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Genome-wide genotyping
data renew knowledge on
genetic diversity of a worldwide
alfalfa collection and give
insights on genetic control
of phenology traits

Marie Pégard 1*, Philippe Barre1, Sabrina Delaunay1,
Fabien Surault1, Djura Karagić2, Dragan Milić3, Miroslav Zorić2,
Tom Ruttink 4 and Bernadette Julier1

1INRAE P3F, Lusignan, France, 2Login EKO doo, Bulevar Zorana Đinđića 125, Novi Beograd, Serbia,
3International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya, 4ILVO Plant Science
Unit, Melle, Belgium
China’s and Europe’s dependence on imported protein is a threat to the food

self-sufficiency of these regions. It could be solved by growing more legumes,

including alfalfa that is the highest protein producer under temperate climate. To

create productive and high-value varieties, the use of large genetic diversity

combined with genomic evaluation could improve current breeding programs.

To study alfalfa diversity, we have used a set of 395 alfalfa accessions (i.e.

populations), mainly from Europe, North and South America and China, with

fall dormancy ranging from 3 to 7 on a scale of 11. Five breeders provided

materials (617 accessions) that were compared to the 400 accessions. All

accessions were genotyped using Genotyping-by-Sequencing (GBS) to obtain

SNP allele frequency. These genomic data were used to describe genetic

diversity and identify genetic groups. The accessions were phenotyped for

phenology traits (fall dormancy and flowering date) at two locations (Lusignan

in France, Novi Sad in Serbia) from 2018 to 2021. The QTL were detected by a

Multi-Locus Mixed Model (mlmm). Subsequently, the quality of the genomic

prediction for each trait was assessed. Cross-validation was used to assess the

quality of prediction by testing GBLUP, Bayesian Ridge Regression (BRR), and

Bayesian Lasso methods. A genetic structure with seven groups was found. Most

of these groups were related to the geographical origin of the accessions and

showed that European and Americanmaterial is genetically distinct fromChinese

material. Several QTL associated with fall dormancy were found and most of

these were linked to genes. In our study, the infinitesimal methods showed a

higher prediction quality than the Bayesian Lasso, and the genomic prediction

achieved high (>0.75) predicting abilities in some cases. Our results are

encouraging for alfalfa breeding by showing that it is possible to achieve high

genomic prediction quality.
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1 Introduction

Alfalfa (Medicago sativa) is a major legume forage species

grown worldwide. Its positive impact on protein autonomy

through atmospheric nitrogen fixation and the environmental

services it provides at the plot and rotation level have become

increasingly important in recent years (Julier et al., 2017). This

suggests that alfalfa should be grown on expanding areas (Poux and

Aubert, 2018; Martin et al., 2020). Breeding is a lever to improved

forage yield and quality as well as tolerance to biotic and abiotic

stresses (Rubiales et al., 2021). Two aspects are critical: the use of

genetic variation in which the selection is applied and the

identification of the best genotypes, which will contribute to

create the next generation.

From its origin in the Middle East, the domestication and

breeding history of alfalfa in the Western world (Michaud et al.,

1988; Lesins and Lesins, 2012) as well as in Asia (Basigalup et al.,

2014) have previously been described (Small, 2011). Two main

subspecies have been described: ssp sativa with purple flowers, a

tap-root and coiled pods; and ssp falcata with yellow flowers,

fasciculate roots and silk-shape pods. Even if the two subspecies

can be intercrossed, the cultivated varieties mostly relate to the ssp

sativa type with various levels of introgression with ssp falcata,

which has conferred cold resistance and variegated flower colour.

Studies based on molecular markers have revealed the genetic

relationships among accessions (Li, 2013), the reduction of

diversity in cultivated compared to wild populations (Muller

et al., 2006) and described the genetic distance between Western

and Asian accessions (Qiang et al., 2015). Markers have confirmed

the huge within-accession diversity (Flajoulot et al., 2005) already

observed with phenotypic traits (Julier et al., 2000). These studies

have been conducted on small sets of diversity and/or with small

sets of markers, and in several cases, the accessions were

represented by a single individual. Thus, the description of alfalfa

cultivated material is not yet optimal. At present, the use of within

and among-accession diversity in breeding programs may be

limited because of restricted access to this diversity and the fear

that foreign/distant accessions do not comply with the breeders’

ideotype (Annicchiarico et al., 2015a). As with other species, a

better knowledge of the genetic diversity of alfalfa could broaden the

genetic basis of breeding programs and thus increase the potential

for genetic gain.

Alfalfa breeding programs still rely on phenotypic selection in

which the genetic value of a plant is evaluated directly on the plant

(mass selection) or more accurately through its progeny under field

or test conditions. In other species, numerous breeding programs

have benefited from the advances in high-throughput genotyping

technologies (Rasheed et al., 2017). With a large number of markers,

it becomes possible to analyse and manage the genetic diversity, to

identify markers involved in trait variation (Genome Wide

Association Study) (Flint-Garcia et al., 2003) and to create

genomic prediction equations to predict the genetic value with

the marker information (Meuwissen et al., 2001). Known as

genomic selection (GS), this last method has proved its efficiency

in plant breeding (Crossa et al., 2017). A successful implementation

of GS in breeders’ plant material requires considering certain
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parameters. Firstly, the linkage disequilibrium and the effective

size of the population affect the number of markers needed to

reach an accurate prediction: the number of required markers

increases if linkage disequilibrium decays at shorter distance

(Grattapaglia and Resende, 2011; Wientjes et al., 2013). Secondly,

the composition of the population used to train (training

population) the prediction model must be considered (Lorenz

and Smith, 2015; Tayeh et al., 2015; Pégard et al., 2021). The

training population must be representative of the selection

candidates and several authors have studied the way in which it

can be optimised (Rincent et al., 2012; Akdemir et al., 2015; Isidro

et al., 2015). Thirdly, the trait genetic architecture will affect the

prediction performance of the statistical methods (Wimmer et al.,

2013), but this parameter is usually unknown and difficult to assess,

requiring testing of multiple methods.

Genotyping alfalfa, an autotetraploid and allogamous species,

has taken a leap forward with the use of Genotyping-by-Sequencing

methodology (GBS), as described on heterozygous diploid species

(Elshire et al., 2011). In the first attempts on alfalfa, marker calling

was based on de novo assembly of reads without a reference genome

(Li et al., 2014; Annicchiarico et al., 2015b; Biazzi et al., 2017) or on

a mapping of the reads on the reference genome sequence of the

related model speciesMedicago truncatula (Julier et al., 2018). With

the recent release of tetraploid alfalfa reference genome sequences

(Carrère et al., 2020; Chen et al., 2020; Shen et al., 2020; Long et al.,

2022), more reads are expected to be mapped and the markers are

physically positioned on the alfalfa genome. This GBS methodology

offers a high throughput genotyping tool that is convenient for most

of the genetic studies, at the individual level with the allele dosage

determination as well as the population level with the allele

frequency determination (Julier et al., 2018).

Linkage disequilibrium decays at short distance in allogamous

species (Flint-Garcia et al., 2003) and this also applies to alfalfa

(Herrmann et al., 2010). The candidate gene approach is

appropriate for association mapping (Herrmann et al., 2010), but

requires previous knowledge of relevant candidate genes.

Conversely, performing a genome-wide association study

(GWAS) with reduced representation libraries such as GBS,

requires sequencing at many loci that are evenly spread across the

genome and at high density. Such QTL have been obtained on

diploid alfalfa (Sakiroglu and Brummer, 2017) or cultivated

tetraploid alfalfa (Biazzi et al., 2017). Genomic prediction

(Meuwissen et al., 2001) has been tested on alfalfa (Annicchiarico

et al., 2015b; Li et al., 2015b; Biazzi et al., 2017; Medina et al., 2021;

Andrade et al., 2022), showing promising predicting ability around

30% for forage yield and quality traits. Higher predicting ability

could probably be obtained by using a larger population size and/or

a lower percentage of missing data in the genotyping dataset and/or

more markers at more loci.

In alfalfa, as in other species, phenology traits are the major

drivers of climate adaptation. Flowers are formed at the leaf

axillaries (Teuber and Brick, 1988) and do not hamper stem

elongation. In contrast with most cultivated species, flowering

date is not a component of forage yield in alfalfa, and it is not

even scored by breeders. However, the beginning of flowering stage

is used as an indicator for the cutting date since it indicates a good
frontiersin.org
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compromise between forage yield, quality and persistence. On the

other hand, fall dormancy, defined as the reduction of growth in fall

in response to short day length (Blondon et al., 1967), is a

component of fall and spring yield. It is also a main, but not

unique, component of winter frost tolerance (Teuber et al., 1998;

Brummer et al., 2000; Willame et al., 2002; UPOV, 2005). Each

breeding program is usually conducted within a restricted fall

dormancy range to release varieties targeting a specific climate.

In this study, we gathered ‘cultivated material’, comprising old and

recent cultivated accessions mainly from Europe, North and South

America, and China, and further extended the genetic diversity with

breeding material of five major European breeders. From this material,

we assessed whether a genetic structure has been created by preferential

crosses between materials of specific fall dormancy groups. We studied

how diversified breeding material of the five European breeders is,

compared to the diversity found in the cultivated material. With the

cultivated material, we assessed if a GWAS approach can detect QTL

for phenology traits and if the genomic prediction models allow to

predict phenology with a good accuracy. In this study, GWAS and GP

analyses were conducted at accession (i.e. population) level, with SNP

frequencies as genotyping data.
2 Material and method

2.1 Plant material

We used 400 cultivated accessions (hereafter named as ‘cultivated

material’) comprised of 378 cultivars and 22 landraces whose fall

dormancy score mainly ranged between 3 and 7. Their origin, based

on the place they have been collected (landraces) or initially selected and

registered (cultivars) was Europe (318 accessions), North America (45

accessions), South America (16 accessions), China (17 accessions),

Middle East (3 accessions) and Japan (1 accession). In addition, 617

accessions (hereafter named as ‘breeding material’) representing

advanced breeding material obtained by five European breeders were

included: 144 accessions from breeder A, 62 accessions from breeder B,

101 accessions from breeder C, 189 accessions from breeder D and 121

accessions from breeder E. Each breeder chose their material for this

study but did not mention if it was used in or representative of the

breeding program of the company or institution. All the 1017 accessions

were genotyped and used for genetic structure study while only the 400

‘cultivated material’ accessions were phenotyped for phenology and used

for GWAS and GP studies. The origin of the material used is available in

the data repository (see the Data Availability Statement section).
2.2 Genotyping

The methodology used for the DNA extraction, the

optimization of the GBS methodology and GBS sequencing has

previously been reported in Julier et al., 2021. To summarize, each

accession was represented by 100 plants, the DNA extraction was

performed from a pool of 100 leaflets, each taken on a plant. This

protocol has previously been shown to be reliable to estimate the

allele frequency of an accession (Julier et al., 2018). The double-
Frontiers in Plant Science 03
digest GBS on alfalfa was conducted with the enzymes PstI-MseI to

obtain a sufficient number of loci, while reducing the number of

missing values and considering the number of reads per accession.
2.3 Trimming and SNP calling

The reads were preprocessed with the GBprocesS bioinformatics

pipeline (Schaumont, 2020). This pipeline includes several steps:

demultiplexing, trimming of barcodes and restriction enzyme cutsite

remnants, merging of forward and reverse reads, removal of reads with

low quality base-calling and internal restriction sites. Subsequently, the

reads were mapped onto the reference sequence (Chen et al., 2020) by

using the BWA software with the BWA-MEM algorithm and default

options. We performed a test on a batch of samples to compare the

number of SNPs when the reads were mapped on each of the four

homologous chromosomes of the reference genome. The haploid copy

of the genome giving the highest number of SNPs was chosen (number

2) as the reference to map the reads for the rest of the accessions. We

used SMAP delineate (Schaumont et al., 2022) to analyse stacks of GBS

reads mapped onto the reference sequence, and found 31 743 loci. A

custom pipeline was used to perform the genotype calling. First, for

each accession, the number of reads per position and per nucleotide (A,

T, G, C) was extracted with the software bamreadcount (Khanna et al.,

2022). Per accession, a threshold was applied to keep only the positions

with at least 10 reads and at most 1200 reads. A list containing all the

positions found across accessions was established which included

22 192 769 positions. For each position, the allele frequency of each

nucleotide was calculated as the number of reads for the targeted

nucleotide divided by the total number of reads at this position. Two

stages of position selection were then carried out to retain the positions

with a minor allele frequency greater than or equal to 1% and two

alleles, leading to 1 194 485 positions. After this step, each accession

was genotyped for the remaining positions by calculating the allele

frequency of the alternative allele. In a third selection, we retained 631

816 positions with a minor allele frequency per accession between 5%

and 50% in at least 10 accessions. Five accessions with more than 80%

of missing data were excluded from the analysis (Figure 1A).

To allow robust analyses, it is necessary to filter out markers

with too many missing data. When the percentage of missing data

per SNP was plotted against the number of markers, we obtained a

sigmoid curve (Figure 1B) on which we have represented different

thresholds and the number of markers retained. By applying the

thresholds of 0%, 1%, 5%, 20% and 50% missing data, 89 216, 186

190, 227 092, 274 471 and 325 453 SNPs were retained, respectively.

In this study, we applied the filter of 5% maximum missing data per

position (227 092 SNPs). We calculated the number of markers over

a distance of 500 kb. This density of markers is variable along and

between the chromosomes (Figure 1C) but the whole genome is

covered, except for two zones which are certainly centromeres.
2.4 Population structure

A subset of 89 216 SNPs without missing values was used for a

genetic structure analysis. Linkage disequilibrium decay was
frontiersin.org
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calculated based on the squared partial correlation between pairs of

SNPs (Lin et al., 2012; Mangin et al., 2012). Genetic groups among

the populations were identified with the Discriminant Analysis of

Principal Components (DAPC) method (Pritchard et al., 2000;

Jombart et al., 2010; Grünwald and Goss, 2011) implemented in

the R package adegenet (Jombart, 2008; Jombart and Ahmed, 2011).

The genetic groups were identified by using k-means, a clustering

algorithm that found a given number (k) of groups by maximizing

the variation between groups. The optimal number of groups was

the one that provided the lowest Bayesian Information Criterion

(BIC). We then ran a Principal Component Analysis (PCA) with

the R package ‘FactoMineR’ (Lê et al., 2008) to analyze the diversity

among accessions without prior hypothesis and their inclusion to

each group was illustrated. The same R package (‘FactoMineR’) was

used to project the breeders’ accessions (as supplementary

individuals) into the PCA of the cultivated material. To illustrate

the relationship with the genetic structure found with the SNPs and

the fall dormancy, a PCA was performed on phenotypes (see next

section) and the accessions were colored by group as found by the

clustering analysis. We also used the results of the PCA based on the

genomic information and colored the accessions depending on the

phenotype for each trait. The differentiation between the groups

was assessed through the FST value following the methods of the R

package StAMPP (Pembleton et al., 2013) for polyploid species. The

group with only two accessions was ignored for the FST estimation.
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2.5 Phenotyping

All the “cultivated material” plant material was established in

two locations for phenotyping, the first one in France at the research

unit (URP3F) of INRAE (Lusignan: 46° 23’ 60’’ N, 0° 4’ 48’’ E) and

the second one in Serbia at the research unit of IFVCNS (Novi Sad:

45° 15’ 0’’ N, 19° 51’ 0’’ E). In Lusignan, the trial was sown on the

10th of May 2018. The trial was damaged by a storm on the 26th of

May 2018 and a new trial was sown on the 23rd of August 2018, but

some of the cultivated material did not have enough seeds, so only

387 among the original 400 accessions were established. In Novi

Sad, the trial was sown on the 21st of May 2018. The trials were

composed of 440 plots, 44 columns and 10 rows, in an augmented

block design with four incomplete blocks (Federer and Raghavarao,

1975; Lin and Poushinsky, 1985). The Table S1 summarises the

dimension and the technical elements of the trials. Five accessions

were repeated six times and distributed in the four blocks, 15 other

accessions were repeated twice in the trials of Lusignan-May 2018

and Novi Sad, but in Lusignan-August 2018, 28 accessions were

repeated twice. The other accessions were present only once and

randomly distributed within and between the blocks.

Measurements and scorings were performed in each trial in 2018,

2019 and 2020. The trial installed in Lusignan was evaluated during

an extra year in 2021. On the trial established in May 2018 in

Lusignan, the number of surviving plants in each plot was enough
D

A B

C

FIGURE 1

Genotyping quality and linkage disequilibrium observed among the accessions. (A) Histogram of the percentage of missing values per accession, the
vertical red line represents the applied threshold of 80% of missing values per accession. (B) Number of SNPs available depending on the percentage
of missing values allowed per SNP. The horizontal lines are the thresholds (1%, 5%, 20% and 50%), the vertical bars represent the number of SNPs
obtained with the corresponding threshold. The number in the right part of the graph indicates the number of SNPs from 0% of missing value to
50% of missing values. (C) SNP density per chromosome along the genome, estimated by the number of markers in a window of 500 kb on the
227 092 SNPs obtained with a threshold of 5% missing value per SNP. (D) Linkage disequilibrium (LD) between the 227 092 SNPs, estimated with a
squared partial correlation. The LD was plotted for SNP distances of less than 20 000 bp. The purple color scale represents the point density, black
for a low density and yellow for the highest density.
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to record the flowering date in summer 2018. The date of flowering

(FD.L) was then converted into a degree.day sum, by adding up the

degrees Celsius above zero between the date of sowing and the date

of flowering, using the mean daily temperatures at the location and

in the year of the trial. The assessment of fall dormancy was carried

out by measuring several traits on the trials established in August

2018 in Lusignan (.L) and May 2018 in Novi Sad (.N): plant height

(PH19.L, PH20.L, PH21.L, PH19.N, PH20.N) before the last cut in

fall 2019 and 2020 and dry matter yield (F-DMY19.L, F-DMY21.L,

F-DMY19.N, F-DMY20.N) at the last cut in fall 2019 and 2020. A

fall dry matter yield combined over all the years and locations (F-

DMY) was estimated with a mixed model to remove the year and

the location effects. Fall plant height measurements were made with

an electronic ruler when heights were less than 35 cm and with a

conventional ruler when heights were greater than 35 cm. Three

heights per plot were measured, randomly in the high plant density

plots and on the most developed plants in the degraded plots. All

measurement and cutting dates are available in Table 1. In

Lusignan, plant height was measured several times between the

last two cuttings in the fall 2019 and 2021, and the stem elongation

speed (SE19.L, SE21.L, in cm/degree.day) was obtained by using the

slope of the regression between the height and the date of

measurement expressed in degrees.days above 0°C. Finally, fall

dormancy was visually scored on the 29th of October 2019, on a

1-11 scale based on regrowth height (D19.L). Due to a very dry fall

in Lusignan in 2020, fall regrowth was not sufficient for a cutting

and an estimation of dry matter yield.
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2.6 Phenotypic adjustment and genetic
parameter estimation

All traits were independently adjusted to field micro-

environmental heterogeneity with the breedR package (Muñoz

and Sanchez, 2020). Within trials, to capture the spatial

heterogeneity at the plot level, a random effect was fitted thanks

to the use of the tensor product of two B-splines bases with a

covariance structure for the random knot effects (RKE) to account

for spatial variability along the rows and the columns of the field

design (Cantet et al., 2005; Cappa and Cantet, 2007; Robbins et al.,

2012; Cappa et al., 2015). We used a genomic based mixed model

for each year and each location. The genomic estimated breeding

values (GEBV) for each trait were estimated with the best linear

unbiased prediction based model (GBLUP) (Whittaker, 2000;

Meuwissen et al., 2001):

y = m + Zu +Ws +   ϵ (1)

where y was the raw phenotypes, m the global mean, u the vector

of random additive effects following N(0,Gs2
a ) with s 2

a the additive

variance and G the genomic relationship matrix between accessions, s

was the vector of random spatial effects containing the parameters of

the B-splines tensor product following N(0, Ss 2
s ) with s2

s the

variance of the RKE for rows and columns and S the covariance

structure in two dimensions, ϵ the vector of residual effects following

N(0, Is 2
e )with s 2

e the residual variance. The design matrix Z and W

are identity matrices connecting the plots to the random effects. The

method used to obtain the genomic relationship matrix G is

explained in the next section. B-splines were anchored at a given

number of knots for rows and columns, a high number of knots

smooths out the surfaces. breedR optimized the knot numbers by an

automated grid search based on the Akaike information criterion

(Akaike, 1974). The micro-environmental plot effect was subtracted

from the observed phenotype to obtain a spatially adjusted

phenotype. For the repeated accessions, we calculated an accession

mean of the spatially adjusted phenotypes for each trait.

This model was used to estimate the narrow sense heritability of the

trait. To avoid inflated heritability (Heckerman et al., 2016), the variance

explained by the spatial effect is integrated in the heritability formula:

h2 =  
VarG

VarG + VarE + VarR
(2)

With VarG the additive variance, VarE the micro-

environmental plot variance and VarR the residual. We used a

multi-trait model on adjusted phenotypes coupled with information

from relatedness between individuals based on genomic

information (Calus and Veerkamp, 2011) to extract the genetic

correlation between traits and compare the genetic correlation with

the phenotypic correlation calculated from the Pearson’s correlation

on adjusted phenotypes.
2.7 Relationship matrix estimation

The genomic relationship matrix (G) was based on (VanRaden,

2008), adapted to use allele frequencies (continuous values from 0
TABLE 1 List of measurement dates of each trait and the prior cutting
date in DD.MM.YYYY format.

Trait Measurement date Date of
prior cut

D19.L 29.10.2019 17.09.2019

F-DMY19.L 19.11.2019 17.09.2019

F-DMY21.L 01.09.2021 28.07.2021

F-DMY19.N 16.10.2019 22.08.2019

F-DMY20.N 22.10.2020 11.08.2020

PH19.L 29.10.2019 17.09.2019

PH20.L 16.10.2020 28.07.2020

PH21.L 09.11.2021 28.07.2021

PH19.N 16.10.2019 22.08.2019

PH20.N 22.10.2020 11.08.2020

SE19.L 07.10.2019-14.10.2019-21.10.2019-
29.10.2019-13.11.2019

17.09.2019

SE21.L 13.09.2021-22.09.2021-18.10.2021-
09.11.2021

28.07.2021
Flowering date (FD), Dormancy (D), Fall Dry Matter Yield (F-DMY), plant height (PH),
Speed of elongation (SE) for two years: 2019 (X19.X) and 2020 (X20.X) in two locations:
Lusignan (.L) in France and Novi Sad (.N) in Serbia.
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to 1) instead of allele dosage (Ashraf et al., 2014). The genotyping

matrix (M) was normalized by the minimum allele frequency (P) to

obtain the normalized genotyping matrix (Z) used to compute G , as

follows:

G =
ZZ0

1
nom

j=1pj(1 − pj)
(3)

The denominator is a scaling parameter, corresponding to the

sum of the expected SNP variance across genotypes (Ashraf et al.,

2014), where m represents the number of markers, pj equals the

frequency of the j th marker, and n represents a scaling number to

obtain a diagonal mean equal to 1. This has been recommended in

previous studies on polyploid species (Ashraf et al., 2014; Cericola

et al., 2018), with = 16 , the diagonal mean was close to 1.
2.8 GWAS

The GWAS analyses were performed with the MLMM method

(Segura et al., 2012), while taking into account the genetic structure

of the “cultivated material” with the genomic relationship matrix.

The MLMM method uses a stepwise mixed-model regression

approach with forward inclusion of the SNP as co-factors and a

backward elimination. The variance components of the model are

re-estimated at each step. This method is known to increase the

detection power while decreasing the false detection rate. The

maximum number of steps was limited to ten. The best step is

selected with an adjusted (0.05/number of GBS loci) multiple

Bonferroni criterion (mBonf). The percentage of phenotypic

variation explained by each QTL was obtained by subtracting

the R² of a linear model with all the QTL as fixed effects and

the genomic relationship matrix (G) as random effect to the R²

of the same model but without the focused QTL.

Genes located within 2500 bp flanking each QTL were

determined using the Genome Browser (https://bbric-

pipelines.toulouse.inra.fr/myGenomeBrowser?portalname=

MSAT_XinJiangDaYe&owner=sebastien.carrere@inrae.fr&key=

PyG9k9tK). Three sources of gene annotation were available, one

from the reference genome used for the genotype calling (Chen

et al., 2020), one from a partly assembled European genome

(Carrère et al., 2020) and one from the genome of the model

legume species Medicago truncatula (Pecrix et al., 2018).
2.9 Genomic prediction

2.9.1 Test of the size and the genetic
composition of the training population

To assess the potential of genomic prediction, we used the

predicting ability calculated by the correlation between the

phenotype and the value predicted in the validation population.

The validation population represents a portion of the complete

dataset on which the phenotypes have been masked and only the

genotype information is available. Here, two cases were considered.

In a first case, 100 accessions were randomly taken to form the
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validation population, in a way that each group (see paragraph

Genetic structure) is represented according to its size. We randomly

sampled the remaining accessions to test the effect of the size of the

training population. Nine sample sizes were tested: ranging from

10% of the remaining accessions (29 accessions) to 90% (270

accessions), ten iterations were performed for each sample size. In

order to assess the effect of the training population composition on

the quality of the predicting ability, a second case was studied. The

validation population was composed of fifteen accessions from one

group only and the training population of 210 accessions was

randomly taken from the remaining groups. Ten repetitions were

performed. Groups with less than fifteen accessions were excluded.

For each repetition, the validation population was sampled from

within a group and was predicted using two different training

populations. To test the predicting ability across groups, the first

training population excluded the other accessions belonging to the

same group as the validation population. The second training

population was a random sample of all groups. We ensured that

the potential confusion between the effect of the composition of the

training population and the effect of the sample size was avoided by

using the same sampling but two different training populations.

2.9.2 Test of statistical models
First, the best linear unbiased prediction based on genomic

information (GBLUP) (Whittaker, 2000; Meuwissen et al., 2001)

was used to predict the genomic estimated breeding values with all

the SNP used to compute the genomic relationship matrix matrix

(G). The R package breedR was used.

Then, we used two Bayesian methods, the Bayesian Ridge

Regression (BRR) (Pérez et al., 2010) and the Bayesian Lasso

(lasso) (Tibshirani, 1996; Tibshirani et al., 2012), with the R

package glmnet (Friedman et al., 2010; Simon et al., 2011). The

BRR and the GBLUP method mimic an infinitesimal genetic

architecture. The Bayesian Lasso method selects features (here

SNPs) depending on their importance and uses them as a predictor.

We compared the different models in the situation of the first

case scenario with a validation population of 100 accessions

randomly selected and a training population of 270 randomly

selected accessions (90%).
3 Results

3.1 Genotyping

The GBS pipeline optimization, as performed in this study, led

to a genotyping dataset with little missing values among the

accessions. Only five accessions out of 1017 were lost due to a

poor sequencing depth (Figure 1A). We chose to keep SNPs with a

maximum of 5% missing values per SNP (Figure 1B), the missing

values were imputed with the minor allele frequency, and it

represented less than 1% of all the genomic data. We chose this

low threshold to avoid adding bias in the QTL detection and the

genomic prediction. GBS-tagged loci were spread fairly evenly

throughout the genome, with at least 1 polymorphic SNP marker
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every 500 kb (Figure 1C). Linkage disequilibrium (LD), estimated

with a squared partial correlation, dropped abruptly after 1000 bp,

most SNP pairs presented a LD close to zero as shown by the yellow

colour representing a high density (Figure 1D). Indeed, after a

distance of 100 kb, on the 810 557 188 total pairs of SNP, only 872

SNP pairs showed a partial correlation >0.25; and 75 SNP pairs had

a partial correlation >0.5. The longest distance between two SNPs

were 89 Mb and 91 Mb, with a partial correlation of 0.5 and 0.25,

respectively. Further examination revealed that this long-range LD

is mainly due to a few pairs of SNP that have high LD with several

flanking SNPs located in another region of the chromosome,

suggesting a local problem in assembly or a wrong mapping.
3.2 Population structure

The number of principal components (PC) required to explain

90% of the genetic variation was 300 (Figure S1A). The optimal

number of groups was the one that provided the lowest Bayesian

Information Criterion (BIC), here seven (Figure S1B). On the PCA

with the accessions coloured according to the seven DAPC groups

(Figure 2), two groups were clearly separated from the others: group

6 with 15 Chinese accessions and group 1 with two accessions (an

Italian variety that includes a falcata parent and a Hungarian

variety). The five other groups showed a genetic continuum but

each group can be related to the geographic origin of the accessions:

group 3 with 139 accessions of European origin (France and

Northern Europe), group 7 with 151 accessions mostly of

European origin (Southern and Eastern Europe), group 4 with 61

accessions of Europe, North and South America, group 5 with 21

USA and 1 Chinese accessions and group 2 with 5 North American

accessions. The European accessions as well as the American

accessions were thus split into several groups. The group 4
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probably illustrates the multiple origins of some varieties selected

in the two continents.

Finally, the European and the North American accessions

displayed little overlap, but South-American accessions

interestingly overlapped with these two groups. The three

accessions from the Middle East were close to the American

accessions and the Japanese accession was closer to the European-

American groups than to the Chinese group. All Chinese varieties

resided in the Chinese group except one variety that grouped into

group 5, probably revealing a selection based on American material.

Accessions from China seemed to be different from falcatamaterial

(group 1), even if the latter was represented by only two accessions

in this study. The distance between the group 6 with Chinese

accessions and the overlapping groups 3, 4, 5, 7 containing Western

accessions suggested unconnected breeding programs. The FST
value between the groups were low with an average value of 0.01

and a range between 0.001 and 0.026 (Table 2). Groups 6 and 2 were

the most distinct, with the highest FST value (0.026).

The breeding material provided by five European breeders was

compared to the groups obtained with the worldwide cultivated

material (Figures 3, S2 for a detailed view by breeder). Three

breeders provided materials with a narrow genetic diversity that

were assigned to a single group: accessions of breeders B and E were

assigned to group 3 (France and Northern Europe), those of breeder

C were assigned to group 7 (Southern and Eastern Europe). The

other two breeders provided more diversified genetic materials. The

accessions of breeder A covered at least three groups: 3, 7, and 4

(Europe, North and South America). The accessions of breeder D

covered groups 3 and 7, and more surprisingly, it seems that some

of this material was crossed with falcata or possibly Chinese

accessions. Nonetheless, the genetic material provided by the five

European breeders in this study did not belong to the North

American nor the Chinese groups.

A PCA based on phenotypic data did not reveal any structure

and the genetic groups overlapped with each other (Figure 4; for a

PCA based on molecular data and coloured per trait, see Figure S3).

However, when the trait variation was displayed as boxplots per

group (Figure 5), the group with the Chinese accessions showed the

lowest values of the traits linked to fall dormancy (highly dormant)

and the highest values for the flowering date. The other groups were
FIGURE 2

Clustering of the cultivated material based on a Principal
Component Analysis performed on a genotyping dataset of 89 216
SNPs without missing data. The analysis was done on 395
accessions, and a Discriminant Analysis of Principal Components
(DAPC) analysis revealed seven groups (ellipses) linked to the
geographic region of the origin or registration.
TABLE 2 Genetic distinction (FST) between the groups found by the
DAPC method.

Groups 1 2 3 4 5 6

1

2

3 0.017

4 0.013 0.003

5 0.004 0.006 0.002

6 0.026 0.019 0.012 0.015

7 0.016 0.001 0.001 0.005 0.015
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relatively similar, except group 1, which contained only two falcata-

type accessions.
3.3 Heritability and genetic correlation

Model estimated variances, heritability and accession mean

estimated after phenotypic adjustment, are presented in Table 3.

Our study showed a wide variation in heritability, ranging from 0.01

for F-DMY20.N to 0.79 for PH20.L that evaluates fall dormancy. F-

DMY20.N, PH20.N, PH21.L, and F-DMY21.L showed the lowest

heritability (<0.04). These low heritabilities can be explained by a
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high micro-environmental variance (VarE) and not by the absence

of genetic variability (VarG) for the trait. On average, the

heritabilities were higher in Lusignan (0.34) than in Novi Sad

(0.13). Similarly, the average heritabilities of the traits measured

in 2019 (0.48) were higher than those of the traits measured in 2020

(0.09) and 2021 (0.06). Finally, the measurements of SE and PH had

higher average heritabilities (0.27) than the measurements of F-

DMY (0.18).

Table 4 shows the phenotypic and genetic correlation between

traits. All the traits related to fall dormancy presented positive

phenotypic and genetic correlations between each other. As

expected, FD.L showed negative phenotypic and genetic

correlation with all the traits related to fall dormancy. Among

the traits related to fall dormancy, the traits measured in Lusignan

presented stronger average genetic correlation (0.83) than at Novi

Sad (0.78) and stronger than between locations (0.48).

Interestingly, PH19.L and PH19.N that were the same trait

measured in the same year but in two different locations,

presented a genetic correlation of 0.997. These results suggest a

low genotype by environment interaction for this trait linked to

fall dormancy. Among the fall dormancy traits, F-DMY19.N

showed the lowest but still positive genetic correlation (lower

than 0.6) with all the other traits.

We found QTL for four out of the eleven traits of this study

(Figure S4). For D19.L, a single QTL was found on chromosome 8

(chr 8) explaining 14.6% (Table 5) of the phenotypic variation. For

F-DMY20.N, five QTL were detected: one QTL each on chr 2, 5, 6

and two on chr 7, explaining between 6% and 9% each; overall, they

explained 32.1% of the phenotypic variation. For PH19.N, we found

six QTL, one on chr 2 and chr 4, two on chr 3 and chr 7, each

explaining between 7% and 11.9% of the variation; overall they

explained 42.6%. Finally, for F-DMY, we found five QTL on chr 2,

and four on chr 3, each explaining between 9.5% and 15.3% of the

variation; overall they explained 43.2% of the phenotypic variation.

QTL located on the same chromosome were spaced at least 9 Mb

apart. No QTL was detected for flowering date. To understand the

lack of common QTL between genetically correlated traits, we

looked in detail at all the SNPs that were detected as potential

QTL by the MLMM method. This iterative method added the

potential QTL one by one as a co-factor in the model before

estimating which model is the best and thus which are the “true”

QTL. The additional data table (Table S2) tracked all SNPs selected

by each iteration and for each trait. We observed a few cases where

QTL for the different traits were located in close proximity. In four

cases, the significantly associated SNPs are less than 1000 bp apart.

Among these cases, for a pair of SNPs (chr2_12854184 -

chr2_12854196), neither of them passed the threshold but were

selected by the mlmm method at certain steps, these two SNPs

would have an effect on the following traits: PH19.L and F-

DMY20.N. In the remaining three cases, one of the two SNPs of

the pair was retained as a QTL: chr3_61230828 - chr3_61230888 for

PH20.N and F-DMY, respectively; chr3_89061410 - chr3_89061526

for F-DMY and PH19.L, respectively; chr8_51582915 -

chr8_51582964 for PH20.N and D19.L. Three SNPs were selected

for two different traits: chr2_14385543 for D19.L and F-DMY19.L;

chr7_46045300 for PH21.L and SE21.L; chr7_90860527 for PH21.L
FIGURE 3

Projection of the 617 European breeders’ accessions on the seven
groups (ellipses) obtained from a DAPC analysis using a genotyping
dataset of 89 216 SNPs without missing data. A particular point
shape represents each breeder.
FIGURE 4

Principal Component Analysis (PCA) based on the phenotypic
values, the accessions are colored per DAPC group. The traits are
related to Flowering date (FD) and autumn dormancy depending on
different measurements in autumn: Dormancy (D), Dry Matter Yield
(F-DMY), plant height (PH), Speed of elongation (SE) for two years:
2019 (X19.X) and 2020 (X20.X) in two locations: Lusignan (.L) in
France and Novi Sad (.N) in Serbia. F-DMY without letter or number
is the Dry Matter Yield adjusted for year and location effects. The
biggest points represent the centroids of each cluster.
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FIGURE 5

Boxplot of the phenotypic values per group for all the traits related to Flowering date (FD) and autumn dormancy scored from different measurements in
autumn. Dormancy (D), Dry Matter Yield (F-DMY), plant height (PH), Speed of elongation (SE) for two years: 2019 (X19.X) and 2020 (X20.X) in two
locations: Lusignan (.L) in France and Novi Sad (.N) in Serbia. F-DMY without letter or number is the Dry Matter Yield measured in autumn adjusted for
year and location effects.
TABLE 3 Results of models fit by trait with mean by phenotype, genetic (VarG), spatial by location and year (VarEX.X) and residual (VarR) variances
used for heritability estimation (h²).

Traits mean VarG VarE18.L VarE19.L VarE20.L VarE21.L VarE19.N VarE20.N VarR h²

D19.L 6.62 2.129 0.281 0.5929 0.71

FD.L 2327.82 3285 4481 3809 0.28

F-DMY 0.15 0.00035 0.0000214 0.0000089 0.0036 0.00213 0.00056 0.00181 0.15

F-DMY19.L 0.10 0.0006 0.000105 0.00046 0.52

F-DMY19.N 0.26 0.00186 0.00495 0.00153 0.22

F-DMY20.N 0.22 0.00027 0.02653 0.00167 0.01

F-DMY21.L 0.10 0.00064 0.06298 0.0009 0.01

PH19.L 22.98 9.454 0.5518 1.928 0.79

PH19.N 42.16 22.95 41.2 20.59 0.27

PH20.L 23.27 14.78 32.8 14.37 0.24

PH20.N 51.66 4.441 87.93 52.77 0.03

PH21.L 20.31 11.38 1223 5.707 0.01

SE19.L 0.43 0.00816 0.00159 0.0133 0.35

SE21.L 0.22 0.00136 0.00539 0.00105 0.17
F
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The traits are: flowering date (FD) and fall dormancy (Dormancy: D, plant height: PH, stem elongation rate: SE, Fall Dry Matter Yield: F-DMY) for different locations (Lusignan: L, and Novi Sad:
N) over three years of trials (2019: X19.X, 2020: X20.X and 2021: X21.X) or overall (F-DMY).
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and SE21.L, but not detected as QTL. Table S4 shows the distance

between the QTL (highlighted) and other non-conserved SNPs that

are less than 1000 bp apart. Between the detected QTL, the distance

was large and the linkage disequilibrium values were very low, 0.006

on average. However, in cases where the SNPs are in close vicinity,

the linkage disequilibrium locally increased strongly. These regions

certainly contained QTL related to fall dormancy, but we cannot

consider them as such due to our conservative threshold, which

allowed us to limit both the number of false positives and a too small

number of accessions leading to a low power of detection.

For 14 out of the 17 QTL, genes were found in the 5 kb flanking

genomic region. Details are given in Table 5 and the corresponding

annotations are listed in Table S3. Some genes encode similar

functions, or may be involved in a common biological process.

These functional annotations include: drought stress response (2-

methylene-furan-3-one reductase (Singh et al., 2022), transcription

factor C3H family (Kumar et al., 2019)), growth and development

(ABC-type xenobiotic transporter (Verrier et al., 2008), F-box

domain (Gupta et al., 2015), malate dehydrogenase (oxaloacetate-

decarboxylating) (NADP(+)) (Kujur et al., 2016)) and diverse

biological processes (ACP-like superfamily (Zhao et al., 2022),

transcription factor WD40-like family (Xu and Min, 2011), and

leucine-rich repeat domain superfamily (Liu et al., 2022)). The

functions of certain genes linked to our QTL (peptidase C78,

ubiquitin modifier-specific peptidase 1/2, thimet oligopeptidase,

Type I protein exporter) were not well known in plants in general

nor legumes in particular.
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3.4 Genomic prediction

The predicting ability obtained in this study for flowering date

and the traits linked to fall dormancy varied from 0.25 to 0.80,

depending on the trait and the method (Figure 6). The GBLUP and

the BRR method gave equivalent predicting ability (Figure 6), the

Bayesian Lasso method gave slightly lower prediction quality and a

higher standard deviation. The main differences in predicting ability

depended on the trait. Fall dormancy in Lusignan showed a higher

predicting ability (from 0.50 to 0.80) than in Novi Sad (from 0.25 to

0.68). The results showed less variation between years in Lusignan

(2019 and 2021) than in Novi Sad (2019 and 2020). The predicting

ability for all traits obtained with GBLUP were above 0.25. The

lowest predicting ability on average (above 0.25) were obtained for

PH20.L, PH20.N, F-DMY20.N and FD.L. The best predicting

abilities (average >0.75) were obtained with D19.L, PH19.L and

PH21.L. Other traits had a predicting ability higher than 0.5. Only

the results with GBLUP were considered for the rest of the study.

The mean predicting ability (GBLUP method) increased

markedly by increasing the size of the training population from

29 to 59 accessions, and reached a plateau with a training

population of at least 89 accessions (Figure 7). The variance

between replicates still decreased in training populations with

more than 89 accessions, as shown for five example traits: D19.L,

F-DMY19.L, FD.L, PH19.L and SE19.L (Figure 7). This observation

was consistent across traits and locations (Figure S5). Unlike the

training population size, which appeared to have a similar effect on
TABLE 4 Correlation between traits measuring flowering date (FD) and fall dormancy (Dormancy: D, plant height: PH, stem elongation rate: SE, Fall
Dry Matter Yield: F-DMY) for different locations (Lusignan: L, and Novi Sad: N) over three years of trials (2019: X19.X, 2020: X20.X and 2021: X21.X) or
overall (F-DMY).

D19.L
F-

DMY
F-

DMY19.L
F-

DMY21.L
PH19.L PH20.L PH21.L SE19.L SE21.L

F-
DMY19.N

F-
DMY20.N

PH19.N PH20.N FD.L

D19.L 0.738 0.743 0.883 0.930 0.998 0.856 0.848 0.966 0.352 0.599 0.768 0.658 -0.313

F-DMY 0.639 0.768 0.710 0.843 0.806 0.746 0.804 0.776 0.886 0.816 0.919 0.723 -0.239

F-
DMY19.L

0.631 0.603 0.578 0.726 0.605 0.553 0.926 0.649 0.554 0.484 0.659 0.319 -0.396

F-
DMY21.L

0.553 0.561 0.409 0.828 0.999 0.934 0.700 0.964 0.365 0.553 0.647 0.735 -0.054

PH19.L 0.865 0.666 0.639 0.602 0.995 0.850 0.882 0.897 0.367 0.333 0.997 0.677 -0.292

PH20.L 0.400 0.358 0.309 0.535 0.469 0.746 0.590 0.998 0.107 0.119 0.990 0.844 0.030

PH21.L 0.674 0.600 0.441 0.796 0.707 0.538 0.735 0.993 0.291 0.314 0.703 0.852 -0.104

SE19.L 0.568 0.388 0.455 0.338 0.602 0.178 0.417 0.800 0.215 0.163 0.294 0.150 -0.492

SE21.L 0.698 0.584 0.462 0.748 0.707 0.542 0.926 0.456 0.257 0.297 0.383 0.248 -0.130

F-
DMY19.N

0.364 0.707 0.266 0.188 0.429 0.488 0.398 0.538 0.398 0.796 0.706 0.681 -0.403

F-
DMY20.N

0.351 0.495 0.202 0.234 0.642 0.730 0.683 0.534 0.654 0.352 0.726 0.995 -0.048

PH19.N 0.484 0.546 0.324 0.304 0.518 0.223 0.417 0.833 0.714 0.528 0.321 0.788 -0.373

PH20.N 0.308 0.347 0.094 0.195 0.276 0.138 0.289 0.505 0.762 0.251 0.636 0.284 -0.038

FD.L -0.235 -0.248 -0.282 -0.123 -0.227 -0.083 -0.161 -0.221 -0.156 -0.219 -0.066 -0.172 -0.046
frontie
The lower part in grey represents the phenotypic correlation between traits after phenotypic adjustment and the upper part represents the genetic correlation between traits based on the
covariance matrix estimated with a multi-trait model.
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TABLE 5 QTL for autumn dormancy from a GWAS analysis with the MLMM method.

Annotation of Chen et al., 2020 Mercedes Medicago tuncatula

Gene 2 Function Gene 1 Function Gene 2 Function

00350g01027551 hypothetical protein MtrunA17Chr7g0240251 hypothetical protein

MtrunA17Chr7g0228011
Putative 2-methylene-

furan-3-one reductase

01933g02106001
Putative transcription

factor C3H family
MtrunA17Chr2g0320811 hypothetical protein

7Chr3g0143411

Putative tetratricopeptide-

like helical domain

superfamily

MtrunA17Chr3g0143411

Putative tetratricopeptide-

like helical domain

superfamily

00355g01035221 hypothetical protein

00921g01687971
Putative ABC-type

xenobiotic transporter
MtrunA17Chr3g0128361

Putative peptidase C78,

ubiquitin modifier-specific

peptidase 1/ 2

MtrunA17Chr3g0128381

Putative Type 1

protein

exporter

00206g00737801
Putative transcription

factor WD40-like family

00350g01027551
Putative thimet

oligopeptidase
MtrunA17Chr7g0240251 hypothetical protein

00832g01614181
Putative leucine-rich repeat

domain superfamily

00006g00057221

Putative malate

dehydrogenase

(oxaloacetate-

decarboxylating) (NADP

(+))

MtrunA17Chr2g0331051

Putative malate

dehydrogenase

(oxaloacetate-

decarboxylating) (NADP

(+))

MtrunA17Chr2g0331061
hypothetical

protein

00921g01687971
Putative ABC-type

xenobiotic transporter
MtrunA17Chr3g0128361

Putative peptidase C78,

ubiquitin modifier-specific

peptidase 1/ 2

MtrunA17Chr3g0128381

Putative Type 1

protein

exporter

QTL (r2) and the available annotation on the cv. XinJiangDaYe reference genome (Chen et al., 2020), the cv.
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Trait SNP r2
r2

Global
Chromosome Position

Gene Function Gene 1 Function

D19.L chr8_51582964 0.146 chr8.2 51582964 MS.gene035451
ACP-like superfamily; Protein

kinase-like domain superfamily
MsNRG001015g01756361 hypothetical protein MsNRG

F-

DMY20.N
chr7_53172294 0.090

0.321

chr7.2 53172294 MS.gene010897
Heat shock protein 70kD, peptide-

binding domain superfamily
MsNRG000432g01160181 hypothetical protein

F-

DMY20.N
chr7_62988589 0.059 chr7.2 62988589 MS.gene67894

Alcohol dehydrogenase, N-

terminal
MsNRG000037g00224451

Putative 2-methylene-furan-3-one

reductase

F-

DMY20.N
chr6_40691177 0.086 chr6.2 40691177

F-

DMY20.N
chr5_72247110 0.060 chr5.2 72247110 MS.gene98525

Lipid-binding serum glycoprotein,

N-terminal ; Lipid-binding serum

glycoprotein, C-terminal

F-

DMY20.N
chr2_12854196 0.086 chr2.2 12854196 MS.gene073096

Nucleotide-binding alpha-beta

plait domain superfamily ; U2

auxiliary factor small subunit

MsNRG001447g01984221
Putative transcription factor C3H

family
MsNRG

PH19.N chr3_90724627 0.119

0.426

chr3.2 90724627 MS.gene014383
Tetratricopeptide-like helical

domain superfamily
MsNRG000840g01620971

Putative tetratricopeptide-like

helical domain superfamily
MtrunA

PH19.N chr7_90834458 0.106 chr7.2 90834458

PH19.N chr7_10758065 0.105 chr7.2 10758065 MS.gene020657 MsNRG143424g02636541
Putative diacylglycerol kinase

(ATP)
MsNRG

PH19.N chr4_5061600 0.080 chr4.2 5064100

PH19.N chr3_73810222 0.074 chr3.2 78458544 MS.gene06565
ABC transporter type 1,

transmembrane domain
MsNRG000105g00468091 Putative Type I protein exporter MsNRG

PH19.N chr2_13623107 0.103 chr2.2 13623107 MS.gene69859 MsNRG066413g02467211
Putative protein-serine/threonine

kinase CMGC-GSK family

F-DMY chr3_44341487 0.130

0.432

chr3.2 44341487 MS.gene027073
WD40/YVTN repeat-like-

containing domain superfamily
MsNRG000206g00737911 hypothetical protein MsNRG

F-DMY chr3_89061410 0.095 chr3.2 89061410 MS.gene40203 ACP-like superfamily MsNRG000661g01450031 Putative thimet oligopeptidase MsNRG

F-DMY chr3_61230888 0.101 chr3.2 61230888 MS.gene048728
Leucine-rich repeat domain

superfamily;F-box domain
MsNRG000832g01614171

Putative F-box domain, leucine-

rich repeat domain superfamily, F-

box-like domain superfamily

MsNRG

F-DMY chr2_2373521 0.137 chr2.2 2373521 MS.gene36359
Malic enzyme, N-terminal domain

superfamily; Malic oxidoreductase
MsNRG000410g01125591

Putative malate dehydrogenase

(oxaloacetate-decarboxylating)

(NADP(+))

MsNRG

F-DMY chr3_78458544 0.153 chr3.2 78458544 MS.gene06565
ABC transporter type 1,

transmembrane domain
MsNRG000105g00468091 Putative Type I protein exporter MsNRG

This table summarizes the exact position of the QTL on the reference genome for each phenotypic trait, the percentage of phenotypic variance explained by th
Mercedes genome sequence (Carrère et al., 2020) and the corresponding region on the model species Medicago truncatula (version 5.1.8; Pecrix et al., 2018)
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all traits, the genetic composition of the training population affected

the predicting ability across traits in different ways (Figure 8). In

order to observe the impact of the training population composition

on the predicting ability, Figure 8 illustrates the difference between a

prediction of accessions of one group with a training population

including accessions from the other groups and a prediction of the

same accessions with a training population of the same size (210)

but including accessions from all groups. In the majority of cases,

the prediction quality decreased when no accession from the

targeted group was included in the training population.

Nevertheless, in some cases, the difference was in favour of the

prediction across groups for some of the group/traits. The groups 3

(France, Northern Europe) and 7 (Southern and Eastern Europe)

seemed to be the most impacted by the absence of their own

accessions in the training population. In contrast, group 6

(China) was little impacted by the genetic composition of the

training population.
4 Discussion

We designed this study firstly to describe the genetic structure

among currently grown alfalfa plant materials (‘cultivated material’)

and plant breeding materials from the major European breeders

(‘breeding material’). Secondly, we wanted to test our hypothesis that

breeding programs conducted within a narrow range of fall dormancy

could induce a structure within worldwide breeding pools depending

on fall dormancy as previously studied by Munjal et al., 2018. The

third objective was to study the genetic determinism of major traits

related to phenology such as flowering date and fall dormancy, and

the possibility to predict it with genomic data.
4.1 Genotyping

Our study used a large number of markers (227 092 SNP) with

few missing data (<5% per locus), in comparison to other studies in

alfalfa (Annicchiarico et al., 2015b; Li et al., 2015b; Nazzicari et al.,

2016; Jia et al., 2018; Medina et al., 2020). Previous studies on

genomic prediction and genetic diversity showed that a large

number of markers allowed to compensate for the amount of

missing values (Heslot et al., 2013; Li et al., 2015b). However, a

large amount of missing data can lead to a wrong estimation of

linkage disequilibrium (Li et al., 2015b) and as a consequence to a

biased estimation of the genomic relationship between accessions

(Schopp et al., 2017). Genotypic imputation has shown promising

results to complete missing values in different species (Marchini

et al., 2007; Howie et al., 2009; Marchini and Howie, 2010;

Daetwyler et al., 2011; Faville et al., 2018; Pégard et al., 2019). So

far, the imputation methods proposed for tetraploid species

(Nazzicari et al., 2016; Bastien et al., 2018) have shown interesting

results to impute individual genotyping (allele dosage) but not for

pool sequencing (allele frequency). These methods are not effective

enough to be reliable and routinely used. The development of a

method to impute genotypes based on population allele frequencies

of tetraploid species could increase the number of useful markers.
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This would be of particular interest for alfalfa, which showed a very

rapid decay of linkage disequilibrium between 1 kb and 20 kb in our

case and in several other studies (Herrmann et al., 2010; Li et al.,

2014). Indeed, in case of a short LD, a large number of SNPs is

required to capture QTL and to obtain a good genomic prediction

quality (Wientjes et al., 2013; Liu et al., 2015). A short LD can also

influence the prediction methods that use LD to connect to putative

QTL by feature selection (e.g., BayesB, Bayes Lasso) and decrease

their effectiveness because of inaccurate LD estimation (Habier

et al., 2007; Shengqiang et al., 2009; Jannink et al., 2010).
4.2 Diversity

With the large number of SNPs that we obtained, a genetic

structure was revealed among cultivated material. In previous

studies conducted with a limited number of SSR, AFLP or RAPD

markers, genetic structure was observed only when a wide genetic

diversity was studied (Crochemore et al., 1996; Riday et al., 2003;

Qiang et al., 2015) but not when the diversity was restricted to

breeding material (Flajoulot et al., 2005; Annicchiarico et al., 2016;

Herrmann et al., 2018). We identified seven genetic groups among

which two groups were clearly separated from the others. One

group consisted of two accessions related to ssp falcata. This

separation is consistent with another study showing that the ssp

falcata are clearly separated from cultivated alfalfa (Li et al., 2014).

The other group consisted of 15 Chinese accessions. Their clear

separation from American and European accessions is more

marked in our study than the separation observed in previous

studies with SSR markers (Qiang et al., 2015) or genomic markers

(Chen et al., 2020; Long et al., 2022). Within accessions of Europe,

North and South America, a clear geographic structure was also

obtained with partial overlap of the groups, finally showing a

continuum. As all American germplasm originates from the

“Ancient World”, the complete overlap of European and

American genetic diversity was expected, as also found by (Shen

et al., 2020). Two reasons could explain our results: (1) some

diversity from the “Ancient World” was not represented in our

study, such as that of North Africa and Near or Middle East, (2) the

selective pressure exerted by American breeders or a genetic drift

generated a shift in the diversity. The wide range of dormancy

within American materials is not in favour of the first explanation.

When using phenotypic traits related to fall dormancy and

flowering date, no structure was observed. Except some of the

Chinese accessions that showed a high fall dormancy, the other

groups showed similar range of fall dormancy. Fall dormancy was

shown to be a good indicator for genetic structure among accessions

when the widest range of diversity is studied (Li et al., 2014) but was

less efficient within intermediate range of fall dormancy, as studied

here. Our results seemed to refute our hypothesis that preferential

crossing within dormancy groups and strong selection pressure on

dormancy could have induced genetic structure.

The majority of ‘breeding material’ provided by European breeders

was genetically close to the groups that contained European ‘cultivated

material’. This indicates that cultivated material from North and South

America and China are either not introduced in European breeding
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programs, or, if introduced, not retained after selection steps. This

observation is an invitation to go more deeply into a phenotypic

analysis of the cultivated material to exploit them in European,

American and Chinese breeding programs.
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4.3 GWAS

We detected several QTL for traits related to fall dormancy on

chromosomes 2, 3, 6, 7 and 8. Some of them explained a high

percentage of phenotypic variation (>14%). Previous studies already

evidenced QTL for fall dormancy. In a first attempt, QTL were

found in a mapping population (Brouwer et al., 2000) but the

assignment of linkage groups to current physical maps is not

available. More recently, also in mapping populations, QTL were

found for fall dormancy traits recorded in several environments on

chr 1 and 7 (Li et al., 2015a), chr 1, 2, 3, 4, 5, 6, 7 (Adhikari et al.,

2018), and chr 1, 7, 8 (Pecetti et al., 2021). In a GWAS, a QTL was

found in a region of chr 7 that contained a Flowering locus T gene

(MsFTa2), known to be part of the flowering pathway (Shen et al.,

2020) and four QTL were found on chr 2, 3, 5, 6 (Long et al., 2022).

A precise comparison of QTL positions was difficult because

different genome references were used by the respective authors.
4.4 Genomic prediction

First of all, this study showed that it was possible to reach a high

predicting ability (>0.75 for D19.L, PH19.L and PH21.L) for

phenology related traits. However, this was not observed for all

traits, the prediction capacity was around 0.30 for some traits (F-

DMY20.N, PH20.L, PH20.N and FD.L). In our study, the difference

between traits depended mainly on the year of measurement, with

the year 2020 having a lower predicting ability on average, and on

the location of measurement, with the prediction of traits measured

in Novi Sad (Serbia) being less accurate than that measured in

Lusignan (France). We do not have a clear explanation for these

results, we suppose that it may be related to the difference between

the continental climate (Novi Sad) and the oceanic climate

(Lusignan) that is warmer in fall allowing a higher potential

growth and therefore a better distinction of the fall dormancy of

the accessions. Heritability was often presented (Luan et al., 2009;

Lorenz et al., 2011; Clark et al., 2012; Kaler et al., 2022) as a factor

that explained the difference for predicting ability between traits. In

the present study, the quality of prediction could differ greatly for

similar estimated heritability. This difference might be explained by

the way heritability was expressed in our study, the variance

explained by the spatial effect was integrated in the heritability

formula, to avoid inflated heritabilities (Heckerman et al., 2016).

Indeed, in Supplementary Figure S6, we have compared the

relationship between predicting ability and heritability with and

without taking into account the spatial variance in the heritability

estimation. This showed that without taking into account the spatial

variance in the estimation of heritability, the relationship between

predicting ability and heritability was the same as that expressed in

several studies (Luan et al., 2009; Lorenz et al., 2011; Clark et al.,

2012; Kaler et al., 2022). However, (Heckerman et al., 2016)

emphasized the importance of modelling environmental effects in

the estimation of heritability and that the inflation was not stable for

all traits, what was observed in our study as well. Even if the

difference in heritability between traits did not allow to explain the

difference in prediction quality, the traits with a high genetic
FIGURE 7

Impact of the training population size on the predicting ability for five
traits (Flowering date (FD), Dormancy (D), Dry Matter Yield (F-DMY),
plant height (PH), Speed of elongation (SE)) recorded in Lusignan in
2019. On the x-axis, the number of accessions used to train the model
to predict a validation population composed of 100 accessions. The
accessions were randomly taken among all the clusters. The average
predicting ability (ten repetitions) estimated with the spearman
correlation between the phenotype and its prediction is the middle solid
line, the standard deviation is represented by the two solid lines above
and below the middle line and colored by trait.
FIGURE 6

Impact of the model on the predicting ability (y-axis) for phenology
traits. Three models were tested: best linear unbiased prediction
model (GBLUP), Bayesian Ridge-regression (BRR) and Bayesian
Lasso (lasso). The error bars are the standard deviation estimated on
10 repetitions. Traits were: Dormancy (D), Dry Matter Yield (F-DMY),
plant height (PH), Speed of elongation (SE) for two years: 2019
(X19.X) and 2020 (X20.X) in two locations: Lusignan (.L) in France
and Novi Sad (.N) in Serbia and Flowering date (FD). F-DMY without
letter or number is the Dry Matter Yield adjusted for year and
location effects.
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correlation (D19.L-PH19.L- F-DMY19.L-PH21.L-SE21.L and F-

DMY20.N-PH20.N) showed a similar predicting ability.

In this study, the different GP models showed similar results,

which was expected for GBLUP and BRR, but not necessarily for the

Bayesian Lasso, as the latter selected the SNPs having an effect in the

model and was supposed to perform better in the case of strong

QTL effects (Meher et al., 2022). However, our results were

consistent with those obtained in other studies in alfalfa for

various trait (Annicchiarico et al., 2015b; Biazzi et al., 2017; Jia

et al., 2018; Medina et al., 2020; Zhang et al., 2023).

Similar to other authors (Nakaya and Isobe, 2012; Tayeh et al.,

2015; Cericola et al., 2017), increasing the number of accessions in the

training population increased the prediction quality until stabilisation

occurred with training populations of 89 accessions. The additional

accessions added after this point were useful in reducing the variation

due to sampling. By setting the size of the training and validation

populations, we ensured that this did not affect the quality of the

prediction between the groups. The same applied to the composition

of the training population (Lorenz and Smith, 2015; Tayeh et al.,

2015; Norman et al., 2018; Akdemir and Isidro-Sánchez, 2019; Pégard

et al., 2020). The predicting ability observed in our study was higher

and less variable when the training and validation populations were

related and when all the groups were represented in the training

population, than in the case of across groups prediction.

Our study has shown that for traits such as fall dormancy or

flowering date, we can achieve good genomic prediction quality in a

diverse panel. These results, combined with other studies on alfalfa
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(Annicchiarico et al., 2015b; Biazzi et al., 2017; Jia et al., 2018;

Andrade et al., 2022; Zhang et al., 2023), show that genomic

selection is an interesting and efficient lever in alfalfa breeding. It

is possible to rethink the alfalfa improvement scheme by using

genomic prediction. It allows to play with several genetic gain

parameters such as selection intensity, cycle length and genetic

diversity. The value of genomic prediction has been demonstrated,

even with a low predicting ability, to increase genetic gain compared

to the current selection method (Annicchiarico et al., 2017).

Currently, breeders have several breeding populations, as they

tend to select within a fall dormancy group. Our study shows that

with genomic prediction, this selection process can be simplified by

mixing different fall dormancy groups within a single breeding

population. Varieties can be selected for fall dormancy during the

breeding cycle using molecular markers. Our results also show that

flowering date can be predicted and used to optimise seed crosses

between parents to increase genetic gain and manage genetic

diversity, as has been proposed in other species (Tiret et al.,

2021). Advances in genomics-assisted breeding offer exceptional

prospects for improving alfalfa’s performance.
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FIGURE 8

Impact of the training population composition on the predicting ability. The y-axis represents the difference of predicting ability between the predicting
ability obtained when no other accessions from the same group were selected in the training population and the predicting ability when some
accessions from the same group were in the training population. A negative predicting ability means that the predicting ability obtained with accessions
of the same group in the training population was greater than the predicting ability when no accession of the same group was in the training population.
The error bars are the standard deviation estimated on 10 repetitions. The traits are represented in the x-axis: Flowering date (FD), Dormancy (D), Dry
Matter Yield (F-DMY), plant height (PH), Speed of elongation (SE) for two years: 2019 (X19.X) and 2020 (X20.X) in two locations: Lusignan (.L) in France
and Novi Sad (.N) in Serbia. F-DMY without letter or number is the Dry Matter Yield adjusted for year and location effects.
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Lê, S., Josse, J., and Husson, F. (2008). FactoMineR : an r package for multivariate
analysis. J. Stat. Soft. 25 (1), 1–18. doi: 10.18637/jss.v025.i01

Lesins, K. A., and Lesins, I. (2012). Genus medicago (Leguminosae): a taxogenetic
study (Springer Science & Business Media).

Li, X. (2013)Development and use of a high density SNP array to evaluate genetic
diversity in alfalfa. In: Plant and animal genome. Available at: https://pag.confex.com/
pag/xxi/webprogram/Paper7784.html (Accessed 9, 2021).

Li, X., Alarcon-Zuniga, B., Kang, J., Tahir, M., Jiang, Q., Wei, Y., et al. (2015a).
Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Sci. 55, 1995–2011.
doi: 10.2135/cropsci2014.12.0834

Li, X., Wei, Y., Acharya, A., Hansen, J., Crawford, J., Viands, D., et al. (2015b).
Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa
breeding population. Plant Genome 8. doi: 10.3835/plantgenome2014.12.0090

Li, X., Wei, Y., Acharya, A., Jiang, Q., Kang, J., and Brummer, E. C. (2014). A
saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa l.) developed
using genotyping-by-sequencing is highly syntenous with the medicago truncatula
genome. G3: genes genomes Genet. 4, 1971–1979. doi: 10.1534/g3.114.012245

Lin, C.-S., and Poushinsky, G. (1985). A modified augmented design (type 2) for
rectangular plots. Can. J. Plant Sci. 65, 743–749. doi: 10.4141/cjps85-094

Lin, C.-Y., Xing, G., and Xing, C. (2012). Measuring linkage disequilibrium by the
partial correlation coefficient.Heredity (Edinb). 109, 401–402. doi: 10.1038/hdy.2012.54

Liu, Z., Ren, Z., Yan, L., and Li, F. (2022). DeepLRR: an online webserver for leucine-
Rich-Repeat containing protein characterization based on deep learning. Plants 11, 136.
doi: 10.3390/plants11010136

Liu, H., Zhou, H., Wu, Y., Li, X., Zhao, J., Zuo, T., et al. (2015). The impact of genetic
relationship and linkage disequilibrium on genomic selection. PLoS One 10, e0132379.
doi: 10.1371/journal.pone.0132379
frontiersin.org

https://doi.org/10.2527/2005.83112482x
https://doi.org/10.1139/X07-116
https://doi.org/10.1007/s11295-015-0917-3
https://hal.inrae.fr/hal-02993163v2/document
https://hal.inrae.fr/hal-02993163v2/document
https://doi.org/10.1371/journal.pone.0169606
https://doi.org/10.3389/fpls.2018.00369
https://doi.org/10.1038/s41467-020-16338-x
https://doi.org/10.1038/s41467-020-16338-x
https://doi.org/10.1186/1297-9686-44-4
https://doi.org/10.1051/agro:19960702
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1534/genetics.111.128082
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1007/s00122-017-3030-1
https://doi.org/10.2307/2529707
https://doi.org/10.1007/s00122-005-0074-4
https://doi.org/10.1007/s00122-005-0074-4
https://doi.org/10.1146/annurev.arplant.54.031902.134907
https://doi.org/10.1146/annurev.arplant.54.031902.134907
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1007/s11295-010-0328-4
https://doi.org/10.1146/annurev-phyto-072910-095246
https://doi.org/10.1186/s12864-015-1293-y
https://doi.org/10.1186/s12864-015-1293-y
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.1073/pnas.1510497113
https://doi.org/10.1007/s00122-010-1356-z
https://doi.org/10.1007/s10722-017-0551-z
https://doi.org/10.1371/journal.pone.0074612
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1007/s00122-014-2418-4
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.3389/fpls.2018.01220
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/btr521
https://doi.org/10.1093/bioinformatics/btr521
https://doi.org/10.1186/1471-2156-11-94
https://doi.org/10.1007/s11032-018-0891-1
https://doi.org/10.5507/vup.21.24459677.17
https://doi.org/10.1079/9781780644981.0168
https://doi.org/10.2135/cropsci2000.402365x
https://doi.org/10.1186/s12870-022-03479-y
https://doi.org/10.21105/joss.03722
https://doi.org/10.1038/srep27968
https://doi.org/10.1007/s11105-019-01147-4
https://doi.org/10.18637/jss.v025.i01
https://pag.confex.com/pag/xxi/webprogram/Paper7784.html
https://pag.confex.com/pag/xxi/webprogram/Paper7784.html
https://doi.org/10.2135/cropsci2014.12.0834
https://doi.org/10.3835/plantgenome2014.12.0090
https://doi.org/10.1534/g3.114.012245
https://doi.org/10.4141/cjps85-094
https://doi.org/10.1038/hdy.2012.54
https://doi.org/10.3390/plants11010136
https://doi.org/10.1371/journal.pone.0132379
https://doi.org/10.3389/fpls.2023.1196134
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pégard et al. 10.3389/fpls.2023.1196134
Long, R., Zhang, F., Zhang, Z., Li, M., Chen, L., Wang, X., et al. (2022). Genome assembly
of alfalfa cultivar zhongmu-4 and identification of SNPs associated with agronomic traits.
Genomics Proteomics Bioinf. 20 (1), 14–28. doi: 10.1016/j.gpb.2022.01.002

Lorenz, A. J., Chao, S., Asoro, F. G., Heffner, E. L., Hayashi, T., Iwata, H., et al.
(2011). Genomic selection in plant breeding. knowledge and prospects. Adv. Agron.
110, 77–123. doi: 10.1016/B978-0-12-385531-2.00002-5

Lorenz, A. J., and Smith, K. P. (2015). Adding genetically distant individuals to
training populations reduces genomic prediction accuracy in barley. Crop Sci. 55, 2657–
2667. doi: 10.2135/cropsci2014.12.0827

Luan, T., Woolliams, J. A., Lien, S., Kent, M., Svendsen, M., and Meuwissen, T. H. E.
(2009). The accuracy of genomic selection in Norwegian red cattle assessed by cross-
validation. Genetics 183, 1119–1126. doi: 10.1534/genetics.109.107391

Mangin, B., Siberchicot, A., Nicolas, S., Doligez, A., This, P., and Cierco-Ayrolles, C.
(2012). Novel measures of linkage disequilibrium that correct the bias due to
population structure and relatedness. Heredity (Edinb). 108, 285–291. doi: 10.1038/
hdy.2011.73

Marchini, J., and Howie, B. (2010). Genotype imputation for genome-wide
association studies. Nat. Rev. Genet. 11, 499–511. doi: 10.1038/nrg2796

Marchini, J., Howie, B. N., Myers, S., McVean, G., and Donnelly, P. (2007). A new
multipoint method for genome-wide association studies by imputation of genotypes.
Nat. Genet. 39, 906–913. doi: 10.1038/ng2088

Martin, G., Durand, J.-L., Duru, M., Gastal, F., Julier, B., Litrico, I., et al. (2020). Role
of ley pastures in tomorrow’s cropping systems. A review. Agron. Sustain. Dev. 40, 17.
doi: 10.1007/s13593-020-00620-9

Medina, C., Hawkins, C., Liu, X., Peel, M., and Yu, L. (2020). Genome-wide
association and prediction of traits related to salt tolerance in autotetraploid alfalfa
(Medicago sativa l.). Int. J. Mol. Sci. 21. doi: 10.3390/ijms21093361

Medina, C., Kaur, H., Ray, I., and Yu, L. (2021). Strategies to increase prediction
accuracy in genomic selection of complex traits in alfalfa (Medicago sativa l.). CELLS
10. doi: 10.3390/cells10123372

Meher, P. K., Rustgi, S., and Kumar, A. (2022). Performance of Bayesian and BLUP
alphabets for genomic prediction: analysis, comparison and results. Heredity 128, 519–
530. doi: 10.1038/s41437-022-00539-9

Meuwissen, T. H., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total genetic
value using genome-wide dense marker maps. Genetics 157, 1819–1829. doi: 10.1093/
genetics/157.4.1819

Michaud, R., Lehman, W. F., and Rumbaugh, M. D. (1988). World distribution and
historical development. Alfalfa alfalfa improvement 29, 25–91. doi: 10.2134/
agronmonogr29.c2

Muller, M.-H., Poncet, C., Prosperi, J.-M., Santoni, S., and Ronfort, J. (2006).
Domestication history in the medicago sativa species complex: inferences from
nuclear sequence polymorphism. Mol. Ecol. 15, 1589–1602. doi: 10.1111/j.1365-
294X.2006.02851.x

Munjal, G., Hao, J., Teuber, L. R., and Brummer, E. C. (2018). Selection mapping
identifies loci underpinning autumn dormancy in alfalfa (Medicago sativa). G3: genes
genomes Genet. 8, 461–468. doi: 10.1534/g3.117.300099

Muñoz, F., and Sanchez, L. (2020) breedR: statistical methods for forest genetic
resources analysts. Available at: https://github.com/famuvie/breedR.

Nakaya, A., and Isobe, S. N. (2012). Will genomic selection be a practical method for
plant breeding? Ann. Bot. 110, 1303–1316. doi: 10.1093/aob/mcs109

Nazzicari, N., Biscarini, F., Cozzi, P., Brummer, E., and Annicchiarico, P. (2016).
Marker imputation efficiency for genotyping-by-sequencing data in rice (Oryza sativa)
and alfalfa (Medicago sativa). Mol. Breed. 36, 69. doi: 10.1007/s11032-016-0490-y

Norman, A., Taylor, J., Edwards, J., and Kuchel, H. (2018). Optimising genomic
selection in wheat: effect of marker density, population size and population structure on
prediction accuracy. G3: genes genomes genetics G3 200311, 2018. doi: 10.1534/
g3.118.200311

Pecetti, L., Barre, P., Delaunay, S., Lambroni, P., Annicchiarico, P., and Julier, B.
(2021). QTL analysis for grazing tolerance, autumn dormancy and growth habit offers
prospects for marker-assisted selection in lucerne. Euphytica 217, 171. doi: 10.1007/
s10681-021-02897-7

Pecrix, Y., Staton, S. E., Sallet, E., Lelandais-Brière, C., Moreau, S., Carrère, S., et al.
(2018). Whole-genome landscape of medicago truncatula symbiotic genes. Nat. Plants
4, 1017–1025. doi: 10.1038/s41477-018-0286-7

Pégard, M., Leuenberger, J., Julier, B., and Barre, P. (2021). Genomic prediction of
lucerne forage yield and quality. In Eucarpia-Section Fodder Crops and Amenity Grasses
Meeting doi: 10.5507/vup.21.24459677.25

Pégard, M., Rogier, O., Bérard, A., Faivre-Rampant, P., Paslier, M.-C. L., Bastien, C.,
et al. (2019). Sequence imputation from low density single nucleotide polymorphism
panel in a black poplar breeding population. BMC Genomics 20, 1–16. doi: 10.1186/
s12864-019-5660-y

Pégard, M., Segura, V., Muñoz, F., Bastien, C., Jorge, V., and Sanchez, L. (2020).
Favorable conditions for genomic evaluation to outperform classical pedigree
evaluation highlighted by a proof-of-concept study in poplar. Front. Plant Sci. 1552.
doi: 10.3389/fpls.2020.581954

Pembleton, L. W., Cogan, N. O. I., and Forster, J. W. (2013). St AMPP : an r package
for calculation of genetic differentiation and structure of mixed-ploidy level
populations. Mol. Ecol. Resour. 13, 946–952. doi: 10.1111/1755-0998.12129
Frontiers in Plant Science 17
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