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Abstract

Forecasting invasive-pathogen dynamics is paramount to anticipate eradication and contain-
ment strategies. Such predictions can be obtained using a model grounded on partial differential
equations (PDE; often exploited to model invasions) and fitted to surveillance data. This frame-
work allows the construction of phenomenological but concise models relying on mechanistic
hypotheses and real observations. However, it may lead to models with overly rigid behavior
and possible data-model mismatches. Hence, to avoid drawing a forecast grounded on a single
PDE-based model that would be prone to errors, we propose to apply Bayesian model averaging
(BMA), which allows us to account for both parameter and model uncertainties. Thus, we pro-
pose a set of different competing PDE-based models for representing the pathogen dynamics, we
use an adaptive multiple importance sampling algorithm (AMIS) to estimate parameters of each
competing model from surveillance data in a mechanistic-statistical framework, we evaluate the
posterior probabilities of models by comparing different approaches proposed in the literature,
and we apply BMA to draw posterior distributions of parameters and a posterior forecast of
the pathogen dynamics. This approach is applied to predict the extent of Xylella fastidiosa in
South Corsica, France, a phytopathogenic bacterium detected in situ in Europe less than 10
years ago (Italy 2013, France 2015). Separating data into training and validation sets, we show
that the BMA forecast outperforms competing forecast approaches.

Keywords: Bayesian model-averaging; Importance sampling; Partial differential equations; Out-
break prediction; Xylella fastidiosa

1 Introduction

The emergence of exogenous pathogens in new territories may induce severe sanitary and socio-
economical crises. Mainly, such crises are reinforced by the eventual long delay between pathogen
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establishment in the new territory and its detection (Jones and Baker, 2004; Faria et al., 2014;
Soubeyrand et al., 2018). As this delay increases, the potential for pathogen expansion and the
resulting cost for pathogen eradication or containment generally increases. Hence, reconstructing
the past dynamics of the pathogen (Boys et al., 2008; Roques et al., 2016; Soubeyrand and
Roques, 2014) and predicting its future extent (Chapman et al., 2015; Peterson et al., 2003) are
key steps for understanding the pathogen epidemiology, designing eradication or containment
strategies and assessing their potential efficiency.

Partial differential equations (PDE) have been extensively used for modeling spatio-temporal
population dynamics (Skellam, 1951; Shigesada et al., 1995; Turchin, 1998; Okubo and Levin,
2002). PDE can precisely be used for past dynamics reconstruction and future extent prediction,
by exploiting their ability (i) to represent dynamics in a phenomenological and concise way, and
(ii) to be fitted to data by attaching a probabilistic model of observations within a state-space
modeling framework (the combination of (i) and (ii) corresponds to the so-called physical-
statistical or mechanistic-statistical approach; Berliner, 2003; Wikle, 2003; Roques et al., 2011;
Soubeyrand and Roques, 2014). To apply such an approach, the PDE is generally chosen to
be parsimonious for identifiability reasons (i.e., the ability to estimate its parameters given the
information contained in data). However, when left parsimonious, a PDE may not be proficient
in describing all the processes and sources of variability involved in epidemiological dynamics.
In addition, various structures of PDE are likely to be considered as candidate models for a
given epidemic. When the goal of the study is to draw predictions, the use of a single model
is prone to prediction error because this model may not have taken into account crucial drivers
of the dynamics. This limitation can be circumvented by associating random terms to the
PDE as proposed by Wikle (2003), or by considering a set of competing PDE-based models
and applying either a model selection strategy (Burnham et al., 1995) or a model aggregation
strategy (Hoeting et al., 1999).

As part of the model aggregation strategy, the Bayesian model averaging (BMA) approach
has been proposed by Leamer (1978) to reduce and account for parameter and model uncertain-
ties. This approach consists in performing a weighted average of candidate models in a Bayesian
way and hence combining multiple predictions and multiple estimations of shared parameters
(Raftery, 1996; Madigan and Raftery, 1994; Wintle et al., 2003). Theoretically, BMA provides
better average predictive ability, as measured by a logarithmic scoring rule, than using any sin-
gle model (Madigan and Raftery, 1994). Axiomatically, this result depends on the assumption
that the data are generated in the following stages (Fletcher, 2018): (i) a model is selected at
random from the set of candidate models using prior model probabilities, (ii) the parameter
values for this model are generated using the relevant prior distribution, and (iii) the data are
generated from the selected model and parameter values.

The BMA efficiency has been largely explored, in particular with respect to its theoreti-
cal properties (Rubin and Schenker, 1986; Madigan and Raftery, 1994), leave-one-out predictive
performance (Madigan et al., 1995; Lamon and Clyde, 2000) and numerical performance (George
and McCulloch, 1993; Viallefont et al., 2001). While BMA is an intuitively attractive solution
to the problem of accounting for model uncertainty, it presents several difficulties related to its
numerical implementation (Hoeting et al., 1999). By dint of some pioneering work implement-
ing BMA (Madigan and Raftery, 1994; Raftery, 1996), this approach has then been applied in
numerous study domains such as medicine (Oehler et al., 2009), ecology (Wintle et al., 2003),
meteorology (Raftery et al., 2005), genetics (Yeung et al., 2005), economical and political sci-
ences (Sidman et al., 2008), engineering and physical sciences (Parkinson and Liddle, 2013) and
epidemiology (Viallefont et al., 2001). Despite ample literature on BMA and its usefulness, it
has been marginally applied in the context of predictive epidemiology.

In this article, we investigate the application of BMA in the context of pathogen-dynamics
prediction using PDE-based models and we want to test its efficiency on a real case study. The
models are grounded on a family of reaction-diffusion equations, some of which include spatially
heterogeneous diffusion and reproduction terms. Our aim is to compute, from post-introduction
data, the BMA posterior distribution of a certain quantity of interest ∆, which is typically the
introduction time or location of the pathogen or its future spatial extent. Following Abboud
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et al. (2019), we apply to each model the Adaptive Multiple Importance Sampling algorithm
(AMIS; Cornuet et al., 2012) for providing an empirical approximation, obtained via a weighted

sample {∆n,wn}Nn=1 of sizeN , of the posterior distribution of ∆ given the specified model. Then,
for drawing BMA posterior samples of ∆, we compute posterior probabilities of models using
different approximations of the integrated likelihood that have been proposed in the literature.
Namely, we compare an estimator of the integrated likelihood, which is easily obtained by
averaging AMIS un-normalized importance weights (Bugallo et al., 2015), to estimators of the
integrated likelihood grounded on information criteria (McElreath, 2018), as well as harmonic
mean estimators (Raftery, 1996; Gelfand and Dey, 1994).

This approach is first tested on simulated data and then applied to make predictions concern-
ing the dynamics of the phytopathogenic bacterium Xylella fastidiosa (Xf) in South Corsica,
France. This quarantine pathogen in Europe has significantly impacted olive production in
Puglia, Italy, and presents a drastic risk of environmental degradation due to its ability to reach
a large variety of plant species. It is currently present in a large part of Corsica island and
more marginally in Southern mainland France (Denancé et al., 2017a; Soubeyrand et al., 2018;
Martinetti and Soubeyrand, 2019). Xf might cause a major sanitary crisis in France, as the one
caused in Italy since 2013 where the socio-economical impacts are considerable due to the death
and felling of numerous olive trees in Puglia. In the case of South Corsica, spatio-temporal and
presence-absence post-introduction surveillance data were collected from an intensive surveil-
lance plan implemented by governmental agencies after the first in situ detection of Xf in 2015
in the city of Propriano. These data covering about three years and a half are separated into a
training set (nearly 2 years) used for fitting the models and a validation set (nearly 1.5 years)
used for comparing the forecasts obtained with BMA, the best PDE-based model (i.e., the
model with the largest posterior model probability computed in the BMA procedure), an en-
semble approach (i.e., the equiprobable average of all the PDE-based models parameterized by
the maximum likelihood estimates) and two data-oriented prediction strategies not grounded
on PDE.

The paper is organized as follows: Data are briefly described in Section 2. The competing
models coupling a partial differential equation and a Bernoulli observation process are presented
in Section 3. The Bayesian model averaging technique is described in Section 4. The simula-
tion study is presented in Section 5. Results obtained from surveillance data for Xf in South
Corsica are detailed in Section 6 where we specifically focus on model comparison, parameter
inference and out-of sample predictive performance. Finally, Section 7 provides a conclusion
and a discussion of perspectives.

2 Surveillance data with presence-absence records

In this article, we analyze spatio-temporal presence-absence data collected in South Corsica,
France, and informing if sampled plants are positive or negative to Xf based on a molecular
test. Data have been collected since the first detection of the bacterium in the study region
in July 2015. Between July 2015 and January 2019, approximately 9500 plants were sampled,
among which 900 have been diagnosed as infected with a real-time polymerase chain reaction
(real-time PCR) technique (Denancé et al., 2017b). GPS coordinates, sampling dates and
sanitary statuses (healthy/infected) are available for all the sampled plants. Spatial locations
and sanitary statuses at the sampling times are shown in Figure 1, left.

As for other bacteria, the growth and mortality of Xf are affected by various environmental
variables such as habitability of the environment, nutrients, climatic conditions and availability
of dissemination means (typically, insect vectors). In this study, to account for spatial het-
erogeneity in the diffusion and the reproduction regimes of the epidemics, we use temperature
data to divide the spatial domain denoted by Ω into two complementary and non-overlapping
sub-domains, and different diffusion and growth terms are applied to the two sub-domains. We
exploit a freely available database (PVGIS © European Communities, 2001–2008) providing,
in particular, monthly averages of the daily minimum temperature reconstructed over a grid
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with 1×1km spatial resolution (Huld et al., 2006); these monthly averages correspond to the pe-
riod 1995-2003, which is between the probable introduction around 1960 of Xf in South Corsica
(Soubeyrand et al., 2018) and the observation window starting in 2015. We use these data to
build the average of the daily minimum temperature over January and February, say T (x) for
any location x; see Figure 1, right. Average daily minimum temperature in Winter is known
to be a crucial factor for the presence or abundance of Xf (Anas et al., 2008; Martinetti and
Soubeyrand, 2019).

Remark. In this work we divide the spatial domain based on a static assessment of winter
temperatures. This allows us to take into account a relatively large spatial heterogeneity of the
environment since the winter temperature, as we defined it, ranges from -0.7◦C in the coldest
area of South Corsica to 6.8◦C in its warmest area. Ideally, we should also take into account
the annual variability of winter temperatures and eventual other environmental variables in the
dynamic process, as proposed by Botella et al. (2022) for instance. Such data may be obtained
from a data base such as WorldClim (https://worldclim.org/) at the 1×1km resolution that
we consider here.

3 Competing models

Here, a set of models based on parabolic partial differential equations is used to describe
pathogen dynamics at large spatial scales. As explained in the introduction, these models have
been extensively used to represent population dynamics in a phenomenological and concise way,
and can be fitted to data in a hierarchical modeling setting incorporating a probabilistic model
of observations. In this section, we propose a family of mechanistic models and we present the
model for the observation process.

3.1 Family of mechanistic models

We introduce a discrete family M = {Mi(T̃ ) : 0 ≤ i ≤ I; T̃ ∈ T } of models governing the
probability u(t,x) of a host located at site x = (x1, y1) ∈ Ω to be infected (i.e., sick because of
the pathogen under consideration) at time t, where I ∈ N∗ and T is a finite collection of real
values. The label i refers to a model structure, i.e. a specific form for the parabolic PDE. The
label T̃ refers in our application to a temperature threshold, which splits the spatial domain
into two sub-domains where diffusion and growth terms may be different. The generic form of
models in family M satisfies:

∂u

∂t
= ∆(DiT̃ (x)u) + fiT̃ (u), t ≥ τ0, x ∈ Ω,

∇(DiT̃ (x)u(t,x)).n(x) = 0, t ≥ τ0, x ∈ ∂Ω,

u(τ0,x) = u0(x), x ∈ Ω,

(1)

where the first line is the reaction-diffusion equation, the second line gives boundary conditions,

the third line gives initial conditions, ∆ =
∂2

∂x21
+

∂2

∂x22
is the 2-dimensional diffusion operator

of Laplace, and ∇ =
∂

∂x1
+

∂

∂x2
is the 2-dimensional gradient operator.

The diffusion coefficient DiT̃ (x) may be spatially heterogeneous and is defined as a spatial

regularization of diT̃ (x) =
∑2

k=1DiT̃ k1(x ∈ ΩT̃ k), ∀i ≤ I, ∀T̃ ∈ T , where x 7→ 1(x ∈ ΩT̃ k) is
the indicator function taking the value 1 if x ∈ ΩT̃ k and 0 otherwise, and the sub-domains ΩT̃1

and ΩT̃2 are defined by thresholding the spatial function T , with the threshold value T̃ such

that: ΩT̃1 = {x ∈ Ω : T (x) > T̃} and ΩT̃2 = {x ∈ Ω : T (x) ≤ T̃}. In our application, T is
a measure of temperature in winter, ΩT̃1 is the warm region of Ω, and ΩT̃2 the cold one. If
DiT̃1 = DiT̃2, then the diffusion coefficient is spatially homogeneous. The spatial regularization
is required for the existence and the uniqueness of a classic solution u(t,x) of Equation (1); see
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Roques (2013). Thus DiT̃ is defined as:

DiT̃ (x) = 1(x ∈ Ω)

∫
R2

φ(x− y)diT̃ (y)dy, ∀x ∈ Ω, (2)

where φ is the normal regularization kernel: φ(x) =
1

2πV
exp

(
−‖x‖

2

2V

)
, and the transition

speed V has to be tuned to approach more or less the piecewise constant function diT̃ . In other
words, DiT̃ locally smoothes the step function diT̃ around the transition border between the
two subdomains with a bandwidth determined by V.

The reproduction term may also be either spatially heterogeneous or not. In the homoge-
neous case, we consider a logistic growth

fiT̃ (u) = bu
(

1− u

K

)
, (3)

where b is the intrinsic growth rate of the epidemic and K ∈ (0, 1] is a plateau for the probability
of infection (i.e., an analog to the carrying capacity of the environment). With such a repro-
duction term, the growth is nearly exponential when u is small, and the growth rate is around
zero when u reaches the plateau K, which gives the maximum prevalence of the pathogen in
the environment. In the heterogeneous case, the growth is logistic in ΩT̃1 (i.e., warmest areas)
and negative in ΩT̃2 (i.e., coldest areas), mimicking a source-sink dynamics:

fiT̃ (u) = bu
(

1− u

K

)
1(x ∈ ΩT̃1)− αu1(x ∈ ΩT̃2), ∀T̃ ∈ T , (4)

where α is the decrease rate of the infection in ΩT̃2. Thus, the pathogen is affected by two
contradictory forces in the cold region: it is forced to decline with the rate α but may be at the
same time reinforced by the sources of infection located in the warm region.

In the application, we will consider three model structures:

• M0(T̃ ), under which DiT̃1 = DiT̃2 and fiT̃ satisfies Equation (4), i.e. homogeneous
diffusion but heterogeneous growth, like in Abboud et al. (2019);

• M1(T̃ ), under which DiT̃1 6= DiT̃2 and fiT̃ satisfies Equation (4), i.e. heterogeneous
diffusion and growth;

• M2(T̃ ), under which DiT̃1 6= DiT̃2 and fiT̃ satisfies Equation (3), i.e. heterogeneous
diffusion, but homogeneous growth.

The second equation in System (1) corresponds to the homogeneous Neumann condition on
the boundary ∂Ω of Ω (i.e. with reflection on the boundary). This condition is formalized by
setting that the gradient of the spatial function x 7→ DiT̃ (x)u(t,x) is orthogonal to the outward
normal vector n(x) at point x on the boundary ∂Ω, for all t ≥ τ0. Thus, physically, there is
neither outward nor inward flux from and to Ω.

The spatial function u0 models the introduction of the pathogen in the study domain at
time τ0 ∈ R. Following Abboud et al. (2019), the introduction represents the initial phase of the
outbreak corresponding to the arrival of the pathogen and its local establishment. Thus, u0 is
not expressed as a Dirac function but as a kernel function centered around the central point of
the introduction x̃0 = (x̃0, ỹ0) ∈ Ω. More precisely, the probability of a host at x to be infected
at τ0 satisfies:

u0(x) = P0 exp

(
−‖x− x̃0‖2

2σ2

)
, (5)

where P0 is the infection probability at (τ0, x̃0), σ2 =
r20
q , q is the 0.95-quantile of the χ2

distribution with two degrees of freedom, and r0 is the radius of the kernel. Thus, at τ0, if we
neglect border effects, 95% of the infected plants are located within the ball with center x̃0 and
radius r0.
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With these initial and boundary conditions, the equation system (1) is well-posed (Evans,
1998) and, by constraining P0 in [0,K], the principle of parabolic comparison (Protter, MH and
Weinberger, HF, 1967) implies that the solution of (1) remains in the interval [0,K].

3.2 Probabilistic model of the observation process

Let tj ∈ R denote the sampling time of host j ∈ {1, . . . , J}, J ∈ N∗, xj ∈ Ω its location and

Yj ∈ {0, 1} its observed sanitary status at tj (1 for infected, 0 for healthy). Given u, Mi(T̃ )
and {(tj ,xj) : 1 ≤ j ≤ J}, the sanitary statuses Yj , j ∈ {1, . . . , J}, are independent random
variables following Bernoulli distributions with success probabilities u(tj ,xj):

Yj | u,Mi(T̃ ), {(tj ,xj) : 1 ≤ j ≤ J} ∼
indep.

Bernoulli(u(tj ,xj)), (6)

where u depends on the model Mi(T̃ ) and its vector of parameters ΘiT̃ .
Remark. This data model was proposed in Abboud et al. (2019) for its simplicity. It could be

refined to account for sampling errors classically encountered in epidemiology, e.g. false-positive
and false-negative observations, as well as spatial and temporal dependencies not accounted for
in the process model.

4 Bayesian model averaging

4.1 Principle

Briefly, the BMA consists in estimating the expectation of the posterior distributions of the
variable of interest ∆ provided under all the competing models and weighted by the posterior
model probabilities (Raftery, 1996; Hoeting et al., 1999). In the modeling setting introduced
above, ∆ is typically a vector of shared parameters such as the introduction point (x̃0,τ0), the
temperature threshold T̃ or the spatial probability of infection u over a future period. Using
Gelfand’s bracket notation for probability distributions (Gelfand and Smith, 1990), the BMA
posterior distribution of ∆ given training data Y satisfies:

[∆|Y ] =
∑

0≤i≤I,T̃∈T

[∆|Y,Mi(T̃ )]× [Mi(T̃ )|Y ]. (7)

The posterior model probability of Mi(T̃ ) is:

[Mi(T̃ )|Y ] =
[Y |Mi(T̃ )]× [Mi(T̃ )]∑

0≤i′≤I,T̃ ′∈T
[Y |Mi′(T̃ ′)]× [Mi′(T̃ ′)]

. (8)

The integrated likelihood [Y |Mi(T̃ )] ofMi(T̃ ), which may be a complex integral depending on
the dimension of the unknowns and eventual dependencies, satisfies:

[Y |Mi(T̃ )] =

∫
[Y |Θ,Mi(T̃ )]× [Θ|Mi(T̃ )]dΘ. (9)

where Θ is the vector of parameters of Mi(T̃ ), [Y |Θ,Mi(T̃ )] is the likelihood under Mi(T̃ ),
[Θ|Mi(T̃ )] is the prior distribution of Θ under Mi(T̃ ), and [Mi(T̃ )] is the prior probability
of Mi(T̃ ). The posterior mean of ∆ is a weighted average of the posterior means under the
competing models:

E[∆|Y ] =
∑

0≤i≤I,T̃∈T

[Mi(T̃ )|Y ]× E[∆|Mi(T̃ ), Y ]. (10)
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The posterior variance is expressed as follows:

V[∆|Y ] =
∑

0≤i≤I,T̃∈T

[Mi(T̃ )|Y ]×

(
V[∆|Mi(T̃ ), Y ] +

(
E[∆|Mi(T̃ ), Y ]− E[∆|Y ]

)2
)
. (11)

4.2 Implementation

The BMA-posterior distribution of ∆ is computed from the following two-step process: First,
we compute the posterior distribution of ∆ given model Mi(T̃ ) and training data Y for all
i ∈ {1, . . . , I}; Second, we compute the posterior model probabilities.

4.2.1 Approximation of the posterior distribution of ∆ given a modelMi(T̃ )

For any mechanistic-statistical model defined in Section 3, neither the posterior distribution nor
the likelihood can be expressed analytically, especially because they depend on the solution u
of the PDE that cannot be written in a closed form. Thus, following Abboud et al. (2019), we
use the adaptive multiple importance sampling algorithm (AMIS; Cornuet et al., 2012), that
consists of successively generating parameter vectors under an adaptive proposal distribution
and assigning / updating weights for the parameter vectors. To design efficient importance
sampling algorithms, the auxiliary proposal distribution should be chosen as close as possible to
the posterior distribution. However, the posterior distribution being unknown, the crucial choice
of the proposal is a difficult task (Gelman et al., 1996). The main aim of AMIS is to overcome this
difficulty by tuning the coefficients of the proposal distribution picked from a parametric family
of distributions, generally the Gaussian one, at the end of each iteration. In this framework,
at each iteration, new coefficient values for the proposal distribution are determined using the
current weighted posterior sample, then the posterior sample is augmented by generating new
replicates from the newly tuned proposal distribution and the weights of the cumulative posterior
sample are updated. The AMIS algorithm provides a weighted posterior sample {(∆l

m, w
l
m) :

1 ≤ m ≤ M, 1 ≤ l ≤ L} of size ML, which forms an empirical approximation of the posterior
distribution [∆|Y,Mi(T̃ )] (m stands for the iteration; l stands for the replicate generated at
iteration m). Conditions leading to the convergence in probability of the posterior mean of any
function (integrable with respect to the posterior distribution) of the parameters are described
in Cornuet et al. (2012) and Marin et al. (2019), and are satisfied in our case (Abboud et al.,
2019).

We implemented the AMIS algorithm in the R statistical software, with calls to the software
Freefem++ for numerically solving the PDE in the mechanistic-statistical environment (MSE;
https://informatique-mia.inrae.fr/mse/). We performed parallel computation to compen-
sate for the non-negligible time of PDE resolution. With (M,L) = (50, 104) (which ensured the
stabilization of the posterior samples using the deviation measure described by Abboud et al.,
2019) and the use of 100 cluster cores (the cluster being composed of 40-cores nodes Xeon(R)
2.2 Ghz, 228 Go RAM), the estimation procedure for one model takes approximately 1.75 days
in average. Unlike the MCMC algorithm that is often used in the mechanistic-statistical frame-
work (Soubeyrand and Roques, 2014; Lanzarone et al., 2017), AMIS, as a purely Monte Carlo
algorithm, can be easily parallelized, its tuning parameters are automatically adapted at each
iteration, and all the samples generated throughout the algorithm are recycled thanks to the
update of weights at each iteration. The AMIS algorithm provides at each iteration an assess-
ment of the posterior distribution of parameters, which is expected to be stable after a burn-in
period and to converge to the true posterior distribution.

4.2.2 Computation of the integrated likelihood

Computing the posterior model probability requires the evaluation of the integrated likelihood
as shown in Equation (8). Various methods to estimate the integrated likelihood (that is not
analytically tractable in our case) are encountered in the literature. In this article, we briefly
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assess several of these methods with respect to their impact on BMA predictions. Nine inte-
grated likelihood estimators, described in Online Resource 1, Section S1, are considered: the
un-normalized weight estimator denoted by UWE (Bugallo et al., 2015), the estimator based
on an information criterion (McElreath, 2018) of which we consider six different specifications
denoted by WAIC1, WAIC2, BIC, DIC1, DIC2 and IC, and the harmonic mean estimator (New-
ton and Raftery, 1994; Gelfand and Dey, 1994) of which we consider two specifications denoted
by HME1 and HME2.

4.2.3 Priors and posterior samples

For the applications, we assume as a prior knowledge that the models are equally weighted.
Because several model structures with different sets of parameters are considered, the prior
distribution of Θ partly depends on the model structure. These distributions combine vague
uniform and Dirac distributions (Dirac distributions are considered for r0 and p0 for identifiabil-
ity issues) and are provided in Online Resource 1, Section S2. AMIS is then applied to obtain a
weighted posterior sample of size ML = 5×105 for each candidate model; see Section 4.2.1. Pos-
terior model probabilities, empirical approximations of BMA posterior distributions and other
posterior quantities (including predicted infection maps) were approximated by sampling with
replacement 104 models×parameters with respect to model and parameter weights.

5 Application to simulated data

We perform a simulation study to illustrate the heterogeneity in the predictive performance of
the inference approach (by focusing on the posterior model probabilities) when one considers
the different methods presented in Section 4.2.2 for computing the integrated likelihood.

The simulation study is carried out by generating three different data sets {O(g) : g =

1, 2, 3} = {(tj ,xj , Y
(g)
j ) : 1 ≤ j ≤ J} from two different generative models. The simulations

are performed by using characteristics of real data analyzed in the next section: we use the
same spatial domain Ω, observations locations xj and observation times tj and, for most of the
parameters, we use values close to parameter estimates obtained in the next section. The two
models that we consider are M0(5.5), in which the diffusion is homogeneous (D1 = D2), and
M1(5.5), in which the diffusion is heterogeneous. For the latter model, we consider two cases:
D2 = 0.9D1 and D2 = 0.1D1. Table S1 in Online Resource 1 summarizes model specifications
and provides parameter values. Figures S1–S3 in Online Resource 1 display the posterior map
of the introduction location and the marginal posterior distributions of the other parameters
when the true model is fitted to data. We can observe that the true parameter values are all in
their respective 95% credible intervals.

The relevancy of each approach for computing posterior model probabilities is assessed by
fitting the two models M0(5.5) and M1(5.5) to the three simulated data sets and by checking,
for each data set, whether the true model has the largest posterior probability. Both candidate
models M0(5.5) and M1(5.5) have equal prior weights. Posterior model probabilities provided
in Table 1 are computed with each of the nine estimators of the integrated likelihood listed in
Section 4.2.2. Only posterior model probabilities estimated from UWE, HME2, WAIC1 and
WAIC2 are consistent in the sense that the true model has the largest posterior probability.

In the real case study presented below, we use the estimator grounded on un-normalized
weights (UWE) because it is considered as one of the most efficient approaches for assessing
the integrated likelihood, displaying desirable convergence properties (Ford and Gregory, 2007),
and because, from a practical viewpoint, it is easily obtained from AMIS output.

6 Application to Xylella fastidiosa data
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6.1 Model Comparison

In the analysis of Xylella fastidiosa (Xf) data in South Corsica, we first compare the 27 models
under consideration (the three model shapes presented in Section 3 times nine temperature
thresholds, from 4◦C to 6◦C every 0.25◦C). The models are fitted to training data consisting
of all the samples from July 2015 to April 2017 (subsequent data from May 2017 to January
2019 are used for assessing predictive performance of diverse forecast approaches in Section 6.3).
The stabilization of AMIS assessed as in Abboud et al. (2019) is satisfactory for all models (see
Online Resource 1, Figure S4 for an example). Posterior model probabilities are provided in
Online Resource 1, Table S2, for the computation based on UWE as well as for the computations
based on the other approximation approaches. Regarding the best model, UWE and HME2 lead
to M0(4.75) (homogeneous diffusion but heterogeneous growth with a temperature threshold
equal to 4.75◦C), DIC1 and IC lead toM0(5.75) and the others lead toM1(5.75) (homogeneous
diffusion and growth). Thereafter, we only analyze results obtained with UWE, as explained
in Section 5. Overall, models with the largest posterior probabilities computed from UWE are
M0 and M1 with temperature thresholds from 4.75◦C to 5.5◦C.

6.2 Inference from BMA

BMA posterior distributions of shared parameters (the temperature threshold, the introduction
time and the introduction location) are displayed in Figures 2 and 3. Figure 2 illustrates an ad-
vantage of BMA since one obtains a posterior distribution for the temperature threshold instead
of the unique value obtained by Abboud et al. (2019) with a model selection approach. The
introduction of Xf tends to be relatively ancient but uncertain (posterior mean: 1956; posterior
median: 1954; posterior SD: 15 years; 95%-posterior interval: [1933;1988]). The inference of
the introduction date provided by the best model is slightly less variable (posterior mean: 1958;
posterior median: 1957; posterior SD: 14 years; 95%-posterior interval: [1934;1986]). A larger
difference in estimation uncertainty arises for the introduction location, which is more uncertain
in the BMA inference than, for instance, in the inference resulting from the model selected by
Abboud et al. (2019, Fig. 6). The BMA estimation possibly better reflects the uncertainty
about the introduction location than a single-model estimation.

6.3 Forecast performance

We assess forecast performance by considering different in-sample predictors trained over the
period from July 2015 to April 2017 (8152 observations) and evaluated over the period from
May 2017 to January 2019 (1523 observations). We consider five in-sample predictors:

• Best model: the posterior mean of u computed and averaged over the period May 2017–
January 2019, which is provided by the best model selected from and fitted to training
data (the best model is the model with the highest posterior model probability given by
Equation (8));

• BMA: the posterior mean of u computed and averaged over the period May 2017–January
2019, which is provided by BMA applied to training data;

• Ensemble: the mean of the 27 maximum likelihood estimates (MLE) of u computed and
averaged over the period May 2017–January 2019 obtained under the 27 models, where
the MLE of u corresponds for each model to the parameter vector simulated in the AMIS
algorithm leading to the largest likelihood value;

• Climatology: the so-called climatology forecast (Mason, 2004), which is simply the mean
of {Yj : tj ∈ [July 2015–April 2017]};

• Kernel smoother: the spatial kernel smoother of {(xj , Yj) : tj ∈ [July 2015–April 2017]},
using the Epanechnikov kernel, which is proportional to d 7→ (1 − d2)1(|d| ≤ 1), where d
is the geographical distance scaled by a bandwidth value ranging from 2.5 to 25km. We
assume that the kernel smoother predicts 0 if no observations are available within the
bandwidth.
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The in-sample forecasts are computed over a regular square grid with 1km×1km cells covering
Ω and are compared to several benchmark out-of-sample forecasts computed over the same grid
and offering different visions of the true sanitary situation between May 2017 and January 2019.
Two types of out-of-sample forecasts are considered:

• Local infection proportions: the raw mean of Yj observed in each grid cell from May 2017
to January 2019. Sampling over the validation period was made in a limited number of grid
cells mostly distributed near the shoreline. In particular, areas with very low infection risk
based on earlier observations were not sampled (typically high altitude areas). Hence, to
better represent the sanitary situation across space in the validation map, we augmented
the set of grid cells where local infection proportions could be computed as raw means of
Yj with a set of grid cells where local infection proportions were fixed at zero. This set,
displayed in Figure S5 in Online Resource 1, was constructed by identifying grid cells far
from past detections of Xf and far from observations during the validation period, that is
to say grid cells satisfying two conditions: (i) no infection observed in training data up to
10 km; (ii) no observation in validation data up to 10 km.

• Smoothed infection proportions: the spatial kernel smoother of validation data, i.e. {(xj , Yj) :
tj ∈ [May 2017–January 2019]}, computed at each grid cell center. Here also, the smoother
is grounded on an Epanechnikov kernel with bandwidth values ranging from 2.5 to 25km,
and it predicts 0 if no observations are available within the bandwidth.

The motivation for considering as benchmarks the smoothed infection proportions with varying
bandwidths (in addition to the raw local infection proportions) is that we want to assess the
ability of the competing predictors to forecast infection probability at different spatial scales.

Thus, Figure 4 shows the benchmark out-of-sample predictions consisting of the local infec-
tion proportions and the smoothed infection proportions obtained with the 15km-kernel band-
width (top right box), and the five in-sample predictions (as well as posterior standard deviations
of u for the best model and the BMA; bottom box). Figures S6 and S7 in Online Resource 1
display the same plots for a kernel bandwidth equal to 5 and 25km, respectively (only the in-
and out-of-sample smoothers are different in these figures). Overall, the best model, the BMA,
the ensemble and the kernel smoother provide spatially heterogeneous predictions that may be
relevant but a quantitative assessment of the prediction quality is needed to finely compare the
predictions (see the paragraph below). Furthermore, like for the estimation of the introduction
location, BMA yields a clearly more uncertain inference of the infection probability u across
space than the best model.

The root-mean-squared error (RMSE) with respect to each benchmark out-of-sample forecast
is computed to measure the predictive performance of the BMA, the best model, the ensemble,
the climatology and the kernel smoothing, i.e. to measure how close are the forecasts to the
true sanitary situation between May 2017 and January 2019. This quantity is calculated over
the regular square grid with 1km×1km cells already introduced above:

RMSE =

√√√√ 1

H

H∑
h=1

(ˆ̄uh − ūh)2,

where ˆ̄uh is the average (in time and space) prediction of u in grid cell h over May 2017–January
2019 provided by one of the predictors; ūh is either the local infection proportion in grid cell h
over the validation period or the average (in time and space) of u in grid cell h provided by the
spatial kernel smoother with bandwidth b > 0 applied to validation data (where b ranges from
2.5 to 25 km); H is the number of grid cells.

Figure 5 shows the RMSE values for the five in-sample forecast approaches and a kernel
bandwidth ranging from 2.5 to 25km. Looking only at the comparison with the raw local
infection proportions over the validation period (red symbols), the BMA outperforms the other
approaches (best model, ensemble, climatology and kernel smoother whatever the bandwidth).
The same holds true when one compares the competing in-sample forecasts to the out-of-sample
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predictions computed as smoothed infection proportions obtained with different bandwidths
(black symbols). The climatology, which predicts the same infection probability everywhere,
obviously does not account for the major spatially-structured effect of cold temperatures in
winter on Xf reproduction or propagation. For small bandwidths, the high probability areas
identified by the kernel smoother applied to training data and to validation data are spatially
close but do not exactly coincide. In contrast, the quite smooth predictions based on the
BMA, the best model and the ensemble do not predict peaks of infection as observed in the
out-of-sample forecast but correctly delineate regions where these peaks can arise. When the
bandwidth is large, the out-of-sample forecast tends to a very smooth function that even yields
significant positive infection probabilities in regions where Xf reproduction or propagation is
hampered (i.e. cold regions in winter). This bias incorporated in what we called a vision of the
true sanitary situation is also encountered in the in-sample forecast based on kernel smoothing
(and to some extent in the climatology that can be considered as a kernel smoothing with very
large bandwidth). This bias partly explains the improvement of the prediction ability of the
kernel smoothing and the climatology when the bandwidth increases. However, even for large
bandwidths, the BMA prediction is better.

7 Discussion

We have presented how to use Bayesian model averaging (BMA) to infer and predict pathogen
dynamics from multiple candidate PDE-based models, with an application to Xylella fastidiosa.
This approach has a large potential of application in epidemiology where compartmental models
based on ordinary or partial differential equations are widespread and often used to forecast
epidemics as illustrated during the current COVID-19 pandemic (e.g., see Bertozzi et al., 2020;
Kissler et al., 2020; Roques et al., 2020, among many other references). BMA is a valuable
approach to compensate for the supposed lack of flexibility of such deterministic models. BMA
can also be exploited for model selection, using the posterior model probabilities to identify the
best model. However, we have tested nine methods proposed in the literature to compute these
probabilities and we obtained rather heterogeneous results (even if only 3 models out of 27 were
identified as the most probable models by the nine methods). We chose the computation based
on un-normalized weights calculated within the importance sampling algorithm. This natural
choice appears to be efficient in our application (it led to a BMA-forecast clearly better than the
best-model-forecast and the ensemble-forecast), but further work is required to provide robust
advises for computing model weights in BMA.

The model-averaging framework that we describe in this article may be used for a broad range
of applications not limited to pathogen invasion dynamics. It may especially be applied to predict
more general population dynamics (invasive or not) by adapting (i) the competing PDE-based
models to the species dynamics and (ii) the observation-process model to the available data. For
instance, the model-averaging framework may be adapted to studies in which PDEs were fitted
to data concerning the population dynamics of insects (Ovaskainen et al., 2008; Roques et al.,
2011), birds (Wikle, 2003), terrestrial mammals (Louvrier et al., 2020) and marine mammals
(Williams et al., 2018). The framework is not limited to PDE-based phenomenological models:
other relatively concise model formalisms may be used, such as those discussed for plant, animal
and pathogen dynamics by Pyšek and Hulme (2005), Schurr et al. (2012), Leitner and Kühn
(2018) and Roques and Soubeyrand (2023), even if the additional flexibility eventually offered
by alternative models might be an issue depending on the information brought by data. If
such a case occurs, the model averaging approach may however allows the analyst to reduce
estimation difficulties by simplifying a comprehensive model (affected by identifiability problems)
into multiple partial models (less prone to identifiability problems), which are fitted to data
independently and then combined to draw probabilistic predictions. To illustrate this proposal,
consider a situation where one aims to infer the dynamics of a species (typically a plant species)
with multiple possible dispersal vectors (e.g., rivers, winds, animals and humans). If fitting a
comprehensive model accounting for all the dispersal vectors leads to identifiability problems,
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one may fit partial models instead (each of them taking into account a single dispersal vector),
and combine these models with BMA to draw predictions, to infer the relative contribution of
each dispersal vector, and even to test hypotheses about them (Bartoš et al., 2021). Although
appealing, this proposal should be tested with caution: considering a single dispersal vector
in a model might lead to biased estimation of the effect of this vector, and might require an
informative prior to avoid this bias.

Concerning the emergence and spread of Xylella fastidiosa, we obtained consistent results
with previous studies. Thus, our estimation of the introduction date around 1956 [1933; 1988]
is consistent with the phylogeny-based estimation (1971 [1924; 1994]) for the sequence type 7 of
Xf provided by Dupas et al. (2023) and the estimation of Soubeyrand et al. (2018) based on
a stochastic temporal model including a hidden host compartment (1985 [1978;1993]). Dupas
et al. (2023) mention “a period of massive introduction of exotic plants, particularly in Corsica”,
starting around the 70’s, that supports their estimation, referring to Jeanmonod and Natali
(1997) — this statement relies on the credible assumption that the introduction of Xf in an
isolated disease-free territory can occur via the introduction of infected plants. Jeanmonod and
Natali (1997) indeed estimated a rather constant and high rate of introduction of exotic plant
taxa in Corsica from 1970 to 1997: around 50 taxa per decade. In contrast, from 1840 to 1970,
this rate was estimated to be around 20 taxa per decade, which is clearly lower, but might be
sufficient to favor the introduction of Xf in Corsica. A more in-depth analysis of the introduced
plant species, with regard to those which are recognized as hosts of Xf, deserves to be carried
out to evaluate the different estimates of the date of introduction. By the way, such an analysis
could be exploited to propose a more informative prior of the introduction date in our Bayesian
approach. The introduction location, which likely took place in the region of Ajaccio (West
coast of Corsica), is consistent with the estimation provided by Abboud et al. (2019), but the
application of BMA is expected to better reflect the uncertainty about this location. In addition,
BMA provides a posterior distribution for the threshold in winter temperature that includes the
threshold identified by Abboud et al. (2019) via a model selection procedure.

Based on the ample literature on model averaging and its benefits, we expected improved
predictions and more realistic uncertainty estimation (Hoeting et al., 1999; Wintle et al., 2003).
Precisely, in the Xf case study, BMA outperforms the best model in terms of prediction, and
credibility intervals provided by BMA are larger than those provided by the best model. This
observation could reflect the fact that BMA succeeds in better assessing model uncertainty and
avoids overconfidence in the estimations and the predictions. However, for firmly confirming
this result, complementary studies should be conducted to assess the calibration of credibility
intervals.

As illustrated by the analysis of Xf data, the deterministic candidate models summarized by
Equations (1–5) and describing the dynamics of the pathogen capture, overall, the discrepancies
between regions of low- and high-probabilities of infection but do not capture the details, e.g.,
the spatio-temporal disease clusters that can be observed using kernel smoothing with small
bandwidth. These details could be implicitly taken into account by coupling the partial dif-
ferential equation to stochastic terms or observed covariates that would lead to more flexible
realizations of the dynamics. Additional model components and covariates could be identified
from the series of work grounded on mechanistic models and machine learning investigating the
dynamics of Xylella fastidiosa and its environmental / biological drivers (Cendoya et al., 2020;
Godefroid et al., 2019; Kottelenberg et al., 2021; Martinetti and Soubeyrand, 2019; Raffini et al.,
2020; Soubeyrand et al., 2018; White et al., 2020, 2017). An interesting perspective is also to
include the models proposed in some of these references directly in the BMA analysis since BMA
is expected to take advantage of different model structures.
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Table 1: Posterior model probabilities obtained for each simulated data set using different methods
to assess the integrated likelihood, namely, those based on BIC, DIC1 and DIC2, UWE, HME1,
HME2, WAIC1, WAIC2 and IC.

Method Model Diffusion Posterior model probability
M0(5.5) M1(5.5)

BIC M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 1.00 0.00

D2 = 0.1D1 1.00 0.00

DIC1 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 <0.01 >0.99

D2 = 0.1D1 1.00 0.00

DIC2 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.57 0.43

D2 = 0.1D1 0.30 0.70

UWE M0(5.5) D2 = D1 0.58 0.42
M1(5.5) D2 = 0.9D1 0.23 0.77

D2 = 0.1D1 0.15 0.85

HME1 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.80 0.20

D2 = 0.1D1 0.23 0.77

HME2 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.12 0.88

D2 = 0.1D1 0.08 0.92

WAIC1 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.40 0.60

D2 = 0.1D1 0.41 0.59

WAIC2 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.40 0.60

D2 = 0.1D1 0.40 0.60

IC M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.00 1.00

D2 = 0.1D1 1.00 0.00
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Figure 1: Locations of plants (left), sampled from July 2015 to January 2019, that have been
detected as positive (green dots) or negative (blue dots) to Xf in South Corsica, France, and map
of the average of the daily minimum temperature (right) in Celsius degrees over January and
February and a 1×1km-pixel grid.
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Figure 2: BMA marginal posterior distribution of the temperature threshold T̃ .
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Figure 3: BMA Posterior distributions of the introduction time τ0 (histogram) and the introduction
point x̃0 (color palette). The prior for τ0 was uniform over [1931, 2015] (red line). The prior for x̃0

was uniform over ΩT̃1 for model Mi(T̃ ), 0 ≤ i ≤ I.
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Training data Validation data: out-of-sample predictions
July 2015 -- April 2017 May 2017 -- January 2019

Local infection proportion Local infection proportion Smoothed infection proportion

In-sample predictions
Best BMA Ensemble Climatology Kernel smoothing

Best Sd BMA Sd

Figure 4: Training data (top left box), out-of-sample predictions computed either as a local infec-
tion proportion or as a kernel smoothing with a 15km-bandwidth (top right box), and in-sample
predictions (i.e. posterior means provided by the best model and the BMA, ensemble, climatology
and kernel smoothing with a bandwidth of 15 km; bottom box) obtained from training data. Map
of standard deviations are also provided in the bottom box for the best model and BMA. The color
palette (bottom right) applies to all plots. The range of values taken in each map is provided below
the map.
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Figure 5: RMSE values showing the performance of the in-sample predictors (BMA; best model;
ensemble; climatology; kernel smoothing with varying bandwidth) with respect to each of the
out-of-sample predictions (local infection proportions in red; smoothed infection proportions with
varying bandwidth in black). Each in-sample kernel smoother obtained with a given bandwidth
value is compared both to the local infection proportions (red crosses) and to the smoothed infection
proportion using the same bandwidth (black crosses), but not to the smoothed infection proportions
using other bandwidth values.
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S1 Estimators of the integrated likelihood

Estimator grounded on un-normalized weights. An interesting benefit of importance sampling

schemes is the relatively direct assessment of the integrated likelihood, computed as the average of

un-normalized weights (see Bugallo et al., 2015). This unbiased estimator, say UWE which stands

for un-normalized weight estimator, satisfies for model Mi(T̃ ):

̂[Y |Mi(T̃ )] =
1

ML

M∑
m=1

L∑
l=1

w̃l
m, (1)

where the un-normalized weights w̃l
m are computed at the last AMIS iteration using Equations (5)

and (6) of Abboud et al. (2019).

Estimators grounded on information criteria. Information criteria are generally used for model

comparison but can also be exploited to assess the integrated likelihood in BMA as presented in

McElreath (2018). Thus, the WAIC (Watanabe–Akaike information criterion; Watanabe, 2010) has

been used by McElreath (2018) to approach the integrated likelihood [Y |Mi(T̃ )] with the so-called
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Akaike weight:

̂[Y |Mi(T̃ )] =
exp(−1

2
dWAICiT̃ )∑

0≤i≤I,T̃∈T
exp(−1

2
dWAICiT̃ )

, (2)

where dWAICiT̃ = WAICiT̃ − min
i,T̃
{WAICiT̃ }. If prior probabilities of models are the same, then

Akaike weights and posterior model probabilities coincide.

McElreath (2018) also suggested to replace WAIC by other information criteria in (2) and we will

test this proposal by using BIC, DIC and IC. Below, we provide the expressions of all the criteria

taken into consideration and show how they are computed in practice.

The WAIC defined in the deviance scale satisfies for model Mi(T̃ ):

WAICiT̃ = −2(lppdiT̃ − pWAICiT̃
),

where lppdiT̃ is the log pointwise predictive density and pWAICiT̃
is an estimate of the effective

number of free parameters in the model. The term lppdiT̃ is the logarithm of the predictive density

integrated over the posterior distribution of the model parameters summed over all observations:

lppdiT̃ =
∑J

j=1 log
∫

[Yj |Θ,Mi(T̃ )] × [Θ|Y,Mi(T̃ )]dΘ. In practice, lppdiT̃ is replaced in the WAIC

formula by its empirical analogue (see Gelman et al., 2014) using the weighted posterior sample:∑J
j=1 log

(∑M
m=1

∑L
l=1[Yj |Θl

m,Mi(T̃ )]wl
m

)
. Following the initial proposal by Watanabe (2010), the

term pWAICiT̃
can be expressed as:

pWAICiT̃
= 2

J∑
j=1

(
log
(
E
[
Yj |Θ,Mi(T̃ )

] )
− E

(
log
[
Yj |Θ,Mi(T̃ )

] ))
,

but we will also consider the following expression advocated by Gelman et al. (2014):

pWAICiT̃
=

J∑
j=1

V
(

log[Yj |Θ,Mi(T̃ )]
)
.

Thereafter, WAIC1 and WAIC2 denote the versions of WAIC based on the former and the latter

expressions of pWAICiT̃
, respectively. In practice, expectations and variances arising in the two versions

of pWAICiT̃
are replaced by their empirical values using the weighted posterior sample {(∆l

m, w
l
m) :

1 ≤ m ≤M, 1 ≤ l ≤ L} provided by the AMIS algorithm applied to model Mi(T̃ ).

The BIC (Bayesian information criterion; Schwarz et al., 1978) satisfies for modelMi(T̃ ): BICiT̃ =

−2 log[Y |Θ̂,Mi(T̃ )] + ξiT̃ log J, where J is the sample size, ξiT̃ is the number of model parameters,

and Θ̂ is the maximum likelihood estimate of the parameter vector Θ of modelMi(T̃ ) in the support

SiT̃ of Θ: Θ̂ = argmax
Θ∈SiT̃

[Y |Θ,Mi(T̃ )].

The DIC (deviance information criterion; Gelman et al., 2014) satisfies for modelMi(T̃ ): DICiT̃ =
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D̄ + peff, where D̄ is the posterior mean of the deviance D(Θ) = −2 log[Y |Θ,Mi(T̃ )] + C (C is a

constant that cancels out when one compares different models) and peff is the effective number of

parameters of the model. The difference in the two versions of the DIC considered here lies in the

calculation of peff. In the first version proposed by Spiegelhalter et al. (2002), peff = pD = D̄ − D(Θ̄),

where Θ̄ is the posterior mean of Θ under the model Mi(T̃ ): Θ̄ = E[Θ|Y,Mi(T̃ )]. In the second

version proposed by Gelman et al. (2003), peff = 1
2V(D(Θ)|Y,Mi(T̃ )), where V(D(Θ)|Y,Mi(T̃ )) is

the posterior variance of D(Θ). Let DIC1 and DIC2 denote the versions of DIC based on the former

and the latter expressions of peff, respectively.

The IC (information criterion) of Ando (2011), which is supposed to solve over-fitting issues in

comparison with DIC, satisfies: ICiT̃ = D̄ + 2pD := 3D̄ − 2D(Θ̄).

In practice, the different terms appearing in BIC, DIC and IC, namely Θ̂, Θ̄, D̄ andV(D(Θ)|Y,Mi(T̃ )),

are replaced by their empirical values using the weighted posterior sample {(∆l
m, w

l
m) : 1 ≤ m ≤

M, 1 ≤ l ≤ L} provided by AMIS applied to model Mi(T̃ ).

Harmonic mean estimators. For approaching the integrated likelihood, Newton and Raftery

(1994) noticed, from Bayes theorem,

[Y |Mi(T̃ )]−1 =

∫
[Θ|Y,Mi(T̃ )][Y |Θ,Mi(T̃ )]−1dΘ = E([Y |Θ,Mi(T̃ )]−1|Y ),

and proposed the sample harmonic mean of the likelihood as an estimator of [Y |Mi(T̃ )]. Thus, using

the weighted posterior sample {(∆l
m, w

l
m) : 1 ≤ m ≤ M, 1 ≤ l ≤ L}, the harmonic mean estimator,

say HME1, satisfies:

̂[Y |Mi(T̃ )] =

(
M∑

m=1

L∑
l=1

1

[Y |Θl
m,Mi(T̃ )]

wl
m

)−1

.

This estimator is easily computed and is consistent if the sample size tends to infinity but is rather

unstable in practice and in theory (the variance of the weights is not finite).

Gelfand and Dey (1994) proposed the following generalized version, say HME2, of HME1:

̂[Y |Mi(T̃ )] =

(
M∑

m=1

L∑
l=1

f(Θl
m)

[Y |Θl
m,Mi(T̃ )]× [Θl

m|Mi(T̃ )]
wl
m

)−1

, (3)

where f(.) is an importance probability density function. HME2 is an unbiased and consistent

estimator of the integrated likelihood if
∫
f(Θ)[Y |Θ,Mi(T̃ )]−1[Θ|Mi(T̃ )]−1dΘ < ∞. We choose

for f an approximation of the posterior distribution of Θ, namely the multivariate normal dis-

tribution with mean vector and covariance matrix estimated from the weighted posterior sample

{(Θl
m, w

l
m) : 1 ≤ m ≤M, 1 ≤ l ≤ L}. This is supposed to give a stable version of the harmonic mean

estimator (Raftery et al., 2006).
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S2 Specification of prior distributions

The prior distributions [ΘiT̃ |Mi(T̃ )] combine vague uniform and Dirac distributions. Dirac distribu-

tions are considered for r0 and p0, which are related to the initial conditions. These parameters are

kept fixed for identifiability issues.

[Θ0T̃ |M0(T̃ )] =
1

(108 − 50)× 100× 1× 100× 1000× |ΩT̃1|

× 1(D ∈ [50; 108], b ∈ [0; 100],K ∈]0; 1], α ∈ [0; 100], τ0 ∈ [−1000; 0], x̃0 ∈ ΩT̃1)

×Dirac5000(r0)×Dirac0.1(p0).

[Θ1T̃ |M1(T̃ )] =
1

(108 − 100)× (104 − 10)× 100× 1× 100× 1000× |ΩT̃1|

× 1(D1T̃1 ∈ [100; 108], D1T̃2 ∈ [10; 104], b ∈ [0; 100],K ∈]0; 1], α ∈ [0; 100],

τ0 ∈ [−1000; 0], x̃0 ∈ ΩT̃1)

×Dirac5000(r0)×Dirac0.1(p0).

[Θ2T̃ |M2(T̃ )] =
1

(108 − 50)× (105 − 50)× 100× 1× 1000× |ΩT̃1|

× 1(D2T̃1 ∈ [50; 108], D2T̃2 ∈ [50; 105], b ∈ [0; 100],K ∈]0; 1], τ0 ∈ [−1000; 0], x̃0 ∈ ΩT̃1)

×Dirac5000(r0)×Dirac0.1(p0).

The prior for τ0 ranging from -1000 to 0 corresponds to an introduction a priori happening between

1931 and 2015, which includes available estimates of the introduction date of the detected strains of

Xylella fastidiosa in Corsica, France: namely 1985 or 2001 for Soubeyrand et al. (2018) depending on

the model used, 1959 for Abboud et al. (2019) and 1971 or 1987 for Dupas et al. (2022) depending

on the considered strains.
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Table S1: Specification of models M0(5.5) and M1(5.5) from which data sets were generated for the
simulation study.

Dataset Model Diffusion Parameter values

O1 M0(5.5) D1 = D2 = D D = 3.2e+05, b = 0.049, K = 0.15,
α = 0.26, x̃0 = (1.176023e+06, 6.108375e+06), τ0 = −335

O2 M1(5.5) D1 = 0.9D2 D1 = 2.0e+05, D2 = 1.8e+05, b = 0.025, K = 0.14,
α = 0.50, x̃0 = (1.178962e+06, 6.113653e+06), τ0 = −650

O3 M1(5.5) D1 = 0.1D2 D1 = 2.0e+05, D2 = 2.0e+04, b = 0.025, K = 0.14,
α = 0.50, x̃0 = (1.178962e+06, 6.113653e+06), τ0 = −650
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Table S2: Posterior model probabilities computed from BIC, DIC1, DIC2, IC, WAIC1, WAIC2, HME1,
HME2 and UWE. The highest posterior model probability value obtained with each method is high-
lighted in yellow.

Posterior model probability

Mi(T̃ ) BIC DIC1 DIC2 IC WAIC1 WAIC2 HME1 HME2 UWE

T̃ = 4 °C
M0 1.083× 10−5 1.760× 10−30 8.622× 10−7 1.445× 10−58 2.362× 10−7 2.387× 10−7 5.748× 10−6 2.441× 10−5 8.677× 10−3

M1 1.079× 10−16 1.254× 10−38 1.595× 10−14 2.002× 10−67 1.621× 10−14 1.633× 10−14 1.130× 10−14 3.086× 10−16 4.962× 10−3

M2 4.712× 10−65 3.268× 10−89 6.187× 10−68 3.075× 10−116 4.839× 10−67 4.914× 10−67 7.509× 10−68 7.197× 10−66 6.877× 10−3

T̃ = 4.25 °C
M0 9.232× 10−6 2.779× 10−29 2.042× 10−6 8.857× 10−57 8.006× 10−7 7.710× 10−7 2.935× 10−5 1.459× 10−4 1.972× 10−2

M1 2.248× 10−13 1.559× 10−34 1.212× 10−11 7.220× 10−62 2.625× 10−12 2.573× 10−12 3.256× 10−12 4.595× 10−14 1.471× 10−3

M2 3.443× 10−64 2.739× 10−87 2.054× 10−66 2.181× 10−113 3.939× 10−66 3.920× 10−66 7.323× 10−66 1.580× 10−66 4.406× 10−3

T̃ = 4.5 °C
M0 4.855× 10−4 2.622× 10−29 7.222× 10−6 1.601× 10−57 5.107× 10−6 4.540× 10−6 6.383× 10−5 1.662× 10−6 2.283× 10−3

M1 3.110× 10−13 4.242× 10−36 2.492× 10−11 4.826× 10−65 4.158× 10−12 4.530× 10−12 3.900× 10−11 5.254× 10−13 2.555× 10−3

M2 2.930× 10−65 1.515× 10−90 2.405× 10−66 1.325× 10−119 1.878× 10−66 1.904× 10−66 4.550× 10−65 1.784× 10−66 8.078× 10−3

T̃ = 4.75 °C
M0 1.013× 10−2 2.224× 10−22 4.685× 10−4 1.292× 10−45 3.864× 10−4 3.444× 10−4 2.123× 10−2 9.355× 10−1 2.289× 10−1

M1 9.615× 10−8 8.132× 10−28 2.933× 10−8 3.439× 10−52 8.272× 10−9 7.186× 10−9 6.346× 10−7 2.328× 10−4 2.566× 10−2

M2 1.033× 10−64 1.770× 10−90 2.616× 10−66 1.752× 10−119 2.250× 10−66 2.265× 10−66 4.228× 10−65 7.768× 10−66 9.172× 10−3

T̃ = 5 °C
M0 5.570× 10−4 1.435× 10−22 8.449× 10−5 2.739× 10−45 5.263× 10−5 4.739× 10−5 1.710× 10−3 2.444× 10−2 1.515× 10−1

M1 2.295× 10−9 1.004× 10−24 1.322× 10−7 1.312× 10−46 3.448× 10−8 3.575× 10−8 1.558× 10−5 1.130× 10−4 8.080× 10−2

M2 1.458× 10−60 4.828× 10−85 9.892× 10−63 2.749× 10−112 1.269× 10−62 1.254× 10−62 1.340× 10−61 2.580× 10−61 2.888× 10−2

T̃ = 5.25 °C
M0 2.511× 10−15 4.706× 10−43 8.435× 10−17 9.856× 10−75 6.452× 10−16 6.278× 10−16 6.742× 10−15 5.238× 10−13 8.780× 10−3

M1 5.081× 10−10 9.268× 10−27 7.848× 10−8 2.036× 10−50 4.015× 10−8 3.769× 10−8 3.368× 10−7 7.808× 10−6 1.151× 10−1

M2 1.160× 10−65 4.931× 10−91 4.431× 10−67 2.834× 10−120 4.676× 10−67 4.598× 10−67 2.839× 10−66 1.708× 10−66 1.118× 10−2

T̃ = 5.5 °C
M0 2.890× 10−3 2.454× 10−23 3.552× 10−3 3.623× 10−48 1.490× 10−3 1.363× 10−3 2.271× 10−1 3.925× 10−2 1.249× 10−1

M1 4.226× 10−7 1.531× 10−24 8.348× 10−6 5.305× 10−48 3.386× 10−6 3.047× 10−6 2.084× 10−4 2.427× 10−4 8.566× 10−2

M2 1.932× 10−64 2.882× 10−90 9.144× 10−67 5.855× 10−119 1.302× 10−66 1.261× 10−66 8.925× 10−66 1.189× 10−65 1.514× 10−2

T̃ = 5.75 °C
M0 1.181× 10−3 1.000× 100 6.670× 10−9 1.000× 100 2.297× 10−5 2.408× 10−5 2.246× 10−6 3.055× 10−10 1.206× 10−3

M1 9.847× 10−1 4.901× 10−49 9.959× 10−1 2.808× 10−78 9.980× 10−1 9.982× 10−1 7.497× 10−1 7.811× 10−10 1.413× 10−3

M2 7.952× 10−79 1.269× 10−103 7.912× 10−79 2.658× 10−132 2.873× 10−79 2.367× 10−79 3.484× 10−78 2.800× 10−73 1.665× 10−2

T̃ = 6 °C
M0 3.195× 10−75 4.870× 10−101 2.194× 10−75 1.289× 10−130 4.840× 10−76 4.608× 10−76 1.386× 10−76 2.468× 10−82 2.067× 10−3

M1 1.918× 10−71 3.273× 10−95 6.284× 10−70 1.334× 10−124 9.743× 10−71 8.740× 10−71 5.464× 10−71 1.738× 10−77 1.288× 10−3

M2 1.204× 10−64 1.442× 10−90 9.837× 10−67 1.666× 10−119 1.638× 10−66 1.643× 10−66 6.166× 10−66 2.084× 10−65 3.267× 10−2
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Figure S1: Posterior map of the introduction location and histograms of marginal posterior distribu-
tions for all the other parameters of model M0(5.5) when it is fitted to data O1 in the simulation
study. Red line: true value. Dashed black lines 0.025 and 0.975 posterior quantiles. Blue cross on the
map: true introduction location. Color palette: posterior probability of the introduction location.
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Figure S2: Posterior map of the introduction location and histograms of marginal posterior distribu-
tions for all the other parameters of model M1(5.5) when it is fitted to data O2 in the simulation
study. Red line: true value. Dashed black lines 0.025 and 0.975 posterior quantiles. Blue cross on the
map: true introduction location. Color palette: posterior probability of the introduction location.
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Figure S3: Posterior map of the introduction location and histograms of marginal posterior distribu-
tions for all the other parameters of model M1(5.5) when it is fitted to data O3 in the simulation
study. Red line: true value. Dashed black lines 0.025 and 0.975 posterior quantiles. Blue cross on the
map: true introduction location. Color palette: posterior probability of the introduction location.
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Figure S4: Variation in the deviation measure between the assessments of the posterior distribution
at iteration m − 1 and m > 1 of the AMIS algorithm for model M0(4.75). The deviation measure
is computed as suggested by Abboud et al. (2019) to assess the stabilization of all the 2D posterior
distributions of parameters D, b, K, α, x̃0, ỹ0 and τ0 of model M0(4.75).

11



Figure S5: Set of grid cells (in yellow) in which the infection proportion is fixed at zero in the
validation map (i.e., the out-of-sample prediction) providing local infection proportions. These grid
cells are those satisfying two conditions: (i) no infection observed in training data up to 10 km; (ii)
no observation in validation data up to 10 km.

12



Training data Validation data: out-of-sample predictions
July 2015 -- April 2017 May 2017 -- January 2019

Local infection proportion Local infection proportion Smoothed infection proportion

In-sample predictions
Best BMA Ensemble Climatology Kernel smoothing

Best Sd BMA Sd

Figure S6: Training data (top left box), out-of-sample predictions computed either as a local infection
proportion or as a kernel smoothing with a 5km-bandwidth (top right box), and in-sample predictions
(i.e. posterior means provided by the best model and the BMA, ensemble, climatology and kernel
smoothing with a bandwidth of 5 km; bottom box) obtained from training data. Map of standard
deviations are also provided in the bottom box for the best model and BMA. The color palette
(bottom right) applies to all plots. The range of values taken in each map is provided below the map.
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Training data Validation data: out-of-sample predictions
July 2015 -- April 2017 May 2017 -- January 2019

Local infection proportion Local infection proportion Smoothed infection proportion

In-sample predictions
Best BMA Ensemble Climatology Kernel smoothing

Best Sd BMA Sd

Figure S7: Training data (top left box), out-of-sample predictions computed either as a local infection
proportion or as a kernel smoothing with a 25km-bandwidth (top right box), and in-sample predictions
(i.e. posterior means provided by the best model and the BMA, ensemble, climatology and kernel
smoothing with a bandwidth of 25 km; bottom box) obtained from training data. Map of standard
deviations are also provided in the bottom box for the best model and BMA. The color palette
(bottom right) applies to all plots. The range of values taken in each map is provided below the map.
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