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Abstract

A three-dimensional multi-scale discrete-continuum model (Finite Volume

Method ˆ Discrete Element Method, FVMˆDEM) is developed for a discrete-

based description of the mechanical behavior of granular soils in boundary value

problems (BVPs). In such a scheme, the constitutive response of the material is

derived through direct DEM computations on a representative volume element

attached to each mesh element. The developed multi-scale approach includes

the inertial effect in the stress homogenization formulation and serves to study

the mechanism of propagation of seismic waves, in comparison with a more

classical BVP simulation that adopts an advanced bounding surface plasticity

model ”P2PSand”. We start with a detailed and fair calibration and validation

of these two models against laboratory tests for Toyoura sand under monotonic

and cyclic loading. Then, the performance of the two approaches is compared

for the case of a seismic wave loading passing through a saturated soil column

with different relative densities, revealing several differences between the results

of the two models.
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1. Introduction1

Proper numerical simulations of cyclic and seismic loadings, including lique-2

faction phenomena, are an important issue for the safety of any earth structure.3

Different strategies can be used to simulate a soil seismic response numeri-4

cally. First, classical elastoplastic constitutive models such as Mohr-Coulomb5

and Cam Clay (Roscoe and Burland, 1968) models can reproduce the mono-6

tonic behavior of different soils under drained and undrained conditions with7

different levels of precision. However, the features of these models are not rich8

enough to directly simulate the cyclic phenomena during seismic loading (e.g.,9

the irrecoverable volumetric strains produced by cyclic loading are not taken10

into account). The first strategy for cyclic modeling involves using such simple11

models in conjunction with damping (hypoelasticity) (Woodward and Griffiths,12

1996) and an ad-hoc relation that relates the increment of the plastic volumetric13

strain per cycle to the number of cycles by an empirical formulation as shown by14

(Martin et al., 1975; Byrne, 1991). This method is easy to implement and can15

provide an overall quantitative description of the cyclic response of soils but it16

cannot give an accurate description. Second, kinematic hardening is recognized17

as a fundamental element for reproducing the cyclic behavior of soils. Com-18

prehensive and elaborated constitutive models such as DM04 (Dafalias et al.,19

2004), CJS (Duriez and Vincens, 2015), P2PSand (Cheng and Detournay, 2021)20

and numerous other approaches in Kutter et al. (2019) used the kinematic hard-21

ening to reproduce an evolving soil behavior during cyclic loading, being caused22

by microstructural hardening mechanisms such as an evolution of fabric. This23

feature allows the models to follow the degradation of the material during cyclic24

loading.25

Finally, the DEM approach is shown to be able to reproduce most of the soil26

features during monotonic and cyclic loading (Mohamed et al., 2022; Sibille27

et al., 2019; Gu et al., 2020; Xie et al., 2022) including the liquefaction phe-28

nomenon by using three or four contact parameters at the interparticle level29

depending on shape descriptions. In principle, the DEM deals with the real30
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physics of granular media in which each particle is represented by its shape,31

mass, and inertia so that it can be a robust technique for studying the be-32

havior of soils under cyclic and dynamic loadings and can also address all the33

shortcomings of phenomenological models that come from different hardening34

mechanisms.35

Recently, many publications have proposed the multi-scale approach (Kouznetsova36

et al., 2002; Nguyen et al., 2014; Guo and Zhao, 2014; Nitka et al., 2009; Liu37

et al., 2016; Kuhn, 2022) to describe soil behavior in a boundary value problem38

(BVP) using information from the micro level via the discrete element method.39

In essence, finite element or finite volume codes provide a numerical solution40

for the differential equations for a continuous medium as seen at the BVP-scale.41

At some point in the numerical scheme, i.e., before solving the equation of mo-42

tion, a constitutive relation is required to present the internal stresses. To this43

end, the constitutive response of the material is derived through direct DEM44

computations on the representative elementary volume (REV) attached to each45

Gauss point in the mesh without adding any empirical relationships.46

In this study, we establish an information-passing coupling between a dis-47

crete element and a finite volume continuum code by which the constitutive48

response of the material is derived through direct DEM computations on a rep-49

resentative elementary volume (REV) attached to each mesh zone. The two50

codes used are: 1- FLAC3D (Itasca, 2019): a multi-dimensional Lagrangian51

explicit finite volume program to study numerically the mechanical behavior of52

a continuous three-dimensional medium (macro-scale). 2- PFC (Itasca, 2018):53

a program that models the movement and interaction of stressed assemblies of54

rigid particles with different shapes using the Distinct-Element Method (micro-55

scale).56

For the multi-scale modeling, the stress homogenization formulation for the57

representative elementary volume REV is an essential element (Weber, 1966;58

De Saxcé et al., 2004; Bagi, 2003). For this purpose, we review the definition of59

the stress tensor for granular materials during dynamic events such as seismic60

and shock loadings for proper inclusion of the effect of shear strain rate and61
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particle inertia on the mechanical behavior of granular media.62

Then, we propose and discuss a multi-scale discrete-continuum modeling63

approach for the propagation of seismic waves through a saturated soil column64

made of Toyoura sand, a case study similar to the one by Taiebat et al. (2010)65

and multi-scale FDM-DEM method proposed by Kuhn (2022), in comparison66

with the direct use of an advanced elastoplastic model P2PSand (Cheng and De-67

tournay, 2021; Itasca, 2019) in FLAC3D. It is worth noting our use of P2PSand68

model relates with other previous studies using advanced elastoplastic consti-69

tutive models in FLAC/FLAC3D to model wave propagation and liquefaction,70

such as the SANISand (Yang et al., 2020) and UBCSAND (Tsiaousi et al.,71

2020) models. Finally, we investigate the predictions of these two methods for72

the occurrence of the so-called ”dynamic liquefaction” for a loose soil column73

after a fair quantitative calibration and validation process of the two numerical74

approaches at the sample scale under monotonic and cyclic loadings.75

The article consists of four main sections. Section 2 describes the P2PSand76

constitutive model and its predictions for monotonic and cyclic loadings. Section77

3 presents the DEM model previously developed by Mohamed et al. (2022) and78

herein used in the multi-scale framework as well as its calibration and validation79

for different monotonic and cyclic loading paths and points out the importance80

of a proper stress homogenization formula for dynamic loadings. Section 481

discusses the multi-scale modeling implementation and presents the validation82

of the latter when considering laboratory tests under different loading paths for83

drained and undrained conditions. Section 5 shows and discusses the comparison84

between the two approaches for the propagation of seismic waves as well as the85

effects of the DEM damping and particle sizes on the response of the multi-scale86

model.87

2. P2PSand constitutive model88

2.1. Model overview89

The P2PSand model (practical two-surface plastic sand) has been developed90

for general 3D geotechnical earthquake engineering applications by (Cheng and91
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Detournay, 2021; Itasca, 2019). The model follows critical state plasticity within92

a bounding surface framework (Dafalias et al., 2004) through the inclusion of a93

scalar state parameter (Been and Jefferies, 1985) for sand. The state parameter94

of the present model is chosen as the pressure ratio index Ip which is defined95

in the Dr ´ p1 as the ratio between the current mean pressure p1 and the corre-96

sponding critical state mean pressure plane for the same relative density value97

Dr. The relative density is indeed used instead of the void ratio inside all the98

equations of the model because it is directly reachable from in-situ tests.99

In the deviatoric plane π (Fig. 1), the elastic domain is limited by a small100

circular yield surface that does not change in size during loading (no isotropic101

hardening is allowed) with a kinematic hardening tensor α which is the center102

of this circle. The yield surface is actually described by the same function as in103

DM04 model (Dafalias and Manzari, 2004):104

f “ rps ´ pαq : ps ´ pαqs0.5 ´
a

2{3pm “ 0 (1)

Where m is the size of the yield surface and is used as a fixed value of m “105

0.02Mcomp. Mcomp is the critical-strength parameter for the triaxial compres-106

sion path. p is the effective mean stress (isotropic stress) and s is the deviatoric107

stress tensor.108

Besides the yield surface, the model incorporates four other surfaces in the109

normalized π plane as shown in Fig. 1. A constant critical state surface, bound-110

ing and dilatancy surfaces follow the same form as the bounding surface model111

proposed by Dafalias et al. (2004) with a Lode angle dependency. By shear-112

ing towards the critical state, the bounding and dilatancy surfaces evolve until113

they coincide with the critical state surface. In addition, an isotropic memory114

surface has the same shape as the bounding or dilatancy surface. Its size is115

determined by the historic position of α. The main purpose of this last surface116

is to avoid overshooting behavior during reversal loadings. Finally, the detailed117

formulations of the P2PSand model are given in Appendix A.118

Table 1 presents the dimensionless parameters of the P2PSand model. The119

model adopts a unique critical state line that is defined based on the finding120
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Figure 1: Schematic of different surfaces in the π plane for the P2PSand model after (Cheng
and Detournay, 2021).

of Li and Wang (1998) with three parameters Drc0, λc and ζ. While for the121

critical strength, the parameter c represents the ratio between extension and122

compression triaxial critical strengths. nb and nd are two model parameters123

that are used to determine the size of the bounding and dilatancy surfaces. The124

rate of plastic strains is controlled by two parameters, h0 is the plastic shear125

rate and Ad0 is the plastic volumetric rate. Also, the plastic volumetric rate is126

impacted by the evolution of fabric with an evolving rate depending on the Cz127

parameter until reaching maximum fabric magnitude zmax. The previous two128

parameters could be internally defined by the model or to be inserted directly129

by the user. Finally, Kcyc parameter intervenes when the state of the kinematic130

hardening tensor α is inside the memory surface in Fig. 2 to capture the sand131

behavior by which dilation/contraction evolution rate is lower during cyclic132

loading compared to virginal loading.133

2.2. Calibration and validation of the P2PSand model for different monotonic134

and cyclic loadings135

The essence of elastoplastic models is that strains are divided into elastic136

and plastic components and it can be considered that plastic deformations are137
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Figure 2: Results of P2PSand model for Toyoura sand along drained triaxial compression for
various initial void ratios and initial mean pressure with one calibration test (σ3 “ 400 kPa and
initial void ratio = 0.668) and three other validation tests. Experimental data from Fukushima
and Tatsuoka (1984).

responsible for the evolution of pore pressure in undrained conditions and, as138

a result, for the loss of material strength in such conditions often encountered139

in practice. Therefore, the calibration of the elastoplastic models should be140

based on stress paths that make it possible to distinguish between the elastic141

and plastic strains e.g drained tests with several loading and unloading inter-142

mediate paths or undrained tests. Here, the calibration of the P2PSand model143

parameters for Toyoura sand (Table 1) is performed based on one drained and144

one undrained triaxial compression test. For this calibration phase, Fig. 2 rep-145

resents the results of the P2PSand model together with experimental data from146

Fukushima and Tatsuoka (1984) for triaxial drained compression tests for var-147

ious initial void ratios and confining pressures. The model presents a close fit148

with the corresponding experimental results for the deviatoric stress and vol-149

umetric strain responses by introducing the effect of different initial void ratio150

values on mechanical behavior. During undrained tests, the model results are151

assessed for compression triaxial tests in Fig. 3 together with experimental data152

from Yoshimine et al. (1999). The results of the undrained compression tests153

can validate with good precision the experimental data.154

Afterwards, the predictive abilities of the model under cyclic triaxial tests155

are evaluated. Actually, one parameter in Table 1 kcyc should still be calibrated156

at this stage. Therefore, the model is calibrated for one cyclic test and validated157
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Table 1: P2PSand model dimensionless parameters for Toyoura sand with Dr P[0,1]

Criteria Parameter Symbol Toyoura sand
Elastic-moduli G0 200

CDr 0.8
n 0.5
ν 0.12

Critical state line Drc0 0.145
λc 0.035
ζ 0.7

Critical state surface ϕcomp 32°
c 0.7

Bounding surface nb 0.13

Dilatancy surface nd 0.2

Hardening model h0 1.1

Dilatancy Ad0 0.65
Fabric influence Cz G0pDr ` CDrq

Zmax 21D3.85
r ă15

Cyclic Loading kCyc 0.4

Figure 3: Results of P2PSand model for Toyoura sand along undrained triaxial compression
for various void ratios with one calibration test σ3 “ 400 kPa and void ratio = 0.79 and two
other validation tests. Experimental data from Yoshimine (2013).
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for another cyclic test. Wang et al. (2016) provided the experimental data for158

Toyoura sand prepared using the air-pluviation method, which is consistent with159

the previous samples used by (Fukushima and Tatsuoka, 1984) for monotonic160

loadings. The experimental data are for different cyclic triaxial tests with differ-161

ent densities and cyclic stress ratios CSR=q{2p0 (ratio between cyclic deviatoric162

stress amplitude and initial confining pressure) as shown in Fig. 4 and Fig. 5163

respectively. The results demonstrate that there are still some difficulties in fol-164

lowing the exact same evolution as the experimental data at the different stages165

of the test. Also, the P2PSand model shows a bias in the deviatoric stress vs166

axial strain curve by which the axial strain accumulates progressively on the167

extension side of the curve. Nevertheless, the model gives acceptable predic-168

tions in terms of the number of cycles required to reach liquefaction (i.e., zero169

mean effective stress) and liquefaction phenomena simulation (the progressive170

decrease in effective mean pressure and the butterfly shape) compared to the171

experimental data. Indeed, for these two tests with CSR=0.147 and 0.163 the172

numbers of cycles required to attain an axial strain value of about ϵa= 9% are173

(NExp “ 37, NP2PSand “ 32) and (NExp “ 12, NP2PSand “ 17) respectively.174

3. 3D-DEM model for Toyoura sand175

3.1. Model formulation and generation procedure176

A DEM model for Toyoura sand previously presented in (Mohamed et al.,177

2022) is used. It includes a constant-stiffness rolling resistance contact model178

with 4 parameters and spherical particles that follow the same particle size179

distribution as Toyoura sand as shown in Fig. 6 (model 1) except for a scaling180

factor that was mechanically inconsequential by virtue of the contact model in181

the quasi-static cases. However, in the present context where dynamic effects are182

anticipated to take place, we also consider the exact granular size distribution183

as shown in Fig. 6 (model 2, differing from model 1 only in that aspect).184

DEM samples are created by starting with a cloud of non-overlapped par-185

ticles within rectangular parallelepiped rigid walls. The walls are then moved186

inwards in order to reach a target compaction pressure. A 3D-DEM REV with187
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Figure 4: (Top) Results of the P2PSand model for an undrained cyclic triaxial test for Toyoura
sand sample with Dr “ 66% and CSR=0.147 serving as calibration. (Bottom) Experimental
data from Wang et al. (2016).
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Figure 5: (Top) Results of the P2PSand model in a validation stage for an undrained cyclic
triaxial test for the Toyoura sand sample with Dr “ 59% and CSR=0.163. (Bottom) Experi-
mental data from Wang et al. (2016).
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a number of Nb=7000 particles is used for the current multi-scale modeling of188

Toyoura sand, as it was proven by Mohamed et al. (2022) that this number is189

sufficient to give a homogeneous distribution of the void ratio inside the sample190

and an unaffected stress-strain response when the number of particles exceeds191

this value. It is worth mentioning that considered DEM samples always show192

the same initial void ratio values as the reference lab experiments. Reaching193

such given initial void ratio values is achieved during that compaction phase194

based on the friction coefficient and rolling coefficient values, which are tuned195

independently of the subsequent shear loading phase. The contact parameters196

and packing properties, including a zero initial anisotropy due to the isotropic197

generation, are summarized in Table 2. The corresponding DEM and P2PSand198

relative density values are calculated based on the maximum and minimum void199

ratio values emin “ 0.6 and emax “ 1 of Toyoura sand.200

Following Mohamed et al. (2022) who provided a detailed presentation, the201

rolling resistance contact model with 4 contact parameters is used as shown in202

Table 2, where Emod, Kn, Ks are effective modulus i.e. the constant normal203

stiffness scaled with respect to (divided by) particle size, the actual normal204

stiffness and its tangential counterpart. The friction µ and rolling friction µr205

coefficients are imposed on the contact to limit shear force and moment.

Figure 6: Left: Toyoura sand 3D-DEM model where different colors refer to different diame-
ters. Right: different particle size distributions for DEM (model 1 and model 2) vs Toyoura
sand from Dong et al. (2016)

206
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Table 2: 3D-DEM model parameters for different DEM and multi-scale simulations

Contact Packing (see also Fig. 6 for psd)
Emod Kn{Ks µ µr Nb Initial Grain mass density Relative density
(MPa) (-) (-) (-) (-) anisotropy (kg{m3) (%)
400 3 0.6 0.38 7000 Variable (0 for lab tests) 2600 Variable

3.2. Calibration and validation of the 3D-DEM model for monotonic loadings207

The calibration of the used DEM model for Toyoura sand was performed208

in (Mohamed et al., 2022) based on a drained triaxial test. During the valida-209

tion process, the model was therein validated to fit other experimental data of210

drained and undrained triaxial tests (compression and extension). The results211

of the drained triaxial tests were in good accord with the corresponding ex-212

perimental data for the different triaxial compression tests with different initial213

void ratio values. One may note that during the undrained extension triaxial214

tests, the model showed less ability to lose effective strength when compared to215

the experimental data, unlike another polyhedra-based model also proposed in216

(Mohamed et al., 2022). However, we stick here to the sphere-based model due217

to the computational costs of multi-scale simulations.218

3.3. Validation of the DEM model under cyclic loading219

In line with the present focus on seismic loadings, the predictions of the220

DEM model for different undrained cyclic tests are herein investigated. The221

predictions of the DEM approach and two experimental data for two undrained222

cyclic triaxial tests Wang et al. (2016) with different values of CSR = 0.147223

and 0.163 and initial p1 = 60 kPa are shown in Fig. 7 and 8. For these two224

tests with CSR=0.147 and 0.163 the number of cycles required to attain an225

axial strain value of about ϵa= 9% is (NExp “ 37, NDEM “ 40) and (NExp “226

12, NDEM “ 20) respectively. Compared to monotonic loadings, less accurate227

predictions are observed compared with the experimental data since the initial228

plastic flow is initiated on the compression side, which may be attributed to229

different initial fabric anisotropies when compared to the experimental data.230

Nevertheless, the DEM model gives satisfactory results since it doesn’t exhibit231
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the illogical behavior that was observed previously by using the P2PSand model,232

particularly the evolution in one direction in the deviatoric vs axial strain q´ ϵa233

plane, the discontinuity in q´ϵa and deviatoric stress vs effective mean pressure234

q ´ p1 planes and the non-occurrence of limited flow before liquefaction.

Figure 7: Deviatoric stress versus axial strain and effective pressure in undrained cyclic triaxial
tests of Toyoura sand, with initial p’=60 kPa and Dr =0.66, CSR=0.147 — comparison of
DEM results (solid green) with experimental data from Wang et al. (2016) (solid red).

235

3.4. Review of homogenization formulas for the stress tensor of a DEM packing236

including dynamic effects237

To make a step from micro- to macro-scale, the REV stress response is238

computed using the stress homogenization formula (Weber, 1966; Christoffersen239

et al., 1981) for the static part contribution of a stressed particle assembly as240

follows:241

σW “ ´
1

V

ÿ

Nc

Fpcq b Lpcq (2)

where V and Nc are the packing volume and the number of contacts inside that242

volume respectively. Fpcq and Lpcq represent the contact force and branch vector243
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Figure 8: Deviatoric stress versus axial strain and effective mean pressure in undrained cyclic
triaxial tests of Toyoura sand, with initial p’=60 kPa and Dr =59%, CSR=0.163 — comparison
of DEM results (solid green) with experimental data from Wang et al. (2016) (solid red).

respectively.244

As highlighted by (Yan and Regueiro, 2019; Duriez and Wan, 2017), the245

effect of boundary contacts cannot be neglected for a relatively small number of246

particles in REV. Bagi (2003) proposed a stress tensor formula that takes into247

account the external contact forces as follows:248

σB “ ´
1

V

˜

ÿ

Nc

Fpcq b Lpcq `
ÿ

NPE

FpNq b LpNq

¸

(3)

where E denotes particle contacts that lie on the boundary of the REV and249

LpNq is the branch vector of the external contact point.250

The applications of the current multi-scale modeling are oriented to seismic251

analysis where dynamic effects i.e., inertial terms, should not be neglected.252

De Saxcé et al. (2004) take into account those inertial terms, together with the253

effect of body forces, as follows:254
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σD “ ´
1

V

˜

ÿ

Nc

Fpcq b xpcq `
ÿ

NPE

FpNq b LpNq `

ż

V

ρx b pg ´ aqdV

¸

(4)

where x denotes the spatial coordinates while ρ, g and a are mass density,255

gravitational and inertial accelerations respectively. For the present multi-scale256

simulations where materials may be subjected to severe dynamic actions i.e.,257

earthquakes and impact loadings, the stress tensor formula in Eq. 4 is adopted,258

as justified below.259

3.5. Numerical investigation of inertial effect260

The purpose of this section is to check the previous homogenization equation261

by considering one example where dynamic effects occur. Five triaxial drained262

tests are performed with different strain rate values and shown in Fig. 9, cor-263

responding to different values of inertial number I as defined by Da Cruz et al.264

(2005):265

I “
9ϵaD
b

p1

ρ

(5)

where 9ϵa is the axial strain rate, D the average particle diameter, p1 is the266

effective pressure and ρ is the density. The DEMmodel 2 in Fig. 6 is utilized and267

the details of the numerical parameters are shown in Table 2. First, in Fig. 9 the268

contribution of each term of the stress tensor is investigated in order to examine269

how dynamic effects may influence and modify the average stress tensor. The270

deviatoric stress is calculated in two different ways, first, from the average stress271

values of the pair of boundary walls along each direction, and second, from the272

stress homogenization formula in Eq. 4. The results highlight the importance of273

the inertial part in Eq. 4 and show a significant difference between the static and274

dynamic definitions of stress tensors for the case of the most dynamic loading.275

In a second analysis in Fig. 10 showing the macroscopic sample behavior for276

all cases, one can see that, by increasing the inertial number of the simulation,277

the apparent modulus and deviatoric stress increase significantly, resulting in a278

more dilative response. In addition, no stable critical state can be achieved for279
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the most dynamic case (I P r4ˆ10´2; 10´1s). Finally, while the three tests with280

the lowest strain rate values (I ă 2 ˆ 10´2) have very similar overall responses281

in the q ´ ϵa and ϵv ´ ϵa curves, it should be noted that, as shown in Fig. 10,282

changing the inertial number in that interval still has a significant impact on283

the apparent modulus at the initial stage of these tests and that being closer to284

a quasi-static regime requires I « 10´3.285

These values are coherent with those of Da Cruz et al. (2005) who demon-286

strated that a quasi-static critical state regime with almost no variation in the287

effective friction coefficient requires very low values of I=10´3 and that a fully288

collisional flow regime occurs for I=10´1.289

Figure 9: Left: inertial number during five different drained triaxial tests (σ3 “ 400 kPa and
initial n “ 0.388) with different values of strain rate. Right: Inertial term effect on deviatoric
stress vs axial strain curve for strain rate = 11 ˆ 103 s´1.

Figure 10: The effect of various strain rates and inertial number values on the macroscopic
behavior of a drained triaxial test with σ3 “ 400 kPa and initial n “ 0.388 enclosing a
magnified scale for the initial part of the deviatoric curve for the different tests.
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4. Multi-scale coupling method290

4.1. Flac3D continuum model291

The continuum medium in Flac3D is discretized into constant strain-rate292

elements with a tetrahedral shape. The general numerical scheme is shown in293

Fig. 11. At the beginning of each time step, the strain rate tensor 9ϵ is defined294

from nodal velocities. Then a constitutive relation is applied to define the new295

stress tensor σ. Finally, the equation of motion is applied to compute the new296

nodal velocities and therefore the new nodal displacement. The finite volume297

formulation of Flac3D is presented in detail in Appendix B.298

4.2. Multi-scale coupling of Flac3D and PFC299

In this section, a two-scale numerical homogenization approach by FVMˆDEM300

(in Flac3D and PFC software) is presented. Simultaneous running and compu-301

tation are performed by these two codes. A unique DEM packing is assigned302

as a REV bounded with rigid walls for each zone of Flac3D and the strain rate303

tensor of each Flac3D zone is applied to each corresponding REV. Mainly, a304

new plug-in c++ constitutive model is constructed in Flac3D to invoke a PFC305

computation and to offer the new stress state to the Flac3D continuum model at306

each timestep. In the present context between Flac3D and PFC, the strain rate307

tensor 9ϵ is conserved and not only the strain increment dϵ to take into account308

the inertial and viscous effects (if a viscous contact model would be applied) in309

the behavior of granular mass (Jop et al., 2006).310

Fig 11 shows the computational homogenization scheme applied to each time311

step. It is worth noting that unlike coupling of DEM with the finite element312

method (FEMˆDEM, Nguyen et al., 2017), the present scheme does not need313

to establish a consistent tangent stiffness matrix from a DEM computation and314

it is enough to update the stress matrix in the continuum model at each time315

step based on the DEM computations.316

Finally, the 3D-DEM REV presented previously in Section 3 with a number317

of 7000 particles is used for the current multi-scale modeling of Toyoura sand, as318
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Figure 11: General Flac3D cycle in black and computational homogenization scheme Flac3D-
PFC inset in color.

it was proven by Mohamed et al. (2022) that it is sufficient to give an unaffected319

stress-strain response when the number of particles exceeds this value.320

4.3. Validation of the multi-scale implementation under drained-undrained tri-321

axial and simple shear tests for Toyoura sand322

A verification procedure is first introduced on very simple cases with 1 or323

2 adjacent zones to check the correct implementation of the DEM–FVM cou-324

pling scheme. The predictions of corresponding Flac3D models for drained and325

undrained triaxial tests for loose and dense samples are tested. Fig. 12(a)326

shows the macroscopic response of a dense Toyoura sand sample (Dr “ 90%)327

until reaching the critical state condition. The results demonstrate stable nu-328

merical results at the different stages of the test (including the strain softening329

regime) until the critical state. In addition, the macroscopic response of each330

zone is shown to be identical to the corresponding REV response. As for the331

loose sample, a similar simulation is performed to check the numerical stability332

of the scheme for a case where more grain rearrangement and plastic deforma-333

tion are anticipated to take place. Fig. 12(b) shows the results of a triaxial334
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test for a relatively loose Toyoura sand sample Dr “ 40%. The results again335

confirm the stability of the coupling scheme for the deviatoric and volumetric336

strain curves.337

(a) Dense Dr “ 90% (b) Relatively loose Dr “ 40%

Figure 12: Deviatoric stress vs axial strain and volumetric strain vs axial strain for Toyoura
sand with initial confining pressure = 400 kPa and two different initial porosity values.

Furthermore, a hydro-mechanical analysis is considered for an undrained338

triaxial test condition and is imposed in the Flac3D model where the pore pres-339

sure is generated due to the mechanical volumetric deformation and given water340

compressibility kf “ 2 GPa and αBiot “ 1 (see Itasca (2019) and Appendix B)341

in a classical simplified version of the pore pressure update method proposed by342

Kuhn and Daouadji (2020). The results of the multi-scale model are shown in343

Fig 13 for an undrained condition for a loose sample with an initial confining344

pressure = 400 kPa. Results show almost similar responses for the undrained345

test using only the DEM and constant volume boundary condition presented in346

Mohamed et al. (2022). Also, a unique behavior is observed for the REVs and347

Flac zones until a large axial strain value ϵa “ 22%.348

Finally, it is checked that the present use of rigid boundaries does not pre-349
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Figure 13: Deviatoric stress vs axial strain and effective mean pressure for a loose Toyoura sand
sample pDr “ 25%q during an undrained triaxial test with an initial confining stress=400kPa.
The responses of DEM (red) and Flac upper zone (blue) are identical.

clude correctly addressing non-axisymmetric simulations such as simple shear.350

Duriez et al. (2011) actually suggested with a similar DEM setup that possible351

localization bias was absent until a significant shear strain value γ=0.5, in spite352

of the rigid boundaries. Here, the coupling scheme is assessed for a simple shear353

test with a single zone in Fig. 14, under an initial isotropic stress of 400 kPa, a354

constant σzz = 400 kPa and an initial porosity value of n=0.41. The REV and355

Flac zone give identical results until a large value of shear strain γ “ 0.65.356

5. Multi-scale modeling of seismic wave propagation through a satu-357

rated soil column358

5.1. Comparison of results from the multi-scale approach with the P2PSand-359

based classical approach360

As the main application, a vertical column of saturated sand made up of361

ten 3D zones is considered to be shaken by an earthquake as shown in Fig. 15.362

The sandy material is described either with the DEM or the P2PSand models363

described in the previous sections. Before the application of the earthquake364
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Figure 14: Simple shear test (constant σzz) with an initial isotropic stress of 400 kPa and an
initial porosity value n=0.41.

wave, stresses are initialized to σx “ σy “ 0.5σz inducing an initial anisotropic365

stress state all along the column. As with the previous undrained test, the pore366

pressure evolves throughout the fully saturated column in Flac3D only due to the367

mechanical volumetric change resulting from the seismic shaking. It is indeed368

assumed for simplicity that the characteristic time of the earthquake event is369

faster than the time required for the fluid to flow from one zone to another and370

Darcy’s law and its diffusive effects are accordingly deactivated herein, even371

though a full hydro-mechanical coupling is technically possible in FLAC3D. The372

bedrock boundary condition is used at the bottom of the model and a constant373

lateral total stress is applied as a lateral boundary condition. In the case of374

using the P2PSand model, a 2% Rayleigh damping was employed while for the375

multi-scale model, a classical Cundall, i.e. global, damping (Cundall, 1987) with376

a 0.6 coefficient is used by default in the DEM, before being investigated in more377

detail in a forthcoming section. The earthquake loading is chosen as the Gilroy378

No.1 record of the 1989 Loma Prieta earthquake (which occurred on California’s379

central coast), scaled to have a peak ground acceleration of 0.8 g in Fig. 15.380
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In order to analyze the models’ response in light of the previous predictions of381

the models for cyclic triaxial tests (compression/extension) in Sections 2.2 and382

3.3, it is chosen to apply the input acceleration at the bottom as a P-wave.383

The simulations are performed for two cases with different initial density values384

representing the relatively dense and loose states of Toyoura sand. The results of385

the comparison between the two models during the shaking phase for both cases386

are analyzed in terms of stress-strain responses and acceleration time history at387

different levels of the column.388

Figure 15: Left: The input vertical acceleration at the bottom zone. Right: the geometry of
the Flac3D soil column and the corresponding REVs for multi-scale modeling.

Fig. 16 and Fig. 17 show the response of the soil column to the relatively389

dense soil Dr “ 60% in terms of deviatoric stress vs axial strain and deviatoric390

stress vs effective mean pressure for the two models. As for the multi-scale,391

at the early stage of the shaking, an increase in the effective mean pressure is392

observed at the different levels due to the dilative tendency of the soil. However,393

later and during the intense waves, a slight decrease in the effective mean pres-394

sure is observed, coinciding with an accumulation of shear strains in all levels of395

the soil column, especially in the top zone. On the other hand, the response of396

the P2PSand model shows less ability to lose effective mean pressure and more397

tendency to accumulate axial strain only in the positive side (axial shortening)398

of the deviatoric stress vs axial strain curve.399
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Figure 16: Multi-scale model predictions for a relatively dense soil column (Dr “ 60%).
Left: deviatoric response at different positions of the soil column. Right: deviatoric stress vs
effective mean pressure.

Figure 17: P2PSand model predictions for a relatively dense soil column (Dr “ 60%). Left:
deviatoric response at different positions of the soil column. Right: deviatoric stress vs effective
mean pressure.
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The acceleration history is monitored at different levels and shown in Fig.400

18. Results show that the base acceleration is transmitted to the surface of the401

soil column in two models, resulting in a large amplitude at the surface of the402

soil. The two models exhibit almost the same maximum acceleration at the403

bottom and middle zones, but a larger acceleration at the top zone is observed404

for the P2PSand model compared to the multi-scale model.405

(a) P2PSand (b) Multi-scale

Figure 18: Acceleration time history for the P2PSand and Multi-scale models at different
positions for a dense soil column of Toyoura sand.

The second case investigated is for a loose soil column with a relative density406

of Dr “ 25%. The results of the two models are shown in Fig. 19 and Fig.407

20. Despite the larger shear strain values observed for the P2PSand model408

in the bottom and middle zones as shown in Fig. 21, the results show that409

the liquefaction mechanism is also observed for the multi-scale model since the410

middle and top zones reach a zero effective mean pressure value during the411

event. In addition, the top zone of the multi-scale model shows higher axial412

and shear strains with ϵa « 4%, γ « 6% compared to the P2PSand model413

ϵa « 1.15%, γ « 1.72%. Thinking of another, strain-based, liquefaction criterion414

such as proposed by Cappellaro et al. (2021) in terms of double-amplitude shear415

strain value γ “ 7.5%, one can note that this value that is not attained by the416

two models.417

The acceleration responses for the loose case are shown in Fig. 22. The418

results of the two models are similar for the bottom and middle zones. However,419

more spike values are observed in the case of the multi-scale model at the top420
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Figure 19: Multi-scale model predictions for a loose soil column (Dr “ 25%). Right: deviatoric
stress vs effective mean pressure. Left: deviatoric response at different positions of the soil
column.

Figure 20: P2PSand model predictions for a loose soil column (Dr “ 25%). Left: deviatoric
response at different positions of the soil column. Right: deviatoric stress vs effective mean
pressure.
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(a) P2PSand (b) Multi-scale

Figure 21: Shear strain profile along the soil column at T=10 s for the P2PSand and Multi-
scale models for a loose soil column (Dr “ 25%).
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zone due to the large deformation of this zone.421

(a) P2PSand (b) Multi-scale

Figure 22: Acceleration time history for the P2PSand and Multi-scale models at different
positions for a loose soil column of Toyoura sand.

In general, a clear contradiction is observed between the predictions of the422

two approaches since the large deformation occurs in the case of the multi-scale423

approach for the top zone, while the P2PSand model predicts a large deforma-424

tion for the bottom zone. In addition, for the two studied relative density values,425

the multi-scale model gives lower axial strain at different positions, except for426

the top zone in the case of the loose case. Additionally, for the loose case, the427

multi-scale model shows acceleration amplification (Fig. 22) at the top zone428

when compared with the P2PSand model.429

In addition to the macroscopic results, useful microstructure information can430

be elicited from the multi-scale model. Fig. 23 shows the evolution of the force431

networks for the loose soil column before and after the seismic event. Before the432

event, the vertical components of the force networks have the highest contact433

force, which is consistent with the initial anisotropic state of the samples. After434

the event, the top sample has a very weak force network due to liquefaction435

occurrence in this zone.436

5.2. Parametric study on the damping coefficient and particle size437

As for the multi-scale model, physically dissipative microscale phenomena438

such as contact friction serve as the main source of energy dissipation. As it is439

customary in DEM, a numerical Cundall damping is also herein present and may440
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(a) T = 0 s (b) T = 10 s

Figure 23: Force networks for different zones before and after the seismic event for the loose
soil column.
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artificially dissipate energy similar to the Rayleigh damping, which is employed441

in conjunction with the case of the continuum constitutive model P2PSand.442

By construction, the influence of the DEM global damping parameter becomes443

more significant when the regime commences being far from being quasi-static,444

which is expected to occur during such a dynamic event and the present section445

investigates in detail this influence for the present multi-scale simulations.446

A numerical simulation is performed for the loose soil column by using dif-447

ferent DEM global damping coefficient values of 0.2 and 0 instead of the value448

of 0.6 that was employed during the previous simulations in Section 5.1 and the449

results are shown in Fig 24 and Fig 25. The simulation results demonstrate how450

the damping parameter affects the response at different levels of the column,451

whereby for the case of a damping value of 0.2 the top, middle and bottom452

zones final axial strain values increase by approximately 100%.453

Figure 24: Multi-scale model predictions for a loose soil column Dr “ 25% using global
damping coefficient = 0.2.

Fig 25 also compares the effective mean pressure values for the three damping454

values at the end of the seismic event. Obviously, the damping parameter affects455

the distribution of the effective mean pressure and therefore, the liquefied zones456

throughout the soil column.457

It is instructive at this point to study the effect of particle sizes in the DEM458

model (REV) during such dynamic events. The investigation is performed by459

using the two models in Fig. 6 in which only the particle size is changed while460
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Figure 25: Initial and final values of the effective mean pressure (in Pa) through the column
for different damping values for the loose case.

Figure 26: The final values of the effective mean pressure (in Pa) through the soil column
for different particle size distributions for the loose (leftmost) and the dense (rightmost) cases
and two different size distributions (gravel-like model 1 and sand-like model 2).
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maintaining the same contact model, particle number, and damping coefficient.461

The particle size distribution of model 1 could represent a gravel-filled soil col-462

umn. The results in Fig. 26 show an influence of the particle size on the dis-463

tribution of the effective mean pressure along the column, indicating that soils464

with larger particles have less liquefaction potential due to their inertial effect.465

As a matter of fact, a smaller grain size (or a lower inertial number from a466

collisional I in the order of 10´2 to values around 10´3, see later Fig. 29) leads467

to an increase in reached strains as shown in Fig. 27 and Fig. 28, consistently468

to previous Section 3.5.469

The inertial number is evaluated to examine the dynamic effect on the pre-470

vious simulations. Fig. 29 illustrates the evolution of the inertial number of the471

top and the bottom zones for the loose case with a damping value = 0.6. For472

model 1 the values of the inertial number indicate some dynamic effect on the473

behavior of the top zone and bottom zone coherently with the previous discus-474

sion in Section 3.5. Whereas the results of model 2 show only an intermittent475

dynamic effect for the top zone at different stages during the event, which can be476

attributed to lower effective mean pressure values and higher strain rate due to477

the occurrence of the liquefaction. Thus, we recall that one of the main advan-478

tages of DEM over constitutive models is its ability to consider the real physics479

of granular materials by taking particle inertia into account during dynamic480

simulations.481

These inertial effects would combine in reality with another advantage of482

gravel-like soils against sand soils through their higher hydraulic conductivity483

“permeability” leading to dissipate faster pore pressure (which is not computed484

in the present simulation).485

5.3. Discussion about the advantages and limitations of P2PSand and spherical486

DEM-based multiscale approaches487

From the multi-scale model results in Fig. 16 and Fig. 17, it can be deduced488

that when an unloading path is imposed after a dilatation behavior (evolu-489

tion on the failure envelope in an undrained condition), more plastic defor-490

mation and pore pressure are generated resulting in a significant decrease in491
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(a) Bottom zone Dr “ 60% (b) Top zone Dr “ 60%

Figure 27: Effect of particle size on the response of the dense soil column for the bottom and
top zones with a damping value = 0.6.

(a) Bottom zone Dr “ 25% (b) Top zone Dr “ 25%

Figure 28: Effect of particle size of the response on the loose soil column for the bottom and
top zones with a damping value = 0.6.
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(a) Gravel-like model 1 (b) Sand-like model 2

Figure 29: The evolution of the inertial number for the bottom and top zones in the case of
damping = 0.6 for Dr “ 25% and different particle sizes.

effective mean pressure and deviatoric stress. However, despite the fact that492

the P2PSand model incorporates the influence of fabric evolution (noting that493

fabric anisotropy develops only when the dilatancy occurs) on the dilatancy be-494

havior, the results of the P2PSand model contradict the DEM results at this495

point (which is more pronounced for the dense state, see q ´ p1 curves in Fig.496

16 and Fig. 17). These results recommend calibrating the fabric parameters497

of the P2PSand model on cyclic triaxial for dense samples with dilative be-498

havior. Also, they suggest to revisit the P2PSand model formulation for the499

stiffness-dilatancy degradation law.500

On the other hand, the multi-scale approach provided an adequate seismic501

response by using four contact parameters (which could be reduced to three502

parameters in the case of a more realistic particle shape, as illustrated by Mo-503

hamed et al. (2022)) and excluded all nonphysical responses that occurred when504

constitutive models were used, as previously discussed. However, difficulties505

still remain when attempting to reproduce high-precision qualitative results for506

cyclic triaxial undrained tests as shown previously in Section 3.3 due to switch-507

ing between triaxial compression and triaxial extension at each cycle, which508

can be attributed to the use of spherical particles and the lack of initial fab-509

ric consideration. Also, as highlighted by Mohamed et al. (2022) (Figs. 18-19510
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therein), although the spherical shapes together with the rolling resistance con-511

tact model can provide a good agreement with the experimental triaxial tests,512

irregular shapes still better match the experimental data in terms of the initial513

slope in the q ´ ϵa curve, volumetric contraction behavior and stress softening514

behavior.515

One should additionally consider the small strain properties of soil (Hardin516

and Richart Jr, 1963; Tatsuoka et al., 1979), i.e. the small-strain modulus Gmax517

because of its important role in wave propagation mechanisms and liquefaction518

potential. Fig. 30 shows the prediction of the DEM model for the relation519

Gmax ´ p1 estimated from undrained triaxial tests at 10´5 strain amplitude520

together with experimental data by Tatsuoka et al. (1979). While the DEM521

results are of the correct order of magnitude, with just a 26% discrepancy for522

the smallest confining pressures considered in the study (50 kPa), they also523

confirm that the linear rolling resistance contact model used in this study in524

conjunction with spherical particles cannot offer the expected mean pressure525

dependency of small-strain modulus Gmax on the effective mean pressure p1 (as526

adopted in the P2PSand model in Eq. A.5). Therefore, a more adequate contact527

formulation could improve the DEM REV behavior in this aspect, such as the528

Hertz model (Itasca, 2018; Mindlin and Deresiewicz, 1953) or a more advanced529

contact model as adopted by Kuhn (2022).530

Figure 30: Comparison between the DEM model (initial void ratio = 0.63) and experimental
data from Tatsuoka et al. (1979) for the relationship between small-strain modulus Gmax and
mean pressure p1 for Toyoura sand.
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As another important issue, the spherical model has a strong tendency to531

show isotropy (as it is the case after the isotropic preparation phase, Table 2),532

lacking inherent fabric anisotropy which would induce for instance anisotropic533

elastic characteristics and possibly impact seismic waves propagation.534

Finally, Table 3 summarizes the different modeling choices for the multi-535

scale and DEM models and highlights the achievements and shortcomings of536

the proposed approach.537

Table 3: Commented summary of the different modelling choices within the multi-scale and
DEM models.

Modelling topic Chosen approach Remark
Proposed multi-scale approach

Coupling Scheme FVM-DEM No need for a tangent stiffness matrix
FLAC3D-PFC Less computational time

Stress matrix Inclusion of inertial effects in DEM Appropriate for seismic and dynamic
expression simulations

Hydro-mechanical Inclusion of mechanically-induced Darcy’s law not activated
coupling pore pressure evolution herein

Used DEM model
Particles shape Spherical 10 - 100 times faster computational time

(Mohamed et al., 2022; Duriez and Bonelli, 2021)

Contact model Rolling resistance model with Not able to
constant stiffness reproduce Gmax ´ p1 curve

Packing and Isotropic packing Appropriate REV is achieved
its preparation with 7000 particles Lack of inherent anisotropy
Calibration Calibration on monotonic and cyclic Very good prediction for monotonic loading

and validation tests while using same void Less precise prediction for cyclic tests
at lab-scale ratio as experiments

5.4. Computational time and software parallelization aspects538

In terms of computational time, executing the FLAC3D-PFC multi-scale539

model is logically significantly longer than a pure FLAC3D simulation: 6 hours540

vs 20 minutes for the current study respectively, as obtained utilizing a worksta-541

tion with 8 cores, 3.0 GHz CPU and 64 GB RAM. Since differences in operations542

reduce to the application of the DEM or P2PSand models as a constitutive rela-543

tion, it is evident that the majority of the time cost for the multi-scale coupling544

comes from PFC-DEM computations. The amount of the latters is directly545
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proportional to the number of zones, with evident higher costs to be expected546

for more complex BVP in terms of mesh than the one considered here. On547

the other hand, the present choice of studying a 1D wave propagation is not548

computationally important in itself and 2D or 3D propagation studies with a549

similar number of zones, if possible, would show the same time requirements.550

In order to alleviate DEM-induced time costs, one should note that PFC551

supports parallel DEM simulations by distributing the computational load on552

the available cores allowing multi-threaded computation for contact detection553

and contact model with an efficient spatial searching and contact detection554

scheme.555

It could also be thought of to apply parallelization to FLAC3D structure-556

scale operations with simultaneous computations of DEM REVs, as discussed557

e.g. by Kuhn (2022).558

6. Concluding summary and perspectives559

This paper compares a discrete-based approach and one advanced bound-560

ing surface plasticity model ’P2PSand’ for sand behavior and the propagation561

of seismic waves after a fair calibration and validation procedure of the two562

approaches on lab experiments. A 3D multi-scale FVMˆDEM scheme is es-563

tablished between a continuum code Flac3D and discrete element PFC code to564

solve boundary value problems by using the DEM as a constitutive model.565

Thanks to its use of the common and well-documented FLAC3D-PFC codes,566

as well as the ingredients of the coupling scheme (e.g., inertial effect), the pro-567

posed model can be used within various complex 3D numerical simulations for568

soils, including cyclic and shock loading. Also, the implementation of the present569

multi-scale scheme is less complex than the FEMˆDEM scheme found in the570

literature since in the explicit FVMˆDEM scheme there is no need to establish571

a consistent tangent stiffness matrix from the macroscopic computation, which572

can reduce the computational time of simulations. Numerical results demon-573

strate the accuracy of the implemented coupling scheme through classical stress574

paths applied on one or two zones. On the other hand, proper implementation575
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and application of the averaged stress tensor calculated from the DEM part576

require careful treatment. The inertial term in the homogenization formula of577

stress for granular assembly is shown to be an essential term during dynamic578

simulations with higher inertial number values, such as severe earthquakes and579

impact loadings. It is found that by increasing the inertial number, the strength580

of the granular material increases, accompanied by more dilative behavior and581

no clear critical state condition.582

The DEM and P2PSand models have been calibrated and validated based on583

experimental laboratory data of Toyoura sand for monotonic and cyclic loadings.584

The validated DEM model is used via multi-scale modeling to analyze the wave585

propagation mechanism in a saturated soil column made of Toyoura sand and586

is compared with the predictions of the P2PSand model. Results reveal several587

differences in response evolution logic between the two models. First, the so-588

called butterfly loops in the effective stress plane and the hysteretic loops in the589

deviatoric axial strain plane are quite different for the two models under dense590

and loose cases. Second, for dense and loose conditions, the P2PSand model591

accumulates more axial strain than the multi-scale model, resulting in a possible592

underestimation of the resistance of any earth structure under cyclic loadings.593

In addition, the parametric study performed on the effect of the DEM nu-594

merical damping coefficient highlighted the importance of this parameter during595

seismic or dynamic events. Results of the propagation of seismic waves show596

that different damping values can affect the final distribution of pore pressure597

as well as the final deformation of the column. In such a case, minimizing the598

DEM global damping parameter is essential to ensure more realistic results and599

avoid an artificial decrease in strain estimations that would be detrimental to600

structural stability in engineering studies. As for the particle size effect, it is601

found that the two models with different particle size distributions are influ-602

enced by some dynamic effect in different ways. First, for the model that has603

the same size as Toyoura sand, the behavior was quasi-static during the first604

stage of the event, however, when liquefaction occurred at some positions in605

the soil column, the behavior became more dynamic due to the low value of the606
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effective mean pressure. As for the case with larger particle size, the simulations607

are shown to be dynamic by tracking the values of the inertial number which608

indicates that soils with larger particles have a greater dynamic contribution to609

stress that leads to less liquefaction potential.610

Finally, the computational time for the multi-scale model is significantly611

longer, taking six hours compared to a 20-minute simulation in the case of the612

P2PSand model. However, considering the precision of the multi-scale method,613

this computational time is quite acceptable.614

Further perspective for this work is to investigate cyclic behavior and multi-615

scale modeling of the behavior of the polyhedron DEM model also presented616

in (Mohamed et al., 2022) since the latter is more realistic, e.g., for what con-617

cerns initial fabric consideration (material inherent anisotropy) than the present618

spherical model. First, to verify to what extent the initial fabric consideration619

could improve the cyclic behavior and cyclic mobility of a DEM model compared620

to experimental data. Second, to quantify its influence on the final values of621

strain and effective mean pressure for boundary value problems, e.g., comparison622

between the polyhedron and sphere DEM models for the previous example of623

seismic wave propagation. In addition, we intend to use the present multi-scale624

scheme for modeling the seismic behavior of a real earth dam.625
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Appendix A. P2PSand Constitutive formulas635

A power relationship relating here the critical relative density Drc to p1
636

across different ranges of the confining pressures:637

Drc “ Drc0 ` λc

ˆ

p1

patm

˙ζ

(A.1)

Where λc, ζ and Drc0 are three positive model parameters.638

Ip “
p1

pc
(A.2)

Eq. (A.1) is complemented in the (deviatoric) stress space by a critical state639

surface giving the M “
a

3{2||s||{p ratio at the critical state, M c for any Lode640

angle θ, from its critical values during triaxial compression and triaxial exten-641

sion. Denoting the latters Mcomp and Mext respectively and c “ Mext{Mcomp642

the corresponding ratio as a model parameter, the same Lode angle dependency643

than Cheng and Detournay (2021) is considered:644

M cpθq

Mcomp
“ gpθ, cq “

ˆ

2c4

c4 ` 1 ` pc4 ´ 1q cos 3θ

˙0.25

(A.3)

The critical-strength parameter Mcomp may be expressed in the form of a645

Mohr-Coulomb friction angle for the same triaxial compression path, ϕcomp.646

At the other end of the behavior, for small deformations, the incremental647

form of the elastic part is defined as follows:648

dp1 “ ´Kdϵev ds “ 2Gdee (A.4)

Where p1 is the effective mean stress (isotropic stress) and s is the deviatoric649

stress tensor. K and G are bulk and shear modulus respectively. ϵv and e are650

volumetric strain and deviatoric strain tensor respectively. The P2PSand hypo-651

elastic law is adopted for expressingK and G as a function of the current relative652

density and the current mean effective pressure :653

G “ G0pDr ` CDrqpatm

ˆ

p1

patm

˙n

K “
2p1 ` νq

3p1 ´ 2νq
G (A.5)
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The model proposes a power law for the bounding and dilatancy surfaces.654

The form of these surfaces is the same as the critical state surface and has an655

additional dependency on the relative state index Ip and relative density Dr as656

follows:657

Mdpθq “ M cpθqIpndDrq
p M bpθq “ M cpθqIp´nbDrq

p (A.6)

where Mdpθq and M bpθq denote dilatancy and bounding surfaces respectively.658

Finally, the images of the kinematic hardening tensor α on the dilatancy and659

bounding surfaces are defined as the intersection points between a parallel line660

to the loading direction n stemming from the origin point to the dilatancy or661

bounding surfaces as shown in Fig. 1. n is the loading direction tensor outward662

along the radius r - α and is defined as:663

n “
s ´ p1α

||s ´ p1α||
(A.7)

The image tensors on the different surfaces can be expressed as follows:664

αd,b,c
θ “

a

2{3rgpθ, cqMd,b,c ´ msn (A.8)

The plastic volumetric strain can be related to dilatancy as follows:665

dϵpv “ă L ą D (A.9)

For virginal loading, the dilatancy is defined based on the distance between the666

current α and its image on the dilatancy surface αd
θ as proposed by Dafalias667

and Manzari (2004).668

D “ Adpαd
θ ´ αq : n (A.10)

where Ad is a model variable that depends on the fabric state and will be669

defined later. If the state of α is inside the MBS, a new term will be added to670

the dilatancy equation to avoid the overshooting of the dilatancy during cyclic671

loading as follows:672

DCyc “ Ad0pαd
θ ´ αq : n ˚ kCycpα ´ αinq : n (A.11)
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where kcyc is a calibration parameter for cyclic loading. In the present model673

fabric tensor dz evolution is described as follows:674

dz “ ´ ă L ą czp

c

2

3
zmaxn ` zq, D ą 0 (A.12)

The fabric tensor z evolves only during dilatancy dilation. Finally, dilatancy675

is impacted by the fabric evolution as follows:676

Ad “ Ad0p1 `

c

2

3
ă z : n ąq (A.13)

Appendix B. Flac3D continuum equations677

The momentum principle of motion (Cauchy’s equations) is:678

σij,j ` ρbi “ ρ
dvi
dt

(B.1)

For a body in equilibrium or steady state Eq. B.1 is reduced to :679

σij,j ` ρbi “ 0 (B.2)

In Flac3D, the equation of motion is applied to the mesh nodes. To this end,680

the finite volume approximation of the space derivative is applied to obtain a681

description of the strain rate tensor as a function of nodal velocities by assuming682

that the velocity field varies linearly inside the tetrahedron. The Gauss diver-683

gence theorem to the tetrahedron relates the divergence of the velocity field684

inside a volume V and the flux through a surface S as follows:685

ż

V

vi,jdV “

ż

S

vinjdS (B.3)

where vi,j is the gradient of the velocity field and nj is the normal to the surface.686

The infinitesimal strain rate tensor is defined as:687

9ϵij “
1

2
pvi,j ` vj,iq (B.4)

The average velocity of each face of tetrahedron vi
pfq can be defined from their688

nodal velocities as follows :689

vi
pfq “

1

3

4
ÿ

l“1,l‰f

vli (B.5)
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where the superscript l represents the nodal number. From Eq. B.3, the strain690

rate tensor in Eq. B.4 and Eq. B.5 can easily define the relation between strain691

rate tensor and nodal velocities.692

9ϵij “
1

6V

4
ÿ

l“1

´

vli n
plq
j ` vlj n

plq
i

¯

Splq (B.6)

The final goal is to apply the equation of motion to the different nodes by693

using an explicit finite difference approximation to the time derivative. In order694

to obtain the nodal formulation of the equation of motion, the concept of virtual695

work is applied to a tetrahedron by multiplying the net force in Eq. B.1 by an696

imaginary velocity applied at the tetrahedron centroid as follows:697

δP “ pσij,j ` ρbi ´ ρ
dvi
dt

q.δvi “ 0 (B.7)

where P is the power. Since the velocity varies linearly inside the tetrahedron,698

dvi can be expressed as a function of nodal velocity as follows:699

δ vi “
1

4

4
ÿ

n“1

δ vni (B.8)

The internal power can be expressed as a function of nodal velocities and the700

nodal force vector T l
i (from Cauchy’s formula) as follows:701

T l
i “ σij n

plq
j Splq (B.9)

702

P Internal “ ´
1

3

4
ÿ

l“1

δ vli T
l
i (B.10)

In turn, the external power done by the body force and inertial force is expressed703

as follows:704

PExternal “

4
ÿ

n“1

δ vni r
ρ bi V

4
´

ρ V

4
p
dvi
dt

qls (B.11)

where ρ V
4 is the nodal mass ml. From Eq. B.11 and Eq. B.10, the nodal705

formulation of the equation of motion can be expressed as:706

mlp
dvi
dt

ql “
T l
i

3
` mlbi ` P l

i “ F l
i (B.12)
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where F l
i is the out-of-balance force and P l

i is the external force applied to707

a node. Finally, the explicit finite difference approximation for the derivative708

pdvi

dt ql to obtain the new nodal velocity is as follows:709

vălą
i pt `

∆t

2
q “ vălą

i pt ´
∆t

2
q `

∆t

mălą
Fălą
i (B.13)

The present multi-scale model also includes hydro-mechanical coupling as avail-710

able in FLAC3D with, for the present saturated conditions:711

σ1 “ σ ´ pI (B.14)

1

M

Bp

Bt
“ ´qi,i ` qv ´ αBiot

Bϵ

Bt
(B.15)

Where σ1 is effective stress and I is the Kronecker tensor. Bp
Bt is the variation of712

pore pressure with respect to the time, M is the Biot modulus (= kf here), αBiot713

is the Biot coefficient (= 1 here) and ϵ is the mechanical volumetric strain. qi is714

the specific discharge vector described by Darcy’s law qi “ ´ki∇p (ki and∇p are715

mobility coefficients matrix and pressure head gradient) and qv is the volumetric716

fluid source intensity respectively. These last two terms are disregarded here717

even though they could be included by activating fluid flow option in FLAC3D.718

References719

Bagi, K., 2003. Discussion on “the asymmetry of stress in granular media” by720

jp bardet and i. vardoulakis:[int. j. solids and structures, vol. 38, pp. 353–367721

(2001)]. International Journal of Solids and Structures 40, 1329–1331.722

Been, K., Jefferies, M.G., 1985. A state parameter for sands. Géotechnique 35,723
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