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Outlines

I. Classical (pre-genomic) selection

II. Principles of genomic selection

III.Consequences on the selection process
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Genetic selection: 
Organization of a breeding plan

Definition of selection objectives

Pedigree and performances recording

Genetic evaluation

Selection of sires & dams

Utilization of breeders
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Genetic selection: 
Creation of genetic gain

Selection of  sires

Selection of  dams

Selection threshold

ത𝑎𝑠𝑖𝑟𝑒𝑠

ത𝑎𝑑𝑎𝑚𝑠

𝑆𝑠𝑖𝑟𝑒𝑠
Selection differential 

for sires

𝑆𝑑𝑎𝑚𝑠
Selection differential 

for dams

Δ𝐺Genetic gain

Expected distribution 
of offspring breeding 

values
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Δ𝐺 =
𝑖 × 𝐶𝐷 × 𝜎𝑔

𝑇

Maximization of Δ𝐺: 

▪ i =    % of selected animals

▪ 𝐶𝐷 =    quantity and quality of available information

▪ 𝜎𝑔=??

▪ T= culling of « old » breeders

Genetic selection: 
Derivation of genetic gain

Annual genetic gain:

Genetic standard 
deviation

(variability)

Accuracy
Selection intensity

Generation interval

Accounting for: 

▪ breeding goal, pop. size, 

▪ heritability of economic traits, 

▪ population structure,

▪ biology, available reproductive technologies…
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Computations in genetic evaluation : 
requirements

Data

Performances 𝐏

Pedigree

Environment 𝐌
(hatch/herd/band, age, 
season, sex…)

Model

model to describe data: 

𝐏 = 𝐌+ 𝐚 + e

model for transmission of genetic 
merit: 

𝑎𝑖 =
1

2
𝑎𝑠 +

1

2
𝑎𝑑 + 𝜙𝑖

➔Numerator relationship matrix 𝐀

Estimated breeding value ෝ𝒂
Estimation of other effects 𝑴

Results

ቄ

C.R. Henderson

1973: “Sire evaluation and genetic trend”
1976: “A method to compute the inverse of the numerator 
relationship matrix”

BLUP
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Genetic evaluation = solving a system of 
equations

Henderson demonstrated that BLUE 𝜷 and BLUP ෝ𝒂 are solutions of Mixed Model Equations (MME)

𝐗′𝐑−𝟏𝐗 𝐗𝐑−𝟏𝐙

𝐙′𝐑−𝟏𝐗 𝐙′𝐑−𝟏𝐙 +
𝟏

𝝈𝒈
𝟐
𝐀−𝟏

መ𝛽
ො𝑎

=
𝐗′𝐑−𝟏𝐲

𝐙′𝐑−𝟏𝐲

Where :

• 𝐑−𝟏 = inverse of 𝐑, (co)variance matrix of the residuals. Very simple. 𝐑 = 𝝈𝒆
𝟐𝐈 ⇔ 𝑹−𝟏 =

𝟏

𝝈𝒆
𝟐 𝐈

• Setup of 𝐀−𝟏is very easy (Henderson, 1976). 𝝈𝒈
𝟐𝐀 is the genetic variance

• 𝝈𝒆
𝟐 and 𝝈𝒈

𝟐 are supposed to be known. 

Easily extended to more complicated models (multitrait,…) ☺

Size of the MME can be huge 
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Computations in genetic evaluation: 
A Liliputian example 

Y
e

ar
 1

Y
e

ar
 3

Y
e

ar
 2

𝑦𝑖 = 𝛽𝑗 + 𝑎𝑖 + 𝑒𝑖

animal model

𝐗′𝐗 𝐗′𝐙
𝐙′𝐗 𝐙′𝐙 + α𝐀−𝟏

where 𝛼 =
1−ℎ2

ℎ2

Mixed Model Equations
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Henderson rules : setup of 𝐀−𝟏

Y
e

ar
 1

Y
e

ar
 3

Y
e

ar
 2

1. Set 𝐀−𝟏=0
2. For each animal i with parents p & p’:

a) Add γ to (i,i)

b) Add 
γ

4
to (p,p),(p’,p’),(p,p’),(p’,p)

c) Add −
γ

2
to (i,p), (i,p’),(p,i),(p’,i)

where 
• γ = 2 when both parents are known

• γ =
4

3
when one parent is unknown

• γ = 1 when none of them is known 

𝐀−𝟏 is a very sparse matrix 
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Models can be more or less 
sophisticated…

𝑦𝑖 = 𝛽𝑗 + 𝑎𝑖 + 𝑒𝑖 same ID i ➔ animal model 𝑎𝑖 =
1

2
𝑎𝑠 +

1

2
𝑎𝑑 + 𝜙𝑖

Simpler models

Ignore the dam, which can be replaced by the maternal grand sire

More elaborate models

• More than one performance by animal
❖ Repeatability model

• Two animals influence the same phenotype
❖ Maternal effect model

• Many traits by animals or measured in more than one environment
❖ Multitrait animal model

The derivation is quite straightforward but the computational cost can be a deterrent.
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Why bother ?
Because of desirable BLUP properties: 

IF
• The base population is neither inbred, nor related nor selected and,
• All data previously used for selection and mating are accounted for in the genetic 

evaluation and,
• The A matrix encompasses all relationships and,
• Genetic parameters pertain to the base population 

THEN

MME correctly account for all changes in additive genetic variance due to selection, genetic 
drift, inbreeding and preferential mating (Sorensen & Kennedy, 1982)

Using properly ALL available data leads to the best possible result

TAKE HOME MESSAGE

Ideal genetic evaluations
✓ Rely on an animal model
✓ Account for all available data (pedigree and performances) relative to directly or indirectly 

selected traits. 
MULTITRAIT BLUP ANIMAL MODEL



p. 12
Hervé CHAPUIS 08/11/2022

Unfortunately no software can simultaneaously
analyse all traits AND all models 

Ideal genetic evaluation 
Continuous traits

Longevity (censored data, Cox or Weibull models)

Categorical traits 
(threshold models) 

Longitudinal data
(random regression models)

Two-step process : 
1. Each trait is analyzed with the most adequate model.
2. After computation, phenotypes are corrected for all non genetic effects. 

➢ A new phenotype (deregressed EBV) 𝜈
➢ Associated weight 𝜔
Then the (very simple) model 𝜈 = 𝜇 + 𝑎 + 𝑒 gives the same result as the best 
model. 

A multivariate evaluation of all 𝜈s with adequate weights 𝜔 is a good proxy 
for an ideal genetic evaluation (and is computationally more feasible).
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Pre-genomic selection in dairy cattle
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sires of bulls dams of bulls

young male calf

≈ 120 young heifers
≈ 80 daughters after 1 lactation

Selection on global index

CD ≥ 0.7

Year n+1

≈300 cows

Year n+3

9 months

3 years

×

×

Genetic evaluation

Approved bull
(massively used)

Year n+7

9 months
“testing process”

Year n

100 tested bulls

600 preferential matings

12 -15

5-8

250-350 calves
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Pre-genomic selection in dairy cattle

- Long generation interval : ≈7 years

- Strong selection pressure. 
1/4000 in Holstein (# tested bulls /# inseminations) 

- High accuracy only for males : CD ≥ 0.7 required for approval 
(not for all traits). Some traits with low heritability (fertility) were 
poorly evaluated.
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Pre-genomic selection in swine
production
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Selective Breeding of Pig In France : 

➢ 14 000 farms

➢ 125 sows /farm

➢ 23 M slaughtered

➢ 2,2 M tons of meat

(2018 statistics)

La production :
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Selective Breeding of Pig:
Breeding goals

:

✓ Increase muscle
✓ Reduce fat (backfat thickness)
✓ Improve growth (Average Daily Gain)
✓ Good feed efficiency (Daily Feed Intake)
✓ Meat quality (pH, meat quality index) 

✓ Higher prolificacy
✓ Maternal qualities

Letal measure
➔ slaughtered sibs

These traits are unfavorably correlated with the 
previous ones
➔ crossbreeding
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Selective Breeding of Pig:
advantages of crossbreeding 1

- heterosis: crossbred animals outperform parental average

Litter size 
at weaning

Large White
LW

Landrace
LR

LW x LR (LW x LR) x 
Piétrain

Heterosis
effect

crossbred
sows

Heterosis for sows : more 
piglets

Heterosis for crossbred
offspring:

- mortality and +   
growth

Parental 
average
LW - LR
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Pork is obtained from crossbreeding of multiple lines
Major cross in France : 

Landrace

Dam lines:
Maternal qualities

Improved for all traits

Selective Breeding of Pig:
advantages of crossbreeding 2

LWxLR sow

×
Large White

Pork

×

Piétrain
Sire lines:
carcass
Meat quality
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Production 
23.5 M pigs

Multiplication

Selection
Purebred: 90 farms = 10 000 sows

Hybrids : 250 farms = 41 000 sows

9 500 farms = 1 000 000 sows

Creation of genetic gain

CIA 
3450 boars

Sale of breeders

Sale of crossbred sows

Selective Breeding of Pig: 
pyramidal design
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Pre-genomic selection of pigs
performance monitoring

Purebred animals
Selection farm

weaning (≈ 1 month)

collateral sibs 
performance monitoring 

station

fattening

Evaluation around 100kg

slaughter

Selection candidate 
(farm)

fattening

Evaluation around 100kg

multiplication slaughterselection
CIA

High number of 
measured
animals

(80 000/an)

Costly measures
(2 500 indiv/an)

≈ 6 months

(≈ 4-5 monthes)

➔ Generation intervals are short.
➔ Selection is based on imprecise EBVs
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- Short generation interval: 
1 to 2 years

- High selection intensity:
1/11 à 1/16 for female pathway

& 1/50 à 1/65 for male pathway

- Low accuracy of EBVs: 
between 0.15 and 0.40

Pre-genomic selection of pigs



p. 24
Hervé CHAPUIS 08/11/2022

Pre-genomic selection in poultry
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World leaders share the global market
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Pyramidal design in layers

Sire lines Dam lines

Selection nucleus
(purebred)

Grand parental 
lines

Parental lines

Commercial lines

Egg production

1

50

4 K

400 K

128 M

×50

×80

×100

×320
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Breeding goals in layers

Breeding goal Selection criterion

Egg production Laying intensity
Persistency in lay
Age at first egg

Egg quality Egg weight
Eggshell color and resistance
Shape
Yolk yield
Albumen height

Feed efficiency Feed intake
FCR
Number of meals

Viability Feather pecking
Disease resistance
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Pre-genomic selection in layers: 
breeding scheme principles

Hatch Age first egg Breeder selection 

Generation interval is high, as main phenotype of interest is persistency of lay
Selection intensity is low on the male pathway (no phenotype). Selected males are sibs of 
the “best” layers  ➔ low accuracy & low selection intensity (all sibs are considered equal)

Laying period
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Pre-genomic selection in layers: 
alternative breeding scheme (utilization of young males)

Young males are mated with proven dams
➔ Reduction of generation interval
➔ Beware accuracy loss

Every variation from the original scheme should be carefully modelled before 
implementation.

Δ𝐺 =
𝑖 × 𝐶𝐷 × 𝜎𝑔

𝑇
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Outlines

I. Classical (pre-genomic) selection

II. Principles of genomic selection

III.Conséquences on the selection process
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Genomic selection
SNP markers

Single Nucleotid Polymorphisms are less informative (biallelic) than other markers 

but easier (and cheapier) to detect. 

SNP chip

an
im

al
 1

an
im

al
 2

Genotyping through fixation of 
fluorescent nucleotides
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• During meiosis:

• Crossing-over

• Homologous segments are shuffled

• Causes genetic variability

• Mendelian sampling accounts for 
50% of a²

Genomic selection
DNA transmission generates variability
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Based on Pedigree BLUP (P-BLUP): 
- Accuracy is low (𝐶𝐷𝑖 = 0,25(𝐶𝐷𝑠 + 𝐶𝐷𝑑)

- Can’t distinguish the best among siblings

- Yet, due to genetic recombination, parents did
not transmit the same qualities to all their
offspring

Improve the knowledge of genetic potential through assessed
transmission of chromosomal segments using tags (SNP chip). 

Requires a reference population genotyped and whose genetic
merit is known with high accuracy: allows for establishing relation 
between transmitted chromosomal segments and breeding value.

Genomic selection
EBV are estimated earlier, with a better accuracy
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Genomic selection
Focus on reference population

Reference population (genotyped AND phenotyped)
➔establish prediction equations

Reference population

Validation population

Training population 

r = corr ( corrected phénotypes, GEBV) 
➔ validation accuracy

phenotypes genotypes

Prédiction equations

pedigree

genotypes Phénotypes  ???

GEBV

Setup of reference population is crucial 
BEFORE using GEBV in candidate population.

The reference population should be large 
enough to catch all possible haplotypes in the 
candidate population (depends on Ne).

Better sample in different families 
(maximization of genetic diversity, e.g. off-
diagonal terms of A matrix). 

The reference population should be close 
enough to the candidate population (inclusion 
of dams should be considered).

Sufficient number of SNP (50k) 
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Genomic selection
Influence of reference population size on accuracy

Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics. 2009;10:381-391. 
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Genomic selection
Genomic evaluation

Estimated using pedigree & genetic markers

SNP chip ➔ several biological samples can be used to extract DNA: 
blood, hair, biopsies.

Frow 1000 SNP (LD chip) to  600K SNP (HD chip)
Illumina &  Thermo Fisher are two big chip providers

For each locus we obtain the nucleotide info : A T C G
Illumina uses another notation : A/B for each locus. X/Y can also be
found.

Considering a SNP is biallelic, the information can be condensed, 
using an integer code to count the number of copies of a reference
allele. 

𝑦𝑖 = 𝛽𝑗 + 𝑎𝑖 + 𝑒𝑖
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Genomic selection
SNP genotyping

homozygotes

heterozygotes

Missing genotype
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ID1254 02112051
ID1869 12501021

Genomic selection
Data for genomic evaluation

SNP1 1 1,245
SNP2 1 458,796
SNP3 1 586,987
SNP4 1 796,874
SNP5 1 1,200,687
SNP6 1 1,265,973
SNP6 1 1,364,789
SNP8 1 1,400,278
…
SNPi 5 560,785

SNP_name chromosome Position (bp)

ID1254 AA BB AB AB BB AA   ..  AB
ID1869 AB BB  ..   AA AB AA BB AB
… …

“map” file“ped” file

genotype code

AA 0

AB or BA 1

BB 2

Missing 5
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Genomic selection
Quality control of genomic data

Mandatory !!! Can be achieved using PLINK or within blupf90 suite.

1. Animal call rate. N genotyped SNP / N SNP on the chip. Depends on sample quality. Below 0.95 

the genotype is not reliable.

2. SNP call rate. N animals with genotype at a SNP/ N animals. Can eliminate SNPs with poor 

technical quality. Usual threshold =0.95

3. Minor Allele Frequency. Chip was designed using mixed populations and some alleles may be 

non informative in some lines. They are also more error-prone. Usual threshold = 0.05

4. Deviation from Hardy-Weinberg Equilibrium. Used as a signal for genotyping errors. If 

P_value <10-4, markers are generally discarded.

5. Heterozygosity. Too low He can signal a poor DNA quality or inbreeding issue. Two high He may 

be due to pollution. Discard animal i if 𝐻𝑒𝑖 − 𝐻𝑒 > 3𝜎

6. Pedigree check. Detection of Mendelian conflicts. If parents are opposite homozygotes, offspring 

is heterozygote. If the number of mismatches exceeds a given threshold, the pedigree is false. 
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ID1  ID2  ID3  ID4  ID5  ID6  ID7  ID8
ID1 1.00 0.00  0.0  0.0 0.50 0.50  0.0 0.25
ID2 0.00 1.00  0.0  0.0 0.50 0.50  0.0 0.25
ID3 0.00 0.00  1.0  0.0 0.00 0.00  0.5 0.00
ID4 0.00 0.00  0.0  1.0 0.00 0.00  0.5 0.00
ID5 0.50 0.50  0.0  0.0 1.00 0.50  0.0 0.75
ID6 0.50 0.50  0.0  0.0 0.50 1.00  0.0 0.75
ID7 0.00 0.00  0.5  0.5 0.00 0.00  1.0 0.00
ID8 0.25 0.25  0.0  0.0 0.75 0.75  0.0 1.25

A matrix (pedigree) G matrix (markers)

ID1      ID2     ID3      ID4     ID5     ID6        ID7     ID8
ID1  0.549 -0.589 -0.323  0.196  0.007 -0.207  0.143  0.224
ID2 -0.589  1.169  0.372 -0.428  0.187  0.200 -0.384 -0.528
ID3 -0.323  0.372  0.863 -0.291 -0.223 -0.307  0.268 -0.359
ID4  0.196 -0.428 -0.291  1.000 -0.379 -0.174  0.208 -0.130
ID5  0.007  0.187 -0.223 -0.379  0.557  0.087 -0.432  0.196
ID6 -0.207  0.200 -0.307 -0.174  0.087  0.582 -0.227  0.047
ID7  0.143 -0.384  0.268  0.208 -0.432 -0.227  0.767 -0.343
ID8  0.224 -0.528 -0.359 -0.130  0.196  0.047 -0.343  0.895

ID001  2122020101100221121111212100112111112212000101012211111001201211112022100201220110022200220020111120 
ID002  1201121111012200221100012110202021210101000220020202020002002222000222000011221101112200120020012220 
ID003  1212020111001211212000102001202022201112000110020102011001012212110122100001210101112200210010022220 
ID004  2122020210000221111111112010011100011112000202002112120112201221121022100111220110111200210010111220 
ID005  2111121101111210121211112210202021211211000110021211111001101211101122100111221000022200120020101120 
ID006  2211121200101211220211111210112121111201000110011202020002102222001122000101221000021200110010101220 
ID007  2222020200000222211000212001112111112212000101011102011001112212121022100102210110022200210010022220 
ID008  2122020101210121121222101200112122102212000010012211111001101211101122100110220000021200210010200120

Genomic selection
Genomic evaluation
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Genomic selection: 2 approaches
2 step vs. single step

SNP-based 2 step approaches:
SNP-BLUP, Bayes A, Bayes B, Bayes C𝜋,…

Performances + 
Pedigree + 
“best model”

Pseudo performances + weight
(milk traits for dairy bulls)

Genotypes

Prediction equations

Genotypes of candidates

Genomic EBVs of candidates

Reference population
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Genomic selection: 2 approaches
2 step vs. single step

Performances + 
Pedigree + 
“best model”

Pseudo performances + weight
(milk traits for dairy bulls)

Genotypes

Genomic EBVs of candidates

Reference population

𝐗′𝐗 𝐗′𝐙
𝐙′𝐗 𝐙′𝐙 + α𝐆−𝟏

Where G is the matrix of genomic relationships.
(The system is no longer sparse)

Genotypes of candidates

GBLUP and SNP-BLUP were found to be equivalent
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Genomic selection: 2 approaches
2 step vs. single step

Only a small portion of the animal in a given population are genotyped. 
To avoid multi step approach, the idea is combine pedigree and genomic relationships and use 
this matrix in MME.

𝐇−𝟏 = 𝐀−𝟏 +
𝟎 𝟎
𝟎 𝐆−𝟏 − 𝐀𝟐𝟐

−𝟏 𝑨 =
𝑨𝟏𝟏 𝑨𝟏𝟐
𝑨𝟐𝟏 𝑨𝟐𝟐

Setup of MME to get ssGLUP is straightforward : 

𝐗′𝐑−𝟏𝐗 𝐗𝐑−𝟏𝐖
𝐖′𝐑−𝟏𝐗 𝐖′𝐑−𝟏𝐖+𝐇−𝟏⨂𝐆𝟎

መ𝐛
ෝ𝐮

=
𝐗′𝐑−𝟏𝐲

𝐖′𝐑−𝟏𝐲

𝐲 = 𝐗𝐛 +𝐖𝐮+ 𝐞
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Genomic selection:
A word about G matrix

G is singular if Z uses centered coding with observed allele frequencies (last row can 
be predicted from the other ones).

➔ Inclusion of a small part of pedigree matrix 𝐀𝟐𝟐: 𝐆 = 1 − 𝛼 𝐆 + 𝛼𝐀𝟐𝟐

G was computed using current (available) allele frequencies. 
To account our ignorance as to the difference between pedigree and genomic bases, a 
correction is proposed to have same mean diagonal and off-diagonal as 𝐀𝟐𝟐:

𝐺∗ = 𝐺 + 11′𝑎 𝑎 = 𝐴22 − ҧ𝐺where
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Genomic selection:
Interest of ssGBLUP

As 𝒖𝟏 and 𝒖𝟐 are jointly estimated, EBVs of non genotyped animals also benefit from genotypes  

Diamant de Semilly was long considered the best French stallion for 
show jumping. 
He sired a very large number of offspring with performances. ➔ CD =1

On average EBVs  (plain genetic x vs. genomic y) are consistent.
Largest changes are observed for genotyped offspring
but some EBVs are quite modified for non genotyped animals
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Genomic selection
What are the costs ?

In 2019, the cost for a HD 600K genotype was around 150€ 
(TWD 4815.00)

In 2019, the cost for a LD 1K genotype was around 35€ 
(TWD 1125.00)

A cost-saving strategy is: 
1. genotype selection candidates with a LD or MD chip
2. impute genotypes of candidate to the MD or HD chip
3. Compute GEBVs
4. Select candidates
5. Genotype selected breeders with MD or HD chip so 

that they are included in the reference population  

The advantages of a HD (or sequence) over a MD genotype should be carefully evaluated. 
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Genomic selection
What is imputation ? 

IMPUTATION IS T_E PR__ICT_N _F MI_SI_G L__T__S _N W_R_S O_ S__T_NC_S  
_H__H R__I__ O_ _I_K_G_ DI_EQ__LI_R__M

IMPUTATION IS THE PREDICTION OF MISSING LETTERS IN WORDS OR SENTENCES 
WHICH RELIES ON LINKAGE DISEQUILIBRIUM

What is linkage disequilibrium ?
How can it be used for imputation ?
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Genomic selection
Linkage disequilibrium LD

Non-random association of alleles between two loci. 

Observed frequency 

A B 42 50

A b 28 20

a B 18 10

a b 12 20

Alleles frequencies : 
pA = 70/100 = 0.7
pa = 30/100 = 0.3
pB = 60/100 = 0.6
Pb = 40/100 = 0.4 

Expected haplotypes frequencies : 
Freq(AB) = pA x pB = 0.42
Freq(Ab) = pA x pb = 0.28
Freq(aB) = pa x pB = 0.18
Freq(ab) = pa x pb = 0.12 

Deviation from expected haplotype frequency ➔ Linkage disequilibrium

𝐷 = 𝐹𝑟𝑒𝑞 𝐴𝐵 × 𝐹𝑟𝑒𝑞 𝑎𝑏 − 𝐹𝑟𝑒𝑞 𝐴𝑏 × 𝐹𝑟𝑒𝑞 𝑎𝐵

𝑟2 =
𝐷2

𝑝𝐴×𝑝𝑎×𝑝𝐵×𝑝𝑏
(preferred, less dependent on allele frequencies)

There is no single best statistic that quantifies the extent of DL 
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Genomic selection
Linkage disequilibrium LD

Linkage disequilibrium

Mutation Population mixture, migration

Genetic drift Selection
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Genomic selection
Linkage disequilibrium LD

An example on how mixture of populations creates DL

A a A a  A a

B 81 9 B 42 18 B 123 27

b 9 1 b 28 12 b 37 13
0,81 0,09 0,42 0,18 0,615 0,135

D= 0 D= 0 D= 0,015

r²= 0 r²= 0 r²= 0,225

Pop. 1 Pop. 2 Mixture pop. 1 & pop. 2

NO DL NO DL DL 
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Genomic selection
Linkage disequilibrium LD

Average DL = f(#SNP, distance between markers)

Duroc New Hampshire

#SNP on chip 34K 37K

100 kb 0.36 0.27

1Mb 0.19 0.12

An average DL above 0.3 is considered favorable for implementation of genomic selection.

In poultry species, DL was found lower in micro chromosomes compared to macro chromosomes. 
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Genomic selection
Imputation quality

Imputation using pedigree information is faster, as parents can be phased (not implemented in 
first software, that were used in human studies) 

Imputation quality

Density of LD chip

Allele frequencies
Tricky if low MAF

Chromosome size

Size of reference population

Relatedness between reference 
population and candidate population

Inclusion of dams in the reference population
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Genomic selection
Imputation strategy

Given the genotyping costs, how to design a LD chip to perform genomic selection ?

1. Start from the reference population with HD genotypes.
2. Split in two populations. One will be used to test scenarios (LD chip design), the rest will 

be considered as a reference population.
3. in silico discard SNPs on the test population following a given scenario. 
4. Impute the HD genotypes on the test population using the reference population.
5. Compare the imputed and true genotypes (mean correlation, one SNP at a time for all 

candidates)
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Genomic selection
Expected outcome

- Get an EBV for non phenotyped animals or animals without
offspring or sib

• Select new traits
• Select sooner (at birth !)
➔ decrease generation interval

- Increase EBV accuracy
- Reduce/abolish progeny testing costs

➔ increase selection intensity.

- Choose from litter siblings

Δ𝐺 =
𝑖 × 𝐶𝐷 × 𝜎𝑔

𝑇

Increased genetic gain !!
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Genomic selection
Pedigree testing and parentage assignment

During quality control phase, Mendelian errors are tracked. 

➔Control of supposed pedigree

➔In case of pedigree errors, the true parental pair can be found.
➔Use a sample of SNP (N=100 to 200) adequately covering the 

autosomes and with desirable high MAF. 
➔Many software can be used. 
R package APIS (Griot et al. Mol Ecol Resour. 2020;20:579–590.)
➔Make sure all potential parents are genotyped ! 
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Outlines

I. Classical (pre-genomic) selection

II. Principles of genomic selection

III.Consequences on the selection process



p. 57
Hervé CHAPUIS 08/11/2022

sires of bulls dams of bulls
×

Year n

Year n+2

male or female young calf 

Consequences of the genomic selection
Dairy cattle

• Large reduction of selection interval
• Large increase of accuracy (especially for low heritable traits)
• Costs are dramatically reduced
➔ Testing of young bulls has been discontinued as soon as genomic indexes have been published

End of the “star system” era. 
Each year new well indexed young bulls replace older ones
2.2 M cows, 9200 genotyped bulls, 140 approved bulls (Holstein, 2020)
Introduction of new traits in the selection index 
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Genomic selection is supposed to: 

- Increase accuracy of EBVs

A. Bouquet, JRP 2017C
D
(E
B
V
)

Reproductive traits  ➔ low heritability

NBNV= # piglets born alive
NSEVD= #weaned piglets
PMN= Average piglet weight at birth
ETPN = standard deviation of piglet
weight at birth



Consequences of the genomic selection
Pig selection
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Consequences of the genomic selection
Pig selection

Not possible, as almost all piglets are measured at 100 kg. 

➔ The number of candidates depends on the number of farms.

Genomic selection is supposed to: 

- Allow for an increased selection intensity 
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Genomic selection is supposed to: 

- Decrease interval between generations

For reproductive traits (with low heritability) the generation
interval actually decreased from 1 year to 6 months



Consequences of the genomic selection
Pig selection
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Genomic selection is supposed to: 

- Allow for selection of new traits

➔ Crossbred selection
➔ Traits measured on a tiny part of the population (boar taint, microbiota/ digestibility, 

health, …)



Consequences of the genomic selection
Pig selection
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Consequences of the genomic selection
Layers

Genomic selection is supposed to: 

❖ Improve accuracy of EBVs
❖ Reduce generation interval

o Males EBVs are better estimated at young age. No need to 
wait for late performances of female sibs.

❖ Increase selection intensity. 
o Full-sibs can be ranked, based on the alleles they received. 

It is worth hatching a large number of male candidates. 
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Consequences of the genomic selection
Layers

Incidentally, the introduction of genomic selection in poultry

breeding schemes revealed that 5 to 10% of pedigrees 
were wrong 

Wrong pedigree ➔ lower heritabilities. 

Simple correction of pedigree errors, which is a by-product

of genomic evaluation, also resulted in improved genetic

gain. ☺

.
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Consequences of the genomic selection
Poultry breeders.

Each breeding company developed its own strategy, depending on genotyping costs. 
Some used LD chip + imputation, others use MD (50K) chips on all candidates. 

TIP1 : Genotype dams. If you don’t genotype female candidates, at least genotype selected 
dams.
This will improve imputation results. And help maintain a connection between reference 
population and candidate population.

TIP2 : Discard genotypes of unselected animals without phenotypes. Typically unselected 
male candidates in layers. They increase computational cost without carrying any useful 
information. 
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Consequences of the genomic selection
Ducks selected for fatty liver production 

Muscovy

White Pekin

Mule ducks are NOT genotyped 
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In Europe cages are likely to be banned very shortly

Need to rethink the way birds are bred in the poultry selection schemes. 

One solution could be to house females on floor  (large pens) and inseminate* them with 
pooled semen of several drakes.
➔ Offspring pedigree is obtained through parentage assignment using molecular markers. 

Consequences of the genomic selection
Ducks selected for fatty liver production (in Europe) 

(*) For mule duck production. For purebred reproduction, natural mating is also an option
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Muscovy

White Pekin

Consequences of the genomic selection
Ducks selected for fatty liver production 

?
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For those who want more on the subject…
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Special thanks to Vincent Ducrocq, Celine Carillier-Jacquin and Helene Larroque (INRAE) 
for their contribution to these slides. 


