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> Outlines

I. Classical (pre-genomic) selection

INRAZ
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2 Genetic selection:

Organization of a breeding plan

Definition of selection objectives

VL
Pedigree and performances recording

|

Genetic evaluation

A 4

Selection of sires & dams

l

Utilization of breeders

INRAZ
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2 Genetic selection:

Creation of genetic gain

Selection thres

@tion of@

Selection differential g \ < > Osires
for sires stres .
f ~
Selection differential S T a_da,?ls
for dams dams E :
: : Expected distribution
: : of offspring breeding
! ! values
INRAZ o
Genetic gain  AG -—> P-4
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2 Genetic selection:

Derivation of genetic gain

Accuracy
Selection intensity Genetic standard

/ deviation

X O-g (variability)

Annual genetic gain: AG = @
~

Generation interval

Maximization of AG:

Accounting for:
= S i=\% of selected animals

breeding goal, pop. size,
= *+/CD =/ quantity and quality of available information

heritability of economic traits,
" 0,=7?

population structure,
= \,T= culling of « old » breeders

biology, available reproductive technologies...
INRAZ
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2 Computations in genetic evaluation

requirements
Data Model Results

model to describe data:

Performances P

P=M+a+e

model for transmission of genetic

merit:

Estimated breeding value a
{ Estimation of other effects M

1 1
a; =§as+§ad+¢i

C.R. Henderson

=» Numerator relationship matrix A

1973: “Sire evaluation and genetic trend”
1976: “A method to compute the inverse of the numerator
relationship matrix”

BLUP

Environment M
(hatch/herd/band, age,
season, sex...)

INRAZ
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2 Genetic evaluation = solving a system of
equations

Henderson demonstrated that BLUE ﬁ and BLUP @ are solutions of Mixed Model Equations (MME)

-1 -1
X'R-1X XR'Z (ﬁ) XR-1y
-1 -1 -1 — o —
zrx ZRIZ+ A ) T 7Rty
g
Where :
« R =inverse of R, (co)variance matrix of the residuals. Very simple. R = 621 © R™1 = %I

 Setup of A~ 1is very easy (Henderson, 1976). O'EA is the genetic variance
. ag and 0'5 are supposed to be known.

Easily extended to more complicated models (multitrait,...) ©
Size of the MME can be huge ‘\
INRAZ
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2 Computations in genetic evaluation:

A Liliputian example

5000 4500

0) /@ ©O) 9 O) O & w=fta+e XX  XZ ]

\ """"""""""""""" \ \ """"""""""" ™ . / Z'’X Z7'7+ oaA~?
@' 5500 @ 5000 @ % animal model )

_____________________ \/ g where o = 22

.................................................................. h2

o
6000 i
>

Mixed Model Equations

-~ | ~ | g 7
2001 0 1 0 1 0 0 0 0 |B| |5000+4500
02 0 0 0 0 0 0 1 1 0 5 3500+ 5000
001} 0 0 0 0 0 0 0 1 ; 6000
000]0+20 0+u 0 0 0—a  O-« 0 RE 0
100! 0+a 1+2a 0 0 0-a O-u 0 0 (3] | 5000
D00 0 0 0+1.50 0+0.5ua 0 0 00— 0 |93 ] — 0
10 DI 0 0 D+0.5a 1+1.5u 0 0 0—w 0 |94 4500
00 Di O0—a O0—-u 0 0 0+2.50 0+0.5u 0 0— ol s 0
010, 0—a O0—u 0 0 0+0.50 1+250 0 00— ag 5500
01 ﬂ} 0 0 0—a 00—« 0 0 1+ 2w 0 |ay 5000
00 ll 0 0 0 0 0—a 00— 0 1+2oag 6000

\ | N L

Hervé CHAPUIS 08/11/2022



2 Henderson rules : setup of A~1

5000 4500

[49]
6000 5
>

1. SetA~1=0
2. For each animal i with parents p & p’:
a) Addy to (i,i)

b) Add ¥ to (p,p),(1"p'),(p,P"),(KP)

c) Add —to (i,p), (i,p"),(p,i), (P

where
 y = 2 when both parents are known

4 .
*Y=3 when one parent is unknown
vy =1 when none of them is known

INRAZ A~1is a very sparse matrix

P.9
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2 Models can be more or less
sophisticated...

Yi=FBj+ta+e sameiDi animal model a; = Las +1ay + ¢,

Simpler models

Ignore the dam, which can be replaced by the maternal grand sire

More elaborate models

* More than one performance by animal
«* Repeatability model

 Two animals influence the same phenotype
< Maternal effect model

* Many traits by animals or measured in more than one environment
«* Multitrait animal model

The derivation is quite straightforward but the computational cost can be a deterrent.

INRAZ
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> Why bother ?

Because of desirable BLUP properties:

IF

 The base population is neither inbred, nor related nor selected and,

» All data previously used for selection and mating are accounted for in the genetic
evaluation and,

* The A matrix encompasses all relationships and,

* Genetic parameters pertain to the base population

THEN

MME correctly account for all changes in additive genetic variance due to selection, genetic
drift, inbreeding and preferential mating (Sorensen & Kennedy, 1982)

Using properly ALL available data leads to the best possible result

TAKE HOME MESSAGE
Ideal genetic evaluations
v’ Rely on an animal model
v" Account for all available data (pedigree and performances) relative to directly or indirectly
selected traits.
MULTITRAIT BLUP ANIMAL MODEL
INRAZ

p. 11
Hervé CHAPUIS 08/11/2022



2 |deal genetic evaluation Gt

" 4

Continuous traits

h

Unfortunately no software can simultaneaously
analyse all traits AND all models ®®

Longitudinal data
Longevity (censored data, Cox or Weibull models) (random regression models)

Two-step process :
1. Each trait is analyzed with the most adequate model.
2. After computation, phenotypes are corrected for all non genetic effects.

» A new phenotype (deregressed EBV) v

» Associated weight w
Then the (very simple) modelv= u+a+e gives the same result as the best

model.

A multivariate evaluation of all vs with adequate weights w is a good proxy
for an ideal genetic evaluation (and is computationally more feasible).
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600 preferential matings

sires ot bulls dams of’bulls

100 tested bulls

9 months _
“testing process”
250-350 calves Yearnt3
Year n+1 M |:{>M X uﬂﬂl uﬂ:
young male calf ~300 cows

9 months

Approved bull 12 -15
(massively used) 5.8
Year n+7
Selection on global index

0507

~ 80 daughters after 1 Iactatlon

~ 120 young helfers

INRAZ
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2 Pre-genomic selection in dairy cattle

- Long generation interval : =7 years

- Strong selection pressure.
1/4000 in Holstein (# tested bulls /# inseminations)
- High accuracy only for males : CD = 0.7 required for approval
(not for all traits). Some traits with low heritability (fertility) were
poorly evaluated.

INRAZ
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> Pre-genomic selection in swine
production

INRAZ

p. 16
Hervé CHAPUIS 08/11/2022



> Selective Breeding of Pig ~ "»fo

» 14 000 farms
f » 125 sows /farm

oL v : » 23 M slaughtered
Sz b N g & > 2,2 M tons of meat

Axes de sélection :

« Prolificité

« Qualités maternelles
« Rusticité et facilités d’adaptation (201 8 Statistics)
« Prolificacy :

- Maternal abilities

- Hardy and easy to adapt

Type male

Sire lines

Axes de sélection : d

« Croissance

« Indice de consommation

« Composition des carcasses
« Qualité de viande

- Growth rate

« Feed conversion ratio

« Carcass muscle content

INRAZ « Meat quality

Hervé CHAPUIS 08/11/2



> Selective Breeding of Pig:

Breeding goals

1 - i
Riven LY

v’ Increase muscle v
v Reduce fat (backfat thickness)

v Improve growth (Average Daily Gain)
v' Good feed efficiency (Daily Feed Intake)
v' Meat quality (pH, meat quality index)

Letal measure
=» slaughtered sibs

These traits are unfavorably correlated with the
previous ones
=>» crossbreeding

v" Higher prolificacy
v' Maternal qualities

INRAZ

p. 18
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> Selective Breeding of Pig:

advantages of crossbreeding 1

- heterosis: crossbred animals outperform parental average

Heterosis Heterosis for crossbred
Litter size effect offspring:
at weaning crossbred - mortality and +
| SOWS growth
Parental . Heterosis for sows : more
average | T piglets
LW - LR
Large White Landrace LW x LR (LW x LR) x
INRAZ LR Piétrain

p. 19
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> Selective Breeding of Pig:

advantages of crossbreeding 2

Pork is obtained from crossbreeding of multiple lines
Major cross in France :

¢

Y Dam lines:
X — Maternal qualities
Landrace ‘ B
% W Sire lines:
LWxLR sow carcass
Meat quality
Pork
INRAZ ™~ Improved for all traits

p. 20
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> Selective Breeding of Pig:
pyramidal design
£ -

NUdeUS [:H[]lCE ’\Creation of genetic gain

GENETICS

AXIOM _—
the genetic evidence CIA /

3450 boars

N

Purebred: 90 farms = 10 000 sows

Sale of breeders

Hybrids : 250 farms = 41 000 sows

Sale of crossbred sows

Production
23.5 M pigs

9 500 farms =1 000 000 sows

p. 21
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> Pre-genomic selection of pigs

performance monitoring
Purebred animals

Selection farm

- w‘?ning (= 1 month)
ﬁiﬁ Selection candidate collateral sibs
- (farm) performance monitoring
Hiah b station Costly measures
igh number of l l (2 500 indiv/an)
measured '
animals fattening fattening
(80 000/an) l (= 4-5 monthes) l
Evaluation around 100kg Evaluation around 100kg

I l

selection Mmultiplication slaughter =6 months slaughter
CIA

=» Generation intervals are short.

=>» Selection is based on imprecise EBVs
INRAZ
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> Pre-genomic selection of pigs

- Short generation interval:
1 to 2 years

- High selection intensity:
1/11 a 1/16 for female pathway
& 1/50 a 1/65 for male pathway

- Low accuracy of EBVs:
between 0.15 and 0.40

INRAZ
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> Pre-genomic selection in poultry

INRAZ
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2 World leaders share the global market

EW‘G‘ROUP HENDRIX GENETICS
N\ 4 g

SHATER
b B Z@T = - B
Lo @ (R ¥,

LOHMANN

EEPES T 3NOVOGEN
& Hubbard

A\/fi\agen* '&'g

' e
@ u @ Hybrid
7 » A Hendrix Genetics Company @

Limre

.l="
L
4

B.U.T.

INRAZ
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> Pyramidal design in layers

& x [

:

T vy

l Selection nucleus 1
; . (purebred) \50

: (=]

Xgo
\/ 4 K
Sire lines Dam lines
s X100

_ N
\ X320
INRAZ 128 M

p. 26
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> Breeding goals in layers

Breeding goal Selection criterion

Egg production Laying intensity
Persistency in lay
Age at first egg

Egg quality Egg weight
Eggshell color and resistance
Shape
Yolk yield
Albumen height

Feed efficiency Feed intake
FCR
Number of meals

Viability Feather pecking
Disease resistance

INRAZ
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> Pre-genomic selection in layers:

breeding scheme principles

Laying period
Age first'egg Breeder selection

Generation interval is high, as main phenotype of interest is persistency of lay
Selection intensity is low on the male pathway (no phenotype). Selected males are sibs of
the “best” layers =» low accuracy & low selection intensity (all sibs are considered equal)

INRAZ

p.28
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> Pre-genomic selection in layers:

alternative breeding scheme (utilization of young males)

Young males are mated with proven dams
=» Reduction of generation interval
=» Beware accuracy loss

SN

Every variation from the original scheme should be carefully modelled before
implementation.

Herve CHAPUIS U8/ 11/2U2Z2



> Outlines

Il. Principles of genomic selection

INRAZ

p. 30
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2 Genomic selection

SNP markers

Single Nucleotid Polymorphisms are less informative (biallelic) than other markers
but easier (and cheapier) to detect.

animal 1

animal 2

AlCITEE A I CEBE T|GJA|C|C Al IE | AIE |E & | K & I'CElG I'T
CITIGCGHES A|CE TI|IA|C|T C C k. C A|C

[ i

Y
SNP SNP Microsatellite
1

A v ‘
A|ICITIGIA|[CIT|T|GJA|C|C A L& DE CIE1IG|T
CITICGHEE A|CEBETI|A]C b C C TIA|C

SNP chip

INRAZ
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9 Genomic selection

DNA transmission generates variability

During meiosis:
* Crossing-over
 Homologous segments are shuffled l

Causes genetic variability

Mendelian sampling accounts for
50% of G2

INRAZ
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2 Genomic selection

EBV are estimated earlier, with a better accuracy

Based on Pedigree BLUP (P-BLUP):
- Accuracy is low (CD; = 0,25(CDs + CD,)

- Can’t distinguish the best among siblings

- Yet, due to genetic recombination, parents did

[ not transmit the same qualities to all their
/ .
‘ ( offspring
o @

Improve the knowledge of genetic potential through assessed
transmission of chromosomal segments using tags (SNP chip).

Requires a reference population genotyped and whose genetic
merit is known with high accuracy: allows for establishing relation
between transmitted chromosomal segments and breeding value.

INRAZ

P-33
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> Genomic selection
Focus on reference population

Reference population (genotyped AND phenotyped)
=>» establish prediction equations

Setup of reference population is crucial
BEFORE using GEBV in candidate population.

The reference population should be large 8

enough to catch all possible haplotypes in the

candidate population (depends on Ne).

Better sample in different families
(maximization of genetic diversity, e.g. off-
diagonal terms of A matrix). genotypes

Validation population

The reference population should be close

. . . . GEBV
enough to the candidate population (inclusion
of dams should be considered). 1 /
r = corr ( corrected phénotypes, GEBV)
Sufficient number of SNP (50k) =» validation accuracy

INRAZ

P. 34
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2 Genomic selection

Influence of reference population size on accuracy

1.0
09
0.8
0.7 -
0.6
0.5

04 -

0.3

| — h?=01
02 — m=03

— =05
— =08

Accuracy of GEBVs in un-phenotyped individuals

01

T I 1 T 1 T 1 T I 1
0 2,000 4000 6,000 8000 10,000 12,000 14,000 16,000 18,000 20,000
Number of individuals in reference population

Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics. 2009;10:381-391.

INRAZ
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2 Genomic selection

Genomic evaluation
yi=Ppjt+a; te

Estimated using pedigree & genetic markers

SNP chip =» several biological samples can be used to extract DNA:
blood, hair, biopsies.

Frow 1000 SNP (LD chip) to 600K SNP (HD chip)

lllumina & Thermo Fisher are two big chip providers

For each locus we obtain the nucleotide info: AT CG
lllumina uses another notation : A/B for each locus. X/Y can also be
found.

Considering a SNP is biallelic, the information can be condensed,

using apipteger code to count the number of copies of a reference
allele. 0. 36
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® Genomic selection
SNP genotyping

[ Fluidigm SNP Genotyping Analysis

File Edit View Report Tools Help

IENEN et B8

Chip Explorer

5[5 Detai Views

4 SNPDE: 247364421
SNPO7: 247364660
SNPO8: 247365309
P09 2¢ £l

SNP10: 247355267
SNP11: 247356512
SNP12: 247363342

SNP15; 24

SNP19: 247364672

Missitigzgenot

~ || | E] SNP Call View - | L, Cartesian Display = | [] Full Range ~ | [#, Show Invalid =

com In || 5 Highlight Selections =

1=}
=)

=)
o

Allele' (4 MEK
@

SNP20: 247365329 v d
< > o4 / p / Car ier
Task a8 /! P
Analyze Clear Al
Click the Analyze button: ’ User Calls
~Auto-Call Assays for the first time or 0z
B e e / & WP
heterozygotes
Anaysis Sefing ~ .
Clustering 00 01 02 03 04 05 DE 07 08 08 10 11 12
Allse i [FAM-MEE]
Confidence Treshad: 85 ) | 7 Show Selected Rows
Data Nomalization Method: | NTC Normalization ~ Exoetment Informaton P ' e —
Clustering Method: K-Means ~ Chamber Sample Call Information Intensity %{ ) )
o Name Type Auto Confidence  Final Converted Allele % Allele ¥ { ) *)
b 501-A03 P_21087176 | Unknawn No Call 0,00/ i NoCall |Nocal 0,11 0,11
502-A09 P_21087160 | Unknown XY 99,24 i XY 0,50 0,52
503-A09 P_21087174 | Unknown XY 53,45 4 XY 0,69 0,3
S04-A09 P_21087265 Unknown XY 99,93 W XY 0,54 0,96
505-A09 P_21087177  |Unknown XY 99,62 i XY 0,49 0,53
506-A09 P_21087202 | Unknown XX 100,00 i Xx 0,84 0,16
507-A09 P_21087353 | Unknown XX 99,84 i XX 0,79 0,17
508-A09 P_21087246 | Unknown XY 99,93 i XY 0,48 0,47
S09-A09 P_21087272  |Unknown XX 100,00 i XX 0,84 0,16
510-A09 P_21087147 | Unknown XY 93,70, i XY 0,53 0,54
$11-A09 P_21087230 | Unknown XY 99,51 i XY 0,57 0,50
512-A09 P_21087402  |Unknown XY 99,30 i XY 0,55 0,56 v
M4 ¥ 4 Record 10f96 |k |m |0 -
Ready

L Taper ici pour rechercher

SMP0D: 247354978, CallRate: 37,89%, Auto Confidence: 37.80 [ B4
1.1 [ Esd
1.0 vy

I Mo Call

)
03 ‘ =
08 8

: homozygotes

Call Shape
® At

& User

INRAZ
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2 Genomic selection

“ved” file Data for genomic evaluation

“map” file

ID1254
ID1869

SELFEL$S
AABBABABBBAA .. AB
ABBB .. AAABAABBAB

]
genotype | code

AA

AB or BA

BB

Missing

0
1
2
5

\ 4

SNP_name chromosome Position (bp)

SNP1 1 1,245
SNP2 1 458,796
SNP3 1 586,987
SNP4 1 796,874
SNP5 1 1,200,687
SNP6 1 1,265,973
SNP6 1 1,364,789
SNP8 1 1,400,278

SNPi 5 560,785

ID1254
ID1869

02112051
12501021

Hervé CHAPUIS 08/11/2022
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2 Genomic selection

Quality control of genomic data

Mandatory !!! Can be achieved using PLINK or within blupf90 suite.

1. Animal call rate. N genotyped SNP / N SNP on the chip. Depends on sample quality. Below 0.95
the genotype is not reliable.

2. SNP call rate. N animals with genotype at a SNP/ N animals. Can eliminate SNPs with poor
technical quality. Usual threshold =0.95

3. Minor Allele Frequency. Chip was designed using mixed populations and some alleles may be
non informative in some lines. They are also more error-prone. Usual threshold = 0.05

4. Deviation from Hardy-Weinberg Equilibrium. Used as a signal for genotyping errors. If
P_value <104, markers are generally discarded.

5. Heterozygosity. Too low He can signal a poor DNA quality or inbreeding issue. Two high He may
be due to pollution. Discard animal i if He; — He > 30

6. Pedigree check. Detection of Mendelian conflicts. If parents are opposite homozygotes, offspring
is heterozygote. If the number of mismatches exceeds a given threshold, the pedigree is false.

INRAZ

P-39
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5000 1500

2 Genomic selection dodo a0

Genomic evaluation OREEL

@esu[m

5000

IDO01 2122020101100221121111212100112111112212000101012211111001201211112022100201220110022200220020111120
ID002 1201121111012200221100012110202021210101000220020202020002002222000222000011221101112200120020012220
D003 1212020111001211212000102001202022201112000110020102011001012212110122100001210101112200210010022220
ID004 2122020210000221111111112010011100011112000202002112120112201221121022100111220110111200210010111220
IDO05 2111121101111210121211112210202021211211000110021211111001101211101122100111221000022200120020101120
ID006 2211121200101211220211111210112121111201000110011202020002102222001122000101221000021200110010101220
ID007 2222020200000222211000212001112111112212000101011102011001112212121022100102210110022200210010022220
D008 2122020101210121121222101200112122102212000010012211111001101211101122100110220000021200210010200120

A matrix (pedigree) G matrix (markers)

ID1 ID2 ID3 ID4 ID5 ID6 ID7 I1D8 ID1 ID2 ID3 ID4 IDS5 ID6 ID7 ID8
ID11.000.00 0.0 0.00.500.50 0.00.25 ID1 0.549 -0.589 -0.323 0.196 0.007 -0.207 0.143 0.224
D2 0.00 1.00 0.0 0.00.500.50 0.00.25 ID2 -0.589 1.169 0.372 -0.428 0.187 0.200 -0.384 -0.528
D3 0.000.00 1.0 0.00.000.00 0.50.00 ID3 -0.323 0.372 0.863 -0.291 -0.223 -0.307 0.268 -0.359
D4 0.00 0.00 0.0 1.00.00 0.00 0.50.00 ID4 0.196 -0.428 -0.291 1.000-0.379-0.174 0.208 -0.130
ID50.500.50 0.0 0.01.000.50 0.00.75 ID5 0.007 0.187 -0.223 -0.379 0.557 0.087 -0.432 0.196
ID6 0.50 0.50 0.0 0.00.501.00 0.00.75 ID6 -0.207 0.200 -0.307 -0.174 0.087 0.582 -0.227 0.047
D7 0.000.00 0.5 0.50.000.00 1.00.00 ID7 0.143 -0.384 0.268 0.208 -0.432 -0.227 0.767 -0.343
ID8 0.25 0.25 H\I?QA%O 0.750.75 0.01.25 ID8 0.224 -0.528 -0.359 -0.130 0.196 0.047 -0.343 0.895

p. 40
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2 Genomic selection: 2 approaches

2 step vs. single step

SNP-based 2 step approaches:

SNP-BLUP, Bayes A, Bayes B, Bayes Cr,...
Reference population

Performances +
Pedigree +
“best model”

» Pseudo performances + weight Genotypes

(milk traits for dairy bulls) I

Prediction equations

Genotypes of candidates

Genomic EBVs of candidates/‘

INRAZ
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2 Genomic selection: 2 approaches

2 step vs. single step
Reference population

::;fiorr:\ea:ces + » Pseudo performances + weight Genotypes
& (milk traits for dairy bulls)

“best model” \ /

X'X X'Z
Genotypes of candidates ‘ 7'X 7'7+ aG_ll

Where G is the matrix of genomic relationships.

(The system is no longer sparse)

GBLUP and SNP-BLUP were found to be equivalent

Genomic EBVs of candidates
INRAZ

p. 42
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2 Genomic selection: 2 approaches

2 step vs. single step

Only a small portion of the animal in a given population are genotyped.
To avoid multi step approach, the idea is combine pedigree and genomic relationships and use
this matrix in MME.

0 0 A A
H-1=A14 (O -1 A‘l) 1 — ( 11 12)
— A3 Ay1 Ay
Setup of MME to get ssGLUP is straightforward : y=Xb+Wu-+e
X'R™1X XR-1W (B) _(XR7ly
WRIX WRW+H1®G,/ \i W'R™ 1y
INRAZ

P. 43
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> Genomic selection:

A word about G matrix

G is singular if Z uses centered coding with observed allele frequencies (last row can
be predicted from the other ones).

=» Inclusion of a small part of pedigree matrix Ay5: G = (1 — a)G + aA,,

G was computed using current (available) allele frequencies.
To account our ignorance as to the difference between pedigree and genomic bases, a
correction is proposed to have same mean diagonal and off-diagonal as A5:

G*=(G+ 11'a) where g = A4,, — G

INRAZ

p. 44
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> Genomic selection:
Interest of ssGBLUP

As uq and u, are jointly estimated, EBVs of non genotyped animals also benefit from genotypes

Diamant de Semilly was long considered the best French stallion for

show jumping.
He sired a very large number of offspring with performances. = CD =1

On average EBVs (plain genetic x vs. genomic y) are consistent.
Largest changes are observed for genotyped offspring _
but some EBVs are quite modified for non genotyped animals o .

[ )
o

Typage cheval

0
- 1

o

Indices Genosport

INRAZ
, 10 0 10 20 30
Herve CHAPUIS 08/11/2022 Indices BSO officiels - Diamant de Semilly



2 Genomic selection

What are the costs ?

In 2019, the cost for a HD 600K genotype was around 150€
(TWD 4815.00)

In 2019, the cost for a LD 1K genotype was around 35€
(TWD 1125.00)

A cost-saving strategy is:

genotype selection candidates with a LD or MD chip
impute genotypes of candidate to the MD or HD chip
Compute GEBVs

Select candidates

Genotype selected breeders with MD or HD chip so
that they are included in the reference population

Lk wWwNeE

The advantages of a HD (or sequence) over a MD genotype should be carefully evaluated.

Hervé CHAPUIS 08/11/2022



9 Genomic selection

What is imputation ?

IMPUTATION IST EPR_ICT. N _FMI.SIL.GL_T S NW RSO S T NCS
‘H_HR_|_O I KG DLEQ LR M

IMPUTATION IS THE PREDICTION OF MISSING LETTERS IN WORDS OR SENTENCES
WHICH RELIES ON LINKAGE DISEQUILIBRIUM

What is linkage disequilibrium ?
How can it be used for imputation ?

INRAZ

P.47
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2 Genomic selection

Linkage disequilibrium LD Alleles frequencies :
p,=70/100 = 0.7
Non-random association of alleles between two loci. p,=30/100=0.3
pp =60/100 = 0.6

- Observed frequency P, =40/100=0.4

______

AB 42 | 50 !

Ab 28 i 20 | Expected haplotypes frequencies :
! Freq(AB) = p, x pg = 0.42

aB 18 10 Freq(Ab) = p, x p, = 0.28

ab 12 ' 20 | Freq(aB) = p, x pg = 0.18

______

Freq(ab) = p, x p, =0.12

Deviation from expected haplotype frequency =2 Linkage disequilibrium

There is no single best statistic that quantifies the extent of DL

D = Freq(AB) X Freq(ab) — Freq(Ab) X Freq(aB)

D? :
INRAG T2 = ro—— (preferred, less dependent on allele frequencies)

p. 48
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2 Genomic selection
Linkage disequilibrium LD

Mutation Population mixture, migration

Linkage disequilibrium

»

<

Genetic drift Selection

INRAZ

P. 49
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2 Genomic selection
Linkage disequilibrium LD

An example on how mixture of populations creates DL

Pop. 1
A a
B 81 9
b 9 1
D= 0
r’= 0

NO DL

INRAZ

Hervé CHAPUIS 08/11/2022

Pop. 2

Mixture pop. 1 & pop. 2

18

12

NO DL

A a
123 27
37 13
D= 0,015
2= 0,225

DL

p. 50




2 Genomic selection
Linkage disequilibrium LD

Average DL = f(#SNP, distance between markers)

#SNP on chip 34K 37K
100 kb 0.36 0.27
1Mb 0.19 0.12

An average DL above 0.3 is considered favorable for implementation of genomic selection.

In poultry species, DL was found lower in micro chromosomes compared to macro chromosomes.

INRAZ
p. 51
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9 Genomic selection

Imputation quality

Imputation using pedigree information is faster, as parents can be phased (not implemented in
first software, that were used in human studies)

Allele frequencies
Tricky if low MAF

Density of LD chip

Chromosome size

Imputation quality

-

Size of reference population Inclusion of dams in the reference population

Relatedness between reference
population and candidate population

INRAZ

p. 52
Hervé CHAPUIS 08/11/2022



9 Genomic selection

Imputation strategy

Given the genotyping costs, how to design a LD chip to perform genomic selection ?

1. Start from the reference population with HD genotypes.

2. Split in two populations. One will be used to test scenarios (LD chip design), the rest will

be considered as a reference population.

in silico discard SNPs on the test population following a given scenario.

Impute the HD genotypes on the test population using the reference population.

5. Compare the imputed and true genotypes (mean correlation, one SNP at a time for all
candidates)

B W

INRAZ

P-53
Hervé CHAPUIS 08/11/2022



2 Genomic selection

Expected outcome

Get an EBV for non phenotyped animals or animals without
offspring or sib
e Select new traits

° 1 | .
Select sooner (at birth !) i X CD X g,
=>» decrease generation interval AG =
Increase EBV accuracy r

Reduce/abolish progeny testing costs
=>» increase selection intensity.
Choose from litter siblings

INRI)&gcreased genetic gain !! @y

Hervé CHAPUIS 08/11/2022

p. 54



2 Genomic selection

Pedigree testing and parentage assighment

During quality control phase, Mendelian errors are tracked.
=» Control of supposed pedigree

=>» In case of pedigree errors, the true parental pair can be found.
=» Use a sample of SNP (N=100 to 200) adequately covering the
autosomes and with desirable high MAF.
=» Many software can be used.
R package APIS (Griot et al. Mol Ecol Resour. 2020;20:579-590.)
=>» Make sure all potential parents are genotyped ! &~

INRAZ

P55
Hervé CHAPUIS 08/11/2022



> Outlines

I1l. Consecquencers on the selection process

INRAZ

p. 56
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> Consequences of the genomic selection
Dairy cattle

sires ot bulls

: <(ear n+2

male or female young calf

e Large reduction of selection interval

» Large increase of accuracy (especially for low heritable traits)

* Costs are dramatically reduced

=>» Testing of young bulls has been discontinued as soon as genomic indexes have been published

End of the “star system” era.

Each year new well indexed young bulls replace older ones

2.2 M cows, 9200 genotyped bulls, 140 approved bulls (Holstein, 2020)
Introduction of new traits in the selection index 57



> Consequences of the genomic selection

Pig selection

Genomic selection is supposed to:

- Increase accuracy of EBVs SZ‘
NBNV= # piglets born alive 0,35
NSEVD= #weaned piglets 0,3

PMN= Average piglet weight at birth 55
ETPN = standard deviation of piglet

: . 0,2 - /)
weight at birth —~ 2 W
> 0,15 2| 7
m ’ %
EQJ, 0,1 7 ?
v 7
O 005 / ’ A. Bouquet, JRP 2017
W
0 ¥ /
2013 2016 2013 2016 2013 2016 2013 2016
Reproductive traits =2 low heritability NBNV NSEVD PMN ETPN

B CDBLUP m CD ssGBLUP
INRAZ

p.58
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2 Consequences of the genomic selection

Pig selection

Genomic selection is supposed to:

- Allow for an increased selection intensity X

Not possible, as almost all piglets are measured at 100 kg.

=» The number of candidates depends on the number of farms.

INRAZ

P-59
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> Consequences of the genomic selection

Pig selection

Genomic selection is supposed to:

- Decrease interval between generations SZ‘

For reproductive traits (with low heritability) the generation
interval actually decreased from 1 year to 6 months

INRAZ

p. 60
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> Consequences of the genomic selection

Pig selection

Genomic selection is supposed to:

- Allow for selection of new traits Z[

=» Crossbred selection

=» Traits measured on a tiny part of the population (boar taint, microbiota/ digestibility,
health, ...)

INRAZ

p. 61
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2 Consequences of the genomic selection

Layers

Genomic selection is supposed to:

** Improve accuracy of EBVs
** Reduce generation interval
o Males EBVs are better estimated at young age. No need to
wait for late performances of female sibs.
** Increase selection intensity.

o Full-sibs can be ranked, based on the alleles they received.
It is worth hatching a large number of male candidates.

INRAZ

p. 62
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2 Consequences of the genomic selection

Layers

Incidentally, the introduction of genomic selection in poultry
breeding schemes revealed that 5 to 10% of pedigrees
were wrong ®

Wrong pedigree =2 lower heritabilities.

Simple correction of pedigree errors, which is a by-product
of genomic evaluation, also resulted in improved genetic
gain. ©

INRAZ

p. 63
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2 Consequences of the genomic selection

Poultry breeders

Each breeding company developed its own strategy, depending on genotyping costs.
Some used LD chip + imputation, others use MD (50K) chips on all candidates.

TIP1 : Genotype dams. If you don’t genotype female candidates, at least genotype selected

dams.
This will improve imputation results. And help maintain a connection between reference

population and candidate population.

TIP2 : Discard genotypes of unselected animals without phenotypes. Typically unselected
male candidates in layers. They increase computational cost without carrying any useful

information.

INRAZ
P. 64
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2 Consequences of the genomic selection

Ducks selected for fatty liver production

QWhite Pekin

-
/ '

) < = g
Mgvfmé%/' < \_> e duck o
\ \ ule ducks are genotyped

. :

¥ oy

INRAZ

p.65
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2 Consequences of the genomic selection

Ducks selected for fatty liver production (in Europe)

END THE CAGE AGE

IT'S TIME T? E\‘/OLVT | | In Europe cages are likely to be banned very shortly

7=

Need to rethink the way birds are bred in the poultry selection schemes.

One solution could be to house females on floor (large pens) and inseminate” them with
pooled semen of several drakes.
=>» Offspring pedigree is obtained through parentage assignment using molecular markers.

INRAZ (*) For mule duck production. For purebred reproduction, natural mating is also an option
p. 66
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2 Consequences of the genomic selection

Ducks selected for fatty liver production

Q Whilte Pekin
> >
-

o~
Better use a 96 SNP chip for

parentage assighnment or a LD chip
N d for genomic selection ??

2 < <™
~

INRAZ
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> For those who want more on the subject...

genes MbPy)
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Abstract

Early application of genomic selection relied on SMP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k
SNP seemed sufficient for an acturate estimation of SMP effects. Genomic estimated breeding values (GEEV) were composed
of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use

of MNP selection or weighting increasad accuracy with small data sets but had minimal to no impact with large data sets.
Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gein in
scouracy. After the implementation of genomic selection, EBV by BLUP became bizsed because of genomic preselection and
DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting,
Genomic salection was greatly simplified by single-step genomic BLUP (ssGELUF). This method based on combining genomic
and pedigres relationships sutomatically oeates an index with all sounces of information, can use any combination of male
snd female genotypes, and accounts for presalection. To aveid biases, especally under strong selection, ssGELUP requires that
pedigres and genomic relationships are compatible Because the inversion of the genomic relationship matrix (G) becomes
costly with more than 100k genotyped animals, large data computations in ssGELUP were solved by exploiting mited
dimensionzlity of penomic data due to limited affective population size. With such dimensionality anging from 4k in chickens
to about 15k in cattle, the inverse of G can be created directly (e g, by the algorithm for proven and young) at a inear cost. Due
to its simplicity and accuracy, ssGELUP is routinely usad for genomic selection by the major chicken, pig, and beef industries.
Single step can be used to derive SNP effects for indirect prediction and for genome-wide assodation studies, induding
computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for zll animals.
Although genomics is the new standard in breeding and genetics, there are still some problems that need to ba solved. This
invohves new validation procedures that are unaffectsd by salaction, parameter estimation that accounts for all the genomic
dats usad in selection, and strategies to address reduction in genatic variances after genomic selection was implamentad.

Key words: genomic evaluation, genomic selection, large data, single-step GELUP
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