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Simple Summary: Chronic alcoholic pancreatitis displays a cumulative risk of pancreatic cancer
estimated at 4% after 15 to 20 years, this risk being higher for hereditary pancreatitis with 19% and
12% in the case of PRSS1 and SPINK1 mutations, respectively, and at an age of 60 years. Oncogene
and tumor suppressor gene mutations associated with chronic inflammation are key promoters of
this complication, tobacco being an additional co-factor. This event underlines two practical problems
from a clinical point of view: diagnosis is difficult due clinical symptoms and radiological features
shared by the two diseases; and screening of cancer in chronic pancreatitis patients. Endoscopic
ultrasound-guided fine-needle biopsy can be contributive with the help of molecular biology by next
generation sequencing, including for KRAS, TP53, CDKN2A, and DPC4 mutation assays. A short-
term follow-up of patients is necessary in cases with clinical and/or radiological suspicion of cancer.
Pancreatic surgery is sometimes necessary if there is any doubt.

Abstract: Chronic pancreatitis is one of the main risk factors for pancreatic cancer, but it is a rare
event. Inflammation and oncogenes work hand in hand as key promoters of this disease. Tobacco is
another co-factor. During alcoholic chronic pancreatitis, the cumulative risk of cancer is estimated
at 4% after 15 to 20 years. This cumulative risk is higher in hereditary pancreatitis: 19 and 12%
in the case of PRSS1 and SPINK1 mutations, respectively, at an age of 60 years. The diagnosis is
difficult due to: (i) clinical symptoms of cancer shared with those of chronic pancreatitis; (ii) the
parenchymal and ductal remodeling of chronic pancreatitis rendering imaging analysis difficult;
and (iii) differential diagnoses, such as pseudo-tumorous chronic pancreatitis and paraduodenal
pancreatitis. Nevertheless, the occurrence of cancer during chronic pancreatitis must be suspected in
the case of back pain, weight loss, unbalanced diabetes, and jaundice, despite alcohol withdrawal.
Imaging must be systematically reviewed. Endoscopic ultrasound-guided fine-needle biopsy can
contribute by targeting suspicious tissue areas with the help of molecular biology (search for KRAS,
TP53, CDKN2A, DPC4 mutations). Short-term follow-up of patients is necessary at the clinical
and paraclinical levels to try to diagnose cancer at a surgically curable stage. Pancreatic surgery is
sometimes necessary if there is any doubt.

Keywords: chronic pancreatitis; pancreatic ductal adenocarcinoma; screening; alcohol consumption;
tobacco consumption; hereditary pancreatitis
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1. Introduction

Chronic calcifying pancreatitis (CP) is a chronic inflammation of the pancreas as-
sociated with the development of fibrosis of the parenchyma. This inflammation leads
to progressive and irreversible focal, segmental, or diffuse lesions within exocrine and
endocrine pancreatic tissue. At the end, extensive fibrosis occurs with destruction of the
exocrine tissue, pancreatic ducts, and islets of Langerhans. This fibrosis is associated with
protein plugs which are responsible for the calcifications visible on imaging and which may
obstruct the pancreatic ducts. Progressive damage to the pancreas generates clinical mani-
festations with the occurrence of acute pancreatitis, pain, exocrine pancreatic insufficiency,
and diabetes [1–4].

In terms of etiology, alcohol is the main agent, with tobacco consumption as an
important co-factor. There are also genetic (including hereditary chronic pancreatitis due
to mutation of the PRSS1 gene but also other forms due to mutations of other genes such
as CFTR, SPINK1, TRPV6, and CTRC) and idiopathic forms. Two particular forms should
be set apart: autoimmune pancreatitis and chronic obstructive pancreatitis. In the case of
autoimmune pancreatitis, pathophysiology, lesions, natural history, and treatment are very
different from classical CP. Obstructive CP develops upstream of an obstruction/stenosis in
the Wirsung duct, due to a malignant or benign ampullary or pancreatic tumor, including
intraductal papillary mucinous neoplasms (IPMN).

CP evolves in three successive phases in terms of clinical manifestations and com-
plications [2–4]. The first five years are rich in clinical manifestations with chronic pain
of pancreatic origin, followed by attacks of acute pancreatitis and its own complications
(serous effusions, stenosis of the main bile duct). At this stage, exocrine and/or endocrine
pancreatic insufficiency only concerns one third of patients. Between 5 and 10 years of
evolution, patients still present painful phenomena, but these are much less frequent, as are
attacks of acute pancreatitis. On the other hand, pseudocysts, serous effusions, and stenosis
of the main bile duct are still present. Finally, after 10 years of CP evolution, the painful
phenomena disappear as the pancreas becomes totally fibrous, without inflammation or pos-
sible enzymatic activation. At this stage, exocrine pancreatic insufficiency and diabetes are
predominantly present. At this time, the risk of pancreatic ductal adenocarcinoma (PDAC)
increases. It is obvious that the times and periods proposed in this natural history schema
will depend on the degree of alcohol consumption but also on tobacco consumption [5].
Indeed, the persistence of either form of intoxication accelerates parenchymal and ductal
damage. In particular, even in the presence of prolonged alcohol withdrawal, continued
smoking alone can cause further progression of ductal and parenchymal lesions [6,7].

In addition to this evolution in the patient’s clinical symptomatology, there is a pro-
gressive change in the imaging appearance. In fact, at the beginning, calcifications are
absent and classical imaging (CT scan or MRI cholangio-pancreatography) poorly displays
pancreatic lesions. Endoscopic ultrasound (EUS) plays an important role in the diagnosis of
these early, non-calcified forms of CP. Subsequently, we see more clearly either in MRI or CT
scans an increase in ductal irregularity with the appearance of stenosis(s) and dilatation(s)
and an increasingly heterogeneous parenchyma.

CP is a risk factor for pancreatic ductal adenocarcinoma (PDAC). This is a difficult
and relevant problem from a pathophysiological, epidemiological, and clinical point of
view. Clinical approach is peculiarly delicate and both positive and differential diagnosis
of PDAC developed on CP is a real challenge due to the rather low specificity of symptoms,
imaging signs, and biological markers. Beyond diagnosis, there is also the problem of
screening. All of these points will be addressed in this review in an attempt to draw
practical conclusions and provide advice. In other terms, why can cancer develop during
chronic pancreatitis and how is it diagnosed?
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2. How Does Pancreatic Adenocarcinoma Develop from Chronic Pancreatitis?
2.1. Genetics of Pancreatic Carcinogenesis

A large number of genes are altered during PDAC implicated in various molecular
functions such as MYC activation, TGFβ signaling, G1/S checkpoint, genome stability,
Wnt/notch signaling, RNA splicing, homologous recombination deficiency, and KRAS sig-
naling [8–12]. An activating point mutation of the KRAS oncogene on codon 12 (exon 2) is
the initiating event in the majority of PDAC cases (70–95%) [8–12]. Point mutations can also
occur, although less frequently, on codons 11, 13, 61, or 146 of the KRAS oncogene [13,14].
The point mutation of KRAS impairs the intrinsic GTPase activity of RAS protein and
prevents GTPase-activating proteins from promoting the conversion of GTP (active) to GDP
(inactive). The RAS protein is thus permanently bound to GTP and constitutively activates
downstream effector proteins and signaling pathways (such as EGFR signaling) as well
as nuclear factors, thereby leading to stimulation of cell differentiation, proliferation, mi-
gration, transformation, adhesion, and survival [10,11,14]. In addition, whereas oncogenic
KRAS is activated, INK4a, TP53, and DPC4 tumor suppressor genes are epigenetically or
genetically inactivated in the majority of PDAC [8,11,15]. The KRAS mutation occurs early
in pancreatic carcinogenesis as attested by its presence in common pre-neoplastic and pre-
cursor lesions, such as pancreatic intraepithelial neoplasia (PanINs) and IPMNs [8,10,11,13].
PanINs are developed from pancreatic duct cells with a hyperplastic shape and a pre-
neoplastic potential. They are classified as PanIN-1 to PanIN-3 depending on the degree
of cytological atypia, with PanIN-3 being the last stage before PDAC. If KRAS mutation
appears early in pancreatic carcinogenesis (PanIN-1), PanINs display progressively genetic
alterations, such as loss of heterozygosity and function of P16 (INK4a–ARF), TP53, and
DPC4–SMAD4 [10,11]. These genetic events appear according to the grade of dysplasia
confirming the multi-step status of pancreatic carcinogenesis at the genetic level and the
critical role of PanINs in PDAC initiation.

2.2. Pancreatic Carcinogenesis during Chronic Pancreatitis: Role of Acinar Ductal Metaplasia

Chronic pancreatitis and PDAC were historically considered as unrelated diseases
as they were thought to arise from two different cells in the pancreas, namely acinar
and ductal cells. Based on experiments using mouse models, a common origin in acinar
cells has been proposed. The model of PDAC was thought to develop from the duct
cells via PanINs lesions [12]. However, this progression model of PanINs-PDAC has been
questioned regarding the molecular status of the transgenic model of PDAC in mice. Indeed,
mouse lineage lacked evidence of oncogenic KRAS activation in pancreatic ductal cells
while PanINs and PDAC were commonly observed in these models [16]. However, the
mouse model introduces the concept of acinar to ductal metaplasia that will precede the
generation of small ducts. Indeed, acinar to ductal metaplasia has been well documented
in experimental rodent models of pancreatitis [16]. On the other hand, treatment with the
cholecystokinin agonist, cerulein, induces local oxidative stress, inflammation, edema, and
loss of acinar parenchyma. The latter is transiently replaced by duct-like epithelium, thus
approximating the human pancreatitis model [15–17]. Secondly, evidence exists that mouse
models support the idea that activation of oncogenic KRAS specifically in acinar cells during
embryonic development induces the formation of PanINs and the development of invasive
ductal carcinoma [8,11,16–20]. All these important and converging observations led to
the conclusion that pancreatic cancer can originate from acinar cells via acinar metaplasia
leading to ductal metaplasia. Subsequently, a combination of genetic alterations (activation
of the KRAS oncogene and loss of expression of tumor suppressor genes) associated with
extrinsic factors induce tissue damage, such as oxidative stress and inflammatory damage
as observed during pancreatitis [15,21,22].

Several closely related mechanisms can contribute to the transformation of acinar
cell metaplasia into cancer: oxidative stress, activation of inflammatory pathways (such
as Cyclooxygenase-2 (Cox2)), and activation of NF-κB and STAT3 pathways. Oxidative
stress and the generation of reactive oxygen species and reactive nitrogen species play
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a key role in the pathophysiology of acute and chronic pancreatitis. They perpetuate
acinar cell necrosis and fibrosis and thereby modify critical substrates, such as nucleic
acids, lipids, and proteins, which results in DNA fragmentation, membrane disintegration,
and protein misfolding. The immune cells and macrophages are also activated (and in
turn produce cytokines and interleukins) as well as other stromal components, such as
endothelial cells and pancreatic stellate cells, that in turn produce inflammatory cytokines
and chemokines (such as Interleukin 6). All these compounds, together with reactive
oxygen species/reactive nitrogen species, induce epithelial cell damage and increased
proliferation. The inflammatory mediators, such as Cox2, NF-κB and STAT3, also play
key roles as inflammation can generate sustained secondary oxidative injury, further
inducing the promotion of inflammatory infiltration and acinar cell injury [16,20] (Figure 1).
Thus, activation of NF-κB and STAT3 has been shown to be essential for pancreatic cancer
initiation and progression [23,24]. STAT3 participates in cancer initiation by promoting
dedifferentiation of acinar cells during pancreatic inflammation. As a consequence, these
acinar cells become more vulnerable to transformation initiated and driven by the KRAS
oncogene [24,25] (Figure 1).
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Figure 1. Natural history of pancreatic carcinogenesis in the specific context of inflammation.

During acute pancreatitis, there are also other processes related to the phenomenon of
pyroptosis with activation of the NLRP3 inflammasome and it’s signaling pathway. This
pathway includes the activation of caspase-1, IL1-β and IL-18 [21,22].

Experimental evidence shows that adult mice that endogenously express oncogenic
mutated KRAS in the acinar cell develop PanIN and PDAC lesions with higher penetrance
when subjected to acute or chronic inflammation induced by cerulein. [20]. Sporadic
episodes of pancreatitis (e.g., one month) are sufficient to induce PDAC in these mice.
Longer inflammatory episodes (three months) or the induction of chronic pancreatitis,
increase the incidence of tumors and reduce the latency of onset [18,21,22,26] (Figure 2).
Even more importantly, adult mice can develop PDAC after induction of mutated KRAS
in epithelial cells only following treatment with cerulein [23]. Molecular exploration
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has further demonstrated that oncogenic KRAS do prevent tissue repair following acute
pancreatitis (second hit theory).
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Pancreatic inflammation induced by cerulein injections increases the burden of PanINs
and PDAC in transgenic mice bearing KRAS and p16INK4a or Trp53 mutations.

2.3. Mouse Models of PDAC

The study of KRAS mutations has greatly improved the understanding of the processes
involved in the transformation, uncontrolled proliferation, and invasion of pancreatic
cancer cells. This has been made possible by the creation of the KRASG12D transgenic
mouse model [11,12,15,21]. These mice express the KRAS oncogene early in the embryonic
development of the pancreas. PanINs are already observed shortly after weaning and
progress in grade and number over time. These mice mimic human pathology quite closely
with the presence of PanINs lesions in 100% of the animals [11,27–29]. Several studies based
on transgenic KRASG12D mice have demonstrated the role of pro-inflammatory molecules
as well as the role of inflammation in general in pancreatic carcinogenesis. As an example,
transgenic overexpression of Cox2 in the pancreas induces chronic pancreatitis and the
formation of pre-invasive ductal neoplasms [16,24]. Other studies have showed that in a
KRAS mutant context, TNF-α-induced activation of the NF-κB pathway in pre-malignant
epithelial cells enhances notch signaling in an Ikk2-dependent manner [25,26]. A non-
exhaustive list of genetically engineered mice demonstrating the role of inflammatory
genes/pathways in the development of pancreatitis, pancreatic intraepithelial neoplasia,
and pancreatic cancer is presented in Table 1. All these models demonstrate the role of
inflammation and its mediators in acinar to ductal metaplasia as well in the progression
towards PanINs lesions and PDAC in collaboration with genetic events, i.e., early oncogenic
mutation of KRAS and subsequent inactivation of tumor suppressor genes.
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Table 1. Main genetically engineered mouse models demonstrating the role of inflammation in
pancreatic carcinogenesis.

Authors, Year, [Ref.] Genetically Engineered Model Pathway Affected and Phenotype

Muller-Decker et al., 2006 [24] Krt5-Cox2Tg Cox2 overexpression: chronic pancreatitis and
ductal neoplastic lesions

Al Saati et al., 2013 [29] Pdx1-Cre;KrasG12D;TP53INP1-/-
Oncogenic RAS + oxidative status

dysregulation: accelerated PanINs formation

Daniluk et al., 2012 [30] Ela-CreERT;KrasG12D;CoxTg
Oncogenic RAS + Cox2 overexpression: rapid

development of chronic inflammation
and PanINs

Maniati et al., 2011 [26] Pdx1-Cre;KrasG12D;IKK2 FI/FI
Oncogenic RAS + NfκB pathway inhibition:
impaired PanIN formation and decreased

PDAC development

Daniluk et al., 2012 [30] Ela-CreERT;KrasG12D;IKK2Tg
Oncogenic RAS + NfκB pathway activation:

increased fibrosis and rapid
development of PanINs

Lesina et al., 2011 [31] Ptf1a-CreEx1;KrasG12D;Socs3 FI/FI
Oncogenic RAS + Stat3 activation: accelerated

PanIN progression and increased
PDAC formation

Guerra et al., 2011 [32] KrasG12V;p16Ink4a/p19arf Iox/lox;Ela-tTA/tetO-Cre
KrasG12V;Trp53 Iox/lox;Elas-tTA/tetO-Cre

Oncogenic RAS + loss of p16Ink4a/p19arf or
Trp53 + cerulein injections: increased PDAC

formation and progression

Liou et al., 2016 [33]
Ptf1a/p48Cre/+

LSL-KrasG12D/+

PKD1fl/fl

Treatment of mice by mitochondria-targeted
antioxidant MitoQ: reduced KRAS-induced

formation of ROS with reduced
formation of PanINs

Cre: cre-Lox recombination; Ela: Elastase; tetO: tetracycline operator; TRE: tetracycline response element;
LSL: lox-Stop-lox; IKK2: nuclear NfκB inhibitor; Ptf1a: pancreas associated transcription factor 1a; PKD1: protein
kinase D1.

In addition to transgenic models, an original model has been created in mice, which
consists of inducing pancreatic inflammation by injecting cerulein in combination with a
carcinogen, azoxymethane (both intraperitoneally). This model also induces pancreatic
carcinoma lesions associated with an acino-ductal metaplasia [27,28].

Taken together, this experimental evidence may partially explain the fact that acute
and chronic inflammation in both pancreatic acinar cells and their surrounding stroma can
lead to PDAC formation.

3. Incidence of Pancreatic Cancer in Chronic Pancreatitis

Alcoholic CP is a risk factor for the development of pancreatic cancer. The relative
risk compared with a control population is estimated to be 1.8 to 2 at 10 years of evolution.
However, the cumulative risk of cancer is 2% after 5 years and 4% after 15 to 20 years,
i.e., at a late stage of the disease. As suggested above, smoking is thought to play a role as a
facilitating factor with a pro-inflammatory effect on the pancreas, aggravating the lesions
of alcoholic CP and thus increasing the risk of cancer [3,34,35].

Aside from alcohol, several gene variants are involved in the development of genetic
chronic pancreatitis. Hereditary pancreatitis is linked to a mutation in the PRSS1 gene
which codes for the cationic trypsinogen. Its transmission mode is autosomal dominant
with a penetrance of 80% (main mutations are R122H and N29I). There are other forms of
genetic CP due to the mutation of “susceptibility” genes: the SPINK1 gene (serine protease
inhibitor Kazal type 1), that codes for the cationic trypsinogen inhibitor; the CFTR gene (cys-
tic fibrosis transmembrane conductance regulator) that codes for the chlorine channels of
the pancreatic ductal cells and other organs; the CTRC gene encoding Chymotrysin C; more
rarely CASR (calcium-sensing receptor), CLDN2 (protein claudin 2), CPA1 (carboxypepti-
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dase A1), TRPV6 (TRPV6 calcium channel regulation), and the CEL-HYB (carboxyl ester
lipase pseudogene) allele [3].

In hereditary pancreatitis (secondary to the PRSS1 gene mutation), the risk of cancer
is much higher than in alcoholic CP. In addition, there are a large number of pre-neoplastic
lesions in the pancreas, in particular PanINs, which concerns 75% of patients after 25 years,
including 25% with PanIN-3 (i.e., with high-grade dysplasia and in situ carcinoma) [36].
The most likely explanation is the longer duration of evolution of this form of CP and
longer exposure to inflammatory phenomena, evolving since childhood. In the study by
Rebours et al., based on the French national cohort of patients with a PRSS1 gene mutation,
the cumulative risk of pancreatic cancer at the age of 50, 60, and 75 years was 10%, 19%,
and 53.5%, respectively. Furthermore, the risk of PDAC is estimated to be 80 times higher
than in the general population [37]. In PRSS1 mutations, the presence of concomitant
other gene mutations (CFTR and/or SPINK1) were not associated with an increased risk of
cancer, neither were diabetes, smoking status, or paternal inheritance of the genetic disease.
Indeed, the relative risk of cancer in smokers was 8.5 with a cumulative risk of more than
50% at an age of 70 years [37]. Data from the European Registry of Hereditary Pancreatitis
and Pancreatic Cancer (418 individuals included) showed similar results with a cumulative
risk of PDAC estimated at 44.0% at 70 years (relative risk at 10) [38] (Table 2).

Table 2. Pancreatic cancer risk according to the etiology of chronic pancreatitis.

Etiology Pancreatic Cancer Estimated Risk

Alcoholic CP Incidence of 2 and 4% after 5 and 20 years of evolution, respectively.

Hereditary pancreatitis (PRSS1) Incidence of 10, 19, and 53.5% at 50, 60, and 75 years, respectively.

SPINK1 mutations Incidence of 12, 28, and 52% at 60, 70, and 80 years.

CFTR mutations Increased risk of PDAC of 1.41 compared to control patients.

CTRC, CASR, CLDN2, CPA1, TRPV6,
CEL-HYB mutations No available data due to very low incidence of these mutations.

CP: chronic pancreatitis; PDAC: pancreatic ductal adenocarcinoma.

With regard to genetic chronic pancreatitis in the context of a SPINK1 gene mutation,
the recent work of Muller et al., combining the results of a French and English cohort,
observed an excess risk of pancreatic cancer of 3.3% of patients when compared with
a control cohort of idiopathic CP [39]. The risk of cancer (rough rate) was 0.8% before
50 years, 12% at 60 years, 28% at 70 years, and 52% at 80 years. This represents a significant
12-fold relative risk compared to patients with idiopathic CP [39]. Regarding CP related to
CFTR gene mutation(s), the risk of PDAC is also increased compared to control patients
with idiopathic CP (p < 0.05), the excess risk being 1.41 compared to control patients
(95% confidence interval [1.07–1.84]) [40,41]. No data are available for pancreatitis due to
other, otherwise less frequent, susceptibility genes. Based on the few data available, there
does not seem to be an excess risk of PDAC in the case of autoimmune pancreatitis [42,43].

A study of the Danish nationwide cohort of CP estimated the over-risk of PDAC com-
pared to controls at 6.9 (adjusted hazard ratio with 95% confidence interval of 5.6–8.6 [44].
This risk increases with disease evolution and progression, especially after 15 to 20 years.
Although, clinicians should keep in mind that most PDAC diagnoses are made during the
five years following the diagnosis of CP [42,45].

Ultimately, there is an increased risk in the case of hereditary pancreatitis with the
confounding and aggravating factor of chronic tobacco consumption [46]. Nevertheless,
considering all risk factors for PDAC (endogenous, genetic and non-genetic, exogenous)
the “relative weighting” of CP involvement in all cases of PDAC does not exceed 2–7% of
all PDAC [47].
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4. Which Clinical and Paraclinical Signs in Chronic Pancreatitis Are an Indication
of Cancer?
4.1. Clinical Signs

The diagnosis of PDAC in CP is a challenge for the clinician given the relative rarity
of this event compared to other complications of CP and the shared symptomatology of
PDAC with CP itself, making a clinical diagnosis difficult. Indeed, weight loss, worsening
or new-onset of diabetes, and steatorrhea are suggestive of both malignant evolution and
progression of CP. Regarding diabetes mellitus, a recent European study suggests that
PDAC might cause new-onset diabetes mellitus (DM) while the link between long-standing
DM and PDAC is not clear [48]

However, appearance of those signs or reappearance of pain in the context of ces-
sation of pancreatotoxic consumption (tobacco, alcohol) for many years are evocative of
PDAC development [3,49]. Similarly, disease duration of more than 10 years and known
PRSS1 mutation should alert the clinician to the carcinomatous evolution of CP. Occurrence
of jaundice with pruritus supports the diagnosis of PDAC while jaundice in CP is typically
non-pruritic. Finally, the appearance of ascites suggests peritoneal carcinomatosis or the
diagnosis of a pancreatic ductal rupture in case of acute pancreatitis.

4.2. Standard Biology

Unfortunately, standard biology and the CA 19-9 blood test, which can be elevated
even in cases of purely “inflammatory” pancreatic disease, do not contribute much to
the diagnosis of cancer in CP [50–52]. Fahrmann et al. have proposed choosing a higher
cut-off for CA 19-9 in order to decrease the rate of false positives, in combination with
two protein markers LRG1 and TIMP1, to increase specificity to 99% [53]. Similarly, many
combinations of serological biomarkers with CA 19-9 have been proposed: PROZ, and
TNFRSF6B, sTRA, and thrombospondin-2 [54–56]. Recently, more complex biomarker
signatures combining four to eight biomarkers with CA 19-9 have been developed to
obtain greater specificity and sensitivity (e.g., 92% and 99%, respectively, for the IMMray
and PanCan-d test) [57,58]. Blyuss et al. have constructed a biomarker-based risk score
(called PancRISK) based on urine biomarkers for stratified screening of pancreatic cancer
patients. This score combined with CA 19-9 blood levels performed very well in predicting
PDAC (sensitivity 0.96, specificity 0.96). Sogawa et al. have identified C4b-binding protein
α-chain (C4BPA), using proteomic quantitative analysis, as a promising serum biomarker
of PDAC [59]. In their study, C4BPA serum levels were significantly higher in patients with
PDAC than in healthy controls and patients with pancreatitis.

In addition to these protein markers, other opportunities may emerge in the future
from progress made in fundamental science. The relevance of PDAC screening might
be found in the analysis of exosomes [60–62], miRNA expression [47,63–65], methylation
markers [66,67], or metabolomic [68,69] or transcriptomic studies [70].

4.3. Imaging
4.3.1. Ultrasonography, Tomodensitometry (CT Scan), and MRI

An ultrasound (US) is difficult to interpret because even if the diagnosis of CP is easily
made in generally lean patients, the viewing of a tissue mass is complicated in the case of
heterogeneous parenchyma. However, indirect or suggestive signs (although sometimes
present in CP) such as Wirsung duct dilatation upstream of a mass, presence of lymph nodes,
venous thrombosis, dilatation of the main biliary tract, presence of ascites, or suspicious
intrahepatic tissue lesions should be investigated. Contrast-enhanced ultrasound brings
additional data to the diagnostic process: one can observe an enhancement of PDAC tissue
during the venous phase when compared to the adjacent normal pancreas. However, the
major limitation of an ultrasound lies in its operator-dependent quality and interpretation.
To overcome this difficulty, artificial intelligence has been proposed as a useful tool to assist
radiologists [71]. For example, the model developed by Tong et al. achieved an area under
the curve (AUC) of more than 0.950 in an external validation data set [72].
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The CT scan must follow a precise protocol with a triphasic examination by multide-
tector computed tomographic angiography, with a slice thickness of ≤0.5–1 mm, without
injection, then after intravenous injection of iodinated contrast product, a late arterial phase,
known as the pancreatic parenchymal phase (at 40–50 s), followed by a portal venous phase
(at 65–70 s). Pancreatic adenocarcinomas, both in the primary tumor and in metastases,
are typically hypodense in the arterial phase and isodense/slightly enhanced in the portal
phase. Multiplanar reconstructions should be performed in addition to the acquisition
for vascular study. Some forms are difficult to interpret, such as more or less diffuse infil-
trating forms. The aim is to highlight signs of tumor involvement, such as Wirsung duct
dilation and atrophy of the pancreatic parenchyma upstream of the suspect area, venous
and particularly arterial invasion (rarer in CP), metastatic lymph nodes, and peritoneal
carcinosis. In addition, the infiltration of vessels and adjacent anatomical elements can
take on a suspicious character. Nevertheless, these signs must be analyzed outside of acute
pancreatitis attacks which can give false positive signs of tumor-like tissue infiltration.
Figure 3 illustrates this point in a CT scan and an endoscopic ultrasound (EUS). The dif-
ficulty lies in the fact that in CP, the parenchyma is heterogeneous and calcified. In the
case of pre-existing atrophy, the diagnosis of a developing mass will be easier because it
will be possible to individualize a tissue mass or a localized infiltration. The diagnosis will
be more difficult in cases of CP with multiple inflammatory, ductal, and cystic changes
with multiple calcifications and a dilated Wirsung duct. Certain indirect signs may point to
the diagnosis of cancer, such as peripancreatic tissue infiltration (but outside of any acute
pancreatitis attack), infiltration of the vessels (particularly arterial) and the celiac region,
and tissue lesions surrounded by calcifications. Similarly, in a US, artificial intelligence
may significantly improve PDAC detection in the future. In the study by Liu et al., artificial
intelligence outperformed analysis by radiologist in terms of sensitivity for detection of
PDAC (0.983 vs 0.929; p = 0.014) [73]. Others have reported that perfusion CT performs
better than standard CT to differentiate PDAC from mass-forming CP [74,75].

An MRI examination may have added value for the diagnosis of isodense pancreatic
cancer lesions, not or poorly visible in a CT (better contrasted in MRI), and liver lesions
too small to be characterized or of undetermined nature (especially in diffusion MRI) [76].
Nevertheless, the inflammatory “atmosphere” of the pancreatic parenchyma does not
facilitate interpretation. Wirsung-MRI sequences should be systematically performed with
analysis of the morphology of the Wirsung duct: differentiating a calcified obstruction from
a stenosis that may be tumoral, differential diagnosis with chronic pancreatitis upstream of
a genuine cancer [1–3]. The use of a secretin stimulation of pancreatic duct flow has been
proposed to facilitate the analysis of duct stenosis and differentiate malignant from benign
stenosis [77]. Radiomics models have been proposed to improve the radiologist’s ability to
differentiate PDAC and mass-forming CP lesions [78].

Radiological diagnosis of PDAC in the context of CP is a difficult approach given the
parenchymal and ductal changes seen during PC itself which in practice make it difficult to
make a “morphological” diagnosis of cancer developed in PC [79]. The “morphological”
aspect can also be confused with the pseudo-tumorous form of CP, particularly on the head
of the pancreas in case of autoimmune pancreatitis, but also with other differential diag-
noses such as para-duodenal pancreatitis and chronic obstructive pancreatitis developing
upstream of Wirsung duct stenosis (primary PDAC, main or mixed IPMN otherwise often
malignant) [80–84]. Moreover, as regards PDAC itself, Overbeek et al. recently reported
in a large multicenter cohort of patients at high risk of PDAC that half of the patients
who developed high grade dysplasia or cancer had no prior lesions detected by imaging
12 months before diagnosis [85].
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Figure 3. CT scan pictures of paraduodenal pancreatitis and pseudo-tumorous chronic pancreatitis.
(A): paraduodenal pancreatitis developed on chronic pancreatitis. Hypodensity of the duodenal
groove (white arrow) and hypertrophy of the calcified head of pancreas (dashed white arrow)
(white star: duodenal wall). (B): paraduodenal pancreatitis with duodenal cysts (white arrow)
associated with chronic pancreatitis with irregular caliper of Wirsung duct (white dashed arrow);
(C): pseudotumorous chronic pancreatitis on the head of the pancreas (white arrow) without vessel
infiltration; (D): pseudotumorous chronic pancreatitis on the head of the pancreas (white arrow) with
stenosis of the common bile duct (white dashed arrow).

Figure 3 shows examples of CT-scan aspects of pseudo-tumorous pancreatitis and
para-duodenal pancreatitis.

Table 3 shows the different radiological signs that could be identified as discriminating
between pseudotumorous CP (also called mass-forming pancreatitis) and PDAC but also be-
tween certain differential diagnoses (autoimmune pancreatitis, paraduodenal pancreatitis,
obstructive CP) and PDAC. These are signs concerning the parenchyma, pancreatic ducts,
and adjacent anatomical elements. Some signs have been evaluated for their diagnostic
value, in particular the “duct-penetrating sign” which is a reliable sign of benign diseases
(specificity 96%; sensitivity 85%) and the “double duct sign” theoretically absent in benign
disease and present in peri-ampullary PDAC (specificity 63–80%; sensitivity 50–76%) [79].

Figure 4 shows examples of CP-MRI aspects of CP, obstructive CP, and PDAC.
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Table 3. Predictive value of radiological signs.

Signs Evocative of Benign Disease Signs Evocative of Malignant Disease

Parenchymal signs

Pseudotumorous CP and IPMN:
- Absence of enhancement of the mass
- Hypointense T1; iso to hyperintense T2
- Moderate enhancement at portal phase after

gadolinium - Late enhancement of the mass at portal
phase (CT and gadolinium MRI)

- Parenchyma atrophy associated with
Wirsung dilation

- Displaced parenchymal calcifications
(mass pushing calcifications at periphery
of the gland)

Paraduodenal pancreatitis:
- Parietal thickening of the second part of the

duodenum on the pancreatic side
- One or more cystic images inside the sulcus and in

the duodenal wall
- Absence of gland atrophy

AIP:
- Loss of lobulation (“sausage”-shaped pancreas)
- Peripancreatic hypodense rim

Duct signs

Obstructive CP and IPMN:
- Duct-penetrating sign (mass penetrated by an

unobstructed pancreatic duct)
- Branch ducts dilation

- Complete obstruction of the Wirsung
duct at the mass

- Double duct sign (dilation of Wirsung
and bile duct)

Vessels signs
Pseudotumorous CP:

- Displaced vessels
- Fat separating the mass and vessels

- Infiltration of the vessels (particularly
arterial) and the celiac region

Other signs
AIP:

- Other organs involved (kidneys, aorta, etc.)
- Peripancreatic tissue infiltration

CP: chronic pancreatitis; PDAC: pancreatic ductal adenocarcinoma; AIP: auto immune pancreatitis; IPMN: intra-
ductal papillary mucinous neoplasms.

4.3.2. Endoscopic Ultrasound

EUS-guided fine-needle aspiration biopsy (FNAB) is the technique that should pro-
vide the best information but it is hampered by the very hypo-echogenic nature of the
parenchyma and the amount of calcification [86]. In fact, cancer develops in advanced
forms (more than 10 years old) which are often very calcified. AI systems using deep learn-
ing analysis have been proposed to enhance the detection of PDAC during EUS [87]. The
EUS must be undertaken outside of any inflammatory outbreak and is aimed at detecting
suspicious-looking tissue areas or lymphadenopathies that will be punctured. Attention
should also be paid to the appearance of biliary or pancreatic stenosis. Transgastric fine-
needle aspiration biopsy of an infiltrative tissue area close to the celiac trunk may also be
helpful if neoplastic cells are detected. Certain areas of tissue free of calcifications (and
surrounded by calcifications) may appear more suspicious, especially if the parenchyma
is not very indurated at puncture compared with the pancreas in the case of CP, which is
often difficult to remove.

FNAB can solve the diagnostic problems, but the results are less good than for classical
adenocarcinoma because of the difficulties in targeting lesions among cysts and calcifica-
tions and the already hypoechoic and heterogeneous appearance of the CP pancreas on EUS
(Figure 3). The performance of EUS-FNAB in differentiating CP from cancer developed
on CP tissue was evaluated prospectively in a single-center or retrospective multi-center
setting. Sensitivity ranges from 75 to 85% with a good negative predictive value of 85 to
95% [88–90]. Other techniques coupled with EUS have been tested, such as contrast ultra-
sound or elastometry, but these are single-center studies for procedures that are otherwise
operator dependent. Contrast ultrasonography seems to provide evidence of the more
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vascular nature of pseudotumoral CP compared with cancer, but there is little data on
elastometry [91–94].
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Figure 4. MRI cholangiopancreatography pictures of alcoholic chronic pancreatitis, pancreatic carci-
noma, and obstructive chronic pancreatitis. (A): Alcoholic chronic pancreatitis with dilatated Wirsung
duct and one or two pancreatic lithiasis (white arrow). (B): Mixed IPMN (white arrow) with upstream
signs of obstructive chronic pancreatitis (dashed white arrow). (C): Pancreatic ductal adenocarcinoma
(tumoral stenosis of the isthmus showed by the white arrow) with upstream regular Wirsung duct
dilatation (dashed white arrow). (D): Pancreatic ductal adenocarcinoma (tumoral stenosis of the
head showed by the white arrow) with upstream signs of obstructive chronic pancreatitis (dashed
white arrow).

Among the complementary techniques of the EUS-FNAB, molecular analysis can help
the diagnosis in case of doubt on the cytopathological analysis of the biopsy material. The
major somatic gene mutation in pancreatic cancer is the KRAS oncogene. KRAS mutation
testing is clinically applicable. Indeed, this research is possible by gene amplification in
pancreatic biopsies. We have been developing this test for 20 years, which is routinely
performed on the rinsing of the puncture needle after recovery of the biopsy core. The
material is stored in a special medium (RNAprotect Cell) until DNA and RNA are extracted.
We can obtain 30 ng or more of good quality DNA for KRAS mutation analysis by Taqmann
and more recently by next generation sequencing (NGS). In addition, NGS allows us to
search for mutations in other genes, such as BRCA1, BRCA2, and NTRK, which is useful in
the context of targeted therapies.

This search for KRAS mutations in cytological material has been validated by nu-
merous prospective studies, including notes in two indications: the differential diagnosis
between pseudotumor CP and cancer developed on CP and in the diagnosis of cancer.
Indeed, the presence of the mutation is highly suggestive of cancer in cases where the
sample is non-contributory or doubtful.

In contrast to pancreatic juice, KRAS mutations are highly infrequent in pancreatic
tissue of CP. In the absence of a mutation, the diagnosis of cancer can therefore be ruled out
in the case of pseudo-tumorous CP. Furthermore, NGS allows the simultaneous detection of
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mutations in TP53, INK4a, and DPC4, thus enriching the molecular diagnosis. Conversely,
the presence of the KRAS oncogene mutation will argue for carcinomatous transformation
on CP [11,90,95–98]. An example is given in Figure 5.
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Figure 5. CT scan and EUS pictures of a case of pancreatic carcinoma developed on chronic pancreati-
tis. A 47-year-old man with alcoholic chronic pancreatitis and recurrence of abdominal pain despite
alcohol abstinence. (A): CT scan pictures of tissue mass on the head of the pancreas (white arrow)
and dilatation of Wirsung duct (dashed white arrow); (B): tissue infiltration at the anterior part of the
head of the pancreas (white arrow); (C): EUS view of the hypertrophic head of the pancreas (white
arrows) with tissue infiltration of the duodenum (white stars); (D): EUS view of the hypertrophic
head of the pancreas with lymphadenopathy (white arrow) and fine-needle aspiration biopsy (white
dashed arrow) which was non-contributive but displayed KRAS mutation. A carcinoma was found
on the surgical resected specimen.

As for the cancer itself, in the presence of a suggestive clinical and radiological picture,
even if the biopsy is non-contributory or doubtful, the presence of the KRAS mutation
(and other target genes) will be highly suggestive of adenocarcinoma (the diagnostic val-
ues of the biopsy have been greatly improved, especially at the expense of the negative
predictive value). This will avoid further investigations and biopsies and move the pa-
tient more quickly into the management process [11,90,95,96]. This point is illustrated in
Figure 4 showing a case of pseudo-tumorous CP with suspected PDAC developed on a
known CP and an FNAB non-contributive but positive for KRAS and TP53 mutation: an
adenocarcinoma was finally found on the resected pancreatic specimen.

4.4. Role of Liquid Biopsy

Pilot studies have been conducted in PDAC patients to assess the diagnostic value of
detecting circulating tumor cells, circulating tumor DNA (cDNA), exosomes, and tumor-
derived platelets. The main target for identification of cDNA and transport DNA in
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exosomes is the demonstration of the KRAS mutation [11]. Although digital droplet PCR
(ddPCR) and NGS techniques are very sensitive, the detection of the circulating KRAS
mutation imperfectly reflects the mutational load of the primary tumor from which it
originates. However, it reflects the stage of the tumor quite well. The presence of a
KRAS mutation in the cDNA is observed in 70–80% of patients with locally advanced
and metastatic disease, whereas this value is often lower for patients with resectable
tumors. Nevertheless, sensitivity appears to be better with ddPCR (43 to 78%) compared to
conventional PCR or sequencing (27 to 47%) [11,99–103].

Most of the studies have included mainly pancreatic cancer and the control groups
(when they were representative enough) have not necessarily included CP patients. More-
over, if small PDAC tumors do not release sufficient tumor cells and/or mutated DNA for
KRAS, it is difficult to extrapolate and apply this method of diagnosis in the specific case of
PDAC developed on CP tissue. One possible approach might be the combination of several
methods for detecting circulating tumor elements, including searching for circulating tumor
cells, exosomes, and tumor-educating platelets [104–106]

MicroRNAs (miR) are also promising markers and we have already demonstrated
the critical role of miR-21, miR-148a, Let7b, and miR-200 in pancreatic carcinogenesis
and the promising role of miR assays in human fluids for the positive and differential
diagnosis of PDAC [107–113]. Recent studies have explored the diagnostic value of cir-
culating miR in the particular clinical context of diagnosis of PDAC versus CP or human
healthy controls. The first pilot study from Vila-Navarro et al. found that the plasma
level of nine miR was significantly increased in CP patients when compared to control
plasmas [114]. A second study showed significant upregulation of miR-215-5p, miR-122-5p,
and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b
were significantly lower in PDAC compared to CP and controls [115]. Another study
has revealed an overexpression of miR-200b and miR-200c in serum exosomes of PDAC
patients compared to healthy controls and patients with CP [116]. Finally, Wang L et al. ob-
served that plasma-derived exosomes-miR-19b levels in PDAC patients were significantly
higher than those in patients with non-PDAC pancreatic tumors, CP patients, and healthy
volunteers [117]. On the whole, if a specific signature of PDAC and PC can be validated in
future large-scale studies (within exosomes and/or plasma extracellular vesicles), these
will be tools applicable to the particularly difficult context of the diagnosis of PDAC
developed on CP.

4.5. Role of Surgery

Imaging should be used unsparingly, with CT, CP-MRI, and EUS sequences with
FNAB (as well as molecular biology) to distinguish between inflammation and possible
adenocarcinoma (algorithm presented in Figure 6). In all these difficult cases, it will be
essential to discuss patients’ records during a multidisciplinary consultation meeting or
one specializing in pancreatology, if possible, in order to establish the diagnostic and
therapeutic features and above all the action to be taken in the event that no decision
is taken or if the diagnosis is uncertain. Indeed, sometimes evolution and the passage
of time help to resolve the issue, especially if the records are examined in proximity to
inflammatory outbreaks whose lesions will blur the lines between inflammation and a
genuine tumor. The surveillance period and methods are important in order not to miss a
curable and/or operable cause. At the end of this entire sequence of investigations, surgical
exploration and hopefully resection will be part of the final approach where the slightest
doubt exists in order to potentially treat a small adenocarcinoma at a curable stage.
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Figure 6. Proposed screening algorithm for pancreatic ductal adenocarcinoma in patients with chronic
pancreatitis. DM: diabetes mellitus; CT scan: computed tomography scan; MRI: magnetic resonance
imaging; PDAC: pancreatic ductal adenocarcinoma.

5. Can Pancreatic Cancer Developed in Chronic Pancreatitis Be Detected
and Prevented?

As far as alcoholic CP is concerned, the low frequency of occurrence of adenocarci-
noma does not dictate a systematic screening approach whatever the stage of the disease.
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However, once again, if there is the slightest doubt, close clinical and radiological (or even
EUS) surveillance is required to confirm or exclude cancer in CP.

In the specific context of hereditary pancreatitis due to the PRSS1 gene mutation, it is
recommended that cancer screening be carried out from the age of 40 [118]. Individuals
with an autosomal dominant history of hereditary pancreatitis but without identified
mutation of PRSS1 are also to be included in this annual screening. This surveillance
should be performed’ in expert centers with pancreatic specialists. The international
consensus guidelines on surveillance of pancreatic cancer in chronic pancreatitis do not
recommend screening for patients with SPINK1 p. N34S or with other germline mutations
including those of CFTR, CTRC, CPA1, and CEL based on the rationale that PDAC risk
in this subpopulation is not high enough to support annual surveillance [118]. Screening
should be discussed in the case of morphological signs of CP and depending on whether
associated adenocarcinoma risk factors exist (diabetes, smoking, obesity, family history of
pancreatic adenocarcinoma in a first degree relative).

CP-MRI is the reference examination because it is non-irradiating but must be com-
pleted by a CT scan if the MRI is technically deficient (patient movements, very atrophic
pancreas of difficult analysis) or EUS in case of absence of calcifications. The latter is
indeed sensitive for the detection of small lesions when applying high frequencies (10 to
12 MHz). It can also be considered to alternate with MRI. In the event of an abnormality,
monitoring can be repeated every three to six months (see National Diagnostic and Care Pro-
tocol at https://www.has-sante.fr/jcms/p_3225352/fr/pancreatite-chronique-hereditaire)
(accessed on 15 November 2020). However, the determination of tumor markers carcino-
embryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) is not recommended at
this follow-up.

As far as prevention is concerned, it is therefore essential to obtain early and definitive
smoking cessation in these patients with, needless to say, abstinence from alcohol or the use
of other toxic substances such as cannabis [119]. The international consensus guidelines
also recommend a healthy diet containing daily fruit and vegetables with a high folate
intake, whilst moderating the intake of red meat and taking some form of regular intense
physical exercise, all with a view to preventing obesity [118].

6. Conclusions

Although rare, the development of cancer in chronic pancreatitis must be kept in mind
by the clinician, particularly in the context of CP where clinical signs evolve and become
concerning, such as back pain, weight loss, unbalanced diabetes, and jaundice. Imaging
is difficult to interpret and must be carefully reviewed, bearing in mind that if there is
the slightest doubt, EUS-FNAB may be of assistance by targeting suspicious areas within
inflammatory, fibrotic, and calcified parenchyma with the help of molecular biology (search
for KRAS oncogene mutation). Short-term follow-up of patients is necessary at the clinical
and paraclinical level to try to diagnose cancer at a surgically curable stage or to establish
differential diagnoses, such as authentic pseudotumor chronic pancreatitis, and whether or
not this is associated with para-duodenal pancreatitis.
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