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Abstract

A large literature has assessed the impacts of climate change on agricultural produc-

tion by estimating reduced-form models of crop yields conditionally on weather and

individual fixed effects. The estimates obtained are usually interpreted as the weather

impacts on yields once farmers have adapted. Yet, only few attempts have docu-

mented that farmers do adapt to weather and none has verified that these adjustments

actually impact crop yields. Our objective here is to unpack how weather affects

agricultural production by developing a structural model that explicitly accounts for

both the plants’ biophysical and farmers’ behavioral responses to weather. Considering

adaptation during the growing season through fertilizer and pesticide applications, our

approach allows us to distinguish the “direct” effects (i.e. the agronomic impacts of

weather changes on plant growth per se) from the “indirect” weather effects via farm-

ers’ input choices (i.e. the adaptation impacts). We estimate the underlying structural

model using farm-level data from the Meuse French department, which provides details

of fertilizer and pesticide uses by crop. We show that the reduced-form and structural
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estimates indicate similar weather impacts on crop yields, for a large range of sen-

sitivity analyses. Our structural estimates indicate that the adaptation effects are

sizable and that farmers’ adjustments reduce projected damage from climate change.

In our illustrative case, farmers’ adaptation offsets between one quarter to two thirds

of the negative agronomic impacts of future warming on crop yields. Our analyses ex-

hibit that commonly used reduced-form models of crop yields inherently capture these

within-season behavioral responses to weather.

Keywords: Climate Change, Growing-Season Adjustments, Panel Econometrics, Structural

Econometrics, Within-Season Adaptation.
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Introduction

Climate change has long been identified as a major threat to global agricultural produc-

tion (Adams et al., 1990). First waves of natural science studies have used crop simulation

models to assess its future impacts on plant growth through modification of the biophysical

processes at stake, such as photosynthesis or photorespiration (Asseng et al., 2015). Al-

though these direct impacts on plant growth are likely to adversely affect yields, farmers

are expected to react to new climatic conditions by adapting their practices. As a result,

considerable attention has been paid in the economic literature to better accounting for

farmers’ adaptation, notably by looking at observational data. Specifically, a large bulk of

the economic literature has regressed observed crop yields on observed weather conditions

during the growing season conditionally on individual fixed effects to measure, according

to the common vision, the impacts of temperature and precipitation on agriculture once

farmers have adapted (e.g. Schlenker and Roberts, 2009; Lobell et al., 2011, 2013; Tack

et al., 2015; Gammans et al., 2017; Mérel and Gammans, 2021; Wing et al., 2021; Wang,

Rejesus, Tack, Balagtas, and Nelson, Wang et al.; Chen et al., 2023).1 Though useful, this

“yield-weather-panel” approach relies on reduced-form estimations where adaptation is not

explicitly described and remains as a black box. Consequently, the identified impacts are

an aggregated measure of both the direct weather impacts on plant growth (as measured by

former crop simulation models – see Roberts et al., 2017)2 and farmers’ adaptation impacts,
1Although the literature has considered for a long time that this approach was able to provide estimates

of the impacts of climate change on agricultural production taking into account “short-term adaptation”
(typically changes in practices occurring within the growing season), the literature is discussing this assump-
tion (e.g. Mérel and Gammans, 2021). In order to remain neutral regarding these debates, we refer to a
change in agricultural practices within the growing season as the farmers’ adaptation to weather conditions
in the remainder of the paper.

2Early studies using crop simulation models focused on the relationship between weather and plant growth
assuming constant cropping practices (Asseng et al., 2015), i.e. ignoring farmers’ adaptation. Things are
changing and some more recent crop simulation models account for a number of incremental adaptations (e.g.
changing varieties or planting dates). Despite these additions, Challinor et al. (2014) acknowledged that the
benefits of adaptation could actually be overestimated in these models as adaptation is only simulated (and
not observed). Also, although incremental adaptation is sometimes considered in crop simulation models,
the underlying objective function remains often the maximization of crop yields, which differs from what
economists consider to be a rational behavior.
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without the possibility of measuring them separately. As such, it is still unclear whether the

identified impacts from the yield-weather-panel approach really account for the adaptation

impacts – in other words, whether they really differ from those measured by former crop

simulation models. The objective of the paper is to clarify this issue.

Specifically, our main objective in this paper is to properly model and estimate the con-

sequences of farmers’ adaptation on crop yields, in order to assess its importance within

the overall impacts of weather on yields. For this purpose, we propose a structural model

derived from a profit-maximizing farmer program that allows us to simultaneously and sep-

arately measure both (i) the direct impacts of weather change on crop yields, independently

of farmers’ adaptation (referred to as agronomic impacts), (ii) the farmers’ response to

weather change through modifications in practices (what the literature usually calls adap-

tation) and (iii) the consequences of these adaptations on crop yields (called adaptation

impacts). We build our identification strategy on the standards of the yield-weather-panel

approach, exploiting farm-specific weather deviations from farm averages to explain our

dependent variables (Blanc and Reilly, 2017). In doing so, we are able to check whether

the usual reduced-form models give similar results to our structural model (grounded on

microeconomic theory). This comparison allows us to verify whether the usual reduced-

form estimates from the yield-weather-panel literature do really account for the “indirect”

weather impacts resulting from farmers’ adaptation – that have been only assumed so far

– on top of the “direct” weather impacts on plant growth (that have been documented by

agronomic studies). In other words, we verify whether the yield-weather-panel literature is

really more appropriate than former crop simulation models at measuring weather impacts

on crop yields.

As an illustrative example of adaptation, we investigate how farmers adjust pesticide and

fertilizer applications to weather conditions during the growing season. Indeed, given that

crop allocation can be considered as fixed during the growing season, fertilizer and pesticide

applications remain the only possible adaptation strategy for farmers at that time (at least

in rain fed regions). There are several reasons for presuming that farmers adjust their
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input applications to weather. For example, the agronomic literature indicates that higher

temperatures and precipitation increase pest pressure (Rosenzweig et al., 2001; Bailey, 2004),

possibly leading farmers to use more pesticides in these conditions. Weather changes can also

influence input applications by affecting input productivity (Xia and Wan, 2008). In line with

these agronomic insights, our structural model proposes a channel linking weather changes

to (i) changes in fertilizer and pesticide productivity, which translates into (ii) changes in

fertilizer and pesticide applications, ultimately allowing us to identify (iii) changes in crop

yields (i.e. the adaptation impacts). The identification of these within-season adaptation

impacts on top of the measure of the total impacts allows us to measure, by difference, the

agronomic impacts.

We estimate our structural econometric model on an original panel dataset of crop farms

from the French department of Meuse. While only available for a small area (6,211 square

kilometers),3 this dataset has the unique advantage of detailing fertilizer and pesticide ap-

plications by crop. This very useful information is usually unavailable in commonly used

agricultural databases. This allows us to disaggregate the farmers’ profits into three inde-

pendent crop-specific systems (wheat, barley and rapeseed, which together account for about

80% of farmers’ arable land in the sample), each consisting of one yield equation, one fer-

tilizer demand equation and one pesticide demand equation. The different equations share

the structural parameters of the quadratic production function, which are jointly estimated

using input and output prices together with temperatures and precipitation, conditionally

on farm fixed effects. The use of prices is an important element of our model. Because

farmers have greater incentives to adapt when crop prices are high (at least relatively to

input prices), a similar weather shock can have different impacts on crop yields depending

on the year (i.e. depending on the set of prices). We exploit this property to separately

identify the agronomic and adaptation impacts.
3Though our study area is admittedly small, we provide evidence in the paper that the remaining weather

variations available for identification after adjusting for individual fixed effects is comparable to those of
previous studies exploiting national-level weather variations (e.g. Schlenker and Roberts, 2009).
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Our contribution to the literature is threefold. First, we propose one of the first structural

models to measure weather impacts on agriculture. A key strength of structural models is

that they provide a clear representation and interpretation of the mechanisms at stake.4

Despite this, structural models remain scarce in environmental economics (Timmins and

Schlenker, 2009). The literature on the assessment of weather impacts on agriculture is no

exception, even though structural models apparently seem suited to identifying the impacts

of farmers’ responses to exogenous weather shocks. To our knowledge, the first structural

modeling in this literature was proposed by Kaminski et al. (2013). Their model notably

accounts for farmers’ crop-specific input adjustments to weather changes (as does ours),

which translates into changes in crop-specific profits and, ultimately, into changes in crop

allocation.5 Yang and Shumway (2016) proposed a dynamic structural model to account

for farmers’ investments in response to weather changes. These two studies however depart

from the standards of the yield-weather-panel literature by running cross-sectional analyses

– instead of panel analyses – and including weather conditions for the whole year (instead

of the growing season only).6 To our knowledge, Sesmero et al. (2018) and Lemoine (2021)

are the only studies from this literature to have ever proposed a structural model coupled

to panel estimation techniques. However, they differ from our approach and the remainder

of the yield-weather-panel literature by estimating the impacts of weather conditions on net

revenues instead of yields. As pointed out by Fisher et al. (2012), net revenues fundamentally

differ from yields as the econometrician cannot easily purge for the effects of farmers’ storing

behavior. As such, we are the first to our knowledge to propose a structural modeling

approach that explains weather impacts on crop yields using the empirical standards of the

yield-weather-panel literature.
4Another advantage of structural modeling is that estimates are less subject to measurement error biases.
5Ortiz-Bobea and Just (2013) proposed a similar structural model but, due to data limitation, do not

estimate it.
6Note that, before these two studies, Seo and Mendelsohn (2008) proposed a structural extension of

Mendelsohn et al. (1994)’s reduced-form “Ricardian” model. Their structural Ricardian model considers
that farmers allocate their crops in order to maximize their annual profits such that these allocations reflect
the best-adapted crops to the observed climate conditions. The difference from the two other studies is
that Seo and Mendelsohn (2008) are interested in long-term adaptation to climate change, exploiting cross-
sectional differences in climate conditions instead of those in weather conditions.
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Second, we contribute to the emerging literature on the measurement of farmers’ adap-

tation (Kawasaki, 2019; Aragón et al., 2021; Chen and Gong, 2021; Jagnani et al., 2021;

Ramsey et al., 2021; Cui and Xie, 2022; Amare and Balana, 2023) by formally measuring,

for each crop, how farmers adjust their fertilizer and pesticide applications during the grow-

ing season. Our structural estimates provide evidence that farmers do adjust their fertilizer

and pesticide applications to weather changes. In particular, we find that farmers increase

their fertilizer applications to cope with higher temperatures. Such within-season adjust-

ments have already been identified in the literature (Sesmero et al., 2018; Chen and Gong,

2021). In addition to what is shown by the rest of the literature, our structural model allows

us to statistically identify how these adjustments impact crop yields, ultimately enabling us

to isolate farmers’ adaptation impacts from the agronomic impacts.7 In particular, our em-

pirical application in Meuse suggests that farmers’ adaptation always increases crop yields.

It shows that the agronomic effects can be positive for marginal increases in temperature

(for some crops), but that they are negative for non-marginal increases (for all crops). Our

simulation exercise suggests that farmers’ adaptation in Meuse offsets between one quarter

to two thirds of the negative agronomic impacts of non-marginal increases in temperature.

Finally, we provide a methodological contribution to the yield-weather-panel literature

by estimating and comparing structural and reduced-form models of the weather impacts on

crop yields. We show that both approaches provide globally similar estimates of the total

impacts of weather conditions during the growing season on crop yields. This result is valid

for both marginal and non-marginal changes in temperatures and precipitation, as well as for

multiple specifications and robustness checks. In particular, we find that our structural model

reproduces the results of the usual reduced-form models in all but one specification. The

exception occurs when comparing reduced-form and structural models with the additional

inclusion of year fixed effects, which, as already pointed out by Fisher et al. (2012), purges
7None of the above-mentioned studies statistically identified the induced impacts of these changes in

cropping practices on crop yields (or only recalculated them using back-of-the-envelope computations; see
Cui and Xie, 2022, for example). Indeed, these studies cannot do better than these simplistic computations as,
while providing evidence of farmers’ adaptation, their models do not additionally measure input productivity.
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most of the weather variations. Given that our structural model explicitly accounts for both

the agronomic and adaptation impacts and that we identify that these adaptation impacts are

non-null (at least in our illustrative case), this means that the yield-weather-panel approach

does account for farmers’ behavioral responses on top of plants’ biophysical responses. In

other words, the yield-weather-panel studies are conceptually better able than former crop

simulation models to estimate weather impacts on crops yields.

The paper is organized as follows. Section presents the conceptual framework and details

the main assumptions of our structural approach. Section details the empirical models, the

econometric strategy and the summary statistics. Section describes the estimation results.

Section simulates the impacts of non-marginal temperature increases on crop yields inMeuse

using our estimates. Section discusses and concludes.

Conceptual Framework

Our conceptual approach consists of explaining how farmers adjust their input applications

in response to changes in weather conditions during the growing season and how these within-

season adjustments translate into crop yields. In other words, it consists of disaggregating

the usual impacts measured in the yield-weather-panel literature to explicitly distinguish

the direct impacts of weather on plant growth (agronomic impacts) from its indirect impacts

through input adjustments (adaptation impacts). To measure the impacts of such farmers’

adaptation on crop yields require to represent both the farmers’ responses to weather changes

in terms of input applications and the productive consequences of these adjustments. To

facilitate their understanding, we propose to represent these embedded mechanisms in an

explicit theoretical model. We present its formal description below.

Farmers’ program during the growing season

Consider a risk-neutral farmer i growing J crops whose objective is to maximize their profit

in year t according to the set of weather conditions during the growing season (noted wi,t)
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and to the set of input and output prices.8 The farmer’s program in t can be split into

two periods (Carpentier and Letort, 2012): (i) the period before the growing season during

which the farmer decides on their crop allocation si,t anticipating the outcomes in the growing

season and (ii) the growing season, during which the farmer’s decision variables are their

applications of agrochemical inputs xi,j,t (in quantity/ha) on each crop j ∈ J (xi,j,k,t ≥ 0

for each input k ∈ K). The farmer’s profit maximization is thus a two-stage optimization

process where they first choose their crop allocation based on their vector of expected crop-

specific profits E(πi,t) and, in the second stage, they optimize each crop-specific profit πi,j,t

(in e/ha) on xi,j,t based on the weather conditions and anticipated prices, crop allocation

being considered as fixed. We note pyi,j,t the price of crop j for farmer i in agricultural

campaign t and px
i,t the corresponding vector of input prices, that are assumed to depend

both on years – along with global markets – and farmers (due to heterogeneity of quality,

volume and distance to the downstream or upstream markets; Fezzi and Bateman; 2011).

Because farmers are typically unaware of both prices and growing-season weather con-

ditions in the first stage, they allocate crops by making anticipations about these elements.

There have been long discussions about the appropriate form of farmers’ price expectations

in the literature (e.g. Nerlove and Bessler, 2001), but the appropriate form of expectations

of the weather conditions have been less studied (one exception is Ji and Cobourn, 2021).

However, because weather conditions in one location typically fluctuate around their average

long-term values w̄i, one can assume that E(wi,t) = w̄i. Under this notation, weather real-

izations during the growing season typically come as surprises for farmers in the first stage.

One can therefore assume that crop allocation is not affected by the particular weather re-

alization during the growing season in t. Accordingly, we consider the crop allocation as
8For the remainder of the paper, the bold elements indicate vectors (or matrices) while italic elements

indicate scalars. Latin capital letters refer to sets of scalars.
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fixed in the remainder of this paper.9 This assumption – usual in the yield-weather-panel

approach – is empirically supported by Ji and Cobourn (2021).10

The anticipations are different in the second stage, at the time when farmers have already

allocated their crops and can only choose their input applications. Indeed, if farmers still

need to anticipate crop prices, they observe the input prices (i.e., E(pxi,t) = pxi,t). Similarly,

farmers observe weather realizations in the second stage (i.e., E(wi,t) = wi,t). As a result,

the second stage of the profit maximization equation can be rewritten, for each crop, as:

πi,j,t = max
xi,j,t
{E(pyi,j,t)yi,j,t − px

i,t
′xi,j,t|yi,j,t = fj(xi,j,twi,t)}, (1)

where yi,j,t is the yield of crop j for i in t that depends on the weather conditions and input ap-

plications following the production function fj(xi,j,t;wi,t). The production function respects

the usual non-negative, non-decreasing, linearly homogeneous and concave relationship with

xi,j,t. We assume that the production function is non-negative and linearly homogeneous

with wi,t. The production function does not depend on crop allocation si,t, i.e. we assume

constant-return to area and non-jointness for the different crop-specific technologies.11 The

solution of program (1) is x∗i,j,t, i.e. the optimal input applications under wi,t given the

anticipated prices in the second stage. We note y∗i,j,t the corresponding crop yield.
9Doing so, we differ from previous structural models found in the literature (e.g. Seo and Mendelsohn,

2008; Kaminski et al., 2013). These studies are however cross-sectional studies, which exempts them from
similar discussions due to the panel dimension of the data.

10Another argument in favor of the assumption that crop allocation is independent of weather in the
growing season is that the panel approach – which uses individual fixed effects – would determine the
correlation between E(wi,t)− w̄i and s∗i,t − s̄∗i . Given our assumption on the form of weather expectations
in the first stage, the first difference is null, which ultimately prevents identification. Note however that this
assumption is not valid for the whole year as Kaminski et al. (2013) and Miao et al. (2016) showed that
weather conditions outside the growing season are important drivers of crop allocation. In contrast with
the rest of the literature, Aragón et al. (2021) showed that Peruvian farmers adapt their crop allocation
to weather during the growing season. A possible explanation is that the planting date occurs outside the
growing season in north American and European countries but during the growing season in Peru.

11This is a common assumption in climate economics (e.g. Deschênes and Greenstone, 2007), or more
generally in agricultural economics (Carpentier and Letort, 2012). This allows us to consider that farmers
separately maximize their input applications for each crop in the second stage.
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Disentangling marginal weather impacts on crop yields

The yield-weather-panel literature typically measures the impacts of weather conditions in

the growing season on crop yields by implicitly accounting for farmers’ adaptation described

in program (1) only, where farmers adjust their agrochemical input applications but where

other inputs (land, labor, capital) remain fixed (Deschênes and Greenstone, 2007). To explic-

itly represent the effects of farmers’ adaptation on crop yields, we examine here how farmers

respond to marginal weather changes and how these changes translate into crop yields. As-

suming no effects on input and output prices,12 we can disaggregate a marginal change in

the zth element of wi,t (noted w(z)
i,t , e.g. the average temperature during the growing season)

on πi,j,t as follows:

dπi,j,t
dw(z)

i,t

= E(pyi,j,t)
∂fj(x∗i,j,t(wi,t);wi,t)

∂w(z)
i,t︸ ︷︷ ︸

Total impact on yields

−px
i,t
′ ∂x∗i,j,t(wi,t)

∂w(z)
i,t︸ ︷︷ ︸

Input adjustments

. (2)

Relation (2) states that a marginal weather change affects the crop-specific profit through

both an effect on yields and an effect on input applications. The effect on input applications

comes from the fact that farmers re-optimize input applications under new weather condi-

tions. These input adjustments affect crop yields through fj(xi,j,t;wi,t) and, importantly,

add to the initial shock of the marginal weather change on plant growth, together forming

the “total weather impact”. The yield-weather-panel literature typically measures this total

impact when regressing crop yields on weather conditions, without distinguishing the two

effects. We can however theoretically distinguish them by disaggregating the total weather
12The impacts of weather changes on farmers’ program can typically be disaggregated into two main

categories: the effects on quantities (output yi,j,t and input xi,j,t) and the effects on input and output prices.
Because previous studies worked on small administrative areas (e.g. at the county level), the authors have
usually assumed that the price effects were small enough to be ignored (Deschênes and Greenstone, 2007;
Ortiz-Bobea and Just, 2013). Similarly, as we work on individual farmers, we assume that farmers are
price-takers. In other words, we assume that input and output prices are unaffected by local weather shocks.
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impact as:

∂fj(x∗i,j,t(wi,t);wi,t)
∂w(z)

i,t︸ ︷︷ ︸
Total impact

=
∂fj(x̄∗i,j,t(w̄i);wi,t)

∂w(z)
i,t︸ ︷︷ ︸

Agronomic impact

+
∂x∗i,j,t(wi,t)
∂w(z)

i,t

′∂fj(x∗i,j,t(wi,t);wi,t)
∂xi,j,t

)
︸ ︷︷ ︸

Adaptation impact

, (3)

where x̄∗i,j,t is the vector of input applications that maximizes program (1) under average

weather conditions w̄i given the expected prices in the second stage. Relation (3) describes

how the total impact of a marginal weather change on crop yields can be disaggregated

into the agronomic and adaptation impacts. Accordingly, the agronomic impact can be

defined as the impact of a marginal weather change on crop yields, holding input applications

unchanged. Such effects are similar to those captured by former crop simulation models that

only measured the changes in biophysical processes at stake (e.g. the effects of temperature

on photosynthesis). They correspond to the direct effect of weather changes on crop growth,

independently of farmers’ behavior. By comparison, the adaptation impacts correspond to

the changes in crop yields due to input adjustments. They are thus indirect weather effects,

consecutive upon farmers’ behavioral responses to weather changes.

Rational farmers adjust their input applications until the net benefits of adaptation are

null at the margin (see Hsiang, 2016, for a discussion on the implications of the envelope

theorem for the problem here). Formally, the optimal adaptation strategy is reached for

x∗i,j,t(wi,t) when:

E(pyi,j,t)
∂x∗i,j,t(wi,t)
∂w(z)

i,t

′∂fj(x∗i,j,t(wi,t);wi,t)
∂xi,j,t

= px
i,t
′∂x∗i,j,t(wi,t)

∂w(z)
i,t

, (4)

i.e., when the cost of adaptation equals its benefits. Specifically, the right-hand side of

relation (4) defines the costs of adaptation, i.e. the costs of input adjustments in response

to weather changes. These costs exactly correspond to the change in expenditures following

the input adjustments in relations (2) and (3). The sign of such an effect can be either

positive or negative depending on the inputs and crops, leading ultimately to (beneficial)

input-savings or (costly) additional input expenditures. The left-hand side of relation (4)
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defines the expected benefits of adaptation in terms of induced impacts on yields (which

can be positive or negative). These expected benefits are exactly equal to the value of the

adaptation impacts in relation (3).

A close look at relation (4) indicates that the optimal adaptation strategy depends on

(i) the technical properties of the production function, (ii) the weather conditions during

the growing season and (iii) the input and expected output prices. In particular, as weather

affects the availability or efficiency of agrochemical inputs (e.g. the assimilation of nutrients

from fertilizers by the crop roots depends on soil humidity and temperature), weather changes

are likely to change input productivity. Relation (4) indicates that rational farmers react to

these changes in input productivity by adjusting their input applications. They do so until

the marginal benefits of input adjustment equals the unit price of the input. Depending on

the weather impacts on production, farmers thus adjust their input applications differently

according to the inputs and crops considered. In particular, relation (4) states that farmers

increase their input applications when the input becomes more productive under new weather

conditions. In this case, farmers’ adaptation is motivated by an objective of increasing

crop yields. In the other case, when new weather conditions reduce input productivity,

rational farmers reduce their input applications in order to benefit from input savings. If

these mechanisms are at stake for a single input, weather conditions can also affect the

complementarity/substitution relationship between different agrochemical inputs, ultimately

affecting farmers’ adaptation decisions.

We illustrate the theoretical insights of the previous paragraphs in Figure 1.13 In this

illustrative example, point A is the equilibrium under average weather conditions w̄ while

point C is the equilibrium under particular weather conditions w1 (a particular temperature

level for example). The total impact of weather change on crop yields is thus the distance

along the y-axis between points C and A, equal to f(x̄∗, w̄)−f(x∗1, w1) (negative here). This

difference typically corresponds to what the yield-weather-panel approach usually measures.

However, the total impact corresponds to a difference of two optimized situations, where
13For simplicity, we assume a single dimension to wi,t and xi,t and remove individual and year indices.
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input applications are optimally adjusted to particular weather conditions. The adaptation

behavior consecutive upon a change from w̄ to w1 corresponds here to the increase in input

applications from x̄∗ to x∗1. A rational farmer has no reason to further increase their input

applications. Indeed, a rational farmer increases their input applications until the marginal

productivity of the input under the new weather conditions w1 is equal to those under

average weather conditions w̄, i.e. equal to the ratio of input price to expected output

price. This adaptation behavior has important consequences for the measurement of the

total weather impacts. Indeed, the impacts of farmers’ adaptation on crop yields add to the

initial weather impacts on plant growth (the agronomic impacts) to form the total weather

impacts. In accordance with the definitions above, the agronomic impacts are the distance

along the y-axis between points B and A, holding the input applications at x̄∗, while the

adaptation impacts are the distance along the y-axis between points C and B, where input

applications change. In our illustrative case, the adaptation impacts offset half of the direct

weather impacts.

The analysis conducted in this section makes it clear that, to have a complete picture

of the weather impacts on crop yields, one needs to separately and simultaneously mea-

sure (i) the direct impacts of a weather change on crop yields, (ii) the farmers’ responses

to such change through modifications of input applications (induced by the impact of the

weather change on input productivity) and, ultimately, (iii) the consequences of these input

adjustments for crop yields. We propose in the following section a structural model whose

estimation is compatible with the identification of these mechanisms.

Empirical Models, Econometric Strategy and Data

Structural modeling

Production function. We presented our conceptual framework in Section using generic

production functions. To formalize the structural model to estimate, we need to specify a
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Figure 1: Disaggregation of the total weather effects into average weather conditions w̄ and
particular weather conditions w1. Point A is the optimum under w̄. Point B refers to the
equilibrium under w1 in the case of no adaptation. Point C is the optimum under w1. x̄∗ (resp.
x∗1) is the optimal input application under average weather conditions w̄ (resp. particular weather
conditions w1) given the anticipated prices. The derivatives in points A and C are equal and
correspond to the ratio of input price to expected crop price. The difference between the y-axis
of points C and A corresponds to the total effect (negative here). The distance along the y-axis
between points B and A corresponds to the agronomic effect (negative here). The distance along
the y-axis between points C and B is the adaptation effect (positive here).

functional form of the production function for each crop j ∈ J. Among the alternatives, we

assume that the yields of crop j are quadratic functions of fertilizers (k = 1) and pesticides

(k = 2) such that:

yi,j,t = αj(wi,t)−
1
2

2∑
k=1

2∑
l=1
γ−1
j,k,l(wi,t)[βj,k(wi,t)− xi,j,k,t][βj,l(wi,t)− xi,j,l,t], (5)

where αj(wi,t), βj,k(wi,t) and γj,k,l(wi,t) are sets of crop(-input)-specific parameters (j ∈ J

and {k; l} ∈ {1; 2}2). They consist of the structural parameters of our model and are assumed

to be known by the farmers.

The specification of relation (5) has been proposed by Femenia and Letort (2016) for the

two inputs case as an extension of the production function initially proposed by Pope and

Just (2003) for the single input case. As explained by Pope and Just (2003), the form of
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relation (5) is exactly equivalent to a standard quadratic production function but it addi-

tionally allows researchers to explicitly represent how technical changes in the production

function translate into shifters of the input demand functions. This makes this property

very useful to construct our structural model.14 Following Femenia and Letort (2016), we

can define the symmetric 2 × 2 matrix Γj(wi,t) ≡ [γ−1
j,k,l(wi,t)] that arranges these techni-

cal shifters. Specifically, we refer to γ−1
j,1,1(wi,t) and γ−1

j,2,2(wi,t) as technical shifters due to

changes of the “own” productivity of fertilizers and pesticides on crop j (γ−1
j,1,1(wi,t) > 0

and γ−1
j,2,2(wi,t) > 0). We refer to the interaction term γ−1

j,1,2(wi,t) as the technical shifter

due to the substitution/complementarity relationships between fertilizers and pesticides. A

positive γ−1
j,1,2(wi,t) implies a substitution between the two inputs at the margin, while a

negative γ−1
j,1,2(wi,t) implies cooperation. Finally, as explained by Carpentier and Letort

(2012) the remaining sets of parameters in relation (5) have easy agronomic interpretations.

Indeed, the term αj(wi,t) can be interpreted as the maximum yield of crop j in the sample

(αj(wi,t) > 0). Similarly, βj,k(wi,t) represents the quantity of input k required to achieve

this maximum yield (βj,k(wi,t) > 0), hereafter referred to as input requirements.15

While presenting easy agronomic interpretations of the αj(wi,t) and βj(wi,t) terms, the

productivity of fertilizers and pesticides in relation (5) is a complex function of the terms

defined above. Indeed, the productivity of input k on crop j is equal to:

θkj (wi,t) = γ−1
j,k,k(wi,t)[βj,k(wi,t)− xi,j,k,t] + γ−1

j,1,2[βj,l(wi,t)− xi,j,l,t], (6)

where θkj (wi,t) is the aggregated productivity of input k on crop j (k 6= l). This relation

calls for several comments. First, relation (6) states that the aggregated productivity of

input k on crop j is marginally decreasing in xi,j,k,t for a positively definite matrix Γj(wi,t),

i.e. since γ−1
j,1,1(wi,t)γ−1

j,2,2(wi,t) − γ−2
j,1,2(wi,t) > 0. Under this assumption, the production

14Because these shifters are parameters of the production and input demand functions, relation (5) ul-
timately allows us to impose parameter restrictions between the supply and input demand functions (see
below).

15According to relation (5), input applications exceeding βj,k(wi,t) decrease crop yields. A rational farmer
will choose the optimal input application such that x∗i,j,l,t ≤ βj,k(wi,t) ∀k ∈ {1; 2} and j ∈ J.
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function defined in relation (5) is a non-decreasing and strictly concave function of xi,j,k,t.

We show in Section that this is the case for all inputs and all crops. Second, relation (6)

states that an increase in the input requirements βj,k(wi,t) increases the productivity of

input k. Third, the productivity of input k on crop j depends on the technical shifters of

input own productivity γ−1
j,k,k(wi,t). Given that x∗i,j,k,t ≤ βj,k(wi,t), an increase of γ−1

j,k,k(wi,t)

increases the productivity of the input. Fourth, the productivity of input k on crop j depends

on the substitution/complementarity shifters γ−1
j,1,2(wi,t). Given that x∗i,j,l,t ≤ βj,l(wi,t), an

increase of γ−1
j,1,2(wi,t) implies that the productivity of input k on crop j increases ceteris

paribus. Finally, the productivity of input k depends also on the input requirement of input

l (k 6= l) through these substitution/complementarity terms. For a positive (resp. negative)

γ−1
j,1,2(wi,t), an increase of βj,l(wi,t) increases (resp. decreases) the productivity of input k.

Similarly, the productivity of input k decreases (resp. increases) with xi,j,l,t when γ−1
j,1,2(wi,t)

is positive (resp. negative), i.e. when the two inputs are substitute (resp. complementary)

inputs. Overall, one can think about the productivity of input k on crop j as a decreasing

affine function of xi,j,k,t where βj,k(wi,t)γ−1
j,k,k(wi,t) is the y-intercept (modulo the value of

γ−1
j,1,2[βj,l(wi,t)− xi,j,l,t]) and where the set of parameters γ−1

j,k,k(wi,t) determines the slope of

the function. In line with the literature (e.g. Femenia and Letort, 2016), we show in Section

that fertilizers present a greater estimated productivity than pesticides at the sample mean

values for all considered crops.

Weather conditions. Our specification of the production function in relation (5) differs

from Femenia and Letort (2016) by allowing the parameters to depend on weather conditions.

Inspired by Lobell et al. (2011), we specify a quadratic relationship between yields and both

average temperatures (Ti,t) and total precipitation (Pi,t) during the growing season such that:

αj(wi,t) = α0
j + αTj Ti,t + αT

2

j T
2
i,t + αPj Pi,t + αP

2

j P 2
i,t. (7)
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We extend this specification to agrochemical input requirement (βj,k(wi,t)) and technical

shifters (γ−1
j,k,l(wi,t)) ∀{k; l} ∈ {1; 2}2 and j ∈ J:

βj,k(wi,t) = β0
j,k + βTj,kTi,t + βT

2

j,kT
2
i,t + βPj,kPi,t + βP

2

j,kP
2
i,t, (8)

γ−1
j,k,l(wi,t) = γ0

j,k,l + γTj,k,lTi,t + γT
2

j,k,lT
2
i,j,t + γPj,k,lPi,t + γP

2

j,k,lP
2
i,t. (9)

Together with the specification of relation (5), these disaggregations of the structural pa-

rameters into relations (7), (8) and (9) allow us to smoothly capture the different channels

through which weather affects crop yields. In particular, they allow us to capture the weather

impacts on maximum crop yields through αj(wi,t) – independently of farmers’ input appli-

cations – and on input productivity through βj(wi,t) and γ−1
j (wi,t).16

On top of these differential effects, the quadratic relationships of temperatures and pre-

cipitation specified into relations (7), (8) and (9) provide flexibility to capture the non-linear

effects of weather conditions. While the quadratic formulation is usual for precipitation, the

literature has often considered an alternative specification for temperatures, distinguishing

beneficial from harmful cumulative temperatures depending on a temperature threshold.17

If this specification has been useful to estimate the non-linear impacts of temperatures on

crop yields (Schlenker and Roberts, 2009), there is no reason a priori to think that the same

thresholds apply for input requirements and technical shifters. We thus prefer to use the

more general – quadratic – form of average temperatures to specify these relationships. We

however test the sensitivity of our results to alternative specification of temperature impacts

in Section and show that our results are robust.

Structural model. The formulation of our structural model explicitly represents the set

of optimal decisions of farmers under the particular technology and weather conditions, and

the consequences of these decisions on crop yields. To formalize it, we first need to solve
16Kaminski et al. (2013) use a comparable disaggregation of a similar production function described in

relation (5) but in the one-input case.
17These measures of cumulative temperatures are usually referred to as beneficial (or growing) and killing

degree days in the literature (Schlenker and Roberts, 2009).
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the farmers’ program in relation (1) with our particular production function in relation (5)

for both fertilizers and pesticides. Such resolution leads to the optimal demand function for

input k on crop j:

x∗i,j,k,t = βj,k(wi,t)−
pxk,tγ

−1
j,k(wi,t) + pxl,tγ

−1
j,1,2(wi,t)

E(pyi,j,t)(γ−1
j,1,1(wi,t)γ

−1
j,2,2(wi,t)− γ−2

j,1,2(wi,t))
, (10)

with k 6= l. Relation (10) indicates that weather affects the optimal applications of input k

through the sets of parameters βj,k(wi,t) and γ−1
j,k,l(wi,t).18

We can then obtain the consequences of these optimal input applications by reinserting

them into relation (5). This leads to the optimal yield for crop j:

y∗i,j,t = αj(wi,t)−
1
2

(px1,t)2γ−1
j,1,1(wi,t) + (px2,t)2γ−1

j,2,2(wi,t) + 2px1,tpx2,tγ−1
j,1,2(wi,t)

(E(pyi,j,t))2(γ−1
j,1,1(wi,t)γ−1

j,2,2(wi,t)− γ−2
j,1,2(wi,t))

. (11)

Relation (11) indicates that weather affects the optimal yields only through the parameters

αj,k(wi,t) and γ−1
j,k,l(wi,t), but not through βj,k(wi,t).

Overall, our structural model consists of one yield equation (relation (11)) and two input

demand equations (relation (10) for fertilizers and pesticides) for each crop j ∈ J. The

parameters γ−1
j,k,l(wi,t) are thus shared between the yield and input demand functions of

the structural model (Pope and Just, 2003). As noted by Carpentier and Letort (2012),

this kind of model is both primal and dual in its structure. The use of duality theory here

allows us to determine the weather impacts on the technical shifters (through γ−1
j,k,l(wi,t))

while still capturing the weather impacts on yields and input demand in the primal part of

the model (through αj(wi,t) and βj,k(wi,t) respectively). The addition of price variations

(multiplied by weather variations) is an original feature of the structural modeling of the
18Relation (10) indicates that optimal input applications increase with input requirements βj,k(wi,t) and

decrease with technical shifter terms γ−1
j,k,l(wi,t) ∀{k; l} ∈ {1; 2}2. Similarly, optimal input applications

increase when the expected crop price E(py
i,j,t) increases but decrease with the price of input k. They increase

(resp. decrease) with the price of input l when the two inputs are substitutes (resp. complementary).
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weather impacts on agriculture.19 Such addition into our framework allows us to distinguish

the farmers’ behavioral responses to weather changes from the plants’ biophysical ones.

Econometric Strategy

Our econometric strategy consists of comparing the estimated weather impacts on crop yields

using reduced-form and structural models for wheat (j = 1), barley (j = 2) and rapeseed

(j = 3). In the following section, we first present the estimated reduced-form model before

turning to the presentation of the econometric specification of our structural model.

Reduced-form estimation. As a benchmark, we estimate the relationship between crop

yields and weather conditions during the growing season using a reduced-form model in the

spirit of the yield-weather-panel literature. Formally, we specify for each crop a quadratic re-

lationship with both average temperature and total precipitation during the growing season,

conditionally on farm fixed effects:

yi,j,t = ψTj Ti,t + ψT
2

j T 2
i,t + ψPj Pi,t + ψP

2

j P 2
i,t + ϑyi,j + εyi,j,t, (12)

with ϑyi,j the farm fixed effect, ψj(wi,t) the set of parameters of interest and εyi,j,t the remaining

error terms that are assumed to have white noise characteristics. The farm fixed effects

capture the heterogeneous farm-specific time-invariant drivers of crop yields such as soil

quality. The effects captured by ψj(wi,t) are the total impacts of weather conditions during

the growing season on crop yields. We estimate relation (12) using ordinary least squares

(OLS).

The reduced-form model described in relation (12) is very similar to most of the models

commonly used in the yield-weather-panel literature. In particular, it has two of the main

characteristics of these models. First, in accordance with the common practice, relation (12)

includes individual fixed effects. This means that we estimate the parameters ψj(wi,t) using
19The addition of prices to ease the measurement of weather impacts on agriculture has also been proposed

by Sesmero et al. (2018) in the case of net revenues (instead of yields in our case).
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abnormal variations in weather conditions and crop yields. While the common practice is

to work on aggregate data at the departmental, regional or country level, here we perform

our analysis at the farm level and implement the fixed effects accordingly.20 Second, as is

commonly the case in this literature, relation (12) includes the average temperatures and

total precipitation and their squared terms to estimate the non-linear weather impacts on

crop yields. As discussed previously, one alternative would be to replace the linear and

squared temperature terms by measures of beneficial and harmful degree days. We test the

sensitivity of our results to this alternative in Section .

While similar for several dimensions, relation (12) may differ from the commonly used

reduced-form models in its absence of specific correction for any temporal effects. In partic-

ular, researchers have often additionally included time trends or year fixed effects to control

for the effects of technical progress or common annual shocks (Schlenker and Roberts, 2009;

Fisher et al., 2012). While common, these inclusions are mainly justified when the number

of years in the panel is large (Mérel and Gammans, 2021), which is not our case here (see

Section ). We test the sensitivity of our results to these alternatives in Section . These

sensitivity analyses indicate that our results are robust to the inclusion of time trends but,

as suggested by Fisher et al. (2012), not for the inclusion of year fixed effects.

Structural estimation. We estimate the structural model consisting of relations (10) and

(11) for each crop. Specifically, we estimate for crop j the following system:

yi,j,t = αj(wi,t)− δj,1,1(wi,t)
(px

1,t)2

2(E(py
i,j,t))2 − δj,2,2(wi,t)

(px
2,t)2

2(E(py
i,j,t))2 − δj,1,2(wi,t)

px
1,tp

x
2,t

(E(py
i,j,t))2 + ωyi,j + µyi,j,t,

xi,j,1,t = βj,1(wi,t)− δj,1,1(wi,t)
px

1,t

E(py
i,j,t) − δj,1,2(wi,t)

px
2,t

E(py
i,j,t) + ωxi,j,1 + µxi,j,1,t,

xi,j,2,t = βj,2(wi,t)− δj,2,2(wi,t)
px

2,t

E(py
i,j,t) − δj,1,2(wi,t)

px
1,t

E(py
i,j,t) + ωxi,j,2 + µxi,j,2,t,

(13)

20Bareille and Chakir (2023) estimate a Ricardian fixed effect model at the plot level using panel data on
repeated farmland transactions involving the same plots.
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with ωyi,j and ωxi,j,k the farm fixed effects, µxi,j,k,t and µ
y
i,j,t the remaining error terms with white

noise properties and δj,k,l(wi,t) = γ−1
j,k,l

(wi,t)
γ−1

j,1,1(wi,t)γ−1
j,2,2(wi,t)−γ−2

j,1,2(wi,t) ∀{k; l} ∈ {1; 2}2.21 These

parameters δj,k,l(wi,t) are thus functions of the previous technical shifters γ−1
j,k,l(wi,t). As for

the latter, they are shared between the equations of the system. Consistently with relation

(5), a smaller δj,k,k(wi,t) implies that farmers use more input k when the input-output price

ratio increases, suggesting that the productivity of input k increases. Similarly, a positive

(resp. negative) δj,k,l(wi,t) implies that fertilizers and pesticides are substitute inputs (resp.

complementary). We disaggregate δj,k,l(wi,t) as δ0
j,k,l + δTj,k,lTi,t + δT

2
j,k,lT

2
i,t + δPj,k,lPi,t + δP

2
j,k,lP

2
i,t.

Given the potential correlation between the error terms of the system equations, we estimate

relation (13) using estimators from seemingly unrelated equations (SUR).22

Finally, while relation (13) specifically uses observed prices for the inputs (farmers observe

the input prices when applying fertilizers and pesticides) in the input/output prices ratio, it

uses expected prices for the outputs. The form of crop price expectation is an usual source

of debates in agricultural economics (Nerlove and Bessler, 2001). A common practice is to

assume that farmers present naive expectations of crop prices (e.g. Carpentier and Letort,

2012; Kaminski et al., 2013; Femenia and Letort, 2016). Others assume that farmers present

rational price expectations or use future prices at harvest time. Following Koutchadé et al.

(2018), we assume that farmers in our sample have naive crop price expectations, i.e. that

E(pyi,j,t) = pyi,j,t−1.23 We test the sensitivity of our results to these alternative expectation

forms in Section and show that they are robust.
21Note that the concavity of the production function is verified since δj,1,1(wi,t)δj,2,2(wi,t)−δ2

j,1,2(wi,t) >
0. Our results in Section indicate that this is verified for the three crops considered.

22Note that the system specified in relation (13) exploits variations in both yields and input applications,
implying that we exploit additional sources of variation compared to the commonly used reduced-form model
described in relation (12). Indeed, for a population of I farmers growing crop j, our structural estimation
uses 3 × I observations (I yield observations for crop j, I observations of fertilizer applications on j and I
observations of pesticide applications on j) instead of I observations only for the reduced-form case.

23Koutchadé et al. (2018) have tried to estimate a structural model using these different alternatives on
a sample similar to ours (specifically an unbalanced panel of farms from Meuse between 2006 and 2011; see
Section ). They have concluded that the data generation process at stake supports the assumption of naive
crop price expectations. In addition, Hsiang (2016) warned that the introduction of contemporaneous prices
may introduce biases if they are affected by climate. This situation is unlikely to occur with naive crop price
expectations.
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Data Sources and Summary Statistics

Accounting dataset. Our primary data is an unbalanced panel of farms located in the

French department of Meuse observed between 2006 and 2012. The panel is composed of

296 crop farms remaining in the database for an average of 3.73 years, constituting 1,104

farm×year observations in total.

Meuse is a rainfed agricultural department (NUTS3 region) located in north east France

(see Figure A1 in the Online Appendix) and specialized in crop production. The agriculture

in Meuse is representative of the agriculture in north east France (and the Paris Basin in

general), which is mainly orientated towards cereals and industrial crops and where farm-

ers use intensive cropping practices. Together, the farms of our sample occupy 31.09% of

the whole useful agricultural area of Meuse. Although some farms cultivate peas, corn or

sunflower, these are fairly marginal crops in our sample. By contrast, all the farms in our

sample grow wheat, barley and rapeseed, which together occupy an average of 79.17% of

farmers’ arable area.

The database originates from the Meuse Management Center local accounting agency

(Centre de Gestion de la Meuse). The Meuse Management Center is one of the two farm

accounting agencies in the department. On top of their basic accounting service used for

fiscal purposes, the Meuse Management Center offers a premium service to its members,

which allows them to benefit from a detailed accounting analysis of their annual exercises.

The information we use originates from the farms subscribing to this service. The unbal-

anced nature of the database comes from the fact that farms can seamlessly subscribe and

unsubscribe to the premium service.

One of the main interests of using this farm-level dataset is that we can access detailed

accounting information per crop. On top of information on crop yields and prices, this

database provides crop-specific information on the net expenditures for each input.24 Given
24We compute the input quantities applied by crop in constant e/ha dividing the net expenditure per

hectare by the regional input price index provided by the French Department of Agriculture (Agricultural
Means of Production Purchasing Price Index).
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the accounting nature of the database, these net expenditures correspond to the value of

the inputs used in a given calendar year on each crop, thus including changes in input

inventories. Such information on input uses per crop is necessary for the estimation of our

structural model as variations in input applications constitute two thirds of the observations

used in the estimation procedure. The Meuse database is one of the few that provides

such crop-level disaggregation for fertilizer and pesticide applications. Common agricultural

databases – such as the farm accountancy data network in Europe – usually provide input

expenditure at the farm scale, and not per crop. This explains why the Meuse database has

been used by many studies on French agriculture (e.g. Boussemart et al., 2011; Carpentier

and Letort, 2012; Femenia and Letort, 2016; Bareille and Letort, 2018; Koutchadé et al.,

2018; Chakir and Thomas, 2022).

Weather variables. We use historical daily weather information for the whole period

from Météo France.25 Before computing our weather variables, we first reconstruct the

distribution of temperature within each day using a sine interpolation between minimal

and maximal daily temperatures, à la Schlenker and Roberts (2009). We then compute

the average temperature during the growing season as the average of the reconstructed

temperature distribution between February 1st and July 31th. This method provides better

approximation of the average temperatures over the growing season than alternative methods

relying on daily or monthly temperature averages only. One can interpret our measure of

average temperatures as the accumulated temperatures (i.e. sum of beneficial and killing

degree days) divided by the number of days during the growing season. We compute the

total precipitation during the growing season as the sum of observed precipitation between

February 1st and July 31th.
25The smallest-scale available location in our dataset is the municipality. There are about 500 municipali-

ties in Meuse, for an average size of about 4 km × 4 km. The weather information was provided on 8 km × 8
km grid squares. Each unit thus covers on average 4 municipalities. We attribute weather information at the
municipal level using overlapping GIS coordinates. We then attribute weather conditions to farm i using the
municipality in which farm i has its headquarters. Overall, the sample therefore covers 197 municipalities,
i.e. about 39% of the Meuse municipalities appear at least once in our panel.
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Summary Statistics. We provide the summary statistics on prices (deflated by the na-

tional consumer price index), yields and input uses for the three crops as well as weather

conditions during the growing season in Table 1. On average, the highest yields are achieved

for wheat, the highest prices are paid for rapeseed, while barley requires fewer inputs than

wheat or rapeseed. Wheat and rapeseed are more profitable than barley, which is rather used

as an intermediary crop in the usual crop rotation found in Meuse. The crop with the great-

est yield variations is rapeseed, with a coefficient of variation of 6.60/33.59=0.20, followed by

barley and wheat yields, with coefficients of 0.17 and 0.15 respectively. Regarding weather,

Table 1 underlines the fact that precipitation displays greater variability than temperature

in our sample, with associated coefficients of variation for temperature and precipitation

of 0.05 and 0.27 respectively. This greater heterogeneity of precipitation is common in the

literature (Fezzi and Bateman, 2015).

Table 1: Descriptive statistics (N=1,104).

Mean S.D. Min Max
Average temperature (°C) 12.65 0.64 11.17 14.18
Total precipitation (mm) 408.81 109.72 198.10 591.27
Wheat yield (100kg/ha) 70.88 10.49 31.49 106.96
Barley yield (100kg/ha) 64.30 11.10 20.00 90.76
Rapeseed yield (100kg/ha) 33.59 6.60 7.96 50.26
Wheat price (e/100kg) 16.49 3.49 3.82 28.32
Barley price (e/100kg) 14.63 3.61 6.55 30.82
Rapeseed price (e/100kg) 35.05 6.32 11.93 63.81
Fertilizer applications for wheat (constant e/ha) 123.04 28.14 3.79 210.16
Fertilizer applications for barley (constant e/ha) 106.85 25.00 3.15 211.05
Fertilizer applications for rapeseed (constant e/ha) 122.30 29.81 3.55 247.84
Pesticide applications for wheat (constant e/ha) 160.10 44.25 8.45 377.63
Pesticide applications for barley (constant e/ha) 152.51 45.69 34.13 392.07
Pesticide applications for rapeseed (constant e/ha) 220.88 52.25 63.24 423.47
Fertilizer price (index) 1.17 0.21 0.91 1.51
Pesticide price (index) 0.98 0.03 0.94 1.01

Table 1 presents a situation where both the dependent and independent variables of

interest display smaller variations than those usually exploited in the yield-weather-panel

literature. The coefficients of variation of crop yields are for example twice as small in our

case than in the case of Schlenker and Roberts (2009). This is not surprising. Indeed,
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the rich information in the Meuse database regarding input uses per crop comes at the

cost of exploiting a smaller geographical area than those used in most yield-weather-panel

studies,26 which are often performed at national level (e.g. France for Gammans et al.,

2017; US for Schlenker and Roberts, 2009).27 However, our setting presents additional

interests (on top of detailing input uses per crop). First, we use farm-level observations

instead of aggregated observations at the county or departmental level. This should allow

us to better account for fine-scale variations and facilitate the identification of the weather

impacts on agriculture, which could otherwise suffer from aggregation biases (Fezzi and

Bateman, 2015). Second, we use price variations on top of weather variations (in particular

with the introduction of interaction terms between them). Table 1 shows that crop prices

display levels of heterogeneity comparable with those of temperatures and precipitation. This

additional source of variation should thus facilitate our identification strategy compared to

previous studies.28 Finally, based on an analysis of out-of-sample forecast performances of

our reduced-form and structural models, we show in Section that the weather variations

that remain after adjusting for farm fixed effects are comparable to recent papers from the

literature.

Results

In this section, we first compare results from structural and reduced-form models and show

that they provide similar estimated weather impacts on crop yields (Section ). Second, we

show that the structural and reduced-form models are equally able to produce out-of-sample

forecasts (Section ). Third, we provide evidence of the robustness of our results (Section ).
26Note that our database is also relatively small in the time dimension. Indeed, it exploits only seven

years of data, whereas previous studies generally cover longer time spans. While additional rounds of data
would provide more information for inference, the used of individual fixed effects on long time periods rely on
strong assumptions about the time variation of omitted characteristics, that could ultimately lead to biased
estimates (Millimet and Bellemare, 2023).

27Note that, like ours, most studies that formally explain short-term adaptation behaviors in relation to
weather changes are usually performed at regional scales (e.g. Cui and Xie, 2022; Jagnani et al., 2021;
Ramsey et al., 2021).

28Our estimates should not suffer from any multicollinearity issue because correlations between prices and
weather variables are low (see Table A1 in the Online Appendix).
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Finally, we take the analysis of the structural estimates further in order to identify farmers’

adaptation responses to weather changes and how these responses translate into changes in

crop yields, ultimately providing separate measurements of the agronomic and adaptation

effects (Section ).

Estimating the weather impacts on crop yields: reduced-form and

structural estimates

Marginal analysis. Here we compare the ability of our reduced-form and structural ap-

proaches to estimating the impacts of weather conditions during the growing season on crop

yields. The results of the estimations of the reduced-form and structural models described

in relations (12) and (13) are presented in the Online Appendix in Tables A2 and A3 respec-

tively.29

Regarding the values of the reduced-form estimates (Table A2), we find that the yields

have positive concave relationships with both temperature and precipitation for the three

crops. This suggests that crop yields are highest at moderate temperatures and precipitation

but decrease for extreme cold, hot, arid, or wet conditions. These results are common in the

literature (e.g. Schlenker and Roberts, 2009; Lobell et al., 2011; Tack et al., 2015).

The interpretation of the structural results is not as straightforward. Indeed, the linear

and quadratic terms of average temperature and precipitation in the structural model affect

crop yields in a complex way through the sets of parameters α̂j and δ̂j (see relation (13)). To

facilitate comparison between the results of the reduced-form and structural estimations, we

compute the weather elasticities on crop yields using the obtained estimates (in Tables A2

and A3) at the sample mean values (see Table 1). The computations to obtain the elasticities
29Table A4 in the Online Appendix reports, for the structural model, the properties of the estimated

production functions for the three crops at the sample mean values. We recompute these elements using the
structural estimates reported in Table A3. It shows that, for each crop, the production function respects the
assumption of non-decreasing and concave relationship with both fertilizers and pesticides. We also report
the aggregated productivity of fertilizers and pesticides for the three crops using relation (6).
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are detailed in the Online Appendix . We report the values of the elasticities at the sample

mean values in Table 2.30

Table 2: Reduced-form and structural estimates of weather elasticities on crop yields.

Reduced-form Structural
Wheat Barley Rapeseed Wheat Barley Rapeseed

Temperature 0.57 *** -0.67 *** 1.00 *** 0.53 *** -0.63 *** 1.02 ***
(0.09) (0.11) (0.12) (0.09) (0.11) (0.12)

Precipitation 0.03 *** 0.03 ** 0.00 0.03 ** 0.02 -0.00
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)

Note. Elasticites are computed at sample mean values. Below each estimate we report in brackets
the standard errors obtained with the delta method. *, **, *** indicate p-values lower than 0.1, 0.05
and 0.01 respectively.

Table 2 shows that weather conditions during the growing season affect crop yields at

the margin in a similar way in both the reduced-form and structural models. Looking for

example at the impact of temperature on wheat yields, we find that an increase of 1% in the

average temperature during the growing season increases wheat yields by 0.57% according

to the reduced-form estimates, and by 0.53% according to the structural estimates. Perhaps

even more remarkable, the two models agree that an increase of 1% in total precipitation

during the growing season increases wheat yields by 0.03%. Similarly, the reduced-form and

structural estimates provide the same weather elasticities for barley and rapeseed yields.

The two types of model thus suggest similar aggregated weather impacts on crop yields in

the three cases.

Given the ability of our structural estimations to reproduce the basic results of the

reduced-form estimations, we now turn to the interpretation of the weather elasticities on

crop yields per se. Table 2 first indicates that the different crops do not react similarly to

a marginal increase in average temperature. This result has already been identified in the
30The elasticities of temperature corresponds here to an increase of 0.125°C at the sample mean value.

Note that such an increase would have been different if we measured temperatures using the Fahrenheit
or Kelvin scales (Hsiang, 2016). However, given that the estimates are more consistent for small increase
compared to the mean (a fortiori for sturctural estimates; see Timmins and Schlenker, 2009), we prefer
to rely on the Celsius scale. Indeed, a one percent increase in temperature would otherwise correspond to
an increase of 0.545°F (corresponding to +0.3°C) and 2.857 K (corresponding to +2.857°C) with the two
alternative scales. In other words, we would reason based on marginal increase three to twenty-three times
greater than those obtained with the Celsius scale.
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literature (e.g. Lobell et al., 2011). In our case, we find that a marginal increase in aver-

age temperature moderately decreases barley yields. All crops do not react negatively to

an increase in temperature at the margin. Indeed, the same marginal increase in average

temperature has respectively moderate and substantial positive impacts on wheat and rape-

seed yields. Gammans et al. (2017) already underlined that barley yields suffer more from

temperature increases than wheat yields in France. The large beneficial impacts of marginal

increase in temperature on rapeseed are more difficult to interpret as, to our knowledge, we

are the first to document weather impacts on rapeseed yields.

Non-marginal analysis. Table 2 only indicates the estimated relationship for marginal

weather changes at the sample mean values. However, because climate change implies non-

marginal changes in temperature and precipitation, one would ideally also compare the

impacts of weather changes as predicted by the two methods over the whole distributions

of temperature and precipitation. As such, Figure A2 in the Online Appendix displays the

estimated relationships between crop yields and weather over the whole distribution of tem-

perature and precipitation using the reduced-form estimates. Figures A3, A4 and A5 in

the Online Appendix show similar relationships using the structural estimates. Comparing

these figures shows that the estimated responses of crop yields to temperature and precip-

itation present similar quadratic shapes and curvatures. Overall, the two models provide

similar projected impacts of non-marginal weather changes on crops yields. For example, an

increase of one standard deviation in average temperature decreases wheat yields by 3.3%

using the reduced-form estimates and by 2.9% using the structural estimates. Similarly, an

increase of one standard deviation in total precipitation decreases wheat yields by 6.6% using

the reduced-form estimates and by 6.2% using the structural estimates. We obtain similar

results for barley and rapeseed.31

31Note in particular that, while marginal increases in average temperature can increase crop yields, non-
marginal increases in average temperature decrease the yields of all crops above a threshold (see Figures A2
to A5).
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Spatially-adjusted standard errors. The literature assessing weather impacts on eco-

nomic outcomes has paid attention to the issue of the spatial autocorrelation in the error

terms. To not take into account this phenomenon in the presence of spatially correlated

weather conditions can conduct to smaller estimated standard errors than they truly are

(Ortiz-Bobea, 2021). Since Schlenker et al. (2006), it has been common in the yield-weather-

panel literature to correct the estimations for spatial dependence by clustering the obtained

standard errors à la Conley (1999). If we can apply this solution for our reduced-form es-

timations, the complex structure of our structural model prevents us from correcting our

standard errors for spatial dependence using this approach.32 To address the issue of unob-

served spatial dependence in our structural model, we opted for another clustering technique

that has been previously used in the literature (Hsiang, 2016; Ortiz-Bobea, 2021). Specifi-

cally, we report block-bootstrapped standard errors clustered at the Canton × Year level in

Tables A2 and A3 (Moulton, 1990; Abadie et al., 2023), on top of the robust – unclustered

– standard errors.33 We also report the standard errors obtained with the Conley (1999)’s

correction for the reduced-form estimates.34 The reduced-form results indicate higher stan-
32Specifically, we use the R command nlsystemfit to estimate the structural model as described in

relation (13), notably with the constraints on the parameters δj,k,l to be equal between the yield and input
equations. However, neither the options nor the output formats of the command allow us to implement any
of the common solutions to adjust standard errors for spatial dependence using Conley (1999)’s correction.
To our knowledge, there is no available command in any statistical software that would allow us to control
for spatial dependence when estimating a three-equations system with parameter restrictions.

33Cantons are the largest administrative divisions within French departments (30 cantons in total in our
sample). They usually consist of a group of ten to fifteen municipalities in Meuse, with an average size
of 15 km × 15 km. It is worth noting that similar clustering techniques at larger scales than the unit
of analysis have already been employed in previous studies (e.g. Hsiang et al., 2013; Burke and Emerick,
2016). In particular, Hsiang et al. (2013) proceed to a block-bootstrap procedure where observations are
re-sampled by year. Such procedure assumes spatial correlations across all farms of the sample, which would
lead to larger standard errors than those obtained with our Canton × Year block-bootstrap procedure.
While relevant in the case of Hsiang et al. (2013), the small number of years in our sample prevents us
from applying such block-bootstrap procedure. To account for similar contemporaneous dependence in the
bootstrapped samples, one would need to turn towards alternative clustering procedures such as the wild
bootstrap procedure (Cameron et al., 2008), which is consistent even with small number of clusters (Canay
et al., 2021). However, we do not implement such procedure here, as assuming similar correlations across
farms located at different distances among each other may be excessive (Ortiz-Bobea, 2021). We rather
consider that neighbored farms – those within a particular canton – present greater spatial correlations than
farms located at the two opposite of the department.

34We correct the reduced-form estimations for spatial dependence using the code proposed by Ortiz-Bobea
(2021). Here, we specified a threshold of 15 kilometers among farm headquarters’ municipality centroids
beyond which we assume no correlation. In other words, we assume that there is no spatial correlations
with observations located outside the neighboring cantons (see Online Appendix ). Given that Meuse region
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dard errors when spatial dependence is accounted for (Table A2), but leaves our conclusions

unchanged. In particular, all the reduced-form estimates remain statistically significant at

the 1% level with the spatially-adjusted standard errors, with either the block-bootstrapped

clustering procedure or the Conley (1999)’s one.35 Similarly, we find – though not system-

atically – larger standard errors when spatial dependence is accounted for in the structural

estimations (Table A3). However, these larger standard errors do not alter the results sub-

stantively. In particular, all the structural estimates that are statistically significant at the

5% and 1% levels with the unclustered standard errors are also statistically significant at

the same levels with the clustered ones.

Though not invalidating the results of our reduced-form and structural estimations, the

larger clustered standard errors compared to the unclustered ones indicate that the stan-

dard errors of our elasticities in Table 2 – obtained with the delta method and the robust,

unclustered variance-covariance matrix – are likely narrower than they are in reality. Con-

sequently, our results should not be interpreted as unambiguous proof of weather impacts

on crop yields. There is already an abundant literature documenting these effects worldwide

with appropriate corrections for spatial dependence (e.g. Schlenker and Roberts, 2009; Tack

et al., 2015; Gammans et al., 2017). Our contribution is rather methodological, and should

be interpreted as a comparison exercise of the usual reduced-form estimations with those

from our original structural estimations in order to shed some light on the channels that

drive the weather impacts on crop yields.

Comparison of out-of-sample forecast performance

Estimates obtained from reduced-form models are usually employed in the literature to

make projections of the impacts of future climate change on crop yields. While the exercise

measures 6,211 square kilometers (see Figure A1 in the Online Appendix), this threshold implies that we
assume that a farm located at the barycenter of the Meuse department presents positive spatial correlations
with farms located in a surrounding area of about (π × 152)/6, 211 ≈ 11.5% of the department.

35The two clustering procedures conduct to reduced-form standard errors that are similar in magnitudes
(Table A2). This implies that, in our data, the Canton × Year clustering procedure accounts for similar
spatial dependence than the Conley (1999)’s approach. These findings support the validity of our block-
bootstrapped clustering correction for our structural estimations.
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is subject to several limits (see for example Ortiz-Bobea, 2021, for a discussion of few issues

in projecting climate change impacts on crop yields), one of the detrimental aspects of the

quality of the projections is the out-of-sample forecast performance of the models used. A

common method for assessing out-of-sample forecast performance is to drop part of the

data and to compare their actual values with their predicted values using the remaining

observations. In the case of a panel dataset, the common strategy is to estimate the model

after dropping a particular subset of years before comparing the crop yield values to their

predictions (Schlenker and Roberts, 2009). Accordingly, we estimate our reduced-form and

structural models after dropping observations for the year 2010 and test their respective

ability to predict the crop yield values for 2010.36

Figure 2 displays, for the three crops, the change in root-mean-square error (RMS) of

the reduced-form and structural models with comparison to a reduced-form model including

farm fixed effects only, where weather variables are removed. In other words, Figure 2

displays by how much the addition of weather variables to the reduced-form and structural

models improves the out-of-sample forecast performance of crop yields in 2010 compared to

the farm’s average crop yield values from the other years.

Looking first at the reduced-form model outcomes, Figure 2 shows that the introduction

of weather variables reduces the RMS by 3.0%, 4.6% and 3.3% for wheat, barley and rapeseed

respectively. In comparison, Ortiz-Bobea et al. (2019) found in their studies of all US rain-fed

counties that the reduction in RMS between comparable reduced-form models (one including

weather variables compared to one without) was 3.0% for wheat. Similarly, Schlenker and

Roberts (2009) found that introducing weather variables into their county-level, reduced-

form model reduces the RMS from 0.6% for cotton to 6.4% for corn. Finally, closer to our

study area, Gammans et al. (2017) found that the reduction in RMS between comparable

reduced-form models was 6.6% and 4.8% for wheat and barley respectively. These figures
36We drop the year 2010 as it is the year with the smallest amount of spatial deviation in precipitation

(about 30% less than in the other years). This reduces the variability in the predictions. We do not proceed to
the selection based on temperature deviations, as all years present roughly similar deviations in temperature.
Finally, note that the year 2010 is also located in the middle of our panel period, removing some potentially
trend issues.
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Figure 2: Out-of-sample forecast performance for various model specifications. Note. Bar
charts display the percentage reduction in the RMS for each model in comparison with a baseline
reduced-form model with no weather variables (expressed in percentages). Relative performance
is measured according to the accuracy of each model to predict the crop yields in 2010, which we
omitted from the sample (≈ 17% of all observations).

suggest that, while our study area is a small geographical region compared to the literature

standards (typically at country or continent levels), the weather variation that remains after

adjusting for individual fixed effects is comparable to recent papers from the literature (e.g.

Schlenker and Roberts, 2009; Gammans et al., 2017; Ortiz-Bobea et al., 2019), thus yielding

similar out-of-sample forecast performances.

Structural modeling comes with several modeling choices that are often difficult to test

except by means of out-of-sample forecast analysis (Timmins and Schlenker, 2009). Figure

2 shows that, compared to a reduced-form model with farm fixed effects only, the structural

model with weather variables reduces the RMS by 0.3%, 5.6% and 3.1% for wheat, barley

and rapeseed respectively. These figures are comparable to the previous reduced-form studies

from the literature. The structural model even seems to do a better job at predicting crop

yields in our case, at least for barley and rapeseed. To further investigate this result, Figure

2 also plots the change in RMS for a structural model that excludes weather conditions

(thus a similar model than those in relation (13) but accounting for prices and farm fixed

effects only). It shows that, without the inclusion of weather variables, the structural model

33



is in fact less able to provide reliable out-of-sample forecasts than the reduced-form model.

This means that the additional information due to the inclusion of prices in the model does

not compensate for the loss of flexibility imposed by the model structure. However, the

increases in RMS remain limited (respectively +0.3%, +2.3% and +0.2% for wheat, barley

and rapeseed).

Sensitivity analyses

So far, our results have shown that the structural model described in relation (13) provides

(i) identical estimates of the weather impacts on crop yields to those obtained with com-

monly used reduced-form models (in our particular sample), (ii) identical ability to predict

out-of-sample forecasts (in our particular sample) and (iii) identical results to those com-

monly obtained in the yield-weather-panel literature (from other samples). These insights

constitute an important and necessary step before going further with the analysis of the

channels explaining weather impacts on crop yields. However, we can wonder whether these

results are driven by a true relationship between weather and crop yields or if they are the

consequences of some of our empirical choices. To test the robustness of these results, we

estimate the weather impacts on crop yields in reduced-form and structural models with

alternative empirical choices regarding (i) the measurement of temperature during the grow-

ing season (see Appendix ), (ii) the form of farmers’ price expectations (see Appendix ) and

(iii) the time structure of the error terms (see Appendix ). We show that our main results

are robust to these choices. In particular, our original structural model replicates the usual

reduced-form results in all but one specification. The exception occurs when the models

additionally include year fixed effects, which, as already pointed out by Fisher et al. (2012),

purge most of the weather variations. Finally, a placebo analysis using the weather condi-

tions in autumn instead of those during the growing season indicates no significant effects of

weather outside the growing season on crop yields (see Appendix ). This suggests that our

previous results are due to true relationships between crop yields and weather conditions in

the growing season and not to measurement errors or spurious correlations.
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Mechanisms: structural measures of adaptation and of its conse-

quences on crop yields

This section aims to use the structural estimates reported in Section to investigate how

farmers adjust their fertilizer and pesticide applications to weather changes during the grow-

ing season, why they do so and what are the impacts of these within-season adjustments on

crop yields.

Input adjustments. On top of determining the weather impacts on crop yields, our struc-

tural estimates allows us to identify by how much input applications change when weather

changes. Reproducing what we have done in Table 2, we use the structural estimates from

Table A3 to recompute the weather elasticities of fertilizer and pesticide applications. The

computations of these elasticities are detailed in the Online Appendix . We report their

values at the sample mean values in Table 3.

Table 3: Weather elasticities on input applications.

Temperature Precipitation
Wheat Barley Rapeseed Wheat Barley Rapeseed

Fertilizers 1.02 *** 1.34 *** 0.61 *** 0.10 ** 0.02 0.20 ***
(0.19) (0.23) (0.24) (0.04) (0.04) (0.04)

Pesticides -0.39 ** 0.30 -0.19 0.11 ** 0.09 ** -0.24 ***
(0.20) (0.27) (0.20) (0.04) (0.04) (0.03)

Note. Elasticites are computed at sample mean values. Below each estimate we report in
brackets the standard errors obtained with the delta method. *, **, *** indicate p-values
lower than 0.1, 0.05 and 0.01 respectively.

Table 3 shows that farmers adjust their input applications to marginal weather changes

during the growing season.37 These within-season adjustments can be significant. In par-

ticular, results show that farmers increase their fertilizer applications by 0.61% to 1.34% in

response to a 1% increase in temperature, and increase fertilizer applications by 0.02% to
37Figures A3, A4 and A5 in the Online Appendix display changes in fertilizer and pesticide uses over the

whole distribution of temperature and precipitation.
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0.20% in response to a 1% increase in precipitation.38 This is consistent with farmers’ imple-

mentation of diverse adaptation strategies documented in the literature in other parts of the

world (e.g. Jagnani et al., 2021; Cui and Xie, 2022). Table 3 also indicates that farmers seem

to mainly respond to weather changes by adjusting their fertilizer applications, pesticide

applications responding much less to weather changes.39 This is consistent with the results

describing greater aggregated productivity of fertilizers than pesticides at the sample mean

values (see Table A4 in the Online Appendix). More generally, this is consistent with the

common wisdom of the literature that pesticides are damage-reducing inputs used for risk

management (i.e. mainly used to reduce crop variance at the second order, on top of their

productive purposes at the first order),40 while fertilizers can be considered as a productive

input only (e.g. Femenia and Letort, 2016).

Motives. The results displayed in Table 3 are coherent with the agronomic literature. On

one hand, it is well known from agronomists that farmers are likely to react to weather

changes by modifying their fertilizer applications. Indeed, agronomists have shown that

weather during the growing season determines mineralization of fertilizers and thus nutrient

availability (e.g. Raun and Johnson, 1999; Kay et al., 2006). In their meta-analysis of the lit-

erature, Xia and Wan (2008) have notably shown that greater average temperatures increase

fertilizer productivity. Tremblay et al. (2012) extend this result to precipitation, which they

show to increase nitrogen use efficiency. Our results for temperature and precipitation are

thus consistent with these agronomic findings. Also, as in our case, Tremblay et al. (2012)

and Chen and Gong (2021) found that fertilizer applications share a concave positive re-
38As in Table 2, a 1% increase in temperature at the sample mean values corresponds to a temperature

increase by 0.125°C. A 1% precipitation increase corresponds to an increase by 4.67mm.
39For example, results show no significant changes in pesticide applications due to a marginal increase

in temperature for barley and rapeseed. The only significant impact is estimated for wheat, where farmers
reduce their pesticide applications by 0.39% following a 1% increase in temperature.

40A possible extension of our structural model would be to explicitly introduce the risk dimension. This
may help to properly identify the weather impacts on farmers’ pesticide use. One step in this direction
may be to add some elements of the Lichtenberg and Zilberman (1986)’s damage control technology to our
production function.
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lationship with temperature, with moderate temperatures increasing fertilizer applications

but extreme heat reducing fertilizer use.

On the other hand, the agronomic literature has also shown that weather can affect farm-

ers’ pesticide use. In their literature review, Delcour et al. (2015) explain that weather can

affect pesticide applications through (i) changes in volatilization and degradation of pesti-

cides, (ii) changes in pest resistance and (iii) changes in pest pressure (both temporally and

spatially). While the last reason is often found in the literature as a cause of increasing

pesticide use with higher temperatures (e.g. Rosenzweig et al., 2001; Bailey, 2004), the first

two reasons are more rarely suggested as drivers of pesticide applications. Contrary to the

third cause, which relates to the intrinsic need to use pesticides (changes in pest pressures),

the first two are more closely related to changes in pesticide productivity. In particular,

Bloomfield et al. (2006) suggest that higher temperatures stimulate microbial and chemical

reaction rates, which accelerate the degradation of chemical components, thus reducing pes-

ticide productivity. This incites rational farmers to apply fewer pesticides at the margin (as

we find for wheat in Table 3). Finally, behavioral studies such as Jagnani et al. (2021) and

Larsen and McComb (2021) suggest that farmers facing higher temperatures increase pesti-

cide use at the beginning of the growing season, but reduce pesticide applications at the end

of the growing season. This mixed agronomic evidence regarding pesticide use may explain

why, for similar weather changes, we identify larger and more precisely estimated responses

regarding farmers’ fertilizer applications than farmers’ pesticide applications (Table 3).

In line with these mixed agronomic insights, we show in Online Appendix that farmers

in our sample do face heterogeneous incentives to adjust their input applications in response

to marginal weather changes. If any regularity on the main motives explaining the input

incentives can be derived from this complementary analysis developed in Appendix (see

Table A9), the changes in input requirements seem to explain the changes in fertilizer (resp.

pesticide) applications induced by temperature (resp. precipitation) changes. In other words,

weather conditions seem to mainly affect the input productivity through the required amount

of fertilizers and pesticides to achieve the maximum yields of the different crops. In line with
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the agronomic literature, we identify in this complementary analysis that the increase in

fertilizer requirements at higher temperatures does increase fertilizer productivity.

Consequences. Informed about the extent and motives of farmers’ adaptation, our struc-

tural approach ultimately allows us to measure the consequences of adaptation on crop

yields. Specifically, we can disentangle the total effects of weather conditions on crop yields

into the agronomic effects (i.e. the direct weather impacts on plant growth) and the adapta-

tion effects (i.e. the indirect weather impacts due to farmers’ behavioral responses). Table

4 reports in bold the weather elasticities of crop yields using our structural models, which

constitutes the total effects of marginal weather changes on crop yields.41 It also reports

in italics the agronomic and adaptation impacts of marginal weather changes. We define

the adaptation effects as the productive impacts of the input application adjustments at the

sample mean values. As the sum of the two effects is equal to the total effects, we measure

the agronomic effects as the difference between the total and the adaptation effects. These

computations are detailed in Online Appendix .

Table 4: Weather elasticities on crop yields: total, agronomic and adaptation effects.

Temperature Precipitation
Wheat Barley Rapeseed Wheat Barley Rapeseed

Total 0.53 *** -0.63 *** 1.02 *** 0.03 ** 0.02 -0.00
(0.09) (0.11) (0.12) (0.01) (0.01) (0.02)

Agronomic effects 0.22 ** -0.84 *** 0.89 *** -0.01 0.02 -0.02
(0.09) (0.11) (0.12) (0.01) (0.01) (0.02)

Adaptation effects 0.31 *** 0.21 *** 0.12 *** 0.04 *** 0.00 0.02 **
(0.02) (0.03) (0.02) (0.01) (0.00) (0.01)

Note. Elasticites are computed at sample mean values. The elasticities of yields on temperature and
precipitation are the same as those reported in Table 2 for the structural model. The sum of the agro-
nomic and adaptation effects is equal to the weather elasticities of crop yields. Below each estimate we
report in brackets the standard errors obtained with the delta method. *, **, *** indicate p-values lower
than 0.1, 0.05 and 0.01 respectively.

The results from Table 4 allow us to identify whether the weather impacts on crop yields

as usually measured in reduced-form models actually account for adaptation effects on top

of the agronomic effects or not. Looking for example at the impact of temperature on wheat
41These effects are identical to the weather elasticities of crop yields reported in Table 2.
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yields in Table 2, we find that a 1% increase in temperature during the growing season

increases wheat yields by 0.53%. Table 4 indicates that, actually, the total effects of a 1%

increase in temperature is due to the cumulative effects of a beneficial agronomic effect of

0.22% and a beneficial adaptation effect of 0.31%. About two thirds of the positive effect of

temperature on wheat yields thus comes from the farmers’ response to higher temperatures.

While large, the positive effects of adaptation on crop yields are easy to understand. Indeed,

we show in Table 3 that farmers substantially increase fertilizer applications in response to

higher temperatures, for only a small reduction in pesticides. Given that fertilizer is the

most productive input (see Table A4 in the Online Appendix), this large augmentation leads

to substantial increases in wheat yields.

We identify similar results for barley and rapeseed yields, where input adjustments in-

duced by warmer temperatures – as reported in Table 3 – increase crop yields. The adapta-

tion effects induced by farmers’ responses to warmer temperatures are thus positive for all

crops. In particular, a 1% increase in temperature indirectly increases crop yields through

input adjustments by 0.12% to 0.31% (see Table 4). The agronomic effects are more het-

erogeneous across crops. While we identify a slightly beneficial impact on wheat yields,

the agronomic impacts on barley are negative and substantial, suggesting a large negative

exogenous shock of marginal increase in temperature on plant growth. The adaptation ef-

fects reduce this negative shock by about a quarter. For rapeseed, the agronomic effects of

warmer temperatures are positive and large: a 1% increase in temperature directly increases

rapeseed yields by 0.89%. These results suggest that rapeseed is more suitable than cereals

to be cropped under warming weather conditions ceteris paribus. The impacts of adaptation

are however smaller on rapeseed than for wheat and barley.

In line with the results in Table 2, Table 4 only shows small marginal impacts of precipi-

tation on crop yields. The highest impact of adaptation in response to a marginal increase in

precipitation is for wheat yields, which increase by 0.04%. The total effects of an additional

1% of precipitation is 0.03%. For the two other crops, we identify no effects of marginal

increases in precipitation on crop yields in total. The two patterns are however different for
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barley and rapeseed. Indeed, while we identify no effects of either the agronomic or adap-

tation effects of higher precipitation on barley yields, we find that the adaptation effects for

rapeseed are positive (though small) and that the agronomic and adaptation effects cancel

out each other.

The analyses developed above illustrate the interest of structural modeling in compar-

ison with reduce-form modeling. In specifying the mechanisms underlying farmers’ profit

maximization objectives, we are able to distinguish the effects of an exogenous shock in pro-

duction conditions (weather changes here) from those due to farmers’ behavioral responses

to such a shock (Timmins and Schlenker, 2009). We find that such adaptation effects are

sizable and that they increase crop yields in most cases (i.e. in all except the impact of

marginal precipitation change on barley yields). However, while farmers succeed in com-

pletely offsetting the negative impacts of precipitation on plant growth, they cannot do so

for marginal increases in temperature.

Simulations

In this section, we investigate the potential impacts of non-marginal increases in temperature

on crop yields in our sample using both the results of the reduced-form and structural models

presented above. Specifically, we project the estimated impacts of uniform warming where

average temperature increases by +1°C, +2°C or +3°C in comparison to our initial 2006-2012

panel, assuming all the remaining elements to be constant.

Expected impacts of warmer temperatures. Table 5 shows the initial averages of the

crop yields in our sample for the period 2006-2012 (Panel A) and the predicted changes

in crop yields under future temperatures using the results from our reduced-form model

(Panel B) and structural model (Panel C). These changes correspond to the levels of the

estimated responses in Figures A2 to A5 under additional 1°C to 3°C compared to average
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temperatures of the period 2006-2012, related to the initial average crop yields. These results

call for several comments.

Table 5: Projections of the impacts of warmer temperatures on crop yields.

Wheat Barley Rapeseed
+1°C +2°C +3°C +1°C +2°C +3°C +1°C +2°C +3°C

A. 2006-2012 Averages
Initial yields (100 kg/ha) 70.88 70.88 70.88 64.30 64.30 64.30 33.59 33.59 33.59

B. Reduced-form Estimates
Changes in yields (100 kg/ha) -1.61 *** -12.84 *** -33.68 *** -8.63 *** -27.70 *** -57.19 *** -0.48 -7.23 *** -20.27 ***

(0.59) (2.01) (4.50) (0.62) (2.13) (4.77) (0.37) (1.25) (2.79)
C. Structural Estimates

Changes in yields (100 kg/ha) -1.18 * -10.66 *** -28.42 *** -8.36 *** -27.03 *** -55.99 *** -0.36 -6.83 *** -19.41 ***
(0.63) (2.11) (4.69) (0.68) (2.25) (4.96) (0.38) (1.29) (2.86)

Agronomic effects -3.72 *** -22.31 *** -55.30 *** -11.16 *** -37.65 *** -79.54 *** -0.44 -8.95 *** -25.52 ***
(1.02) (3.54) (7.77) (1.23) (3.99) (8.56) (0.77) (2.44) (5.14)

Adaptation effects 2.53 *** 11.66 *** 26.88 *** 2.80 *** 10.63 ** 23.55 *** 0.08 2.13 6.11
(0.73) (3.73) (8.67) (0.62) (3.98) (9.31) (0.10) (2.15) (5.31)

Note. Figures display predicted changes in crop yields, holding current growing areas and technology constant relative to the period 2006-2012. Panel A dis-
plays the initial crop yields in our sample. Panel B presents the predicted changes using the reduced-form estimates. Panel C presents the predicted changes
using the structural estimates. For this panel, we report the estimated direct impacts of weather on plant growth (agronomic effects) and the estimated indi-
rect impacts of weather via farmers’ adjustments in input applications (adaptation effects). Below each estimate we report in brackets the standard errors obt-
ained using the delta method. *, ** and *** indicate p-values lower than 0.1, 0.05 and 0.01 respectively.

First, we find that reduced-form and structural results consistently indicate negative

impacts of warmer temperatures. This is particularly true for barley and rapeseed, where the

projected impacts display only marginal differences between the reduced-form and structural

models. While larger than the two other crops, the differences between the two methods

for wheat yields remain statistically null. This result is in line with results from Section

and confirm that the reduced-form and structural models lead to similar estimation of total

weather impacts on crop yields.

Second, the projections using the structural estimates indicate that the agronomic im-

pacts of warmer temperatures are negative for the three crops but that the farmers’ adap-

tation to these warmer temperatures allows them to offset part of these negative direct

impacts. These adaptation effects are sizable and positive. Looking for example at the case

of wheat yields, Table 5 indicates that an additional one degree Celsius induces a negative

direct shock of -372 kg/ha (i.e. - 5% in comparison to the initial wheat yields for the period

2006-2012). This negative shock is however partly compensated for by farmers’ adaptation,
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which increases wheat yields by 253 kg/ha. In other words, the farmers’ adaptation offsets

the negative direct impacts of the additional one degree Celsius on plant growth by about

253/372≈68%. Interestingly, we find that, ceteris paribus, farmers will have greater difficulty

in offsetting the negative direct effects as future temperature further increases. Indeed, we

find that farmers can only offset about half of the negative direct effects of an additional two

or three degrees Celsius on wheat yield.

Third, crop yields are heterogeneously affected by an increase in temperatures. Indeed,

in line with Section , we find that barley yields suffer much more from an increase in tem-

perature than wheat or rapeseed yields. For example, while an additional one degree Celsius

reduces wheat and rapeseed yields by about 1% to 2%, barley yields decrease by about

13%. This difference is maintained as the warming amplifies. Interestingly, crops are also

heterogeneous in terms of the potential offset of farmers’ adaptation. Indeed, while we al-

ready showed that farmers can offset about half to two thirds of the negative direct effects

of warmer temperatures on wheat yields, farmers can only offset about a quarter of the

negative direct effects of warmer temperatures on barley and rapeseed yields. Note finally

that the adaptation effects on wheat and barley are about equal in absolute terms and that,

once again, rapeseed stands out among the other crops as these adaptation effects are not

precisely estimated for such large increases in temperatures.

Online Appendix presents similar projections than those displayed in Table 5 but using

measurements of cumulative temperatures during the growing season, instead of those of

average temperatures. The results are overall similar, with sizable adaptation effects that

offset between 10% to 85% of the negative direct impacts from warmer temperatures. In-

terestingly, we find statistically insignificant aggregated impacts of warmer temperature on

wheat yields in both models, while the agronomic and adaptation effects are significant at

1% or 5% (Table A10. Such aggregated impacts hide compensatory mechanism between the

negative agronomic effects and the positive adaptation effects.
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Limitations. While informative, our simulation exercise comes with several limits that

we want to emphasize. First, we hold all elements other than temperature constant (e.g.

technologies, crop allocations and prices). These elements will have changed by the time

average temperatures have increased by several degrees Celsius. In particular, the relation-

ship between farmers’ input applications and weather will change in the future, either as a

result of the increasing environmental regulations faced by farmers, or because of technical

changes in the composition/application of fertilizers and pesticides (Kaminski et al., 2013).42

Second, farmers can implement other adaptation strategies than simply adjusting input uses

within the growing season. While these adjustments are the easiest to implement in the

short term, farmers can also adjust to climate change in the long term, for example by ad-

justing their capital levels (Yang and Shumway, 2016) or by changing their crop allocation

(Cui, 2020). Third, one should take our projections for large increases in temperature with

caution as we obtained our parameters of interest using marginal analyses. Moreover, some

temperatures we consider for our simulations are out of the range of observations of our

initial 2006-2012 sample. Typically, the projections for +3°C should be taken as speculative

and illustrative. As such, we believe that our projections are likely to be more consistent

for a limited additional one degree Celsius than for larger increases in temperature. Fourth,

as for the remainder of the paper, we do not adjust the standard errors – computed with

the delta method – for spatial dependence. The consequence is that the standard errors

reported in Table 5 are likely to be narrower than they truly are. Finally, our projections

only account for a limited sample of farmers from the Meuse department. The insights ob-

tained from the projections on such a limited area is of limited interest to infer the future

impacts of climate change on agricultural production worldwide, or even in France. Given

all these elements, our projections should rather be taken as an illustrative exercise where

the focus is on the distinction between the agronomic and adaptation impacts of higher tem-

peratures. We view these results as complementary to reduced-form studies performed at
42Institutions shaping farmers’ decisions can also change in responses to climate change (see Henry, 2022,

for example).
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larger scales (e.g. Schlenker and Roberts, 2009; Lobell et al., 2011; Gammans et al., 2017),

wherein larger weather variations help to infer the future impacts of higher temperatures

on crop yields. Our results provide a useful check for whether these studies do account for

farmers’ short-term adaptation on top of the direct agronomic impacts, as they claim.

Concluding Remarks

The impacts of climate change on agricultural production depend critically upon farmers’

adaptation. To infer such climate impacts while accounting for adaptation, the large bulk of

the economic literature has regressed observed crop yields on observed weather conditions

during the growing season conditionally on individual fixed effects (Schlenker and Roberts,

2009; Lobell et al., 2011, 2013; Mérel and Gammans, 2021; Wing et al., 2021; Wang, Rejesus,

Tack, Balagtas, and Nelson, Wang et al.; Chen et al., 2023). However, the reduced-form esti-

mations that are usually considered in this yield-weather-panel literature makes it impossible

to disentangle the direct impacts of weather on plant growth (as captured by most former

crop simulation models – e.g. Asseng et al., 2015) from those due to farmers’ adaptation.

In fact, these reduced-form approaches actually even prevent to verify whether farmers re-

ally adapt to weather changes. Under these conditions, it remains unclear why economists

should be better able than natural scientists to identify the consequences of climate change

for agricultural production. For this reason, we estimate in this paper a structural model

that formally accounts for both the plants’ biophysical and farmers’ behavioral responses to

weather changes, and compare the obtained estimates to those obtained with usual reduced-

form estimations. Formally, this structural model allows us to simultaneously and separately

measure (i) the direct impacts of weather changes on plant growth (i.e. the agronomic im-

pacts on crop yields), (ii) the farmers’ adjustments of input applications in response to such

changes (i.e. the farmers’ adaptation per se) and (iii) the consequences of these within-season

adjustments on crop yields (i.e. the adaptation impacts).
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Using an original panel dataset from Meuse (France) detailing input uses per crop for

the 2006-2012 period, we estimate our crop-specific structural models (for wheat, barley

and rapeseed) composed of one yield equation and two input-specific demand functions

(for fertilizers and pesticides), conditionally on farm fixed effects. We use weather and

price variations together to identify, for each crop, farmers’ adaptation and its consequences

for crop yields – i.e. the adaptation impacts – separately from the agronomic impacts.

These original elements come at the cost of an admittedly small geographical area, which

could prevent the identification of precise estimates. We however provide evidence that

the remaining weather variation after adjusting for individual fixed effects provides similar

additional information in our case as in previous reduced-form studies from the yield-weather-

panel literature applied to larger areas (e.g. Schlenker and Roberts, 2009; Gammans et al.,

2017; Ortiz-Bobea et al., 2019).

Our results provide several important insights. First, our systematic comparison of the

reduced-form and structural estimates indicate that the two approaches provide similar es-

timates of the total impacts of weather conditions on crop yields. These results are identical

for both marginal and non-marginal changes in weather conditions, as well as for several

specifications and robustness checks. Second, we find that farmers do adjust their input

applications in response to weather changes. In particular, they increase their fertilizer

applications in response to temperature increases, for all crops considered. They also in-

crease their fertilizer applications when facing higher precipitation, though to a fewer ex-

tent. Globally, the weather impacts on pesticide applications are less precisely estimated

and less consistent. In line with agronomic insights, our structural estimates suggest that

the intensification of fertilizer applications is explained by the positive effects of tempera-

ture on fertilizer productivity, which leads rational farmers to apply more fertilizers. Third,

we find that these within-season adjustments increase crop yields under both marginal and

non-marginal increases in temperature and precipitation. By comparison, the agronomic im-

pacts can be positive or negative for marginal changes in weather conditions but are always

negative for non-marginal increases in temperature. In total, we find that the adaptation
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impacts offset by one quarter to two thirds the agronomic impacts of non-marginal increases

in temperature, with heterogeneous effects depending on the crops and temperature increases

considered. Last but not least, given that (i) our structural model explicitly accounts for

both the agronomic and adaptation impacts and that (ii) we identify that these adaptation

impacts are non-null (in our illustrative case study), this means that (iii) the usual yield-

weather-panel approach does account for the consequences of farmers’ adaptation for crop

yields (on top of the direct impacts on plant growth). Economists have thus something

to add to crop simulation approaches in our comprehension of the mechanisms behind the

impacts of climate change on agricultural production.

As noted by Timmins and Schlenker (2009), structural modeling is of particular interest

in environmental economics as it allows accounting for both the biophysical impacts of an

exogenous shock and the agents’ behavioral responses to such a shock. We showed here that

such disaggregation is useful to understanding weather impacts on crop yields. However,

structural modeling should not be considered as a substitute for reduced-form modeling –

but, rather, as a complement. Structural modeling, while theoretically grounded, has inher-

ent limitations and assumptions imposed by the model structure that are often unverifiable.

In contrast, reduced-form modeling provides greater flexibility in terms of model specifica-

tions and error terms structure. Our own structural estimation is not exempt from these

limitations, as we do not correct for example for spatial dependence between observations

when recomputing the elasticities with the delta method. Therefore, our results should not

be taken as conclusive evidence of weather impacts on crop yields. For a better appreciation

of these impacts, we suggest the readers examining the yield-weather-panel studies work-

ing at country, continental or global scales (e.g. Schlenker and Roberts, 2009; Gammans

et al., 2017; Wing et al., 2021), where a greater diversity of weather conditions is considered.

Our contribution should rather be interpreted as an attempt to compare usual results from

reduced-form estimations with those coming from our structural estimations to gain knowl-

edge on the channels that drive the weather impacts on crop yields. To further advance the

field, future structural modeling efforts could aim, among other factors, to estimate models
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for larger and more representative areas than ours, or refine the farmers’ objective function

by including dynamic or risk considerations (see Lemoine, 2021, for example).
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Online Appendices

Meuse location

Figure A1 displays the location of the Meuse department in France. It also displays the

structure of the 31 cantons within the Meuse department. The canton is the largest admin-

istrative division within a department. It corresponds to the LAU 1 division in the European

Union. The average distance between the centroids of two neighboring cantons is 15 km in

Meuse.
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Figure A1: Location of Meuse. Note. The black borders are the limits of all the metropoli-
tan French departments (NUTS3 regions). The Meuse department is indicated in grey. The
zoomed image indicates the cantons within the Meuse department.
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Correlations between crop prices and weather conditions in the

sample

Table A1 displays the matrix of correlation between weather variables and crop prices in the

Meuse sample after centering for farm averages (farm fixed effects).

Table A1: Coefficients of correlation between crop prices and weather conditions during the
growing season

Avg. Temp. Tot. Prec. Wheat Price Barley Price Rapeseed Price
Average Temperature – 0.02 0.42 0.43 0.09
Total Precipitation 0.02 – 0.20 0.21 -0.19
Wheat Price 0.42 0.20 – 0.81 0.56
Barley Price 0.43 0.21 0.81 – 0.57
Rapeseed Price 0.09 -0.19 0.56 0.57 –
Note. The figures are the coefficients of correlations between weather variables wi,t and crop prices pi,j,t in the sample
after centering for farm averages.
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Reduced-form estimates

Table A2 presents the results of the Ordinary Least Square estimation of the reduced-form

model specified in equation (12) for wheat, barley and rapeseed. In addition to reporting

the robust standard errors in ordinary brackets, Table A2 displays in square brackets the

clustered standard errors (clustered at the Canton × Year level), obtained by bootstrap over

200 replications (with replacement). We also report in braces the standard errors adjusted

for spatial dependence using Conley (1999)’s procedure. To produce consistent standard

errors with the two clustering procedures, we account for spatial correlations within 15 km

around the observations, which correspond to the average distance between the centroids

of two neighboring cantons in Meuse (see Appendix ). Results in Table A2 confirms that

the two procedures provide standard errors of similar magnitudes. In other words, the

bootstrap procedure with cluster at the Canton × Year level accounts to similar level of

spatial dependence than the Conley (1999)’s clustering procedure. The standard errors

are 30% to 250% larger when accounting for spatial dependence, but all the reduced-form

estimates remain statistically significant at the 1% level with the spatially-adjusted standard

errors.
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Table A2: Reduced-form estimates (N=1,104)

Wheat Barley Rapeseed
Average Temperature 124.81 *** 128.51 *** 82.06 ***

(13.77) (14.57) (8.52)
[28.80] [24.43] [15.45]
{36.57} {27.67} {15.88}

Average Temperature Squared -4.81 *** -5.22 *** -3.14 ***
(0.53) (0.57) (0.33)
[1.10] [0.95] [0.59]
{1.39} {1.08} {0.62}

Total Precipitation 0.07 *** 0.02 0.02 *
(0.02) (0.02) (0.01)
[0.03] [0.02] [0.01]
{0.03} {0.02} {0.02}

Total Precipitation Squared -0.00 *** -0.00 -0.00 *
(0.00) (0.00) (0.00)
[0.00] [0.00] [0.00]
{0.00} {0.00} {0.00}

Farm Fixed Effects Yes Yes Yes
Year Fixed Effects No No No
Time Trend No No No
R2 0.41 0.41 0.43
Note. This table reports the estimates of the effect of weather conditions during
the growing season on crop yields using the reduced-form model presented in relation
(12). Below each estimate we report the robust standard errors in ordinary brackets.
We report in hooks the clustered standard errors obtained by bootstrap over 200 re-
plications. We report in braces the standard errors adjusted for spatial dependence
using Conley (1999)’s correction. *, ** and *** indicate p-values lower than 0.1, 0.05
and 0.01 respectively.
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Structural estimates

Table A3 presents the results of the estimation of the structural model specified in equation

(13) for wheat, barley and rapeseed. Note that the parameters δ are jointly estimated with

the α and β parameters such that their estimation relies on the exploitation of farm fixed

effects as additional information. The R command nlsystemfit that we used for the esti-

mation does not allow correction of the standard errors for spatial dependence (Henningsen

and Hamann, 2008). In addition to the robust standard errors in ordinary brackets, we

report in squared brackets the bootstrapped standard errors obtained over 200 replications

(with replacement), clustered at the Canton × Year level. The standard errors are overall

– but not always – greater when adjusted for spatial dependence. However, all the struc-

tural estimates that are statistically significant with the unclustered standard errors remain

significant at the same statistical level (1%, 5% or 10%) with the spatially-adjusted stan-

dard errors. Interestingly, two of the estimates of δ2,1,1 which are not significant with the

unclustered standard errors turns statistically significant at the 1% level with the clustered

standard errors.
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Table A3: Estimated structural parameters of crop profits (N=1,104)

αj βj1 βj2 δj,1,1 δj,2,2 δj,1,2

A. Wheat

Constant – – – -141,552.12 *** -23,391.96 -20,954.83
– – – (37,483.92) (33,227.42) (29,102.41)
– – – [64,217.59] [49,391.20] [38,803.62]

Average Temperature 192.45 *** 2,215.49 *** 816.67 *** 20,609.95 *** 3,297.48 4,156.27
(22.67) (325.34) (329.46) (6,002.53) (5,386.73) (4,734.73)
[42.76] [583.33] [368.60] [10,193.10] [8,037.61] [6,294.73]

Average Temperature Squared -7.45 *** -86.16 *** -32.71 *** -796.41 *** -127.65 -169.60
(0.89) (12.77) (13.00) (239.12) (217.57) (473.47)
[1.65] [22.73] [14.63] [403.25] [324.85] [255.08]

Total Precipitation 0.13 *** 2.91 *** -0.88 * 496.45 *** 13.05 * -22.57 ***
(0.03) (0.43) (0.51) (6.54) (8.30) (6.00)
[0.04] [0.55] [0.69] [8.52] [9.63] [7.97]

Total Precipitation Squared -0.00 *** -0.00 *** 0.00 ** -0.06 *** -0.02 ** 0.03 ***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01)
[0.00] [0.00] [0.00] [0.01] [0.01] [0.01]

Farm Fixed Effects Yes Yes Yes – – –
Year Fixed Effects No No No – – –
Time Trend No No No – – –

B. Barley

Constant – – – -2.16 26,999.15 -74,894.65 ***
– – – (2,848.51) (31,032.53) (24,987.35)
– – – [63.99] [32,179.34] [20,939.54]

Average Temperature 190.22 *** 1,216.77 *** 1,115.40 *** -1,171.54 -4,334.57 12,617.91 ***
(22.94) (243.59) (329.82) (4,586.02) (5,018.63) (4,067.01)
[38.26] [281.64] [461.46] [340.48] [5,225.85] [3,433.02]

Average Temperature Squared -7.66 *** -47.28 *** -44.63 *** 63.52 180.17 -514.41 ***
(0.91) (9.62) (13.12) (183.24) (202.54) (164.33)
[1.51] [11.22] [18.47] [21.01] [212.49] [139.73]

Total Precipitation 0.03 1.90 *** -1.39 *** 28.17 *** -4.17 -13.21 **
(0.03) (0.27) (0.43) (4.61) (7.71) (5.21)
[0.04] [0.34] [0.62] [6.35] [9.60] [6.93]

Total Precipitation Squared -0.00 * -0.00 *** 0.00 *** -0.04 *** 0.01 0.02 **
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01)
[0.00] [0.00] [0.00] [0.01] [0.01] [0.01]

Farm Fixed Effects Yes Yes Yes – – –
Year Fixed Effects No No No – – –
Time Trend No No No – – –

C. Rapeseed

Constant – – – -234,547.46 *** -58,097.29 156.48
– – – (78,300.03) (96,381.73) (70,501.74)
– – – [69,626.60] [100,811.41] [3,163.98]

Average Temperature 105.98 *** 1,673.28 *** 280.13 33,628.38 *** 7,510.58 951.66
(13.46) (353.43) (462.47) (12,850.34) (15,511.11) (11,545.15)
[22.29] [433.80] [480.56] [11,252.59] [16,066.17] [1,095.75]

Average Temperature Squared -4.04 *** -64.07 *** -10.99 -1,318.82 ** -346.86 10.77
(0.53) (14.11) (18.45) (519.00) (621.98) (467.86)
[0.86] [17.23] [19.14] [451.27] [638.20] [58.05]

Total Precipitation 0.07 *** 2.78 *** 0.19 112.06 *** 9.05 - 61.70 ***
(0.02) (0.46) (0.67) (13.11) (24.41) (14.26)
[0.03] [0.77] [0.92] [17.73] [28.45] [25.45]

Total Precipitation Squared -0.00 *** -0.00 *** -0.00 -0.14 *** -0.10 *** 0.06 ***
(0.00) (0.00) (0.00) (0.01) (0.02) (0.02)
[0.00] [0.00] [0.00] [0.01] [0.03] [0.02]

Farm Fixed Effects Yes Yes Yes – – –
Year Fixed Effects No No No – – –
Time Trend No No No – – –
Note. This table presents the estimates obtained from the SUR estimation of the structural model described in relation (13)
for wheat, barley and rapeseed respectively. Below each estimate we report the robust standard errors in brackets, and the
clustered standard errors in hooks. The clustered standard errors are obtained with bootstrap over 200 replications. *, ** and
*** indicate p-values lower than 0.1, 0.05 and 0.01 respectively. The estimation is handled with the R command nlsystemfit.



Properties of the production functions and input productivity at

the sample mean values

We report in Table A4 the properties of the production function evaluated at the sample mean

values. It shows that all inputs display the expected aggregated value of the product δ̂′j,k,kw̄

at the sample mean values (notably always positive for the own productivity shifters). The

complementary/substitution terms show that fertilizers and pesticides are complementary

inputs for barley but substitute inputs for wheat and rapeseed. The three crops present an

estimated production function that respects the property (δ̂′j,1,1w̄)×(δ̂′j,2,2w̄)−(δ̂′j,1,2w̄)2 > 0.

These properties imply that the three production functions that we estimated respect the

assumption that crop yield yi,j,t has a non-decreasing and concave relationship with xi,j,k,t.

Table A4: Properties of the production function and underlying estimated productivity of
fertilizers and pesticides

Wheat Barley Rapeseed
A. Properties

δ̂
′
j,1,1w̄ 759.46 548.18 804.71
δ̂
′
j,2,2w̄ 314.35 371.70 444.22
δ̂
′
j,1,2w̄ 46.18 -175.23 28.57

(δ̂′j,1,1w̄)× (δ̂′j,2,2w̄)− (δ̂′j,1,2w̄)2 236,608.50 173,049.60 356,649.40
B. Aggregated Productivity

Fertilizer productivity θ1
j 0.20 0.10 0.07

Pesticide productivity θ2
j 0.04 0.00 0.02

Note. The table displays the properties of the estimated production function
at the sample mean values.

Based on relation (6), we recompute the value of the aggregated productivity of input

k for crop j θkj at the sample mean values. The aggregated productivity θkj includes both

the elements related to the input productivity and complementary/substitution terms. This

value indicates by how much crop yields increase in absolute terms when input applications

increase by one unit at the sample mean values. Table A4 shows that all inputs present a

positive productivity at the margin. Interestingly, we find that the aggregated productivity

of fertilizers is about three to fifteen times greater than the aggregated productivity of
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pesticides. This is consistent with the role of pesticides as a damage-reducing input (on top

of its productive purposes), while fertilizers can be considered as a productive input only

(Femenia and Letort, 2016).
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Elasticities of crop yields on weather conditions during the growing

season

This Appendix presents how to compute the weather elasticities of crop yields using the

reduced-form and structural estimates.

For the reduced-form model, one can straightforwardly recomputes the weather elastic-

ities using relation (12). For example, the elasticity of crop yields with regard to average

temperatures is simply equal to:

ξTyj
= ∂yj
∂T

T̄

ȳj
= (ψ̂Tj + 2ψ̂T 2

j T̄ ) T̄
ȳj
.

The computation is more complex for the structural model. The elasticities of crop yields

on weather conditions can be computed using relation (11). For example, the elasticity of

crop yields on temperature ξTyj
is equal to:

ξTyj
=(α̂Tj + 2α̂T 2

j T̄ − 0.5 (p̄x1)2

(E(p̄yj ))2 (δ̂Tj,1,1 + 2δ̂T 2

j,1,1T̄ )− 0.5 (p̄x2)2

(E(p̄yj ))2 (δ̂Tj,2,2 + 2δ̂T 2

j,2,2T̄ )

− p̄x1 p̄
x
2

(E(p̄yj ))2 (δ̂Tj,1,2 − 2δ̂T 2

j,1,2T̄ )) T̄
ȳj
.
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Summary of the impacts of weather conditions during the growing

season on crop yields using the reduced-form estimates

Figure A2 shows the estimated relationships between crop yields and weather conditions over

the whole distribution of temperature and precipitation. These relationships are recomputed

by reinserting the reduced-form estimates from Table A2 into relation (12).
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Figure A2: Estimated relationships between yields and weather conditions during the grow-
ing season using reduced-form estimates. Note. Wheat (red lines); barley (green lines);
rapeseed (blue lines). The 90% confidence intervals are computed using the delta method and
shown with dashed lines. The vertical lines display the weather conditions at the sample mean
values.
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Summary of the impacts of weather conditions during the grow-

ing season on crop profits, yields and input applications using the

structural estimates

Figures A3, A4 and A5 show the changes in input uses, crop yields and profits over the

whole distribution of temperature and precipitation. The relationships are recomputed by

reinserting the structural estimates into relations (10) and (11) respectively. Changes in crop

profits are recomputed using relation (1) such that crop profits are equal to crop revenues

(yield times price) minus fertilizer and pesticide costs.
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Figure A3: Changes in wheat profits, yields and input applications depending on weather
conditions during the growing season using the structural parameters. Note. Fertilizer
applications (red lines); Pesticide applications (green lines); Yields (blue lines); Profits (black
lines). The 90% confidence intervals are computed using the delta method and shown with dashed
lines. Yields and input applications are expressed in e/ha, multiplying the estimated quantities by
average prices. Changes in profit are recomputed using equations (1) and (5). The vertical lines
display the weather conditions at the sample mean values.
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Figure A4: Changes in barley profits, yields and input applications depending on weather
conditions during the growing season using the structural parameters. Note. Fertilizer
applications (red lines); Pesticide applications (green lines); Yields (blue lines); Profits (black
lines). The 90% confidence intervals are computed using the delta method and shown with dashed
lines. Yields and input applications are expressed in e/ha, multiplying the estimated quantities by
average prices. Changes in profit are recomputed using equations (1) and (5). The vertical lines
display the weather conditions at the sample mean values.
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Figure A5: Changes in rapeseed profits, yields and input applications depending on weather
conditions during the growing season using the structural parameters. Note. Fertilizer
applications (red lines); Pesticide applications (green lines); Yields (blue lines); Profits (black
lines). The 90% confidence intervals are computed using the delta method and shown with dashed
lines. Yields and input applications are expressed in e/ha, multiplying the estimated quantities by
average prices. Changes in profit are recomputed using equations (1) and (5). The vertical lines
display the weather conditions at the sample mean values.
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Sensitivity analysis: cumulative temperature instead of average

temperature

One of the greatest contribution of Schlenker and Roberts (2009) was to show that crop yields

depend non-linearly on temperature, and that this relationship could be well approximated

by two terms separately accounting for the time spent under beneficial (moderate) and

harmful (extreme) temperatures. These insights are in line with the agronomic literature

that usually separates cumulative temperatures into measurements of beneficial and killing

degree days. As such, we follow Schlenker and Roberts (2009) and re-estimate the reduced-

form and structural models in relations (12) and (13) using beneficial and killing degree

days instead of the average temperature and its square term. The beneficial and killing

degree days are measured following the sine interpolation procedure proposed by Schlenker

and Roberts (2009). Formally, we compute beneficial degree days during the growing season

as
∫ Tmax
Tbase

min{T − Tbase, Tmax − Tbase}Φ(T ) dT with Tbase = 10°C and Tmax = 30°C. Φ(T )

is the reconstructed distribution of temperature during the growing season using the sine

interpolation between minimal and maximal daily temperatures (Schlenker and Roberts,

2009). Accordingly, we compute killing degree days during the growing season as
∫∞
Tmax

(T −

Tmax)Φ(T ) dT . As in the benchmark, the growing season lasts from February 1 to July 31.

The reduced-form and structural models additionally include the sum of the precipitation

during the growing season as well as its squared term.

Table A5 presents the elasticities of crop yields on temperature and precipitation during

the growing season using measures of cumulative temperature instead of average tempera-

ture. Along with the change in functional form, the elasticities are different from those using

average temperatures in Table 2. In particular, elasticities of crop yields on temperature

are two to three times lower with the measures of beneficial and killing degree days than

with the average temperature measures.A1 Our main result however remains the same: we
A1Even if the elasticities obtained with measures of beneficial and killing degree days are lower than those

obtained with average temperatures, the relative impacts of temperatures on yields are conserved among
the three crops, with negative impacts for barley yields (non-significant in Table A5) and positive impacts
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observe no difference between the elasticities obtained with the reduced-form and structural

estimations. This suggests that our original structural model replicates the usual reduced-

form results, whatever the functional form used to specify the relationship between yields

and temperature.

Table A5: Weather elasticities on crop yields with cumulative temperature during the grow-
ing season.

Reduced-form Structural
Wheat Barley Rapeseed Wheat Barley Rapeseed

Temperature 0.25 *** -0.05 0.42 *** 0.24 *** -0.06 0.52 ***
(0.07) (0.04) (0.09) (0.07) (0.04) (0.09)

Precipitation -0.02 0.00 -0.14 *** -0.03 0.02 * -0.15 ***
(0.02) (0.02) (0.02) (0.02) (0.01) (0.02)

Note. Elasticites are computed at sample mean values. The reduced-form and structural models
include beneficial degree days (time spent between from 10°C to 30°C) and killing degree days
(time spent above 30°C) instead of the average temperature and its squared term in relations (12)
and (13). Below each estimate we report in brackets the standard errors obtained with the delta
method. *, ** and *** indicate p-values lower than 0.1, 0.05 and 0.01 respectively.

for wheat and rapeseed yields. The two functional forms also indicate that rapeseed is the most positively
affected by marginal increases in temperature.
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Sensitivity analysis: price expectations

The form of farmers’ expectations of output prices has been the subject of much research in

agricultural economics (Nerlove and Bessler, 2001). While a common practice is to assume, as

we did, that farmers have naive expectations of crop prices (e.g. Carpentier and Letort, 2012;

Kaminski et al., 2013; Femenia and Letort, 2016; Koutchadé et al., 2018), other practices

assume rational price expectations (e.g. Sesmero et al., 2018) or use future crop prices (e.g.

Miao et al., 2016). We thus successively re-estimate our structural model described in relation

(13) changing the assumption of naive price expectations for (i) the assumption of rational

price expectations and (ii) the use of future prices. For the first case, we assume that farmer

i in year t expects E(pi,j,t) = pi,j,t. For the second case, we assume that farmer i in year t

expects E(pi,j,t) = pfj,t. While crop prices are available at the farm level when using naive

or rational price expectations, the use of future prices imposes the use of common prices

for all farms each year. Future prices are determined using information from the Euronext

marketplace (delivered at Rouen market, located about 300 km from Meuse). For each

year of the period 2006-2012, we define pfi,t as the average of the future prices for delivery

between June 1 and September 31 as observed March 31 of each year (at the moment when

farmers apply most of their pesticide and fertilizer). The data has been collected through

the Refinitiv Eikon platform.

Table A6 presents the elasticities of crop yields on temperature and precipitation dur-

ing the growing season obtained using the alternative assumptions for farmers’ crop price

expectations. To facilitate the comparison, Table A6 also reports the elasticities obtained

with the reduced-form model described in relation (12), where prices are not used to infer

weather impacts on crop yields. The elasticities are recomputed at sample means using esti-

mates obtained from the OLS and SUR estimations of reduced-form and structural models

respectively. Those obtained using the estimates from the structural models in the right-

hand columns change for the different price expectation assumptions. Panel A presents the

elasticities obtained assuming that farmers have naive expectations of crop prices. Because
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we assumed naive price expectation in the benchmark, the reported estimates are the same

as those reported in Table 2.

Table A6: Weather elasticities on crop yields with alternative assumptions for price expec-
tations.

Reduced-form Structural
Wheat Barley Rapeseed Wheat Barley Rapeseed

A. Naive Price Expectations
Temperature 0.57 *** -0.67 *** 1.00 *** 0.53 *** -0.63 *** 1.02 ***

(0.09) (0.11) (0.12) (0.09) (0.11) (0.12)
Precipitation 0.03 *** 0.03 ** 0.00 0.03 ** 0.02 * -0.00

(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)
B. Rational Price Expectations

Temperature 0.57 *** -0.67 *** 1.00 *** 0.60 *** -0.71 *** 1.03 ***
(0.09) (0.11) (0.12) (0.10) (0.11) (0.12)

Precipitation 0.03 *** 0.03 ** 0.00 0.03 *** 0.04 ** -0.03 *
(0.01) (0.01) (0.02) (0.01) (0.02) (0.02)

C. Future Prices
Temperature 0.57 *** -0.67 *** 1.00 *** 0.32 *** -0.65 *** 1.08 ***

(0.09) (0.11) (0.12) (0.09) (0.10) (0.12)
Precipitation 0.03 *** 0.03 ** 0.00 0.02 * 0.04 ** 0.0.3

(0.01) (0.01) (0.02) (0.01) (0.02) (0.02)
Note. Elasticites are computed at sample mean values. They are reported for alternative crop
price expectations in the structural model. Panel A reports the elasticities obtained assuming nai-
ve expectations (E(pi,j,t) = pi,j,t−1), as in the benchmark model. Panel B displays the elasticities
obtained assuming rational price expectations (E(pi,j,t) = pi,j,t). Panel C reports the elasticities
obtained using future prices at the beginning of the growing season as price expectations (E(pi,j,t)
= pfj,t). For comparison purposes, we report the elasticities obtained with the reduced-form models
on the left-hand columns, where estimates are only obtained using information on weather conditions
(and no additional information on prices). Below each estimate we report in brackets the standard
errors obtained with the delta method. *, ** and *** indicate p-values lower than 0.1, 0.05 and 0.01
respectively.

Table A6 indicates that the elasticities obtained with the structural model assuming

rational price expectations (Panel B) are statistically equal to those obtained assuming

naive price expectations (Panel A). Similarly, the elasticities obtained with the structural

model using future prices (Panel C) are statistically identical to those using alternative

price expectation forms, despite larger differences with those obtained in the reduced-form

approach. Above all, the elasticities obtained with the reduced-form model are equal to
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those obtained with the structural model whatever the form of price expectations, showing

evidence of the robustness of our approach.
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Sensitivity analysis: time trends and year fixed effects

In order to purge the estimates from the effects of any technical progress or common annual

shocks, econometricians seeking to estimate weather impacts on crop yields have often in-

cluded time trends (e.g. Schlenker and Roberts, 2009; Lobell et al., 2011; Gammans et al.,

2017) or, more rarely, year fixed effects (e.g. Deschênes and Greenstone, 2007; Schlenker

and Roberts, 2009). These inclusions of additional terms to control for the effects of time

are notably common when the number of years in the panel is large (Mérel and Gammans,

2021). While our panel relies on a small number of years (2006-2012), we test the robustness

of our result by successively re-estimating the reduced-form and structural models described

in relations (12) and (13) with the addition of time trend and year fixed effects.

Table A7 presents the elasticities of crop yields on temperature and precipitation during

the growing season for several assumptions on the structure of the error terms. The elas-

ticities are recomputed at sample means using estimates obtained from the OLS and SUR

estimations of reduced-form and structural models as in relations (12) and (13) for Panel A,

with the addition of time trends for Panel B and with the addition of year fixed effects for

Panel C. For the structural model, the time trends and fixed effects are introduced into the

three estimated equations of relation (13).

Panel B shows that the inclusion of time trends does not affect the precision of the

estimation but reduces the elasticities of crop yields compared to the benchmark (Panel

A). However, these differences are not statistically significant, suggesting that our results

are robust to the inclusion of time trends. More importantly, the elasticities obtained with

the reduced-form and structural models remain similar even after the introduction of time

trends.

The inclusion of year fixed effects yields somewhat different results (Panel C). Indeed,

the addition of year fixed effects reduces the precision of the estimations, with elasticities of

wheat and rapeseed yields (resp. barley yields) on temperature turning non-significant in the

reduced-form model (resp. structural model). The other elasticities also see their standard
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Table A7: Weather elasticities on crop yields with alternative assumptions on the time
dimension of the error terms.

Reduced-form Structural
Wheat Barley Rapeseed Wheat Barley Rapeseed

A. Without Time Dimension
Temperature 0.57 *** -0.67 *** 1.00 *** 0.53 *** -0.63 *** 1.02 ***

(0.09) (0.11) (0.12) (0.09) (0.11) (0.12)
Precipitation 0.03 *** 0.03 ** 0.00 0.03 ** 0.02 * -0.00

(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)
B. With Time Trends

Temperature 0.31 *** -0.93 *** 1.01 *** 0.31 *** -0.81 *** 1.05 ***
(0.10) (0.11) (0.13) (0.10) (0.12) (0.13)

Precipitation -0.04 * -0.04 * 0.00 -0.03 -0.02 0.01
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

C. With Time Fixed Effects
Temperature -0.13 -0.81 *** -0.04 1.18 *** 0.07 1.28 ***

(0.19) (0.23) (0.24) (0.14) (0.18) (0.20)
Precipitation 0.04 * 0.05 * -0.00 0.01 0.04 -0.04

(0.02) (0.03) (0.03) (0.02) (0.03) -0.03
Note. Elasticites are computed at sample mean values. They are reported for alternative assump-
tions regarding the structure of the error terms. Panel A reports the elasticities obtained assuming
no time shocks or trends outside variations in weather conditions. Panel B displays the elasticities
obtained with the addition of time trends. Panel C reports the elasticities obtained with year fixed
effects. Below each estimate we report in brackets the standard errors obtained with the delta me-
thod. *, ** and *** indicate p-values lower than 0.1, 0.05 and 0.01 respectively.

errors increase with the inclusion of year fixed effects. These results suggest that there may

have not been enough weather variations left after purging for year effects. This issue has

been pointed out by Fisher et al. (2012) when investigating weather impacts on US counties’

crop yields and profits for an area about 800 times larger than Meuse. The consequence of

this over-purge is that, for the first time in this study, some recomputed elasticities show

differences between those obtained with the reduced-form models and those obtained with

the structural models. These differences may come from several aspects of the structural

model (e.g. addition of prices, several equations, parameter constraints across equations).

They may also simply be due to the insufficient remaining variations in weather conditions

in our small panel – both in its temporal and spatial dimensions – after controlling for farm

and year fixed effects. Especially, these differences suggest that one should not trust our
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reduced-form and structural results when adding year fixed effects, at least on such a small

panel.
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Placebo analysis: impacts of the weather conditions in the autumn

following the harvest

One could wonder whether our results are driven by a true relationship between weather

conditions and crop yields or if they are driven by some measurement errors or spurious

correlations occurring in our panel (spurious correlations that could even be exacerbated by

the structure of our model). To test the second hypothesis, we run a placebo analysis, based

on the idea that future weather conditions cannot influence past crop yields. Specifically, we

replace the measures of weather conditions during the growing season in relations (12) and

(13) by similar measures of weather conditions but in autumn following the growing season

(specifically from October 1 to December 31). As harvest of the three crops typically occurs

in July in Meuse, there is no reason to assume that autumn weather conditions in year t

affect crop yields in t.

Table A8 presents the elasticities of crop yields on temperature and precipitation during

the autumn following the harvest instead of those in the growing season. We identify no

significant effects of weather conditions in autumn on yields. This placebo analysis suggests

that our previous results inform on the true relationship between crop yields and weather

conditions in the growing season and that our results do not seem to be driven by measure-

ment errors or spurious correlations.

Table A8: Weather elasticities on crop yields in autumn.

Reduced-form Structural
Wheat Barley Rapeseed Wheat Barley Rapeseed

Temperature -0.01 0.06 0.03 0.04 0.12 0.02
(0.04) (0.04) (0.05) (0.04) (0.07) (0.05)

Precipitation -0.03 -0.24 *** 0.05 0.04 -0.27 *** 0.05
(0.06) (0.08) (0.07) (0.06) (0.08) (0.07)

Note. Elasticites are computed at sample mean values. The reduced-form and structural models
include autumn average temperatures for year t instead of average temperatures during the growing
season in relations (12) and (13). Below each estimate we report in brackets the standard errors obt-
ained with the delta method. *** indicates p-values lower than 0.01.
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Elasticities of input applications on weather conditions: computa-

tion of the total, requirement, specific-productivity and substitu-

tion effects

Formula. The elasticities of input applications on weather conditions can be computed

using relation (10). For example, the elasticities of applications of input k on crop j with

respect to temperature ξTxj,k
is equal to:

ξTxj,1
= (β̂Tj,1 + 2β̂T 2

j,1 T̄ −
p̄x1

E(p̄yj )
(δ̂Tj,1,1 + 2δ̂T 2

j,1,1T̄ )− p̄x2
E(p̄yj )

(δ̂Tj,1,2 + 2δ̂T 2

j,1,2T̄ )) T̄
x̄j,1

.

Analysis. Our structural framework allows a deeper investigation of the drivers explain-

ing farmers’ adaptation. Specifically, relation (10) states that input applications depend

on weather conditions according to three sets of parameters: (i) the set of input require-

ment parameters βj,k(wi,t) that specify the levels of inputs to apply to attain maximum

yields αj,k(wi,t), (ii) the set of parameters δj,k,k(wi,t) that is an inverse measure of the input

“own” productivity and (iii) the set of parameters δj,1,2(wi,t) that is an inverse measure

of the substitution/complementary relationship between fertilizers and pesticides. In par-

ticular, at sample mean values, the input applications (i) increase with input requirement

parameters (β̂′j,kw̄ > 0), (ii) decrease with the inverse measure of input specific productiv-

ity (δ̂′j,k,kw̄ > 0) and (iii) may either increase or decrease with the inverse measure of the

substitution/complementary terms (δ̂′j,1,2w̄ ≥ 0 or < 0).A2 Changes in weather conditions

can however change these incentives at the margin, which ultimately encourages farmers to

change their input applications.
A2One can verify the properties of the production function using the structural estimates from Table A3 and

sample mean values from Table 1. Table A4 in reports such properties. It shows in particular that all inputs
have a positive marginal productivity (δ̂′j,k,kw̄ > 0 for all crops). The value of δ̂′j,1,2w̄ is negative for barley
but positive for wheat and rapeseed (Table A4), implying that fertilizers and pesticides are complementary
inputs (resp. substitute inputs) at the margin for barley (resp. for wheat and rapeseed). One can verify
that β̂′j,kw̄ > 0 for all crops using similar calculus.
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In particular, one can disaggregate the elasticities of input applications with respect to

weather conditions as:

ξTxj,1
= (β̂Tj,1 + 2β̂T 2

j,1 T̄ ) T̄
x̄j,1︸ ︷︷ ︸

Changes in requirement

− p̄x1
E(p̄yj )

(δ̂Tj,1,1 + 2δ̂T 2

j,1,1T̄ ) T̄
x̄j,1︸ ︷︷ ︸

Changes in productivity

− p̄x2
E(p̄yj )

(δ̂Tj,1,2 + 2δ̂T 2

j,1,2T̄ ) T̄
x̄j,1︸ ︷︷ ︸

Changes in substitution

.

The marginal impacts of changes in temperature can be disaggregated as the sum of (i) the

changes due to a modification of input requirement, (ii) the changes due to a shift of input

productivity and (iii) the changes due to an evolution of the substitution/complementary

relationship between inputs. Table A9 displays how marginal increase in temperature or

precipitation changes these different sets of parameters for each crop and input.A3

Table A9 displays complex relationships between input applications and weather condi-

tions. Indeed, the diverse drivers of input applications are differently affected by temperature

and precipitation for the three crops and two inputs. For example, the increase in fertilizer

applications due to a marginal increase in temperature can hardly be attributed to a single

factor as the three elements are significantly (either positively of negatively) affected by tem-

perature. The impacts of a marginal increase in precipitation on fertilizer applications may

even be harder to attribute to a single factor as most elements are non-significantly affected

by precipitation. Despite these difficulties, we try in the following to attribute the patterns

of input changes displayed in Table 3 to either the modification in input requirement, own

productivity or substitution terms.

First, changes in fertilizer applications due to a marginal increase in temperature seems

to be due to several factors. In one hand, we find that the fertilizer requirement (βj,1(wi,t))

increases at the margin with temperature for the three crops. This means that farmers need
A3Looking for example at the case of how temperature changes input requirements, Table A9 reports the

value of (β̂T
j,k + 2β̂T 2

j,kT̄ )T̄ /x̄j,k for each crop and input. This calculus illustrates how input requirement
βj,k(wi,t) changes with a marginal increase in temperature. A positive value would imply that input re-
quirements increase with temperatures and that, ceteris paribus, farmers increase their input applications.
We proceed to the same type of calculus for the productivity terms (i.e. (p̄x

k/E(p̄y
j ))(δ̂T

j,k,k + 2δ̂T 2

j,k,kT̄ )T̄ /x̄j,k)
and substitution/complementary terms (i.e. (p̄x

l /E(p̄y
j ))(δ̂T

j,1,2 +2δ̂T 2

j,1,2T̄ )T̄ /x̄j,k). A positive value of the for-
mer implies that the input productivity increases for a marginal increase in temperature, ultimately inciting
farmers to increase their input applications. A positive (resp. negative) value of the latter term implies that
the two inputs become more substitutes (resp. more complementary).
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Table A9: Weather effects on input requirement, productivity and substitution

Temperature Precipitation
Wheat Barley Rapeseed Wheat Barley Rapeseed

A. Fertilizers
Total 1.02 *** 1.34 *** 0.61 *** 0.10 ** 0.02 0.20 ***

(0.19) (0.23) (0.24) (0.04) (0.04) (0.04)
Requirement 3.66 *** 2.30 ** 5.40 *** -0.05 -0.05 -0.64 ***

(0.94) (0.91) (1.26) (0.16) (0.15) (0.22)
Shifter -3.54 *** -4.41 *** -0.96 0.06 0.25 -0.17

(1.36) (1.48) (1.66) (0.24) (0.27) (0.28)
Substitution 0.89 3.44 *** -3.83 *** 0.08 -0.18 1.10 ***

(0.94) (1.32) (1.42) (0.20) (0.25) (0.25)
B. Pesticides

Total -0.39 ** 0.30 -0.19 0.11 ** 0.09 ** -0.24 ***
(0.20) (0.27) (0.20) (0.04) (0.04) (0.03)

Requirement -0.84 -1.15 0.12 0.03 0.32 ** -0.39 **
(0.78) (0.95) (1.02) (0.15) (0.17) (0.18)

Shifter -0.35 -1.36 2.19 * 0.00 -0.08 -0.52 **
(1.10) (1.21) (1.15) (0.20) (0.24) (0.22)

Substitution 0.80 2.82 *** -2.51 *** 0.08 -0.14 0.66 ***
(1.02) (1.07) (0.93) (0.18) (0.21) (0.16)

Note. Elasticites are computed at sample mean values. Below each estimate we report in bra-
ckets the standard errors obtained with the delta method. *, **, *** indicate p-values lower than
0.1, 0.05 and 0.01 respectively.

to apply larger quantities of fertilizer to achieve maximum yields (αj(wi,t)) when tempera-

ture increases. However, on the other hand, the own productivity of fertilizers (δj,1,1(wi,t))

decreases with temperature, leading rational farmers to apply less fertilizer when tempera-

ture increases. Finally, the substitution terms (δj,1,2(wi,t)) have heterogeneous effects among

crops. Fertilizer seems to be more widely substituted with pesticides for wheat and barley

when temperature increases, but more complementary for rapeseed. Temperatures thus

affect the technical substitution/complementary relationship between inputs. The joint –

cumulative – effects of changes in own productivity and substitution terms are however neg-

ative for the three crops. Thus, the overall increase in fertilizer applications displayed in

Table 3 seems mostly due to an increase in input requirements.

Second, changes in pesticide applications due to a marginal increase in temperature ap-

pears to be less dependent on changes in input requirements. Indeed, pesticide requirements
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are not significantly impacted by an increase in temperature at the margin. Similarly, the

productivity terms of pesticide remains unaffected by temperature for wheat and barley. The

productivity terms of pesticide are only significantly positive for rapeseed, where a marginal

increase in temperature increases the productivity of pesticides. However, this increase seems

completely offset by the changes in the substitution terms,A4 the two effects cancelling each

other out. While not significantly different from zero, the tendency of farmers to apply more

(resp. less) pesticide to barley (resp. rapeseed) when temperature increases seems mainly

driven by the impacts of temperature on the substitution/complementary relationship be-

tween inputs.

Third, changes in fertilizer applications due to a marginal increase in precipitation are

difficult to attribute to any particular phenomenon, at least for wheat and barley, where

all the terms are non-significantly affected by weather changes. The pattern is different

for rapeseed, where (i) input requirement reduces with precipitation, (ii) the productivity

term remains unaffected and (iii) the two inputs become more widely substituted. The

significant increase in fertilizer applications displayed in Table 3 thus seems explained by the

modification of the substitution terms.

Fourth, the changes in pesticide applications due to a marginal increase in precipitation

seem to be globally explained by changes in input requirements. Indeed, these are the only

significantly estimated parameters for barley. They also seem to drive the negative shifts

in pesticide applications to rapeseed as the productive and substitution terms offset each

other. This result is consistent with the results from Kaminski et al. (2013), who identified

the impacts of precipitation on input requirement terms as the main drivers of the reduction

in input uses under wetter weather conditions.A5

A4Note that the effects of a marginal increase in temperatures on the substitution terms is about similar
for pesticide and fertilizer for the three crops. This is due to the fact that the marginal effect of temperature
on these terms is identical modulo the input price that changes between the two inputs (see Appendix ??).

A5Kaminski et al. (2013) estimated a similar structural model to ours for Israeli agriculture data and found
that precipitation can reduce input productivity.
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Disaggregation of the elasticities of crop yields on weather condi-

tions into agronomic and adaptation effects

The elasticity of crop yields on weather conditions reported in the Appendix can be disag-

gregated as:

ξTyj
= (∂f(xj(w̄);w)

∂T
) T̄
ȳj︸ ︷︷ ︸

Agronomic effects

+ (∂f(xj(w); w̄)
∂xj(w)

∂xj(w)
∂T

) T̄
ȳj︸ ︷︷ ︸

Adaptation effects

= (∂f(xj(w̄);w)
∂T

) T̄
ȳj︸ ︷︷ ︸

Agronomic effects

+ ξTxj,1
θ1
j (w̄) x̄j,1

ȳj
+ ξTxj,2

θ2
j (w̄) x̄j,2

ȳj︸ ︷︷ ︸
Adaptation effects

,

where ξTxj,1
(resp. ξTxj,2

) is the elasticity of fertilizer (resp. pesticide) application on temper-

ature (see Appendix ). θ1
j (w̄) (resp. θ2

j (w̄)) is the productivity of fertilizer (resp. pesticide)

at the sample mean values (see Appendix ). The adaptation effects can be interpreted as

the sum of the productive effects of the change in fertilizer and pesticide applications at the

sample mean values. The agronomic effects are measured as the difference between the total

effects ξTyj
and the adaptation effects.
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Simulations: cumulative temperature instead of average tempera-

ture

Table 5 in the main text displays the projections of the impacts of warmer temperatures

on crop yields using the estimates obtained with average temperature during the growing

season. In the same lines, we project similar increases in temperature on crop yields using

measurements of cumulative temperatures instead, distinguishing between beneficial and

killing degree days (as in Online Appendix ). Table A10 shows the initial averages of the

crop yields in our sample for the period 2006-2012 (Panel A) and the predicted changes in

crop yields under future temperatures using the results from our reduced-form model (Panel

B) and structural model (Panel C) with measurements of cumulative temperatures. The

findings presented in Table A10 are qualitatively similar to those of Table 5, with comparable

outcomes between the reduced-form and structural models. Here too, we identify negative

and significant agronomic effects, but positive adaptation effects. With this specification,

the adaptation effects tend to offset between 10% and 85% of the detrimental agronomic

impacts of warmer temperatures. Finally, it should be noted that, in the case of wheat, the

impact of higher temperatures is statistically insignificant in both models. This outcome

hides compensatory mechanism between the significant negative agronomic effects and the

significant positive adaptation effects.
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Table A10: Projections of the impacts of warmer temperatures on crop yields using mea-
surements of cumulative temperatures during the growing season.

Wheat Barley Rapeseed
+1°C +2°C +3°C +1°C +2°C +3°C +1°C +2°C +3°C

A. 2006-2012 Averages
Initial yields (100 kg/ha) 70.88 70.88 70.88 64.30 64.30 64.30 33.59 33.59 33.59

B. Reduced-form Estimates
Changes in yields (100 kg/ha) -0.39 -1.29 -2.99 -6.54 *** -12.56 *** -17.55 *** -0.86 ** -3.85 *** -10.51 ***

(0.59) (1.32) (2.36) (0.59) (1.23) (2.00) (0.36) (0.93) (2.05)
C. Structural Estimates

Changes in yields (100 kg/ha) -0.47 -1.64 -3.95 -5.87 *** -11.24 *** -15.61 *** -1.06 *** -4.40 *** -11.61 ***
(0.65) (1.51) (2.88) (0.63) (1.32) (2.00) (0.37) (0.95) (2.14)

Agronomic effects -2.11 ** -7.93 *** -27.22 *** -6.61 *** -13.95 *** -23.41 *** -1.44 *** -5.18 *** -12.85 **
(0.93) (2.35) (5.54) (0.88) (1.78) (3.20) (0.53) (1.77) (4.69)

Adaptation effects 1.65 ** 6.29 *** 23.28 *** 0.74 ** 2.71 * 7.80 ** 0.38 0.78 1.25
(0.68) (2.59) (6.51) (0.32) (1.55) (3.37) (0.52) (1.40) (4.80)

Note. Figures display predicted changes in crop yields, holding current growing areas and technology constant relative to the period 2006-2012. Panel A dis-
plays the initial crop yields in our sample. Panel B presents the predicted changes using the reduced-form estimates. Panel C presents the predicted changes
using the structural estimates. For this panel, we report the estimated direct impacts of weather on plant growth (agronomic effects) and the estimated indi-
rect impacts of weather via farmers’ adjustments in input applications (adaptation effects). Below each estimate we report in brackets the standard errors obt-
ained using the delta method. *, ** and *** indicate p-values lower than 0.1, 0.05 and 0.01 respectively.
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