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Summary

Wildfires are a global crisis, but current fire models fail to capture vegetation response to

changing climate. With drought and elevated temperature increasing the importance of

vegetation dynamics to fire behavior, and the advent of next generation models capable of

capturing increasingly complex physical processes, we provide a renewed focus on representa-

tion of woody vegetation in fire models. Currently, the most advanced representations of fire

behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not

capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and

carbon dynamics, which influence combustion and heat transfer into the plant and often dictate

plant survival, provide the mechanistic linkage between fire behavior and effects. Our

conceptual framework linking remotely sensed estimates of plantwater and carbon to fine-scale

models offirebehavior andeffects couldbea critical first step toward improving thefidelityof the

coarse scale models that are now relied upon for global fire forecasting. This process-based

approach will be essential to capturing the influence of physiological responses to drought and

warming on live fuel conditions, strengthening the science needed to guide fire managers in an

uncertain future.

I. Introduction

Wildland fire burns hundreds of millions of hectares of forests,
woodlands, and grasslands annually (Giglio et al., 2013), shaping
terrestrial ecosystems (Bond & van Wilgen, 1996; Bond &
Keeley, 2005; Bond, 2021), and their impacts on global carbon
(Bowman et al., 2009) and water (Li & Lawrence, 2017) cycles. To
accurately predict fire behavior and resulting effects, we need to
understand the influences of vegetation structure and physiology
on combustion (e.g. Byram, 1959;Weise&Wright, 2013) and the
microenvironment (e.g. Finnigan, 2000; Banerjee et al., 2020;
Atchley et al., 2021). Recent studies demonstrate that burned area
shows greater increases in forests and shrublands where vegetation
moisture ismore sensitive towater limitation (Rao et al., 2022), and
that hydraulic traits of woody evergreen species are responsible for
up to 3.6-fold variation in live fuel moisture content (LFMC, ratio
of biomass water content to oven-dry biomass, Table 1; Scarff
et al., 2021). These findings emphasize the importance of
accounting for ecophysiological controls on woody vegetation in
wildfire forecasting and prescribed fire planning, where fuel effects
dominate under less extreme fire danger conditions (Cruz
et al., 2022). This will be particularly important in fire-
susceptible ecosystems which experience significant drought and
LFMC declines below thresholds that drive increases in fire
behavior (Pimont et al., 2019a). As atmospheric aridity continues

to increase with rising temperatures, compounding plant water
stress (Grossiord et al., 2020), the number of regions for which live
fuels (i.e. living plants) are important in determining the behavior
of fires and their ecological outcomes is likely to expand (Resco de
Dios et al., 2021).

Historically, representation of live fuels in fire behavior models
has been limited to static fuel models (Table 2) that generalize
vegetation into classes, such as grass, shrub, and timber
(Albini, 1976; Scott & Burgan, 2005; but see Rothermel &
Philpot, 1973; Hough & Albini, 1978 for seasonally- and age-
dynamic fuel models). With recent advances in process-based
modeling and remote sensing of both fuels and fires, there is now
opportunity to capture more realistic fuel heterogeneities, includ-
ing the physiological dynamics that determine live fuel conditions
(‘pyro-ecophysiology’, Jolly & Johnson, 2018). This will allow
exploration of their influence on fire behavior, ecological outcomes
(i.e. plant injury, mortality, and recovery; hereafter, ‘fire effects’)
and cascading hazards. Recent work has called for modeling efforts
to improve integration of fire behavior and its effects (e.g. Hood
et al., 2018; O’Brien et al., 2018; Kleynhans et al., 2021) to better
capture fire–vegetation–environment feedbacks. This integration
is particularly important in the context of low-intensity and
prescribed fire. While fuel heterogeneity has little effect in a high-
intensity fire environment (Atchley et al., 2021; Cruz et al., 2022),
changes in phenology can make the difference between
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containment and escape for prescribed fires, where combustion
dynamics are engineered to achieve desired biological and physical
outcomes (e.g. species-specific vegetation survival or mortality, fire
risk reduction, soil protection, and smoke management (Hiers
et al., 2020)) with implications for future fire and landscape
dynamics (Mitchell et al., 2009;Gallagher et al., 2021). Plant water
and carbon cycles have been recognized as important to both fire
behavior (Nelson, 2001; Macias Fauria et al., 2011; Jolly
et al., 2014; Jolly & Johnson, 2018) and ecological fire effects
(Michaletz & Johnson, 2007; Hood et al., 2018; B€ar et al., 2019).
Yet, they have not been considered as an integrating framework
mechanistically linking the two.

We argue that plant water and carbon cycles drive live fuel
moisture and drymass dynamics, which influence heat transfer into
the plant during a fire and subsequent postfire survival and
recovery. This focus on plant water and carbon dynamics provides a
mechanistic framework that links plant physiology to fine-scale fire
behavior and fire-induced effects on plant tissues, addressing a gap
in current approaches to modeling fire and vegetation (Fig. 1). We
focus in this review on the interactions of woody plants and fire, due
to the availability of literature and to maintain focus on the

underlying argument. However, many of the needs and underlying
connections that we recognize have importance to nonwoody
systems. Understanding how within-plant physiology and fire
interact will allow exploration ofmechanisms important to ensuing
plant, stand, and landscape-level vegetation dynamics, which
influence subsequent fire behavior. To fully capture fire-ecosystem
feedbacks, we propose exploring new ways to bring together fire
behavior and effects models at fine scales where both fire and
physiological processes can be represented in sufficient detail to
define important biophysical mechanisms, with heat transfer to
vegetation providing the mechanistic linkage from physiology to
fire behavior and subsequent effects (Varner et al., 2021). A
fundamental understanding of how fire and plants interact at the
fine scale is needed to constrain simulations used at management-
relevant scales.Under unprecedented future climate conditions, for
which we do not have past or present analogs, biophysical process
modelingwill be essential to understand response to conditions that
fall outside the range of variability captured by current empirical
models. Linking remotely sensed estimates of plant water and
carbon status to models of fire behavior and effects offers a
mechanistic approach critical to capturing the influence of

Table 1 Glossary of pyro-ecophysiology terms.

Canopy bulk density (CBD,mass per unit volume) Measure of how closely canopy fuels are packed, reflects likelihood that fire can move through the forest
canopy

Carbon starvation Plant mortality resulting from inability of NSC to meet metabolic demands
Cavitation Process by which excessivewater tension causes expansion of dissolved air to form bubbles; in plants, this

causes a break in the water column and a decrease in hydraulic conductivity

Conduction Heat transfer through a material from a region of higher temperature to a region of lower temperature
Consumption (mass per unit area) Amount of biomass consumed during fire
Convection Aeat transfer by the movement of a gas or liquid
Embolism Blockage of a vessel by a mass; in plants, caused by air bubbles formed in xylem via cavitation
Equivalent water thickness (EWT, g m�2) Measure of leaf water content
Fire radiative energy density (FRED, MJ m�2) Measure of the intensity of radiative energy released from fuel during a fire
Hydraulic conductivity (water mass or volume
per unit time per unit area)

Measure of a system’s ability to transport water

Hydraulic failure Plant mortality resulting from failure of the water column by exceeding PLC thresholds
Leaf mass per area (LMA, g m�2) Measure of leaf thickness and density; inverse of specific leaf area; also called drymatter content (DMC) in

remote sensing applications
Live fuel moisture content (LFMC, %) Ratioofwatermass todrymass in livingplants; controlled largelybyphysiologicalmechanisms, rather than

weather
Non-structural carbohydrates (NSC) Plant carbon used for functions other than building structural biomass, such as growth, metabolism,

osmoregulation, transport, storge, and defense
Osmotic potential (MPa) Potential of water molecules to move from a less concentrated to a more concentrated solution across a

semi-permeable membrane
Percent loss of conductivity (PLC) A measure of xylem vulnerability to cavitation at a given water potential

Phenology Biological cycles resulting from seasonal or interannual climate variations
Physiology Bynamic chemical and physical processes that govern function
Pyro-ecophysiology Ecophysiology-based approach to live fuel research that considers how plant water and carbon cycles

independently and collectively interact at the leaf and whole plant level to regulate flammability and
subsequent fire behavior (Jolly & Johnson, 2018)

Radiation Heat transfer through a gas or vacuum other than by heating of the intervening space
Relative water content (RWC, %) Plant water content relative to its fully hydrated state
Senescence Process of biological aging; can be stress-induced or developmental
Traits Morphological, physiological or phenological features measurable at the individual level (Violle

et al., 2007)
Transpiration Loss of water vapor from a living body; in plants, evaporation via stomata
Vapor pressure deficit (VPD, kPa) The difference between the amount of moisture in the air and howmuch moisture the air can hold when

saturated; measure of atmospheric aridity
Water potential (MPa) Pressure potential required to remove a water molecule from its matrix (e.g. xylem); a measure of plant

water status
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physiological responses to drought and warming on live fuel
conditions under global change.

II. Existing models of fire behavior and effects

There are many existing fire behavior and effects models under use
and continuous development. Rather than focusing on any one
model or group of models, here we focus on commonly applied
scales and model characteristics. We classify these as global to
regional-scalemodels, landscape to stand-scalemodels, operational
models, computational fluid dynamics models, and fine-scale
biophysical fire effects models.

On global to regional scales (Fig. 1), fire behavior and effects
have been combined within ecosystem process models using
various approaches to simulate ecosystem dynamics with fire
disturbance (see Rabin et al., 2017 for in-depth review).
Simulations commonly span decades to centuries and may include
the entire globe. In these models, fire behavior and effects are
commonly simulated explicitly at the computational grid level (c.
0.1–1°) or implicitly at a subgrid level. Fire spread is a function of
fuel characteristics (loading, size distribution, and moisture),
ignition patterns, weather, and latent suppression. These models
often capture a dimension of vegetation growth and/or demo-
graphics which can dynamically inform fuel loads and fuel
availability. Fire behavior is usually represented empirically based
on experimental and modeling studies by Rothermel (1972) and

Van Wagner (1973). Fire effects are determined by total energy
release and thresholds for mortality by either individuals, cohorts,
or by fractioning existing vegetation. For example, recent advances
in vegetation demography modeling include the addition of plant

Table 2 Glossary of models and remote sensing methods.

Models
3D Fuel frameworks Models that generate synthetic 3D fuels as inputs for CFD fire models
Computational fluid dynamics
(CFD)

Physics-based models that simulate the interaction of liquids and gases based on fluid mechanics principles; used in
simulation of fine-scale fire behavior and fire–atmosphere interactions within individual stands on timescales of minutes
to hours

Ecosystem process Mechanistic models based on theoretical understanding of ecological processes; for fire applications, can represent both
fire behavior and effects on regional to global scales

Empirical fire effects Statistical models that predict tree status (live, dead) as a function of tree characteristics and observed fire injury, often
estimated based on flame length

Fire danger rating systems Broad-scale assessments of fire ignition, spread, andhazardpotential basedoncurrent andantecedentweather, fuels, and
topography

Functional structural plant
models (FSPMs)

Mechanistic models of 3D plant structure, environment, and physiological response, from gene to community scales

Fuel models Stylized set of fuel bed characteristics used in fire models
Landscape fire succession Spatial simulation models of fire and vegetation dynamics at stand to landscape scales
Operational fire Computationally inexpensivemodels that rely on empirical representations of fire behavior and fixed, stylized fuelmodels

to determine flame length and resulting mortality
Process-based fire effects Models which predict injury to different plant compartments based on heat transfer
Vegetation demography Models which capture dynamic, size-structured vegetation
Remote sensing
Hyperspectral Acquired in narrow, contiguouswavelengthbands; high spectral resolution allows formaterial characterization, inference

of chemical/biological processes, and novel signature identification
Lidar Light detection and ranging; active optical sensing method using return time of a pulsed laser to measure distance
Microwave Detects backscattering of actively transmitted radiation in the microwave (1 cm–1 m) portion of the electromagnetic

spectrum; longer wavelengths allow penetration of clouds, rain, and surfaces
Multispectral Acquired in broad, often discontinuous, wavelength bands; low spectral resolution reduces cost and complexity for

monitoring known signatures
Optical Detects reflected radiation in the visible (VIS, 380–780 nm), near- (NIR, 780–1000 nm) and short-wave infrared (SWIR,

1000–2500 nm) portions of the electromagnetic spectrum; primarily passive
Thermal Detects emitted radiation in the thermal infrared (TIR, 780 nm–1 mm) portions of the electromagnetic spectrum; primarily

passive

Computational
fluid dynamics

models
(e.g. WFDS,
FIRETEC)

Biophysical fire
effects models

(e.g. FireStem2D)

Proposed
linkage

Operational
models

(e.g. BehavePlus,
FARSITE)

Landscape-to-
stand scale

models
(e.g. iLand,
LANDIS-II,
Fire-BGC)

Global-to-
regional

scale models
(e.g. FATES,
LPJ-GUESS,

JSBACH)

Fi
re

 b
eh

av
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r
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re
 e

ffe
ct

s

Fine CoarseSpatial and temporal scale

Fig. 1 Model classification according to scale and process representation. In
this conceptual figure, we show the classification applied to differentmodels
of fire behavior and effects discussed in this review. We also highlight our
proposed linkage between fine-scale computational fluid dynamics (CFD)
and biophysical fire effects models.

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

New Phytologist (2023) 238: 952–970
www.newphytologist.com

New
Phytologist Tansley review Review 955

 14698137, 2023, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18770 by Inrae - D

ipso, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



hydraulics in FATES (Christoffersen et al., 2016), allowing
decoupling of water and carbon dynamics for more direct
determination of live fuel vulnerability to fire at multiple
timescales. Live fuel moisture content dynamics are captured by
simulating water- and carbon-cycle processes directly at subdaily
time scales, allowing for assessment of climate impacts (e.g. change
in CO2, temperature, and precipitation) on future LFMC trends
under different climate scenarios (Ma et al., 2021). However,
simplified representation of fire precludes mechanistic under-
standing of fire–physiology interactions.

At stand to landscape scales, a large number of models were
developed for spatial plant ecology and fire occurrence at the scale
relevant to forest management (10–100 km2; e.g. FIRE-BGC
(Keane et al., 2004), LANDIS-II (Sturtevant et al., 2009; Scheller
et al., 2019)). These models are applied to decadal to century-long
simulations. Observed or modeled fire dynamics account for stand-
to-stand fire spread probabilistically or through the estimation of
mechanistic processes. These models simulate cohorts or representa-
tive sets of individual plants/trees to estimate vegetationdevelopment
and demography which inform fuel loading and availability. While
this class of models can be leveraged to explore fire behavior and
effects, they do not mechanistically link the two (Keane et al., 2004).
Within the stand (1–10 km2), fire effects are usually homogenous or
stochastically based on homogenous traits of the stand (Furniss
et al., 2022). For example, FIRE-BGCv2 (Keane et al., 2011) links
biogeochemical processes with stand-scale fire behavior and effects
based on live and dead fuel loading, leveraging FARSITE
(Finney, 1998), but does not address within-stand variability. Keane
et al. (2004) and Sturtevant & Fortin (2021) provide extensive
reviews of landscape to stand-scale models.

Operational fire models such as BehavePlus (Andrews, 2013),
FARSITE,FLAMMAP(Finney, 1998), or FFE-FVS (Reinhardt&
Crookston, 2003) also represent fire behavior and effects.However,
these models, which need to be computationally inexpensive to be
useful, rely on empirical representations of fire behavior (Rother-
mel, 1972), and use fixed, stylized fuel models (Scott &
Burgan, 2005) to determine flame length and resulting mortality.
Their linkage between fire behavior and effects is thus very simple,
and largely does not account for dynamic plant physiology or
demography.

At the substand scale (< 1 m–1 km), the most advanced
representations of fire behavior and effects are currently found in
distinct classes of models. Fire behavior is best captured with
Computational Fluid Dynamics (CFD) models such as FIRETEC
(Linn et al., 2002) or theWildland–Urban Interface FireDynamics
Simulator (WFDS, Mell et al., 2009). These models simulate
individual fire events, or portions thereof, on short timescales of
minutes to hours. Fuel parameters are static, with exception of
moisture mass and dry mass of the fuel, which may decrease
through dehydration and consumption, respectively. Thesemodels
do not represent fire effects, as they do not explicitly distinguish
between live and dead fuels, or between different vegetation species
or functional groups. In absence of explicit vegetation response to
changingmeteorological conditions, they cannot resolve changes in
LFMC or the sensitivity of fire behavior to live fuel moisture
dynamics (Jolly, 2007).

Prediction of fine-scale ecological fire effects (postfire vegetation
injury, mortality, and recovery) has been approached using both
empirical and process-based models, with fire intensity provided as
input from othermodels ormeasurements.Most postfiremortality
models rely on empirical correlations (Woolley et al., 2012; Hood
et al., 2018) which predict vegetation status (live or dead) as a
function of plant characteristics (e.g. species, bark thickness, height,
and diameter) and observed fire injury (e.g. crown scorch, and bark
char), often estimated based on flame scorch height (Van
Wagner, 1973). A number of process-based biophysical fire effects
models predict injury to different woody plant compartments (e.g.
stem (FireStem2D, Chatziefstratiou et al., 2013) or crown
(Michaletz & Johnson, 2006) heating models). Few, however,
have considered injuries to more than one part of the plant
(Michaletz & Johnson, 2008), and none address the influence of
interacting injuries across multiple woody plant compartments on
postfire plant function.

Direct coupling of fine-scale fire behavior and effects models
remains challenging due to the different temporal scales that are
relevant for both. As an alternative to solve this challenge, we
propose exploring nested modeling frameworks (Gettelman
et al., 2022; Shuman et al., 2022) which can transfer information
across models at scales where both fire and physiological processes
can be represented in sufficient detail to define important
biophysical mechanisms. Recent work has made strides in
mechanistically linking fire behavior to ecological effects through
plant traits (Zylstra, 2021), but withoutmechanistic determination
of vegetation density and moisture content resulting from plant
water and carbon dynamics. By incorporating fine-scale physiol-
ogy, we can capture dynamic water and carbon to represent these
properties more realistically.

III. Physiological controls of fire behavior and effects

1. Evidence for the role of plant water and carbon in fire
behavior

Fire behavior is broadly controlled by complex interactions among
fuel density andmoisture content, topography, and the atmosphere
(Countryman, 1966). These factors not only interact, but also can
be highly variable in space and time, resulting in dynamic fire
environments. Live fuel moisture content is a key fuel property
governing fire behavior (Fig. 2a). Declining LFMC is associated
with an increase in area burned (Dennison&Moritz, 2009; Nolan
et al., 2016; Pimont et al., 2019b), and LFMCbelow 100% sharply
increases fire rate of spread (ROS, Pimont et al., 2019a) and the
probability of large fires (Martin-StPaul et al., 2018) (Fig. 2a).
Given its impact on fire behavior, LFMC has been incorporated
into fire danger rating systems (e.g. Deeming et al., 1977; Stocks
et al., 1989) and fire behavior models (e.g. Rothermel, 1972).

The water and dry mass components of LFMC are outcomes of
plant water- and carbon-cycle processes, respectively, and are
controlled by environmental conditions, soil properties, and plant
physiology (Fig. 2b,c; Macias Fauria et al., 2011; Jolly &
Johnson, 2018; Ruffault et al., 2018). Plant water and carbon
can vary independently in both space and time, with opposing
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effects on LFMC. For example, a sharp prebudburst (early June)
increase in foliar drymass of older, live pine needles has been shown
to reduce LFMC despite increasing foliar water mass (Fig. 2b; Jolly
et al., 2014, 2016). Based on these findings, Jolly& Johnson (2018)
proposed a framework decomposing LFMC into plant water and
carbon cycle processes (Fig. 2c), where the numerator is determined
bywhole plant hydraulics (e.g. transpiration; relativewater content;
and xylem embolism), and the denominator by carbon allocation
(e.g. chemical composition/density; phenology; and canopy
architecture). These processes influence fire behavior both by
changing tissue- and canopy-level properties that influence heat
transfer, and by altering the proportion of dead biomass in fuels and
on the ground surface. Seasonal or drought-induced senescence and

shedding are examples of physiological processes that alter leaf, fine
branch, and whole plant flammability, transforming live fuels into
dead fuels and increasing litter accumulation. Tissue senescence is
associated with shifts in osmolytes and water content (Milla
et al., 2007), which can increase or decrease LFMC. Tissue
mortality also increases the dead to live fuel ratio, causing a strong
increase in fire spread and intensity (e.g. Cruz et al., 2015; Sieg
et al., 2017; Balaguer-Romano et al., 2020).When senesced tissues
are shed, litter accumulates in the surface fuel-bed andmay increase
the likelihood of surface fire.

The importance of both plant water- and carbon-cycle processes
for fire behavior becomes clear when examining their effects on
heat transfer and combustion (Michaletz & Johnson, 2007; B€ar
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Fig. 2 Live fuel moisture content (LFMC, black), an important driver of landscape-scale fire behavior (a), is a function of plant carbon (C, orange) and water
(H2O, blue) (b, c), which can have opposing influences on fire behavior in leaf level burn experiments (d, e). (a) Rate of spread (ROS), area burned, and fire
occurrence (Nfires) as a function of LFMC, as shownbyDennison&Moritz (2009),Martin-StPaul et al. (2018), Pimont et al. (2019a,b), and others. (b)Monthly
variation in foliar drymass (orange) andwater (blue) density, and foliarmoisture content (drymass/watermass, LFMC; black) extracted from Jolly et al. (2016)
with WEBPLOTDIGITIZER (Rohatgi, 2021). Dashed vertical line indicates divergence between LFMC and water density driven by increasing dry mass.
(c) Conceptual model of LFMC as a function of plant water and carbon cycles redrawn from Jolly & Johnson (2018). (d) Time to ignition as a function of leaf
carbon (leaf mass per area, LMA) and water (moisture) as shown in Grootemaat et al. (2015) and Bianchi et al. (2019). (e) Flame and smolder duration as a
function of leaf carbon (dry mass) and water (moisture), as shown in Grootemaat et al. (2015) and Bianchi et al. (2019).
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et al., 2019; Dietenberger et al., 2020; Kleynhans et al., 2021).
Preheating, the process by which heat transfer evaporates water,
dries, and decomposes carbon-containing polymers in unburned
fuels, occurs via conduction, convection, and radiation. Thermal
conductivity varies with material density, temperature, and water
content, while convection depends on geometry and orientation of
the fuel surface. The proportion of radiation absorbed by unburned
fuel depends on both its thermal absorptance as well as geometry
and orientation. Fuel chemistry and water content are therefore
important to both conductive and radiative heat transfer through
their influence on thermal conductivity and absorptance, while
convection and radiative heat transfer to the fuel surface depend on
vegetation geometry and orientation, including leaf, branch,
crown, or canopy structure (Michaletz & Johnson, 2006; Pausas
& Moreira, 2012). The rate at which the temperature increases in
response to heat transfer depends on the mass and specific heat of
the biomass, which depend on plant tissue water content and
composition (Boardman et al., 2021). Water content also
determines how much energy is required to heat the fuel to
evaporation and combustion temperatures (Yashwanth
et al., 2016), while the content of carbon-based polymers
determines the amount and rate of thermal decomposition,
influencing the rate of preheating and time to combustion (Kilzer
& Broido, 1965). Fuel chemistry and water content are also critical
in determining whether combustion reactions are self-sustaining
and how they will contribute to fire intensity and rate of spread
(Quintiere, 2006; Matt et al., 2020). During combustion, the
content of organic polymers determines how much energy can be
released, and water content can determine whether flaming or
smoldering combustion occurs. Higher rates of fire spread and
probability of flaming combustion, which occurs at high
temperature and/or low moisture, are therefore more likely when
live fuels are water stressed and the ratio of water mass to dry mass
(LFMC) is lower.

Results from leaf-level burn experiments support the influence of
plant water and carbon processes on preheating. Time to ignition
(Fig. 2d) has been shown to increase with moisture (Grootemaat
et al., 2015; Bianchi et al., 2019; but see Fletcher et al., 2007) and
leaf mass per area (LMA, inverse of specific leaf area, Grootemaat
et al., 2015), which is associated with accumulation of total
structural carbohydrates and lignin (Poorter et al., 2009). Flame
and smolder duration (Fig. 2e) also increase with dry mass
(Grootemaat et al., 2015), but decrease with moisture (Bianchi
et al., 2019). These contrasting effects of leaf-level water and carbon
on different fire behavior characteristics underscore the importance
of capturing LFMC components independently. Despite evidence
from Alam et al. (2020) that certain leaf and shoot flammability
metrics (e.g. ignitibility and combustibility) are decoupled, the
same study showed a positive relationship of leaf drymatter content
with shoot and species-level flammability, suggesting that effects of
leaf water and carbon on fire behavior are scalable. At canopy scales,
Jolly et al. (2016) found that increased leaf density, which accounts
for changes in dry mass associated with phenological change in
foliar chemistry and carbon allocation, increased modeled crown
fire propagation and area burned. Additionally, canopy bulk
density, a measure of canopy architecture influenced by water- and

carbon-cycle processes via growth rate, environment, and
phenology, has long been recognized as an important driver of
spread rate in active crown fires (Van Wagner, 1977; Resco de
Dios, 2020). The independent relationships of water- and carbon-
cycle processes with fire behavior, and their complex interdepen-
dence, highlight the need for a more mechanistic representation of
LFMC that accounts for underlying physiology and allows for
dynamic change.

2. Evidence for the role of plant water and carbon in fire
effects

First-order effects of fire on vegetation are the direct result of
combustion and heat transfer to plant tissues (Michaletz &
Johnson, 2007), and can be modulated by plant physiological
characteristics. The same traits that influence fire behavior through
controls on heat transfer also influence fire effects by modulating
tissue temperatures and exposure times, particularly in low and
mixed-severity fire regimes where vegetation is not combusted and
immediately killed (O’Brien et al., 2018;Varner et al., 2021).Percent
mortality has beendemonstrated to increasewith fire radiative energy
density (Smith et al., 2017; Steady et al., 2019), or time-integrated
radiative flux density from ignition to cessation of the fire. Since
absorbed fire radiative energy is tied to flame and smolder duration
(O’Brien et al., 2016), which increases with dry mass and decreases
with moisture (Fig. 2e), we expect first-order mortality to increase
with dry mass and decrease with moisture content (Fig. 3a). This is
consistent with significant increases in simulated canopy fuel
consumption with reduced canopy fuel moisture, particularly under
low-wind scenarios (Sieg et al., 2017).While thephysical relationship
betweenmoisture andflameandsmolderduration shouldholdacross
species and ecosystems, further research is required to validate the
relationship between moisture content and first-order mortality, as
tissues with higher moisture contents can also be more heat sensitive
(Wright & Bailey, 1982).

When vegetation is not consumed, fire-induced injuries,
including hydraulic dysfunction, cambium and apical meristem
necrosis, leaf and fine root necrosis, are proposed to influence
whole-plant carbon andwater budgets resulting in hydraulic failure
and/or carbon starvation (Fig. 3b; Midgley et al., 2011; Michaletz
et al., 2012; Hood et al., 2018; Michaletz, 2018; Silva et al., 2018;
B€ar et al., 2019; Berenguer et al., 2021). This framework suggests
that second-order effects on live vegetation are driven, in part, by
postfire water and carbon availability, along with integrity of the
water and carbon uptake and transport systems (Fig. 3b,c;
Michaletz & Johnson, 2007; Hood et al., 2018; Michaletz, 2018;
B€ar et al., 2019). Postfire environmental conditions and species-
specific traits determine whether resulting functional and growth
limitations will lead to vegetation recovery or mortality (B€ar
et al., 2019; Sayer et al., 2020; Hood, 2021; Ruswick et al., 2021).
For instance, traits such as water stress resistance are observed to
differ between disturbance-dependent and obligate sprouters in
Mediterranean-type climate regions (Pratt et al., 2012), with
implications for postfire community composition. Franco
et al. (2014) note that in neotropical savannas, where fire is
common and accelerated fire frequencies and prolonged droughts
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are expected under climate change, the interplay between
temperature optima and CO2 fertilization effects on photosynth-
esis, photorespiration, and respirationwill define howmuch carbon
is available for postfire plant growth and resprouting, determining
the acclimation potential of a given species, plant community or

ecosystem. Indeed, from Mediterranean to Tropical ecosystems,
the balance between forest expansion and retreat, between seedling
recruitment and mortality, has been attributed to species
differences in drought sensitivity (e.g. embolism resistance, rooting
depth, and stomatal regulation) and carbon balance (e.g. stomatal
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Fig. 3 Plant carbon (C, orange) and water
(H2O, blue) determine fire effects. (a) First-
order effects are the direct result of heat
transferred to plant tissues (Michaletz &
Johnson, 2007), as modulated by plant tissue
properties (water and carbon content).
Percent mortality increases with time
integrated from ignition to cessation of fire
(fire radiative energy density (FRED); Smith
et al., 2017; Steady et al., 2019),which should
approximate flame and smolder duration
(Fig. 1e), which increase with leaf carbon (dry
mass) and decrease with leaf water (moisture)
content (Grootemaat et al., 2015; Bianchi
et al., 2019). (b) Conceptual diagram
illustrating the cascade of potential
physiological responses to post-fire injuries in
plant roots, stems, and crowns adapted from
B€ar et al. (2019). Blue frame captures
processes impacting the plant water cycle
leading to reduction in hydraulic efficiency and
ultimate hydraulic failure (fatal runaway
embolism). Orange frames capture processes
impacting the plant carbon cycle, leading to
carbon starvation. (c) Second-order effects are
modulated by post-fire water and carbon
availability, along with integrity of the water
and carbon uptake and transport systems
(Hood et al., 2018; B€ar et al., 2019).Mortality
thresholds for hydraulic failure and carbon
starvation are defined based on percent loss of
conductivity (PLC,Hammondet al., 2019) and
non-structural carbohydrate (NSC)
concentrations (Barker Plotkin et al., 2021),
both of which are impacted by fire (Varner
et al., 2009; Michaletz et al., 2012; West
et al., 2016).
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regulation, osmotic adjustment, and carbon allocation) (Kee-
ley, 1998; Franco et al., 2014).

Drought and herbivory research, where tree mortality has a long
history of study, has defined mortality thresholds for hydraulic
failure in terms of percent loss of hydraulic conductivity (PLC;
Hammond et al., 2019), and for carbon starvation in terms of
nonstructural carbohydrate (NSC) depletion (Barker Plotkin
et al., 2021). Evidence of increased PLC from laboratory
experiments (Michaletz et al., 2012; West et al., 2016; Partelli-
Feltrin et al., 2021), as well as from forest fires (B€ar et al., 2018),
indicates that fire increases vulnerability to cavitation (Midgley
et al., 2011; Hood, 2021). In addition, fire can decrease root NSC
(Varner et al., 2009), reducing stores available to support
metabolism, growth, and subsequent stress response, resulting in
mortality independent of canopy damage. Together, this research
suggests similar relationships for second-order fire mortality
(Fig. 3c) as for mortality from drought and herbivory, where
sufficiently high PLC or low NSC results in mortality. This is
consistent with recent work linking mortality and recovery from
low-intensity fire to prefire water status (vanMantgem et al., 2018;
Partelli-Feltrin et al., 2020) and concentrations of NSC (Zhu
et al., 2012; Sayer et al., 2020). In addition, smoldering
consumption can impact water uptake directly through root loss
(O’Brien et al., 2010). In conifers, trade-offs have also been
documented between resistance to cavitation and to fire, likely
mediated by allocation of carbon to either building thick bark or
dense xylem, but not both (Resco deDios et al., 2018). These trade-
offs have implications for woody vegetation recovery from fire
under climate change, where drought conditions can predispose
woody vegetation to hydraulic (Partelli-Feltrin et al., 2020) and
carbon (Sayer et al., 2020) limitations, impacting capacity to
recover from fire-induced injury and/or resprout. Indeed, intense
postfire drought can also cause significant resprout mortality
resulting from simultaneous loss of hydraulic conductivity and
depletion of root starch (Pratt et al., 2014).

3. Importance of plant water and carbon dynamics

Given the demonstrated role of plant water and carbon status in
both fire behavior (Fig. 2) and effects (Fig. 3), accurately capturing
their dynamics (seasonal variation, differences across species or
functional types, with topography, and natural disturbance) will
lead to improvements in fire behavior and effects models. Carbon
and water status of live fuels change dynamically through time with
environmental conditions and seasonal phenology (Baffoin
et al., 2021). Variation in plant dry matter is driven by changes
in organic molecules, largely NSC and lipids synthesized in the leaf
and allocated to different plant organs (i.e. roots, stems, leaves, and
reproductive structures) as needed for respiration and storage
(Chapin et al., 1990). Diurnal variation results from daily synthesis
and export patterns, while seasonal variation is largely driven by re-
allocation to meet seasonal demands associated with phenology or
source limitation (e.g. drought-induced reduction in photosynth-
esis; Mart�ınez-Vilalta et al., 2016). Changes in water content are
driven by the interplay between soil water availability, physiological
and morphological regulation, and atmospheric vapor pressure

deficit through the soil–plant-atmosphere continuum (Nel-
son, 2001; Macias Fauria et al., 2011). Water and carbon status
differ across organs and over time as water moves from root to leaf
via transpiration and as carbon is assimilated and transported across
organs via the phloem (Fig. 4a, Zhou et al., 2020), and these
dynamics differ by species and/or plant functional type. For
instance, while evergreen conifers show strong seasonal variation in
leaf NSC and dampened variation in stem NSC and water deficit
(ΔW), the opposite is true for evergreen angiosperms (Fig. 4b,
S�anchez-Costa et al., 2015; Mart�ınez-Vilalta et al., 2016). Topo-
graphic variation (microclimates, water availability, and soil
resources available for growth) can also modify physiology, and
fuel availability and loading, and has been shown to govern fire
behavior and effects (Knapp et al., 1993; Krawchuk et al., 2016;
Swann et al., 2022). Different functional strategies in relation to
seasonal water deficit and disturbance, such as those defined by leaf
lifespan (deciduous vs evergreen) and minimum water potential
(Ackerly, 2004), will determine how these water and carbon
dynamics manifest across species. Even within an individual
species, plants can modulate the effects of variability in water
resources by modifying leaf area, rooting depth, and/or stomatal
conductance (Rambal, 1993). Among co-occurring chaparral
shrubs, differences in rooting depth can drive differential responses
of leaf water potential to seasonal drought (Davis&Mooney, 1986;
Smith & Richardson, 1990), and those with similar responses may
use different modes of seasonal osmotic adjustment to accomplish
changes in osmotic potential (i.e. shift in water volume vs solute
concentration; Bowman & Roberts, 1985), with strong implica-
tions for LFMC. Species differences in drought response and
associated leaf senescence and shedding have implications for litter
accumulation and fuel-bed flammability as well due to species
variation in litter flammability and nonadditive effects in multi-
species litter mixtures (de Magalh~aes & Schwilk, 2012, 2021).

Climate and phenology drive seasonal change in these fire-
relevant traits, regulating water and NSC balances. Under future
climate conditions, drought and phenological shifts can affect
greenup, senescence, and susceptibility to mortality, all of which
impact fuel load and flammability (Jolly et al., 2016). For instance,
prefire drought increases the likelihood ofmortality (vanMantgem
et al., 2018; Partelli-Feltrin et al., 2020) and of resprouting failure
(Karavani et al., 2018; Resco de Dios et al., 2020). Topographic
variation can be an important control on drought induced
mortality and resulting fuel loads. For example, increased water
availability in concave areas can mediate the increase in hydraulic
stress typical at lower elevations (Tai et al., 2017). Prefire drought
and heat stress may also diminish flowering and seed production,
negatively impacting species with fire-cued recruitment (Nolan
et al., 2021). Heat susceptibility of tissues (B€ar et al., 2021) and
probability of vegetation survival can also be influenced by plant
phenological stage during a burn (Trabaud, 1991; Knapp
et al., 2009; Ruckman et al., 2012; Pratt et al., 2014), highlighting
the importance of capturing seasonal variation in prediction of
mortality (Bond & van Wilgen, 1996). Beyond drought, other
natural disturbances can cause physical damage to vegetation (e.g.
pathogens and herbivory), change in fuel loads and availability due
to rapid mortality (e.g. bark beetles and tropical cyclones), or
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increased resource availability for plant growth (e.g. windfall), all of
which can be incorporated into plant physiology models to
understand their feedbacks on fire behavior and effects (Karp
et al., 2021; Rouet-Leduc et al., 2021; Fettig et al., 2022; Ibanez
et al., 2022; Lee et al., 2022). Acknowledging dynamic physiology
recognizes that fire behavior and its effects will vary, within and
across species, with plant water status (Nolan et al., 2018), carbon
dynamics (photosynthesis, respiration, allocation), phenology (B€ar
et al., 2021), species (McAllister&Weise, 2017;Nolan et al., 2018;
Resco de Dios, 2020), and time (Fig. 4).

IV. Integrating fine-scale physiologywith firemodels

The wildland fire research community has called for the use of
process-based models to explore the potential mechanisms and
interactions driving fire dynamics and effects and to conduct virtual
experiments that allow for consideration of no-analog future
climate conditions (Michaletz et al., 2013; Hoffman et al., 2018;
O’Brien et al., 2018). The demonstrated importance of plant water
and carbon to fire behavior and effects, and their variability across
species and time, underscore the value in applying plant carbon and
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early successional, drought-adapted conifer (Pinus halepensisMill.) (adapted from S�anchez-Costa et al., 2015).
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water process models to explore the biophysical mechanisms
linking vegetation to fire behavior and effects under present and
future conditions.

Recent advances in whole-plant modeling offer a promising
framework for linking simulations of plant water- and carbon-
related processes to finer-scale models of fire behavior and effects.
Nolan et al. (2018, 2020) suggested a physiological basis to model
LFMC for fire behavior applications using leaf water potential as a
proxy. This approach allows for species-specific variation with
environmental drivers, while acknowledging the importance of
capturing variation in leaf mass to account for decoupling of
seasonal changes in the water and carbon contents that comprise
LFMC. Mechanistic functional structural plant models (FSPMs)

(Vos et al., 2010; Louarn & Song, 2020; de Vries, 2021), of 3D
plant structure, environment, and physiological response, from
gene to community scales, offer a potential solution to capture both
water and carbon cycle processes. Functional structural plant
models, which can simulate water and carbon flows across 3Dplant
compartments (root, stem, and leaf) in response to environmental
conditions, have been demonstrated for use in simulation of both
small plants and trees and include open-source platforms that
enable coupling with external modeling tools (e.g. Zhou
et al., 2020).

Such amodel could be coupled to fine-scale fire behavior models
using fuel modeling frameworks such as Fuel3D (Parsons
et al., 2011), FuelManager (Pimont et al., 2016), STANDFIRE
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(Parsons et al., 2018), or FastFuels (Parsons et al., 2020). These
frameworks can generate the 3D structure of canopy, mid-, and
under-story vegetation for input to physics-based fire models, such
as FIRETEC orWFDS, allowing examination of within-stand 3D
fuel–fire interactions.Currently,meteorological or remotely sensed
data (see the Remote sensing of plant water and carbon to inform
processmodeling section) can be used to set themoisture properties
in these fuel models. Moisture is most often assigned a fixed value
by the user for the course of the simulation across minutes to hours,
and only FuelManager allows for assignment of alive vs dead status.
As an advance to enable mechanistic evaluation of fine-scale
interactions between physiological and heat transfer processes and
their influence on fire behavior and effects, we propose incorpora-
tion of a physiological process model to determine fuel condition
based on physiological descriptions (plantwater and carbon-related
processes) of individual plants (e.g. Cochard et al., 2021; Ruffault
et al., 2022a,b). This could be achieved through use of a FSPMwith
remotely sensed parameterization (Fig. 5a,b) to inform 3D fuel
properties (Fig. 5c). These properties would provide the necessary
inputs to parameterize fire behaviormodels (Fig. 5d), the outputs of
which could inform predictions of subsequent plant water and
carbon dynamics (Fig. 5a). Model representations of these postfire
physiological processes could then inform second-order fire effects
(Fig. 5e) through a process-based mortality model (e.g. Michaletz
& Johnson, 2008; Butler & Dickinson, 2010) and subsequent 3D
fuel properties (Fig. 5c). This approach will require parallel
advances in mechanistic modeling of whole-plant fire injury
processes to determine whether interacting injuries result in
ultimate recovery, mortality, or functional limitations (Hood
et al., 2018; B€ar et al., 2019), which will be essential to determining
subsequent fuel properties.

The individual plant (or within-plant) detail of this approach
will enable further exploration of the plant traits most critical to the
process of, and sensitivity to, heat transfer, allowing for
determination of scale-relevant parameters. A model sensitivity
approach varying plant physiological input parameters could be
used to define functional groupings, based on species traits
(response of tissue-level water and carbon to environmental
drivers) that influence fire behavior and effects, which may allow
for more generalized response functions to reduce computational
resource requirements for use at larger scales.

By directly linking combustion, physiological process, and fire-
injury plant-mortality models to hydrologic and plant succession
models in a spatially explicit way, this framework could potentially
be extended to simulate landscape-scale ecohydrology, and its
response to fire disturbance under present and future climate
conditions. By calculating transient heterogenous fuel moistures
and temperatures based on incident radiation, heat fluxes, and
topographic variation, this model extension could capture species-
(or functional type-) dependent responses to soil moisture at
different depths. Landscape-scale models of ecohydrology could
use available downscaled climate reconstructions and models and
spatially explicit maps of soil characteristics, topography, and
aspect (e.g. Thornton et al., 2014; Soil Survey Staff, 2022) to
simulate plant and fire response to landscape heterogeneity. This
would allow plant water and carbon to vary spatially, influencing

both fire behavior and vegetationmortality, which feedback to alter
hydrology and plant succession, influencing ecosystem trajectory
and response to subsequent fire disturbance. Such a framework
could also allow for exploration of the role of other natural
disturbance, alongside species composition and competitive
interactions, in determining fuel load and the likelihood of future
fire.

Another way to link fine-scale mechanistic models to coarser
scale outcomes is through metamodels and nested model design.
These techniques aim to find the crucial aspects of the
mechanism that would be propagated at a higher level of spatial
or temporal coarseness. Traditional or machine-learning meta-
models can emulate nonlinear processes at scales where
simulation would be unfeasible (Sparks et al., 2011; Huang
et al., 2016). These can be integrated into existing coarse-scale
models to propagate fine-scale understanding in a more
computationally efficient manner (Lu & Ricciuto, 2019). A
nested model design can allow for experimentation at relevant
scales of physiology and mechanism to constrain coarser models
or metamodels. For example, species trait-based functional types
of fire behavior and effects can be created and used at coarser
scales; while separately simulating component species at scales
relevant to physiology, combustion, or fire injury (Neilson
et al., 2005). Bayesian methods can further allow for integrating
multiple nested models with observational data to constrain the
performance of coarse-scale models along with the propagation of
uncertainty (Talluto et al., 2016).

V. Remote sensing of plant water and carbon to
inform process modeling

Remote sensing of vegetation exploits the biophysical links
between spectral information contained in the electromagnetic
radiation reflected or emitted from the earth’s surface and
vegetation state, function, and dynamics. Optical data have been
used to map LFMC using multispectral sensors at local (Marino
et al., 2020), continental (Yebra et al., 2018a), and global (Quan
et al., 2021) scales, producing mapping products at spatial
resolutions from tens to thousands of meters. Visible spectrum
reflectance is collected by many remote sensing platforms for
vegetation monitoring purposes; but alone is insufficient for the
prediction of LFMC. Addition of spectral data from the
shortwave infrared (SWIR) region of the electromagnetic
spectrum, currently collected by only a limited number of
platforms, increases the accuracy of optical LFMC estimations
(Yebra et al., 2018a). One challenge with direct optical estimation
of fuel moisture is that satellite and airborne platforms output
reflectance data as two-dimensional coverages. In forested areas,
these 2D data typically capture canopy conditions while
obscuring understory characteristics (Yebra et al., 2018b), which
are likely to differ widely from the overstory due to compositional
and physiological differences. Similarly, these data are con-
founded by the presence of clouds, which are transient, yet
exceedingly common, in many fire-frequent areas of the world.

Acknowledgment of these challenges has led to research on the
application ofmicrowave remote sensing for direct and indirect fuel
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moisture content estimation (Fan et al., 2018; Wang et al., 2019).
Typically, LFMC is estimated using radar-derived vegetation
optical depth, a proxy for vegetation water content (Moesinger
et al., 2020). Radar systems operate in themicrowave portion of the
electromagnetic spectrum and can penetrate cloud cover and the
upper canopy to detect the volume of liquid water in vegetation,
offering an advantage relative to optical data. Nonetheless, a
problem shared by direct microwave and passive optical measure-
ments of LFMC in forests is the discrimination of signals related to
the forest canopy, understory, surface litter, and soil (Gale
et al., 2021). Merging microwave and optical data is a promising
way forward. Rao et al. (2020) demonstrated that radar backscatter
observations (from Sentinel-1) directly enhanced LFMC predict-
ability in comparison with only using optical reflectance (from
Landsat-8) for foliar, herbaceous and fine woody fuels. However,
LFMC of denser woody fuels can only be estimated using longer
wavelengths (i.e. L-band radar; Tanase et al., 2015).

Despite these advances inmapping LFMC, little has been done to
provide independent measures of dry mass and water content in the
estimation of LFMC. To this end LMA (gm�2; also called dry
matter content for remote sensing applications) and equivalentwater
thickness (EWT, g m�2) are appropriate target traits for optical
sensing, capturing the effects of changing carbon allocation and
moisture, respectively.Detection of EWTusing optical sensors has a
strong physical basis because water absorbs near infrared and short-
wave infrared radiation (Yebra et al., 2013).At the leaf scale, variation
in LMA has a moderate influence on reflectance in the short-wave
infraredwavelengths (Feret et al., 2008) given the absorption features
of structural properties found in leaves (Curran, 1989). For example,
estimation of morphological and structural biochemical properties,
including LMA, using reflectance spectroscopy of dried leafmaterial
has been shown to be highly effective (e.g. Serbin et al., 2014).
However, the presence of water in hydrated leaves can make the
spectral estimation of dry matter content more challenging because
water absorptionmasks the contribution of drymatter to the spectral
response (Bowyer & Danson, 2004; Riano et al., 2005). Despite
these challenges, the estimation of LMA at leaf and canopy scales has
been shown to have reasonable accuracy using hyperspectral
instruments (Ely et al., 2019; Chlus et al., 2020; Kamoske
et al., 2021), likely due to covariance between EWT and LMA, as
well as between leaf-level functional properties and plant and canopy
growth form and structure (Ollinger, 2011). Radiative transfer
models have also been inverted using multispectral optical data to
simultaneously estimate LMA and EWT and, therefore, LFMC
(Yebra et al., 2013).

At smaller scales, techniques exist that allow for high-temporal
resolution vegetation carbon and water inventories. For instance,
novel spectroscopic approaches leveraging high-resolution spectra-
trait modeling (Serbin & Townsend, 2020; Burnett et al., 2021)
provide the opportunity to more directly link spectral signatures
with underlying physiology and plant condition (e.g. water and
carbon content) in 2D (e.g. Dahlin et al., 2013; Singh et al., 2015)
and 3D (Chlus et al., 2020; Kamoske et al., 2021). Likewise, dual-
wavelength lidar shows promise inmoisture content estimation due
to its ability to distinguish forest layers through ranging (Gale
et al., 2021). These approaches are currently not available on space-

based platforms, limiting spatial coverage. However, these systems
can be used together with ground-based systems (e.g. imaging
spectroscopy) to calibrate airborne and spaceborne hyperspectral
(e.g. EnMAP, Guanter et al., 2016; SBG, Cawse-Nicholson
et al., 2021; OzFuel, ANU Institute for Space, 2021), thermal
(ECOSTRESS, Anderson et al., 2021), and lidar (GEDI,
Rishmawi et al., 2021) missions.

While current remote sensing LFMC products lack immediate
predictive capability beneficial for fire management, they can be
used to improve next-generation process models directly (para-
meterization) or indirectly (benchmarking predictions). This will
lead to improved simulations of fire behavior and spread under
changing climate conditions. A challenge posed by the availability
of remote sensing data is ensuring integration of data fromdisparate
sources with existing databases for fuel characteristics and LFMC.
New ‘big’ data systems are needed for standardized fusion of
data and scalable dynamic updates to fuel data in a changing
environment.

VI. Conclusions and future directions

Fire behavior and effects are intrinsically associated with plant
physiology through water and carbon cycles. Integration of plant
water and carbon process models with fine-scale fire models will
allow for the representation of process-level feedbacks between fire
behavior and effects, enabling the use of virtual experiments to
explore vegetation responses to global change scenarios (increased
temperature and vapor pressure deficit, change in precipitation)
and resulting fire outcomes. Recent advances in remote sensing, in
combination with upcoming sensor deployments, will enable high-
resolution mapping of plant water and carbon status across regions
and seasons, providing parameterization and benchmarking for
next-generation models. Several areas are ripe for development
across the disciplines of plant physiology, fire modeling, and
remote sensing to fully enable these advances in understanding and
simulation of vegetation–fire interactions. Furthermore, while the
research presented here focuses on woody plants (trees and shrubs),
additional efforts are needed to understand the interactions
between climate, fire, and physiology of other vegetation types
that contribute to fire regimes (Knapp, 1985; D’Antonio &
Vitousek, 1992; Taylor et al., 2014; Simpson et al., 2016). Parallel
advances on all frontiers will be critical to meet the urgency of the
wildfire crisis.

With respect to fire behavior, we need to better understand the
impacts of plant carbon and water on heat transfer and their
interaction with fuel structure beyond the leaf scale. For fire effects,
more studies are necessary to disentangle the physiological impacts
of fire on tissue-level water and carbon status, along with
interactions across organs to enable scaling to whole plant function
and mortality (Hood et al., 2018; Michaletz, 2018; Kleynhans
et al., 2021). We need benchmark datasets of physiological
mortality mechanisms across organs, species, size class, life history,
geographic region, season, and under climate change scenarios
(Hood et al., 2018). New terrestrial lidar approaches for evaluating
fuels and fire effects that are based on structure and visual-spectrum
imagery may be a useful approach for determining these
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benchmarks and understanding vertical heterogeneity in fire
impacts on plant organs at these scales (Gallagher et al., 2021;
Pokswinski et al., 2021).

Fire model implementation needs to address the nonlinear
biophysical-processes of whole-plant heat transfer and resulting fire
behavior and effects based on dynamic physiology, including
refined fire-effects predictions stemming from an improved
understanding of mechanisms (Kleynhans et al., 2021). Advances
in machine learning can provide estimations of unknown process
and enhance computational efficiency but require us to understand
underlying processes and diagnose cases of overfitting. Directly
computingmany of these dynamicsmay be increasingly tractable as
computation progresses. We additionally need to understand how
the interaction among these dynamics affects fire and treemortality
at scales relevant to human decision-making. Using the inherent
advantage of each scale of fire models, nested model design can
work to incorporate new understanding at multiple scales (for
example, plant physiology, stand management of plant density,
landscape fire spread and suppression, and global carbon balance).
Developing and validating nested model designs will be crucial to
understand how each scale of organization influences the larger
scale of organization.

Advancements in model implementation require finer spatial
and temporal resolution observations of important processes to
fire behavior and effects. Concerning remotely sensed drivers, we
need to disentangle the numerous contributions to foliar
reflectance signatures, along with advanced techniques for
detection of subcanopy vegetation (Gale et al., 2021). Improved
spatial and spectral resolution will reduce uncertainty in
characterization of water and carbon status across regions and
seasons, and better statistical methods will make outcomes more
robust across larger areas and disparate biomes (Yebra
et al., 2013). Advancements in data reduction and/or model
ingestion will be needed to allow effective use of this higher
resolution data. Ground-based experiments and observations can
be used to better describe vegetation–fire interactions, and every
prescribed burn provides an opportunity for data collection and
model validation.

Nelson (2001) suggested that ‘the complexity of the task may
have precluded all attempts to develop a reasonably complete
physics- and physiology-based model’ of live fuel moisture. With
an increasing wealth of drought physiology research, the advent of
next-generation models, and new spaceborne sensor deployments
on the horizon, we are finally poised to tackle the problem of
providing a dynamic and mechanistic description of fire behavior
and effects through vegetation processes. Doing so will better equip
us and the ecosystemswe depend on to survive and thrive in a future
made uncertain by global change.
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