMF adaptées à la classification d'images MALDI 1 , dont la NMF ≪ FR-lda ≫ . Les images correspondent ici à des tissus de poumon atteints ou non d'un cancer. Cette méthode cherche donc à extraire des composantes latentes parcimonieuses qui caractérisent correctement les deux types de tissus. Soit X ∈ R n×K + la matrice décrivant les images et y ∈ {0, 1} n le vecteur encodant les 2 groupes, on cherche à résoudre le problème suivant :

NMF supervisée

min W,H,β≥0 F 0 (W, H, β) où F 0 (W, H, β) = 1 2 ∥X -WH∥ 2 F + µ 2 ∥W∥ 2 F + λ∥H∥ 1 + ν 2 ∥H∥ 2 F + γ 2 ∥y -XH ⊤ β∥ 2 2 (1) avec : -W ∈ R n×K +
, les contributions des individus aux composantes latentes ; -H ∈ R K×p + , les composantes latentes ; -β ∈ R K + , les coefficients de régression ; -λ, γ, ν, µ > 0, les paramètres de régularisation, fixés. La fonction objective de l'équation 1 est décomposée en plusieurs termes : le premier terme est un terme d'adéquation de la reconstruction aux données initiales, classique en NMF. Le terme faisant intervenir la norme ℓ 1 est utilisé pour obtenir des composantes latentes parcimonieuses pour une meilleure interprétabilité. Les termes faisant intervenir la norme ℓ 2 sont présents pour régulariser la solution mais également, dans le cas de W, pour éviter un problème de non identifiabilité trivial posé par l'équivalence WH = cW × 1 c H pour tout c. Enfin, le dernier terme permet d'obtenir des composantes latentes qui discriminent bien les groupes représentés par y.

Résolution

Les problèmes d'optimisation qui apparaissent dans la NMF sont des problèmes nonconvexes et non-linéaires [START_REF] Fernsel | A survey on surrogate approaches to non-negative matrix factorization[END_REF]. En effet, F 0 n'est pas convexe en W, H, et β simultanément, mais des problèmes d'optimisation convexes distincts peuvent être écrits pour chacune des variables, l'un de ces problèmes incluant une contrainte non lisse (non-smooth). Une approche pour résoudre ce type de problème est d'utiliser les algorithmes itératifs où chacune des variables d'intérêt est mise à jour successivement à chaque itération. Nous définissons une marginale issue de F 0 pour chacune de ces variables.

Afin d'obtenir les différentes règles de mise à jour, les auteurs utilisent une approche Majoration-Minimisation (MM). Cette dernière consiste à minimiser la fonction objective F en minimisant une seconde fonction, appelée surrogée et notée

Q F . Q F (•, •) est une fonction R D × R D →
R facile à minimiser en sa première variable pour toutes les valeurs de la seconde variable et qui satisfait

Q F (a, a) = F(a), ∀a ∈ R D et F(a) ≤ Q F (a, b), ∀a, b ∈ R D . Comme, Q F (a, a (t)
) est une borne supérieure de F(a) pour tout a ∈ R D , en définissant une mise à jour pour a de la forme

a (t+1) = argmin a Q F (a, a (t) ), (2) 
on s'assure qu'à chaque itération de l'algorithme, on obtient une diminution monotone de la valeur de F. Dans le cas particulier de la NMF, ce principe mène à des mises à jour multiplicatives (c.à.d exprimées uniquement via des additions, divisions et multiplications), ce qui assure la positivité des quantités optimisées. Deux méthodes sont utilisées pour définir la surrogée : le principe de contrainte supérieure quadratique (ou UQBP, pour W et H) et l'inégalité de Jensen (pour β) [START_REF] Fernsel | A survey on surrogate approaches to non-negative matrix factorization[END_REF].

Principe UQBP

Pour la mise à jour de W et H, [START_REF] Fernsel | A survey on surrogate approaches to non-negative matrix factorization[END_REF] utilisent le développement de Taylor à l'ordre 2 de la marginale de F en la variable d'intérêt et obtiennent la proposition suivante :

Proposition 1 ( [START_REF] Fernsel | A survey on surrogate approaches to non-negative matrix factorization[END_REF])

Soit F : R D → R une fonction deux fois continûment dérivable et M(b) ∈ R D×D une matrice telle que, ∀b ∈ R D , M(b) -△ 2 F(b) est semi-définie positive (avec △ 2 F(b) la Hessienne de F en b). Alors, quand F est un polynôme du second degré, Q F (a, b) = F(b) + (a -b) ⊤ ∇F(b) + 1 2 (a -b) ⊤ M(b)(a -b)
est une surrogée de F. De plus, quand M(b) est symétrique et définie positive, la surrogée correspondante est strictement convexe et sa minimisation mène à la règle de mise à jour suivante :

a (t+1) = a (t) -M -1 (a (t) )∇F(a (t) ).
Pour la mise à jour de W, [START_REF] Fernsel | A survey on surrogate approaches to non-negative matrix factorization[END_REF] proposent de définir M(b) comme

M(b) = δ i,j (△ 2 F(b)b) i b i i,j=1,...,D
.

Dans le cadre de la version de la NMF de [START_REF] Leuschner | Supervised non-negative matrix factorization methods for MALDI imaging applications[END_REF]Maass, 2018], ce choix de M conduit à une mise à jour multiplicative de M. Une approche similaire est mise en oeuvre pour la mise à jour de H, intégrant le terme additionnel λ∥H∥ 1 dans la méthode de résolution.

MM basée sur l'inégalité de Jensen

Dans le second cas, la marginale de F en β est majorée par l'inégalité de Jensen pour obtenir la proposition suivante :

Proposition 2 ( [START_REF] Fernsel | A survey on surrogate approaches to non-negative matrix factorization[END_REF]) Soit F une fonction objective dérivée d'une fonction convexe, dérivable en continu f :

R D → R où ∀a ∈ R D , F(a) = f (c ⊤ a) avec c ∈ R D une variable auxiliaire. Alors, Q F (a, b) = D k=1 c k b k c ⊤ b f c ⊤ b b k a k
est une surrogée de F.

Résolution globale du problème de NMF

Finalement, les auteurs obtiennent les règles de mise à jour suivantes :

-

W (t+1) ← W (t) ⊙ XH ⊤ (. /) W (t) HH ⊤ + µW (t) -H (t+1) ← H (t) ⊙ W ⊤ X + γβy ⊤ X (. /) W ⊤ WH (t) + νH (t) + λββ ⊤ H (t) X ⊤ X + λ -β (t+1) ← β (t)
⊙ HX ⊤ y (. /) HX ⊤ XH ⊤ β (t) avec ⊙ le produit termes à termes et (. /) la division termes à termes.

Pour la mise à jour de H, la méthode requiert la stricte positivité des entrées de la matrice à toutes les étapes de l'algorithme (pour assurer la définition correcte de la matrice auxiliaire M définie dans la section 2.3.1). Ceci est en contradiction avec la contrainte de parcimonie imposée sur H par l'introduction de la norme ℓ 1 dans la fonction objective. Pour résoudre cette difficulté, [START_REF] Fernsel | A survey on surrogate approaches to non-negative matrix factorization[END_REF] ajoutent une petite valeur positive à toutes les entrées de H et ne récupèrent donc qu'une parcimonie approchée.

3 Description de l'approche proposée

Fonction objective

Nous proposons d'étendre l'approche de [START_REF] Fernsel | A survey on surrogate approaches to non-negative matrix factorization[END_REF] à l'intégration de données sous l'angle d'une NMF supervisée correspondant au problème de minimisation suivant : min

W,H (1) ,H (2) ,β (1) ,β (2) F(W, H (1) , H (2) , β (1) , β (2) ) (3) où F(W, H (1) , H (2) , β (1) , β (2) ) = 1 2 2 j=1 ∥X (j) -WH (j) ∥ 2 F + γ 2 2 j=1 ∥y -X (j) H (j)⊤ β (j) ∥ 2 2 + 2 j=1 λ∥H (j) ∥ 1 + µ 2 ∥W∥ 2 F (4) avec : -W ∈ R n×K +
, les contributions communes des individus aux composantes latentes ; -∀j ∈ {1, 2}, H (j) ∈ R K×p j + , les composantes latentes ; -∀j ∈ {1, 2}, β (j) ∈ R K + , les coefficients de régression ; -λ, γ, ν, µ > 0, les paramètres de régularisation, fixés. De manière similaire à l'équation 1, la fonction objective inclut un terme d'adéquation de la décomposition aux données initiales (ici, en deux parties, chacune correspondant à un omique), un terme de régularisation pour assurer la parcimonie des composantes latentes (aussi en deux parties), un terme de régularisation ℓ 2 pour W dont le rôle est similaire à celui de l'équation 1 et un terme assurant que les composantes latentes discriminent bien les groupes représentés par y (aussi en deux parties).

Algorithme général de résolution

Nous proposons la résolution du problème de l'équation (3) par l'approche générale décrite dans l'algorithme 1. Dans cet algorithme, les termes de mise à jour pour W, H (j) , et β (j) (étapes 3-5 de l'algorithme) utilisent tous une approche par surrogée, telle que définie dans la section 2.3. Toutefois, contrairement à [START_REF] Leuschner | Supervised non-negative matrix factorization methods for MALDI imaging applications[END_REF], le terme de mise à jour pour H (j) est obtenu via une approche proximale afin d'obtenir une parcimonie exacte.

Algorithm 1 Vue d'ensemble de l'algorithme utilisé pour la résolution de l'équation (3) 1: Initialiser les matrices W (0) , H (j,0) et vecteurs β (j,0) avec des valeurs strictement positives (∀j ∈ {1, 2}). 2: for all t = 1, . . . , T do 3:

W (t+1) ← W (t) ⊙ A(W (t)
), où ⊙ est la multiplication terme à terme 4: pour j = 1, 2, H (j,t+1) ← prox g j H(j) , avec H(j) = H (j,t) -1 η ∇f j (H (j,t) )
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pour j = 1, 2, β (j,t+1) ← β (j,t) ⊙ u(β (j,t) ) 6: end for 7: return W := W (T +1) , H (j) := H (j,T +1) et β (j) := β (j,T +1) (j = 1, 2) où A(W (t) ) et u(β (j,t) ) sont, respectivement, une matrice et un vecteur avec des entrées positives, dont l'expression exacte est donnée en section 3.3, prox est l'opérateur proximal et f j et g j sont deux fonctions, définies également en section 3.3.

Optimisation

Afin d'alléger les notations, nous omettons le terme t pour les matrices qui ne sont pas mises à jour. Pour la même raison, étant donné que les fonctions objectives pour H (j) et β (j) sont séparables en j, les indices j (référant aux jeux d'omiques) sont également omis.

Mise à jour de W

La règle de mise à jour pour la matrice des contributions des individus W est obtenue grâce à l'approche MM comme expliqué en Section 2.3.

W (t+1) = W (t) ⊙ A W (t) = W (t) ⊙ C (. /)(W (t) B), avec C = X (1) H (1)⊤ + X (2) H (2)⊤ et B = C + µI K .

Mise à jour de β (j)

La règle de mise à jour pour β est obtenue grâce à l'approche MM comme expliqué en section 2.3 :

β (t+1) = β (t) ⊙ u(β (t) ) = β (t) ⊙ HX ⊤ y (. /) HX ⊤ XH ⊤ β (t) .

Mise à jour de H (j)

Dans leur approche, comme indiqué dans la section 2.3, [START_REF] Leuschner | Supervised non-negative matrix factorization methods for MALDI imaging applications[END_REF] ne récupèrent qu'une parcimonie approchée pour H. Ici, nous proposons une méthode plus directe, qui assure une parcimonie exacte pour cette matrice, au travers de l'approche proximale.

L'approche est basée sur la résolution générale de problèmes min a∈R D + F(a) dans lesquels F(a) prend la forme f (a) + λg(a) avec λ > 0, f une fonction dont le gradient est Lipschitz (avec une constante de Lipschitz η) et g une fonction décrivant une contrainte non lisse. Dans ce cas, [Parikh andBoyd, 2014, Bauschke andCombettes, 2017] (avec l'algorithme ≪ Forward Backward Splitting ≫ (FBS)) montrent que la fonction

Q F (a, b) = f (b) + (a -b) ⊤ ∇f (b) + η 2 ∥a -b∥ 2 + λg(a)
est une surrogée de F.

En notant que Q F (a, a (t) ) a le même minimum que 1 2 ∥a -ã∥ 2 2 + λ η g(a), avec ã = a (t) - 1 η ∇f (a (t)
), il est possible de démontrer que la règle de mise à jour basée sur cette surrogée, c.à.d., la solution de l'équation (2), est obtenue par :

a (t+1) = prox g (ã t ) avec ãt = a (t) - 1 η ∇f (a (t) ), (5) 
où prox g est l'opérateur proximal de g. Dans le cas particulier de la pénalité ℓ

1 réduite à R D + , g peut s'écrire comme g = λ η ∥.∥ 1 + δ + avec, ∀a ∈ R D , δ + (a) = 0 si a ≥ 0 +∞ sinon.
Dans ce cas, l'opérateur proximal a une forme explicite et la mise à jour s'écrit, ∀i ∈ {1, . . . , D} :

a (t+1) i = proxλ η ∥•∥ 1 +δ + (ã i ) = ãi - λ η + (6) 
où (z) + = max(0, z) est la partie positive de z ∈ R.

Ceci nous permet finalement d'obtenir la règle de mise à jour suivante pour H :

H (t+1) = prox g H(t) = H(t) - λ η + où g = λ η ∥ • ∥ 1 + δ + et H(t) = H (t) - 1 η W ⊤ WH (t) + γββ ⊤ H (t) X ⊤ X + 1 η γβy ⊤ X + W ⊤ X .

Conclusion

La mise en oeuvre de la méthode présentée dans cette communication est actuellement à l'étude sur un projet de recherche sur l'acné. Au sein de ce dernier, deux types d'omiques ont été prélevés sur un échantillon de petite taille : des données métabolomiques, acquises par spectrométrie de masse, et des données méta-protéomiques, soit des protéines d'origines humaine, bactérienne ou fongique, acquises en spectrométrie de masse également. L'échantillon est constitué de deux groupes de patients parfaitement équilibrés : les patients souffrant d'acné légère à modérée d'un côté, et les patients ayant une peau qualifiée de ≪ saine ≫ de l'autre. L'objectif est d'extraire des profils types caractérisant l'acné au travers de signatures moléculaires composées de métabolites et de protéines d'origines multiples.

Par ailleurs, plusieurs points de la méthode nécessitent d'être approfondis. En particulier, nous avons formulé le problème sous l'angle de la minimisation d'un critère de moindres carrés mais ce critère est à comparer avec un critère basé sur la divergence de Kullback-Leibler. Également, [START_REF] Leuschner | Supervised non-negative matrix factorization methods for MALDI imaging applications[END_REF] expriment leur terme supervisé par rapport à la projection des individus sur les signatures. Une alternative, utilisée par exemple, dans [START_REF] Lee | Semi-supervised nonnegative matrix factorization[END_REF], consiste à utiliser directement la matrice de poids dans le terme supervisé. Enfin, le choix de contraindre le terme supervisé à un seul coefficient de régression (au lieu de deux, un par jeu de données) sera également étudié. 
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