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Abstract: We consider the problem of estimating latent positions in a one-
dimensional torus from pairwise affinities. The observed affinity between a
pair of items is modeled as a noisy observation of a function f(x∗

i , x
∗
j ) of

the latent positions x∗
i , x

∗
j of the two items on the torus. The affinity func-

tion f is unknown, and it is only assumed to fulfill some shape constraints
ensuring that f(x, y) is large when the distance between x and y is small,
and vice-versa. This non-parametric modeling offers a good flexibility to
fit data. We introduce an estimation procedure that provably localizes all
the latent positions with a maximum error of the order of

√
log(n)/n, with

high-probability. This rate is proven to be minimax optimal. A computa-
tionally efficient variant of the procedure is also analyzed under some more
restrictive assumptions. Our general results can be instantiated to the prob-
lem of statistical seriation, leading to new bounds for the maximum error
in the ordering.

Received February 2023.

1. Introduction

1.1. 1D latent localization problem

We consider the 1D latent localization problem, where we seek to recover the
1D latent positions of n objects from pairwise similarity measurements. Such
problems arise in archeology for relative dating of objects or graves [34], in
2D-tomography for angular synchronization [10, 37], in bioinformatics for reads
alignment in de novo sequencing [32], in computer science for time synchroniza-
tion in distributed networks [14, 22], or in matchmaking problems [6]. The data
are collected as a n × n symmetric matrix [Aij ]1≤i,j≤n, called affinity matrix,
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which provides similarity measurements between pairs of objects. These simi-
larity measurements Aij can be real valued scores, or they can be binary pieces
of information, as when the matrix A encodes a network structure.

In 1D latent space models [24], the affinity matrix is assumed to be sampled
as follows. The distribution is parametrized by a 1D metric space (X , d), some
(possibly random) latent positions (x∗

1, . . . , x
∗
n) ∈ Xn and an affinity function

f : X ×X → R. Then, conditionally on (x∗
1, . . . , x

∗
n), the upper-diagonal entries

Aij of the affinity matrix are sampled independently, with conditional mean
f(x∗

i , x
∗
j ). The affinity f(x∗

i , x
∗
j ) is typically assumed to decrease as the metric

distance d(x∗
i , x

∗
j ) increases. In particular, close points x∗

i and x∗
j share a high

affinity, whereas distant points share a small affinity. These latent space models
encompass many classical models, as exemplified in the next paragraphs.

Example 1: Random Geometric Graph [21, 30, 13, 11]. We observe a random
graph with n nodes labelled by {1, . . . , n}. The graph is encoded into an ad-
jacency matrix A ∈ {0, 1}n×n, by setting Aij = 1 if there is an edge be-
tween nodes i and j, and Aij = 0 otherwise. Let C denote the unit sphere
in R

2 endowed with the geodesic distance d. In the circular random geometric
graph model, the edges are sampled are sampled independently, with probability
P[Aij = 1] = g(d(x∗

i , x
∗
j )), where g : [0, π] �→ [0, 1] is a non-increasing function

and x∗
1, . . . , x

∗
n ∈ C are the latent positions of the nodes on the sphere. This

random graph model is therefore an instance of 1D latent space model where
Aij ∈ {0, 1}, X = C and f(x∗

i , x
∗
j ) = g(d(x∗

i , x
∗
j )).

Example 2: Graphons and f -Random Graphs [12, 27]. The class of f -random
graph models, also called graphon models, encompasses all the distributions on
random graphs that are invariant by permutation of nodes. It is parametrized by
the set of measurable functions f : [0, 1] × [0, 1] → [0, 1]. The adjacency matrix
A of the graph is sampled as follows. First, n latent positions x∗

1, . . . , x
∗
n are

sampled i.i.d. uniformly on [0, 1]. Then, conditionally on x∗
1, . . . , x

∗
n, the edges

are sampled independently, with conditional probability P[Aij = 1|x∗
1, . . . , x

∗
n] =

f(x∗
i , x

∗
j ). The f -random graph model is then an instance of 1D latent space

model where Aij ∈ {0, 1}, and X = [0, 1]. Unless some additional constraints
are imposed on the shape of f , the affinity f(x∗

i , x
∗
j ) may vary arbitrarily with

the distance |x∗
i − x∗

j |.

Example 3: R-Matrices and Statistical Seriation. A Robinson matrix (R-matrix)
is any symmetric matrix B ∈ R

n×n whose entries decrease when moving away
from the diagonal, i.e. such that Bi,j ≥ Bi+1,j and Bi,j ≥ Bi,j−1, for all
1 ≤ j ≤ i ≤ n. A matrix F is called a pre-R matrix, when there exists a
permutation σ ∈ Σn of {1, . . . , n}, such that Fσ = [Fσ(i),σ(j)]i,j is an R-matrix.
The noisy seriation problem [15] amounts to find, from a noisy observation of a
pre-R matrix F , a permutation σ∗ such that Fσ∗ is a R-matrix. This problem
appears in genomic sequencing [20], in interval graph identification [16], and in
envelope reduction for sparse matrices [5]. This problem can be recast in the
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latent space terminology using X = {1, . . . , n}, x∗
i = σ∗(i) and the affinity func-

tion f(x∗
i , x

∗
j ) = Fσ∗(i),σ∗(j). Since Fσ∗ is a R-matrix, the function f(x∗

i , x
∗
j ) is

decreasing with the distance |x∗
i − x∗

j |.

Example 4: Toroidal R-Matrices and Toroidal Seriation. Consider the set {1, . . .,
n} as a torus with the corresponding distance d(i, j) = min(|j− i|, |n+ i−j|) for
any 1 ≤ i, j ≤ n. A toroidal R-matrix is any symmetric matrix B whose entries
decrease when moving away from the diagonal with respect to the toroidal
distance: Bi,j ≥ Bi+1,j when d(i, j) < d(i + 1, j) and Bi,j ≥ Bi,j+1 when
d(i, j) < d(i, j + 1). As in Example 3 above, a pre-toroidal R-matrix is defined
as a permutation of a toroidal R-matrix and the statistical seriation model is
defined analogously [33]. Again, we can recast this model as a latent space model
on X = {1, . . . , n} endowed with the toroidal distance. Alternatively, we can also
rewrite it as a latent space model on the regular grid Cn of the unit sphere C
corresponding to the n-th unit roots, endowed with the geodesic distance on C.

In the following, we assume that we observe a symmetric matrix [Aij ]1≤i,j≤n

of pairwise affinity measurements, with Aii = 0 (by convention) and

Aij = f(x∗
i , x

∗
j ) + Eij , for 1 ≤ i < j ≤ n,

where

(i) x∗
1, . . . , x

∗
n are n unobserved latent positions spread on the unit sphere C

in R2,
(ii) f : C × C → [0, 1] is unobserved, symmetric, decreasing with the geodesic

distance d(x, y), and
(iii) [Eij ]1≤i<j≤n are some independent sub-Gaussian random variables.

This non-parametric framework is very flexible for fitting pairwise affinity
data. It encompasses the circular random geometric graph model (Example 1)
and the toroidal statistical seriation model (Example 4).

Our overall goal is to recover the n-tuple of latent positions x∗ = (x∗
1, . . . , x

∗
n)

∈ Cn, with some high-confidence, simultaneously for all individual positions
x∗
i . As the global error of an estimator x̂, say d2(x̂,x∗) =

√∑n
i=1 d(x̂i, x∗

i )2,
provides limited information on each individual error d(x̂i, x

∗
i ), we focus instead

on the maximum error

d∞(x̂,x∗) = max
i=1,...n

d(x̂i, x
∗
i ). (1)

We propose some estimators x̂ achieving, with high-probability, a maximum er-
ror d∞(x̂,x∗) of the order of

√
log(n)/n, under the assumptions that the latent

positions x∗
1, . . . , x

∗
n are sufficiently spread on C and some shape conditions rela-

tive to the decreasing of f(x, y) with d(x, y). The
√

log(n)/n-rate of estimation
is shown to be optimal. To the best of our knowledge, these are the first optimal
results on maximum error d∞(x̂,x∗) in latent space models with unknown and
non-parametric affinity function f .
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1.2. Our contribution

As explained above, our overall goal is to recover the n-tuple of latent positions
x∗ = (x∗

1, . . . , x
∗
n) with a control on the maximum error (1). Unfortunately,

this program cannot be carried out literally, as the latent positions are not
identifiable from the distribution of the data. Indeed, for any bijective map ϕ :
C → C, we have f(x, y) = f ◦ϕ−1(ϕ(x), ϕ(y)) for all x, y ∈ C, with the notation
f ◦ϕ−1(x, y) := f(ϕ−1(x), ϕ−1(y)). Even if we would enforce some strong shape
constraints, like f(x, y) = 1−αd(x, y) with α > 0, since f(x, y) = f(Qx,Qy) for
any orthogonal transformation Q of C, the distribution of the data would still be
invariant by orthogonal transformation of the latent positions. Hence, we face
a delicate identifiability issue. This identifiability issue is fully explained and
tackled in Section 2.2. Informally, our remedy is to provide some estimators x̂
which are, under some assumptions, at the distance d∞(x̂,x∗) = O(

√
log(n)/n)

of some specific representative x∗ of the latent positions.
Our shape assumption (ii) on the affinity function f ensures that the matrix

[f(xi, xj)]i,j=1,...,n is (approximately) a toroidal pre-R matrix. We observe that
the constant function f(x, y) = 1 fulfills assumption (ii), and that for this spe-
cific function there is no hope to recover any information on the latent positions,
even in the noiseless case. To circumvent this issue, we introduce a bi-Lipschitz
assumption, detailed in Section 2.1, constraining the decay of f with d. In the
specific case of the random geometric graph model with g continuously differen-
tiable, this condition merely amounts to require g′(x) to be bounded away from
0.

Our estimation procedures proceed in two main stages:
(1) we start with an initial localization with a global control in d1(x,y) :=∑n

i=1 d(xi, yi) distance,
(2) then, for each point, we refine this first estimator to get a control in d∞
distance.

In order to avoid some nasty statistical dependencies between the two stages,
we use a sample splitting scheme ensuring that, at the second stage, the refine-
ment uses data independent from those used at the first stage.

Let S ⊂ {1, . . . , n} be a subset of indices sampled uniformly at random, and
S = {1, . . . , n} \ S. At the second step, the refined estimator x̂(2)

S
of x∗

S
:=

(x∗
i )i∈S , can take as input any initial estimator x̂(1)

S of x∗
S = (x∗

i )i∈S . This
second step has a polynomial computational complexity and, under appropriate
assumptions, it fulfills with high-probability

d∞(x̂(2)
S

,x∗
S
) ≤ C

(
d1(x̂(1)

S ,x∗
S)

n

)
∨
√

log(n)
n

,

for some specific representative x∗ of the latent positions. Hence, in order to
get the desired bound d∞(x̂(2)

S
,x∗

S
) = O

(√
log(n)/n

)
, we need an initial con-

trol d1(x̂(1)
S ,x∗

S) = O
(√

n log(n)
)
. We propose two estimators fulfilling this

requirement:
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(a) a first one, which requires no additional assumptions, but which has a super-
polynomial computational complexity;
(b) a second one, adapted from [33], which has a polynomial computational
complexity, but for which we prove a O

(√
n log(n)

)
control only for a class of

random geometric graphs.
Repeating the sampling of S and merging the resulting estimators, we then

get an estimator x̂ achieving, with high-probability and under appropriate as-
sumptions, d∞(x̂,x∗) = O(

√
log(n)/n) for a specific representative x∗ of the

latent positions. A matching lower bound is also derived, proving the optimal-
ity of the

√
log(n)/n rate. The significance of the improvement offered by the

refinement step, and the impact of the sample splitting on the localization error
are investigated numerically.

1.3. Related work

In the last decade, the analysis of interaction data has given rise to numerous
works in machine learning and statistics. Most of these works handle cases where
the affinity function f is either known or belong to a known parametric model.
There is a long standing debate on the validity of such a rigid modeling [4]. Our
modeling assumptions, with only shape constraints on f , offers a more flexible
setting to fit data.

Latent points estimation in random geometric graphs Random geo-
metric graphs have attracted a lot of attraction as a simple model for wire-
less communications or internet [21, 30]. In the most classical setting, Aij =
f(x∗

i , x
∗
j ) = 1‖x∗

i −x∗
j ‖≤r for some r > 0. The problem of estimating the latent

positions x∗
1, . . . , x

∗
n in a square of R

2 has been tackled by [13]. Compared to
us, they consider the noiseless setting, where Eij = 0, with the affinity map f
belongs to 1-dimensional parametric model. The problem of latent positions lo-
calization has also been investigated in the random dot-product graph [38, 28, 2],
where, conditionally to the latent positions, the entries Aij of the adjacency ma-
trix are independent Bernoulli random variables with mean f(x∗

i , x
∗
j ) = 〈x∗

i , x
∗
j 〉,

where 〈·, ·〉 is the Euclidean scalar product in R
d. In this case, the function f is

known and the results are of an asymptotic nature.

Phase synchronization problems The phase synchronization problem [37]
amounts to estimating unknown angles θ1, . . . , θn from noisy measurements of
θi−θj mod 2π. A version of this problem is when we seek to retrieve x∗

1, . . . , x
∗
n,

which are spread on the unit complex sphere C1 = {x ∈ C : |x| = 1}, from noisy
observations of x∗

i x
∗
j = eι(θi−θj). In this model, some minimax �2-bounds on the

localization error have been obtained by [19], without assumptions on the latent
positions x∗

1, . . . , x
∗
n. Such a model is close to the pairwise affinity model on C.

The main differences compared to our setting is that we focus on d∞-bounds,
with an unknown function f , which does not have the affinity shape (ii).
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Skills estimation in the Bradley-Terry model In the Bradley-Terry model
[6], the observations Aij are independent Bernoulli outcomes with mean
f(x∗

i , x
∗
j ) = σ(x∗

i − x∗
j ), where x∗

i ∈ R represents the skill of individual i and
σ(x) = ex/(1+ex) is the sigmoid function. The estimation of the skills by a spec-
tral algorithm, or two-steps variants of it, has received a lot of attention recently
[29, 9, 8]. In particular, building on the structure of the problem, rate-minimax
�∞-bound have been derived for the spectral algorithm in the Bradley-Terry
model when the skills belong to a compact set, possibly with missing at ran-
dom observations.The Bradley-Terry model is a special instance of the 1D-latent
space model. Compared to our setting, the function f is known and it does not
fulfill the affinity properties (for example, it is not symmetric).

Seriation from pairwise affinity Given a pre-R matrix F , the seriation
problem seeks to find the latent order σ∗ such that Fσ∗ is a R-matrix. For
this noiseless version of Example 3, efficient algorithms have been proposed
using convex optimization [15], or spectral methods [3]. The exact seriation
problem has been solved on toroidal R-matrices in the noiseless case [33], by
using a spectral algorithm. A perturbation analysis has also been sketched
in [33]. As a byproduct of our analysis, we provide some more explicit recovery
bounds in our specific setting with noisy observations. Closer to our contribu-
tion, Jannssen and Smith [25] observe a noisy version of a pre-R matrix and,
under some assumptions on the affinity function f , learn a permutation that
satisfies maxi∈[n] |σ̂i−σ∗

i | ≤ C
√
n log5(n). Although their assumptions on f are

not directly comparable to ours, the localization rates are (up to logarithmic
factors) comparable to ours. We refer to the discussion below Corollary 3.4 for
more details.

Two-step methods for latent space models Our work is related to the
global-to-local estimation strategy, that was originally introduced in Stochastic
Block Models and more generally in clustering analysis [26, 17, 43], for the pur-
pose of deriving sharp recovery bounds with polynomial time procedures. The
general idea is to build upon an initial estimator that satisfies a certain (weak)
consistency condition, and then apply greedy-type procedures (e.g. Lloyd’s al-
gorithm) to obtain minimax recovery bounds. This approach turned out to be
fruitful in various latent space problems with discrete structure [7, 18] and our
procedure can be interpreted as one instance of this strategy in a non-parametric
setting with a continuous latent space.

1.4. Notation and organization of the paper

In the sequel, C,C ′, C ′′ > 0 denote numerical constants that may change from
line to line. For two functions or sequences x and y, we write x � y (resp.
x � y) when, for some numerical constant C > 0, we have x ≤ Cy (resp.
x ≥ Cy). The maximum (resp. minimum) of x and y is denoted by x ∨ y (resp.
x ∧ y). For any x > 0, we write �x� for its integer part, and [x] for the set
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of integers [x] = {1, . . . , �x�}. For q ≥ 1, the entry-wise lq norm of a matrix
F = (fij) is denoted by ‖F‖q = (

∑
ij |fij |q)1/q, the ith-row of F is denoted by

Fi, and the Frobenius scalar product between two matrices F and G is denoted
by 〈F,G〉. Let Σn be the collection of permutations of [n]. For any permutation
σ ∈ Σn, and for any n-tuple x of size n, we define xσ as the permuted n-tuple
xσ = (xσ(1), . . . , xσ(n)).

Assimilating points in the unit sphere C of R2 to complex numbers with unit
norm, we can represent x ∈ C by x = eιx, with x ∈ [0, 2π). We call henceforth
argument of x ∈ C the real number x. The geodesic distance d(x, y) on C can
be conveniently defined in terms of the arguments of x and y

d(x, y) =
∣∣x− y

∣∣ ∧ (
2π −

∣∣x− y
∣∣) . (2)

For any positive integer k, we define the regular grid Ck = {1, eι2π/k,
. . ., eι2π(k−1)/k}, which plays an important role in our analysis and algorithms.
We denote by O the orthogonal group of R

2 made of rotations and reflec-
tions, and for any n-tuple x = (x1, . . . , xn) ∈ Cn, and any Q ∈ O, we define
Qx := (Qx1, . . . , Qxn). For two subsets S, S′ of {1, . . . , n}, a matrix A ∈ R

n×n

and a n-tuple x = (x1, . . . , xn) ∈ Cn, we define ASS′ = [Aij ]i∈S,j∈S′ and
xS = [xi]i∈S . More generally, we denote by xS ∈ CS a |S|-tuple indexed by
S. The complement of a set S, is denoted by S.

In Section 2, we describe the statistical setting and we discuss thoroughly
the identifiability issues. The main embedding procedure, called Localize-and-
Refine, is presented in Section 3. A spectral variant of this procedure is intro-
duced in Section 4, with an application to geometric models. In Section 6, we
investigate numerically the usefulness of the sample splitting, and the signifi-
cance of the improvement offered by the refinement step. We summarize our
findings and discuss an open problem in Section 7. All the proofs are postponed
to the appendices.

2. Model assumptions and identifiability issues

2.1. Statistical setting

We observe a realization of a symmetric random matrix A ∈ R
n×n, whose

values on the diagonal are Aii = 0. We denote by Fij = E[Aij ] the mean value
of Aij and by Eij = Aij − Fij the centered random fluctuation. We assume
that A has been generated by a latent space model on C: there exist a n-tuple
x∗ = (x∗

1, . . . , x
∗
n) ∈ Cn and a function f : C × C → R such that Fij = f(x∗

i , x
∗
j ),

so
Aij = Fij + Eij = f(x∗

i , x
∗
j ) + Eij , for 1 ≤ i < j ≤ n. (3)

Both the function f and the latent positions x∗
1, . . . , x

∗
n are unknown. We em-

phasize that the latent positions x∗ = (x∗
1, . . . , x

∗
n) are assumed to be fixed1 and

1if they were random, our results would apply conditionally on the sampling of x∗.
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we denote by P(x∗,f) the distribution of A. Let us describe our assumptions on
the spreading of the latent positions x∗

1, . . . , x
∗
n, the shape of f , and the random

fluctuations Eij .

Spreading of the latent positions We have in mind that the latent po-
sitions are well spread over the unit sphere. We do not strictly enforce this
condition, but our error bounds depend on how far the latent positions are from
a regular position on C. More precisely, let us denote by Πn the set of regular
positions on the unit sphere Πn =

{
x = (eι2πσ(j)/n)1≤j≤n : σ ∈ Σn

}
. Our re-

sults involve the d∞-distance of the n-tuple of latent positions x∗ to the set Πn

of regular positions

d∞(x∗,Πn) := min
y∈Πn

d∞(x∗,y) , (4)

with d∞(x∗,y) defined in (1).

Bi-Lipschitz shape of f As explained in the introduction, we have in mind
that f(x, y) decreases with the distance d(x, y). Since there is no hope to re-
cover the latent positions x∗ when the function f is flat, we impose a minimal
decreasing of f(x, y) with the distance d(x, y). We also require some Lipschitz
continuity of f for our analysis. These two conditions on f are enforced by the
Bi-Lipschitz condition described below.

Definition 2.1. Bi-Lipschitz functions. For any fixed constants ce ≥ 0 and
0 < cl ≤ cL, we define BL[cl, cL, ce] as the set made of all functions f : C2 →
[0, 1] that are symmetric (i.e. f(x, y) = f(y, x) for all x, y ∈ C) and that satisfy
the two following conditions for all x, y, y′ ∈ C,

|f(x, y) − f(x, y′)| ≤ cLd(y, y′) + εn ; (5)
f(x, y′) − f(x, y) ≥ cl

(
d(x, y) − d(x, y′)

)
− εn if d(x, y) ≥ d(x, y′) , (6)

with εn = ce
√

log(n)/n.

When ce = 0, Condition (5) enforces Lipschitz continuity and Condition (6)
enforces a minimal decreasing of f(x, y) with d(x, y). In the geometric case
f = g ◦ d with g : [0 : π] → [0, 1] continuously differentiable, these conditions
hold when −cL ≤ g′(t) ≤ −cl for all t ∈ [0, π]. For ce > 0, the term εn in
(5–6) can be interpreted as a possible small relaxation of a strict bi-Lipschitz
property. In the remaining of the paper, we will assume that f ∈ BL[cl, cL, ce]
for some ce ≥ 0 and 0 < cl ≤ cL.

SubGaussian errors We assume that the entries Eij for 1 ≤ i < j ≤ n of
the noise matrix are independent and follow a subGaussian(1) distribution. It
means that, for any matrix B ∈ R

n×n and t ≥ 0, we have

P

⎡⎣ ∑
1≤i<j≤n

BijEij > t

√ ∑
1≤i<j≤n

B2
ij

⎤⎦ ≤ e−t2/2. (7)
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Since centered random variables taking values in [−1, 1] have a subGaussian(1)
distribution, this setting encompasses the case where A ∈ {0, 1}n×n is the ad-
jacency matrix of a random graph, whose distribution belongs to a latent space
model on C.

To keep the notation and the presentation simple, we assume henceforth that
the sample size n is a multiple of 4, and we denote by n0 the integer n0 = n/4.

2.2. Identifiability issues

Our overall goal is to estimate the latent positions x∗. Yet, in general, these
latent positions are not identifiable from the distribution of A. Indeed, for any
bijective ϕ : C → C, we have [Fij ]i<j =

[
(f ◦ ϕ−1)(ϕ(x∗

i ), ϕ(x∗
j )
]
i<j

, with the
notation f ◦ϕ−1(x, y) := f(ϕ−1(x), ϕ−1(y)). Hence, it is not possible to recover
x∗ from F and, unless x∗ is identifiable from the distribution of the noise E, the
n-tuple of latent positions x∗ is not identifiable. Worse, F can be represented
by many different couple (x, f). Hence, we face a serious identifiability issue.
However, with the premise that the latent positions are well spread on C, we
can give a sensible meaning to our estimation objective. We explain progressively
the issues that we face, in order to clarify the problem.

As a warm-up, let us assume in this paragraph that f is known. Even in this
favorable case, there might exist some bijective ϕ : C → C such that f = f ◦ ϕ,
and hence f(x∗

i , x
∗
j ) = f(ϕ(x∗

i ), ϕ(x∗
j )). For example, when f = g ◦ d, we have

f = f ◦Q for any orthogonal transformation Q ∈ O. In this last case, unless x∗

is identifiable from the distribution of the noise E, the best that we can hope is
to consistently estimate x∗ in terms of the quasi-distance

min
Q∈O

d∞(x̂, Qx∗), where Qx := (Qx1, . . . , Qxn).

Let us come back to our setting where f is unknown. We define R[F, cl, cL, ce]
(or simply R[F ]) as the set of representations of F by n-tuples in Cn and bi-
Lipschitz functions

R[F, cl, cL, ce] := {(x, f) ∈ Cn × BL[cl, cL, ce] : f(xi, xj) = Fij for all i < j} .
(8)

We observe that for any f ∈ BL[cl, cL, ce] and any Q ∈ O, we have f ◦ Q−1 ∈
BL[cl, cL, ce]. Hence, if (x∗, f) ∈ R[F, cl, cL, ce], then

{
(Qx∗, f ◦Q−1) : Q∈O

}
⊂

R[F, cl, cL, ce]. Are all the elements in R[F, cl, cL, ce] of the form (Qx∗, f ◦Q−1),
as in the case discussed above?

Let us first focus on the case where (x, f), (x′, f ′) ∈ R(F ) with x,x′ ∈ Πn

and ce = 0. The Proposition 2.3 below ensures that there exists Q ∈ O such
that x′ = Qx. Hence, if regular representations (x, f) exist in R[F ], all the
other regular representations are given by (Qx∗, f ◦ Q−1) with Q ∈ O letting
Πn invariant.

This property breaks down when we move away from regular latent positions
in Πn. Indeed, the next proposition shows that we can have minQ∈O d∞(x, Qx′)
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large even, when x ∈ Πn and x′ is well spread on C. More precisely, this property
is shown for

x′ ∈ Sev :=
{
x ∈ Cn : sup

z∈C
min
i∈[n]

d(xi, z) ≤ 3π/n
}
.

Such a n-tuple x′ is well spread on C, since any z ∈ C is at a distance at most
3π/n from one of the x′

i.

Proposition 2.2. Assume that Fij = f(xi, xj) for 1 ≤ i < j ≤ n, with f(x, y) =
1 − d(x, y)/(2π) and xk = eιk2π/n for all k ∈ [n]. Then, there exists another
representation (x′, f ′) ∈ R[F, (3π)−1, π−1, 0], with x′ ∈ Sev, such that

min
Q∈O

d∞(x, Qx′) ≥ π/8 .

The representation (x′, f ′) can be obtained from (x, f) by slightly stretching
and contracting some pieces of the sphere C. The detailed proof of this propo-
sition is postponed to Appendix C. This result shows that the set of latent
positions x′ in R[F, (3π)−1, π−1, 0] is much richer than the set {Qx : Q ∈ O}
of orthogonal transformations of x, since it includes some latent positions x′

at constant d∞-distance from this set. Yet, the next proposition shows that for
any x,x′ in R[F ], the d∞-distance of x′ to {Qx : Q ∈ O} is controlled in terms
of the d∞-distance of x and x′ to the set of regular positions Πn.

Proposition 2.3. Let F be a symmetric matrix given by Fij = f(x∗
i , x

∗
j ) for

1 ≤ i < j ≤ n, with x∗ ∈ Cn and f ∈ BL[cl, cL, ce] for some ce ≥ 0 and
0 < cl ≤ cL. Then, there exists a constant ClLe > 0, depending only on ce, cl
and cL, and such that, for any (x, f), (x′, f ′) ∈ R[F, cl, cL, ce], we have

min
Q∈O

d∞(x, Qx′) ≤ ClLe

(
d∞(x,Πn) + d∞(x′,Πn) +

√
log(n)

n

)
. (9)

If, in addition, ce = 0 and x,x′ ∈ Πn, then there exists Q ∈ O such that
x = Qx′.

The proof of (9) can be found in Appendix C.2, whereas the proof of the
second statement can be found in Appendix A. This result shows that if x and
x′ are close to Πn, then x is close to an orthogonal transformation of x′. Hence,
when we restrict to representations (x, f) and (x′, f ′), with latent positions x
and x′ close to Πn, the identifiability issue becomes smoother.
Summarizing our discussion above, we have shown that:
(1) for any (x, f) ∈ R[F ], we have

{
(Qx, f ◦Q−1) : Q ∈ O

}
⊂ R[F ];

(2) for any (x, f), (x′, f ′) ∈ R[F ], the d∞-distance of x′ to {Qx : Q ∈ O} is
bounded in terms of the d∞-distance of x and x′ to Πn.

Accordingly, to contain the phenomenon described in Proposition 2.2, we will
focus henceforth on the representations (x, f) which are the closest to Πn.



Localization in 1D latent space 1597

Problem formulation Let us explain our estimation strategy, in light of the
above discussion. In order to circumvent the identifiability issues, we focus on
the representations (x, f) ∈ R[F, cl, cL, ce] whose latent positions are the closest
to Πn, i.e. we focus on the following set2 of representations

RΠn [F ] = RΠn [F, cl, cL, ce] := argmin
(x,f)∈R[F,cl,cL,ce]

d∞(x,Πn). (10)

Our goal is then to build an estimator x̂, not depending on cl, cL and ce, such
that, with high-probability

d∞(x̂,x∗) ≤ ClLe

(
min

(x,f)∈R[F,cl,cL,ce]
d∞(x,Πn) +

√
log(n)

n

)
,

for some representation (x∗, f) ∈ RΠn [F, cl, cL, ce], and some constant ClLe > 0
depending only on ce, cl and cL. For such an estimator, under the premise that
d∞(x∗,Πn) is small for (x∗, f) ∈ RΠn [F, cl, cL, ce], we then estimate accurately
a representation (x∗, f) of F in RΠn [F ].

As a side remark, we notice that combining such a bound with (9), we obtain
that, for any (x, f) ∈ RΠn

[F, cl, cL, ce], we have with high-probability

min
Q∈O

d∞(x̂, Qx) ≤ C ′
lLe

(
min

(x′,f ′)∈R[F,cl,cL,ce]
d∞(x′,Πn) +

√
log(n)

n

)
.

3. Localize-and-Refine algorithm

The overall strategy for estimating a n-tuple of latent positions in RΠn [F ], is to
start with a first estimator x̂(1) ∈ Πn with a control in d1(x,y) =

∑n
i=1 d(xi, yi)

distance, and then to refine the estimation of each point x∗
i . In order to avoid

complex statistical dependencies between the two steps, we use a sample split-
ting of the data. We sample S ⊂ {1, . . . , n} with cardinality |S| = n0 = n/4
uniformly at random, and set S = {1, . . . , n} \ S. The first estimator x̂(1)

S of
x∗
S = (x∗

i )i∈S is computed on ASS = [Aij ]i,j∈S , while the refined estimator x̂(2)
S

of x∗
S

:= (x∗
i )i∈S takes as input the estimator x̂(1)

S and the matrix ASS . This
scheme avoids to have some statistical dependence between x̂(1)

S and ASS . The
estimator x̂(2)

S
provides a localization for points indexed by S, with an error

bound in d∞-norm. In order to localize all the points, we repeat the process
and the final estimator is obtained by carefully merging the estimations. These
three steps are precisely described in Sections 3.2–3.4, after the statement of
our main results.

2RΠn [F ] is well-defined and non-empty because the set of all x such that, for some f ,
(x, f) ∈ R[F, cl, cL, ce] is compact.
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3.1. Main result

In this section, we consider the following setting for the data.

Setting 1. Assume that the matrix A of observations is given by (3), with
x∗ ∈ Cn, and f ∈ BL[cl, cL, ce], for some ce ≥ 0 and 0 < cl ≤ cL (the set of
Bi-Lipschitz functions BL[cl, cL, ce] is introduced in Definition 2.1, page 1594).
Assume also that the noise matrix E follows the subGaussian errors assumption
(7).

In this setting, the estimator (21) described in the next subsections fulfills
the following risk bound.

Theorem 3.1. Assume that the data are generated according to the Setting 1
above. Then, there exists a constant ClLe > 0 depending only on ce, cl and cL
such that, with probability at least 1 − 5/n2, there exists a representation (x, f)
in the set RΠn [F, cl, cL, ce] defined in (10) such that the estimator (21) fulfills

d∞(x̂,x) ≤ ClLe

(
min

(x′,f ′)∈R[F,cl,cL,ce]
d∞(x′,Πn) +

√
log(n)

n

)
, (11)

with R[F, cl, cL, ce] defined by (8).

We emphasize that the estimator (21) has no tuning parameter. In particular,
it does not depend on the unknown constants ce ≥ 0 and 0 < cl ≤ cL. The first
term in the right-hand side of (11) can be assimilated to a bias term, which
stems from the bias of the estimator (21) towards regular positions on C. The
second term in the right-hand side of (11) is a variance-type term. We observe
that, if there exists ca > 0 such that

min
(x′,f ′)∈R[F,cl,cL,ce]

d∞(x′,Πn) ≤ ca

√
log(n)

n
, (12)

then d∞(x̂,x) = O
(√

log(n)/n
)

with high probability. Such a setting arises for
example when the latent positions have been sampled uniformly on the sphere,
see Corollary 3.3. This

√
log(n)/n rate is shown to be minimax optimal in

Section 5.
We also give an explicit control for any representative (x, f) ∈ R[F, cl, cL, ce].

Theorem 3.2. Under the Setting 1, there exists a constant C ′
lLe > 0 depending

only on ce, cl and cL, such that, with probability at least 1 − 5/n2, for any
(x, f) ∈ R[F, cl, cL, ce], the estimator (21) fulfills

min
Q∈O

d∞(x̂, Qx) ≤ C ′
lLe

(
d∞(x,Πn) +

√
log(n)

n

)
. (13)

We emphasize that the above statement holds for any representative (x, f) ∈
R[F, cl, cL, ce]. Before moving to the description of the estimator (21), let us
give two important instantiations of Theorem 3.1 and 3.2.
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Latent model with uniform sampling on C Let us consider the latent
model Fij = f(x∗

i , x
∗
j ) when the positions x∗

1, . . . , x
∗
n have been sampled inde-

pendently and uniformly on C, as in the graphon model. In this case, the As-
sumption (12) is satisfied with high probability; see Appendix B.5 for a proof.
We then derive the next result from Theorem 3.2.

Corollary 3.3. Assume that the latent positions x∗
1, . . . , x

∗
n have been sampled

i.i.d. uniformly on C and that f ∈ BL[cl, cL, ce]. Then, with probability higher
than 1 − 7/n2, we have

min
Q∈O

d∞(x̂, Qx∗) ≤ ClLe

√
log(n)

n
,

for some constant ClLe > 0 depending only on ce, cl and cL.

Toroidal seriation Let us consider the toroidal seriation problem introduced
in Example 4 of Section 1.1. In this setting, the set [n] is considered as a torus,
endowed with the torus distance d(i, j) = min(|j − i|, |n + i − j|) for any 1 ≤
i ≤ j ≤ n, and the matrix F is a pre-toroidal R-matrix. Let σ∗ ∈ Σn be a
permutation such that [Fσ∗(i)σ∗(j)]i,j is a toroidal R-matrix. Our goal is estimate
σ∗ from the noisy observation A = F + E. As explained in the introduction,
we can recast this problem as a localization problem in a latent space model on
the regular grid Cn. Assimilating points on the sphere C to unit norm complex
numbers, we define the vector x∗ ∈ Πn by x∗

j = exp(ι2πσ∗(j)/n), and we define
fn : Cn×Cn → R by f(x∗

i , x
∗
j ) = Fij . The problem of estimating σ∗ then amounts

to estimating x∗ in the latent space model Aij = f(x∗
i , x

∗
j ) +Eij on Cn. We can

apply our estimator (21) and get an estimation x̂ ∈ Cn. From this estimation,
we can derive the map σ̂ : [n] → [n] by setting σ̂i = �nx̂i/2π� for i = 1, . . . , n,
where x̂i ∈ (0, 2π] is the argument of x̂i and �z� is the upper integer part of z.
While the map σ̂ may not be a permutation in Σn, it is an estimation of σ∗ and
we can translate Theorem 3.2 into a �∞-error between the two.

Corollary 3.4. Assume that [Fσ∗(i)σ∗(j)]i,j=1,...,n fulfills the bi-Lipschitz condi-
tion with respect to the torus distance:

|Fσ∗(i)σ∗(j) − Fσ∗(i)σ∗(k)| ≤ cL
2π
n
d(j, k) + εn

Fσ∗(i)σ∗(k) − Fσ∗(i)σ∗(j) ≥ cl
2π
n

(
d(i, j) − d(i, k)

)
− εn if d(i, j) ≥ d(i, k) .

Then, there exists a constant ClLe > 0, depending only on ce, cl and cL, such
that, with probability at least 1 − 5/n2, we have

min
τ∈Γn

max
i∈[n]

|τ ◦ σ∗(i) − σ̂(i)| ≤ ClLe

√
n log(n) , (14)

where Γn is the subgroup of permutations of {1, . . . , n} generated by the circular
and reverse permutations.
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To prove (14), we extend fn defined on Cn × Cn to f : C × C → R belonging
to BL[cl, cL, ce], and apply Theorem 3.2. The minimum over Γn in the left-
hand side of (14) cannot be avoided, since σ∗ is identifiable from F only up to
permutations in Γn. Furthermore, the

√
n log(n) rate for the toroidal seriation

problem can be shown to be minimax in the above set-up, by combining Theo-
rem 5.1 page 1608 and the correspondence between the n-tuples x∗ ∈ Πn and
the permutations σ∗ of [n].

In a recent work, Janssen and Smith [25] consider the related seriation prob-
lem for R-matrices (Example 3 in the introduction), in a geometric setting where
Fσ∗

i ,σ
∗
j

= g(|i − j|/n) for some unknown permutation σ∗, and some unknown
function g. Hence, in addition to be a pre-R matrix, F is also a Toeplitz matrix.
Under additional assumptions on the squared matrix (Fσ∗

i ,σ
∗
j
)2, they establish

that an algorithm based on a (thresholded version) of the square matrix of
observations A2, achieves, with high probability, an error bound

min
τ∈Γ′

n

max
i∈[n]

|τ ◦ σ∗(i) − σ̂(i)| �
√
n (log(n))5,

where Γ′
n gathers the identity and the reverse permutations. Their assumptions

are not comparable to ours, but their rates are similar (up to log factors). Our
results then complement this work, by providing another set of conditions on F ,
under which the hidden permutation σ∗ can be recovered at the rate

√
n log(n).

Organization of Section 3 The description of the estimator (21) is organized
as follows. The refinement step x̂(2)

S
is described in Section 3.2. This step can

take as input any initial estimator x̂(1)
S based on ASS and taking values in Π|S|.

When this initial estimator fulfills with high-probability

d1(x̂(1)
S ,xS) ≤ ClLe

(
n min

(x′,f ′)∈R[F ]
d∞(x′

S ,Π|S|) +
√

n log(n)
)
, (15)

for some (x, f) ∈ RΠn [F ], then the refined estimator x̂(2)
S

is shown to fulfill with
high-probability

d∞(x̂(2)
S

,xS) ≤ C ′
lLe

(
min

(x′,f ′)∈R[F ]
d∞(x′

S ,Π|S|) +
√

log(n)
n

)
.

In order to get an estimator satisfying the risk bound (11), we then need an
initial estimator x̂(1)

S fulfilling (15). Such an estimator is provided in Section 3.3.
A computationally efficient alternative, based on the spectral decomposition of
A is proposed in Section 4. To get an estimator of the whole n-tuple of latent
positions, the data splitting is repeated and a final merging step is needed to
build x̂. This final step is described in Section 3.4.

3.2. Step 2: refined estimation

We start by describing the refinement step which converts an initial estimator
with an error bound in d1-distance into a refined estimator with an error bound
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in d∞-distance. For a subset S ⊂ {1, . . . , n} of cardinality |S| = n0 = n/4, the
refinement step takes as input any initial estimator x̂(1)

S of x∗
S based on ASS

and taking values in Πn0 . It outputs an estimator x̂(2)
S

of x∗
S
.

We denote by D(z, x̂(1)
S ) = [d(z, x̂(1)

j )]j∈S the vector of distances between
z ∈ C and the components of the n0-tuple x̂(1)

S . The refined estimator x̂(2)
S

is
obtained by solving

x̂
(2)
i ∈ argmin

z∈Cn0

〈
Ai,S , D(z, x̂(1)

S )
〉
, for each i ∈ S, (16)

where Cn0 = {1, eι2π/n0 , . . . , eι2π(n0−1)/n0} is the regular grid of cardinality n0

on C. The principle underlying the definition (16) is that d(x̂(2)
i , x̂

(1)
j ) should

be small when Aij is large, and vice-versa. Hence, for any x∗
i ∈ Cn0 and any

matrix A with Aij decreasing with d(x∗
i , x

∗
j ), the minimum is achieved in x∗

i

when x̂(1)
S = x∗

S ∈ Πn0 , see Appendix A for details. Since A is a noisy version
of a such a matrix, and since d(x∗

i , Cn0) := miny∈Cn0
d(x∗

i , y) = O(1/n), the
estimator x̂

(2)
i should remain close to x∗

i when x̂(1)
S is close to x∗

S . The next
proposition quantifies this statement, by providing a uniform error bound for
x̂(2)
S

in terms of the error bound d1(x̂(1)
S , Qx∗

S) for the initial estimator.

Proposition 3.5. Let (x∗, f) ∈ R[F, cl, cL, ce] for some ce ≥ 0 and 0 < cl ≤ cL.
Let S ⊂ {1, . . . , n} be of cardinality |S| = n0 = n/4, and x̂(1)

S be any initial
estimator of x∗

S based on ASS and taking values in Πn0 . Then, there exists a
constant ClLe depending only on cl, cL and ce, such that, conditionally on ASS,
and for all Q ∈ O, the estimator (16) fulfills with probability at least 1 − 1/n2

d∞(x̂(2)
S

, Qx∗
S
) ≤ ClLe

(
d∞(x∗

S ,Πn0) + d1(x̂(1)
S , Qx∗

S)
n

+
√

log(n)
n

)
. (17)

The right-hand side of (17) is made of three terms. The first one is the
uniform approximation error of x∗

S by Πn0 , as defined in (4). It is a bias-type
term which stems from the fact that we aim at estimating positions that are
almost evenly spaced. The second term accounts for the error of the preliminary
estimator x(1)

S in d1-distance and the last-one is a variance-type term. The proof
of Proposition 3.5 can be found in Appendix B.

The time complexity for computing x̂
(2)
i is linear in n0 and the algorithm

can be parallelized for computing x̂(2)
S

. To decrease the time complexity, it is
possible to restrict to z ∈ C√n0 in (16) instead of z ∈ Cn0 . In that case, the proof
of (17) still holds, with different constants.

3.3. Step 1: Initial localization

In view of the above Proposition 3.5, we seek to build an initial estimator x̂(1)
S

fulfilling (15) for some xS = Qx∗
S , with Q ∈ O. Such an estimator can be



1602 C. Giraud et al.

obtained by solving

x̂(1)
S ∈ argmin

xS∈Πn0

〈ASS , D(xS)〉, with D(xS) =
[
d(xi, xj)

]
i,j∈S

. (18)

The estimator x̂(1)
S is chosen in such a way that the distance d(x̂(1)

i , x̂
(1)
j ) should

be small when the signal Fij = f(x∗
i , x

∗
j ) is large, and conversely, it should be

large when Fij is small. To grasp the principle underlying the definition (18),
let us look at the noiseless geometric affine setting, where the observations are
Aij = 1 − αd(x∗

i , x
∗
j ), and where the positions x∗

S are evenly spread, i.e. x∗
S ∈

Πn0 . Then, one readily checks that

argmin
xS∈Πn0

〈ASS , D(xS)〉 = argmax
xS∈Πn0

〈D(x∗
S), D(xS)〉 ,

whose maximum is achieved at all xS = Qx∗
S with Q any orthogonal transfor-

mation preserving Πn0 . In other words, the estimator (18) exactly recovers –up
to distance preserving transformations– the positions in this ideal setting.

The next proposition establishes a d1-bound with the flavor of (15) for the
estimator (18).

Proposition 3.6. Let (x∗, f) ∈ R[F, cl, cL, ce] and let S ⊂ {1, . . . , n} be a
subset of cardinality n0 = n/4. Then, there exists a constant ClLe depending
only on cl, cL and ce, such that, the estimator x̂(1)

S defined by (18) satisfies

min
Q∈O

d1(x̂(1)
S , Qx∗

S) ≤ ClLe

(
nd∞(x∗

S ,Πn0) +
√
n logn

)
, (19)

with probability higher than 1 − 1/n2.

To prove Proposition 3.6 (in Appendix B.3), we first establish that ‖D(x∗
S)−

D(x̂(1)
S )‖2 is small, meaning that the distances between the estimated positions{

x̂
(1)
i : i ∈ S

}
are close to the distances between the true positions {x∗

i : i ∈ S}.
Then, relying on a recent result on matrix perturbation from [1], we deduce that
‖x̂(1)

S − Qx∗
S‖2 is small, where Q ∈ O is a distance preserving transformation

and where we consider here x̂(1)
S and Qx∗

S as 2 × n0 matrices. The bound (19)
then follows by connecting the Euclidean distance in R

2 to the d1-distance.
From a computational point of view, the minimization problem (18) is an

instance of the Quadratic Assignment Problem which is known to be NP-Hard
and even hard to approximate [31, 35]. In section 4, we propose a computation-
ally efficient alternative to (18), and we provide theoretical guarantees for this
alternative under additional model assumptions.

3.4. Final merging step

For a given subset S ⊂ {1, . . . , n} of cardinality n0 = n/4, combining the initial
estimator (18) with the refined localisation (16), we get an estimator x̂(2)

S
with
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an error bound on d∞(x̂(2)
S

, Qx∗
S
) for some orthogonal transformation Q ∈ O.

In order to get an estimation of all the latent positions, we repeat the process
by sampling S′ ⊂ S of cardinality n0 = n/4 and by computing x̂(2′)

S
′ with (18)

and (16). We then get an estimator with an error bound on d∞(x̂(2′)
S

′ , Q′x∗
S

′) for
some orthogonal transformation Q′ ∈ O. In order to get a final estimator x̂, we
still have to deal with the fact that we may have Q �= Q′, and hence the trivial
merge x̂ = (x̂(2)

S
, x̂(2′)

S ) may not be a good one. Hence, we need to synchronize
the estimators x̂(2)

S
and x̂(2′)

S
′ . This synchronization is obtained by solving

Q̂ ∈ argmin
Q∈O

d∞(x̂(2)
S∩S

′ , Qx̂(2′)
S∩S

′), (20)

and by defining the final estimator as x̂ = (x̂(2)
S

, Q̂x̂(2′)
S ). Putting pieces together,

we then get the following estimation procedure.

Localize-and-Refine procedure
Input: Observations matrix A.

A) Localization of 3n/4 points
1. Pick uniformly at random a subset S ⊂ [n] of cardinality |S| = n/4.

2. Compute x̂(2)
S

by solving

x̂(1)
S ∈ argmin

xS∈Πn0

〈ASS , D(xS)〉 ,

x̂
(2)
i ∈ argmin

z∈Cn0

〈
Ai,S , D(z, x̂(1)

S )
〉
, for i ∈ S ,

with D(xS) =
[
d(xi, xj)

]
i,j∈S

and D(z,xS) =
[
d(z, xj)

]
j∈S

.

B) Localization of 3n/4 (other) points
1. Pick uniformly at random a subset S′ ⊂ S of size |S′| = n/4.

2. Compute x̂(2′)
S′ by solving

x̂(1′)
S′ ∈ argmin

xS′∈Πn0

〈AS′S′ , D(xS′ )〉,

x̂
(2′)
i ∈ argmin

z∈Cn0

〈
Ai,S′ , D(z, x̂(1′)

S′ )
〉
, for i ∈ S

′
,

with D(xS′ ) =
[
d(xi, xj)

]
i,j∈S′ and D(z,xS′ ) =

[
d(z, xj)

]
j∈S′ .

C) Merging the two localizations

1. Compute Q̂ by solving (20).
2. Output: x̂ ∈ Cn defined by

x̂j =
{

x̂
(2)
j if j ∈ S ,

Q̂x̂
(2′)
j if j ∈ S .

(21)

The minimization problem (20) can be solved efficiently. For example, we can
observe that the minimum is achieved at some Q̂ ∈ O preserving Cn0 , and since
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there are at most 2n0 such orthogonal transformations, we can enumerate them.
We refer to Section 6 for details.

4. Spectral localization in the geometric latent model

The computation of the initial localization x̂(1)
S requires to minimize (18) over

Πn0 , which is an instance of the Quadratic Assignment Problem (QAP), which
is known to be NP-hard and hard to approximate [31, 35]. A spectral relaxation
of the QAP has been shown to be successful for reordering a pre (toroidal)
R-matrix [3, 33], and hence for solving the noiseless seriation problem for R-
matrices. This vanilla spectral algorithm proposed in [3] takes as input any
symmetric matrix M ∈ R

N×N and output N points in R
2.

Vanilla Spectral Algorithm (VSA)
Input: symmetric matrix M ∈ RN×N with eigenvalues λ̂0 ≥ . . . ≥ λ̂N−1.

Compute: two orthonormal eigenvectors û, v̂ ∈ RN associated with the second and third
eigenvalues λ̂1 and λ̂2 of M

Output:

x̂VSA =
(√

N

2
(û1, v̂1)T , . . . ,

√
N

2
(ûN , v̂N )T

)
∈ R

2×N (22)

In this section, we adapt this vanilla spectral algorithm in order to get a
computationally efficient initial estimator x̃(1)

S . In Section 4.1, we describe the
estimator x̃(1)

S and provide some error bounds in d∞-distance for the Localize-
and-Refine algorithm based on x̃(1)

S . The main difference compared to Section 3
is that our theory is limited to cases where the function f is geometric, that is,

f(x, y) = g(d(x, y)) for all x, y ∈ C, (23)

for some g : [0, π] → [0, 1]. In Section 4.2, we complement this result by provid-
ing an error bound in �1-norm for the vanilla spectral algorithm (VSA) in the
geometric case.

4.1. Spectral localization algorithm

We observe that the output x̂VSA
S of the vanilla spectral algorithm applied to

ASS does not belong to Πn0 , and even not to Cn0 . Hence, we need an additional
approximation step in order to get an estimator x̃(1)

S that can be plugged in our
Localize-and-Refine procedure (16). In the description of the algorithm below,
we identify points on the circle C to unit norm complex numbers. Besides, for
such a point z, we write ‖z‖1 for its �1 norm in R

2.
The next theorem provides an error bound in d∞-distance for the Localize-

and-Refine procedure (21), when we replace x̂(1)
S by x̃(1)

S . This bound involves
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Spectral Localization (LS)
Input: a subset S = {i1, . . . , in0} ⊂ [n] with i1 < . . . < in0 , and data matrix ASS .

Vanilla spectral localization: compute
x̂VSA
S := [x̂VSA

i�
]l∈[n0] = VSA(ASS)

Uniform Approximation (UA) in Πn0 :

1. Set z� = x̂VSA
i�

/‖x̂VSA
i�

‖2, for � = 1, . . . , n0.
2. Pick any permutation σ such that zσ(1), . . . , zσ(n0) is in trigonometric order.

3. Set x̃
(1)
iσ(�)

= e
ι
2π(k̂+�)

n0 , where k̂ ∈ argmink∈[n0]
∑n0

�=1

∥∥∥∥eι 2π(k+�)
n0 − zσ(�)

∥∥∥∥
1
.

Output: x̃(1)
S := [x̃(1)

i�
]l∈[n0] ∈ Πn0 .

the two spectral gaps Δ1 = λ∗
0 − λ∗

1 and Δ2 = λ∗
2 − λ∗

3, where λ∗
0 ≥ . . . ≥ λ∗

n−1
denote the eigenvalues of the signal matrix F .

Theorem 4.1. Let n ≥ 16, ca, cb, ce > 0, and 0 < cl ≤ cL. Let (x∗, f) ∈
R[F, cl, cL, ce] with f a geometric function f = g ◦ d. Assume that x∗ fulfills

d∞(x∗,Πn) ≤ ca

√
log(n)

n
, (24)

and that the spectral gaps satisfy Δ1 ∧ Δ2 ≥ cbn. Then, there exists a constant
ClLeab > 0 depending only on ce, cl, cL, ca and cb, such that, with probability
at least 1 − 9/n2, the spectral Localize-and-Refine procedure (21) with x̂(1)

S and
x̂(1′)
S′ replaced by x̃(1)

S and x̃(1′)
S′ satisfies the uniform bound

min
Q∈O

d∞(x̂, Qx∗) ≤ ClLeab

√
log(n)

n
.

Similarly as in Theorem 3.1 and 3.2, we estimate the latent positions at the
optimal

√
log(n)/n rate in d∞-distance, but under the additional assumptions

that f is a geometric function (23) and F fulfills the spectral gap condition
Δ1 ∧ Δ2 ≥ cbn. The proof of Theorem 4.1 is given in Appendix D. The proof
mainly relies on controlling the �1-norm between x̂VSA and Qx∗. This result,
which has its own interest, is presented in Proposition 4.4, in Section 4.2. Below,
we exhibit two cases where the spectral gap condition Δ1 ∧ Δ2 ≥ cbn holds.

Example: Geometric model with Fourier gaps The eigenvalues of F are
closely related to the discrete Fourier transform of g, so that we can bound the
spectral gaps Δ1 and Δ2 in terms of these Fourier coefficients. More precisely,
the function f is given by f(x, y) = g(d(x, y)), with g defined on [0, π]. One can
extend g to [0, 2π) by taking g(x) = g(2π − x) for any x ∈ (π, 2π). Then, for
any integer n, the discrete Fourier transform of

{
g(j 2π

n ) : j = 0, . . . , n− 1
}

is
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defined by

Fk,n(g) =
n−1∑
j=0

g

(
j
2π
n

)
cos

(
j
2πk
n

)
, for k = 0, . . . , n− 1. (25)

The following lemma bounds the spectral gaps Δ1 and Δ2 in terms of the gaps
between the Fourier coefficients.

Lemma 4.2. Let ca, cb, ce > 0, and 0 < cl ≤ cL. Let (x∗, f) ∈ R[F, cl, cL, ce]
with f a geometric function f = g ◦ d, and x∗ fulfilling (24).

Let us set Φ1 = F0,n(g)−F1,n(g) and Φ2 = minj=2,...,
n/2� F1,n(g)−Fj,n(g).
Then, there exists a constant ClLea > 0, depending only on ce, cl, cL and ca,
such that

|Δ1 − Φ1| ∨ |Δ2 − Φ2| ≤ ClLea

√
n log(n) .

Hence, Theorem 4.1 still holds when we replace the gap condition Δ1 ∧Δ2 ≥
cbn by the condition Φ1 ∧ Φ2 ≥ cbn. So, when the first discrete Fourier coef-
ficients of g are well separated from the other coefficients, the spectral version
of the Localize-and-Refine algorithm estimates, in polynomial time, the latent
positions at the optimal

√
log(n)/n rate in d∞-distance. Below, we give an

example where the Fourier coefficients can be explicitly computed and where
Φ1,Φ2 are proportional to n.

Example: Affine geometric model As a simple instantiation of Theo-
rem 4.1 and Lemma 4.2, let us consider the geometric function f(x, y) = 1 −
d(x, y)/(2π). The corresponding univariate function g(z) = 1 − z/(2π) is affine
and its discrete Fourier coefficients can be computed explicitly in terms of
trigonometric functions. In Appendix D.6, we prove that Φ1 ∧ Φ2 ≥ cbn for
some numerical constant cb > 0. We then get the next corollary of Theorem 4.1.

Corollary 4.3. Let f be the function defined as f(x, y) = 1 − d(x, y)/(2π).
Assume that the latent positions x∗ ∈ Cn fulfill (24). Then, there exist constants
Ca and C ′

a depending only on ca such that for all n ≥ C ′
a, with probability

higher than 1 − 9/n2, the spectral Localize-and-Refine procedure (21), with x̂(1)
S

and x̂(1′)
S′ replaced by x̃(1)

S and x̃(1′)
S′ , satisfies the uniform bound

min
Q∈O

d∞(x̂, Qx∗) ≤ Ca

√
log(n)

n
.

Theorem 5.1 in the next section shows that this estimation rate is optimal.

4.2. �1-bound for the vanilla spectral algorithm

As a byproduct of our analysis, we provide an �1-bound for the estimation of the
latent positions with the vanilla spectral algorithm (VSA), in the geometric la-
tent model. Recanati et al. [33] have already shown that VSA succeeds to recover
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the hidden permutation in the noiseless seriation problem with R-matrices. We
extend their work to the geometric latent model on C.

Starting from the noisy observation A = F + E with Fij = g ◦ d(x∗
i , x

∗
j ), we

apply VSA to the whole matrix A and get an estimation x̂VSA ∈ R
2×n of x∗.

The next proposition provides a bound in terms of the �1-distance

‖x̂VSA − x‖1 :=
n∑

j=1

2∑
i=1

∣∣x̂VSA
ij − xij

∣∣ ,
and in terms of the spectral gaps Δ1 = λ∗

0 − λ∗
1 and Δ2 = λ∗

2 − λ∗
3, where

λ∗
0 ≥ . . . ≥ λ∗

n0−1 are the eigenvalues of the signal matrix F .

Proposition 4.4. Let n ≥ 4, and let f = g ◦ d ∈ BL[cl, cL, ce] be a bi-Lipschitz
geometric function. Assume that the latent positions x∗ fulfill the Assumption
(24), with ca > 0. Then, there exist two constants ClLea and C ′

lLea, depending
only on cl, cL, ce and ca, such that, with probability at least 1−1/n2, the vanilla
spectral estimator x̂VSA satisfies

min
Q∈O

‖x̂VSA −Qx∗‖1 ≤ ClLea
n
√
n log(n)

(Δ1 ∧ Δ2) ∨ 1

≤ ClLea
n
√

n log(n)[
(Φ1 ∧ Φ2) − C ′

lLea

√
n log(n)

]
∨ 1

.

Proposition 4.4 is proved in Appendix D.7. It provides an �1-localization
bound depending on the spectral gap Δ1 ∧ Δ2 of the signal matrix F . Since
there are only n positions to be estimated in the bounded space C, this bound
is uninformative when the spectral gaps Δ1 ∧ Δ2 are smaller than

√
n log(n).

Conversely, when the spectral gaps are of the order of n, we get an �1-bound of
the desired scaling

√
n log(n).

Proposition 4.4 is based on the fact that the signal matrix F is well approx-
imated by a circulant and circular-R matrix, which benefits from nice spectral
properties, see Appendix D.4. This type of R-matrices was already studied in
[33] to derive some error bounds on the reconstruction of positions – see Propo-
sition D in [33]. Here, Proposition 4.4 extends their result by providing some
explicit bounds in the stochastic setting and also by considering some more
general signals F , which are not assumed to be an exact circulant and circular
R-matrix.

5. Minimax lower bound

In this section, we prove that the
√

log(n)/n rate in Theorem 3.1 is minimax
optimal. Let us consider the observation model A = F + E, where we assume
that the entries {Aij : i < j} follow independent Bernoulli distributions with
parameters f(x∗

i , x
∗
j ). We focus on this specific case of sub-Gaussian distribu-

tions in the lower bound, as we have in mind random graph applications. We
emphasize that the same lower-bound holds for Gaussian noise.
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To prove the lower bound, we consider the simpler setting where f0 is known
to the statistician, and is an affine function of d,

f0(x, y) = (3/4) − d(x, y)/(4π) , for all x, y ∈ C.

This function f0 corresponds to a geometric latent model as discussed in the
introduction, and it satisfies the bi-Lipschitz assumption (5- 6) for ce = 0 and
cl = cL = (4π)−1. In this simple scenario, the latent positions are identifiable
up to the orthogonal transformations in O, so we derive a lower bound in terms
of the quasi-metric minQ∈O d∞(x̂, Qx∗). Recall that P(x∗,f0) denotes the distri-
bution of A with representation (x∗, f0).

Theorem 5.1. There exist two positive constants C,C ′ such that for any n ≥
C ′, we have the lower bound

inf
x̂

sup
x∗∈Πn

P(x∗,f0)

[
min
Q∈O

d∞(x̂, Qx∗) ≥ C

√
log(n)

n

]
≥ 1

2 ,

where the infimum holds over all σ(A)-measurable functions x̂.

The proof of the Theorem 5.1 is given in Appendix C.3. The lower bound is
written over the collection of n-tuples x∗ ∈ Πn, which is a subclass of the class
considered in our upper bounds (since all x∗ ∈ Πn satisfy the condition (12)
for any ca ≥ 0). The lower bound matches the upper bound in Theorem 3.2
up to some multiplicative constants. Therefore, it implies the optimality of the√

log(n)/n estimation rate of our estimator (in the minimax sense). The fact
that the lower bound holds even for a known function entails that the rate√

log(n)/n is not driven by the (absence of) knowledge of the affinity function
in our setting. Moreover, since the affine function f0 satisfies the bi-Lipschitz
assumption (5–6) for ce = 0, i.e. f0 ∈ BL[(4π)−1, (4π)−1, 0], this entails that the
rate

√
log(n)/n is not due to the slack εn = ce

√
log(n)/n in the bi-Lipschitz

assumption. In fact, we precisely allow this slack ce
√

log(n)/n in (5–6) because
this generalization does not worsen the estimation rate compared to pure bi-
Lipschitz functions (ce = 0). Finally, since the set of n-tuples x∗ ∈ Πn is in
correspondence with the set of permutations σ∗ of [n], Theorem 5.1 ensures
that the bound (14) is rate-optimal for the bi-Lipschitz seriation problem.

6. Numerical experiments

6.1. Optimal rate

In Figure (1), we study the ratio r = minQ∈Q d∞(x̂,Qx∗)
vopt

of the maximum error of
the Localize-and-Refine algorithm x̂ (without data splitting) and the optimal
rate vopt =

√
log(n)/n. For each sample size n = 100, 200, 300, 400, a dot rep-

resents the average of 50 ratios r1, . . . , r50 obtained on independent data sets
A(1), . . . , A(50). Each data matrix A(j), j ∈ [50], has been generated as in the
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Fig 1. Ratio of the maximum error of the Localize-and-Refine algorithm and the optimal rate√
log(n)/n, with noise level σ = 0.1 (green) and σ = 0.5 (red).

model (3), with the three following specifications. The latent points x∗
1, . . . , x

∗
n

are sampled independently and uniformly on C. The affinity function is the affine
geometric function f(x, y) = 1−d(x, y)/(2π). The entries Eij , 1 ≤ i < j ≤ n, of
the noise matrix are independent Gaussian random variables, with a standard
deviation that is either equal to 0.1 (green curve) or to 0.5 (red curve).

One can observe in Figure (1) that the (averaged) ratio for σ = 0.1 is (ap-
proximately) constant and equal to 1, while for σ = 0.5 it decreases from 7 to 5.
In other words, the maximum error of the Localize-and-Refine algorithm follows
a
√

log(n)/n rate, up to a multiplicative constant C ∈ [ 12 , 8], for sample sizes
n ≥ 100. This corroborates the conclusion of our theoretical findings (upper
bound of Corollary 3.3 and lower bound of Theorem 5.1) that the Localize-and-
Refine algorithm achieves the optimal

√
log(n)/n rate up to a multiplicative

constant C that is bounded away from zero and bounded from above. An inter-
esting question (for future research) would be to understand the dependencies of
C in the problem parameters. Figure (1) indeed shows that C behaves differently
when σ = 0.1 or σ = 0.5, and that C varies with n.

6.2. Usefulness of data splitting? of refined estimation step 2?

In this section, we investigate two questions relative to the empirical perfor-
mance of the Localize-and-Refine algorithm with the initial localization x̂(1)

S

given by the spectral output x̃(1)
S (defined page 1605): (i) Is the data splitting

useful in practice? (ii) Does the refined estimation (step 2) empirically improve
the initial localization (step 1)?

In each Figure 2 and 3, we compare two algorithms, presenting boxplots of
their localization errors in d∞-distance. Each boxplot represents the distribu-
tion of 50 errors made on 50 samplings of the data matrices A. Each data
matrix A is generated as in the model (3), with the three following spec-
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Fig 2. Localization error in d∞-distance for the Localize-and-Refine algorithm with
data-splitting (red) and without data-splitting (blue). Top line: noise with standard-
deviation sd= 0.1. Bottom line: noise with sd=0.5. Left: affine geometric affinity func-
tion f(x, y) = 1 − d(x, y)/(2π). Right: Logit geometric affinity function f(x, y) =
exp[−d(x, y)]/ (1 + exp[−d(x, y)]).

ifications. The latent points x∗
1, . . . , x

∗
n are sampled independently and uni-

formly on C. For the affinity function, we choose either the affine geometric
function f(x, y) = 1 − d(x, y)/(2π), or the logit geometric function f(x, y) =
exp[−d(x, y)]/ (1 + exp[−d(x, y)]). In the noise matrix, the entries Eij , 1 ≤ i <
j ≤ n, are independent Gaussian random variables, with a standard deviation
that is either equal to 0.1 (top line) or 0.5 (bottom line). The same protocol is
used in Figure 4, except that we measure the localization error in d1-distance,
instead of d∞-distance.

Question (i): We use a data splitting scheme in the Localize-and-Refine algo-
rithm in order to ensure independence between the data used in the two steps.
This independence was convenient to prove theoretical guarantees (as Theorem
4.1). Yet, data splitting makes the initial localization run on a (n/4) × (n/4)
data matrix, instead of the whole n×n matrix, which is expected to enlarge the
variance of this initial localization by a factor 4. So, one can wonder whether the
splitting is necessary and useful in practice. To answer this question, we illustrate
in Figure 2 the difference between the performances of the Localize-and-Refine
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algorithm and the homologous procedure without data splitting (the former is
plotted in red, the latter in blue). One can observe that the d∞-localization
error is much smaller for the procedure without splitting. A plausible expla-
nation for the good performances without data-splitting is that the statistical
dependence between the steps 1 and 2 of the algorithm is negligible for large
n, rendering the data splitting useless. Indeed, in the no-splitting version of the
algorithm, step 1 uses O(n2) observations to release a first localization x̃(1) of
the n positions, then step 2 refines the estimation of a position xi using n obser-
vations, which only represents a fraction O(1/n) of the observations used in step
1. Hence, the dependence between x̃(1) in step 1 and the n observations in step
2 could be sufficiently small to not require a data splitting. Accordingly, we rec-
ommend the version of the Localize-and-Refine algorithm without data-spliting
for practical use. As a future direction of research, it would be interesting to
investigate the theoretical performance of the algorithm without data splitting,
in order to bridge the gap between the theory and the practice.

Question (ii): The strategy of the Localize-and-Refine algorithm is to get an
initial localization with controlled d1-error and then to refine the localization
in order to ensure a control in the d∞-metric. A natural question is whether
the refinement step 2 improves the initial localization obtained by the Spec-
tral algorithm in step 1. We investigate numerically this question in Figure 3,
by comparing the d∞-error of the Spectral Localization procedure (plotted in
red) and of the Localize-and-Refine algorithm without data splitting (in blue).
One can observe contrasting results, depending on the standard-deviation of
the noise. When the standard-deviation is 0.5 (bottom line), the second step
offers no significant improvement in the d∞-localization error. Conversely, when
the standard-deviation is 0.1 (top line), the d∞-error is significantly improved
by the refinement step. This suggests that, to be useful, the refinement step
requires a precise enough initial localization. We complement Figure 3 with
Figure 4, which displays the errors in d1-distance (scaled by 1/n for a better
comparison), instead of the d∞-distance, though this loss function is not our
main concern in this paper. In Figure 4, we observe a behavior in the (d1/n)-
metric very similar to the behavior in the d∞-metric, displayed in Figure 3. In
the light of the numerical performance of the Spectral Localization in Figure 3,
an interesting open question is wether we can prove theoretical guarantees on
the d∞-localization error of this procedure.

7. Discussion

Relying on observations of pairwise affinities in a latent space model, we stud-
ied the problem of uniformly localizing positions x∗ = (x∗

1, . . . , x
∗
n) on the

unit sphere C ⊂ R
2. Under bi-Lipschitz assumptions on the affinity function,

we established the rate
√

log(n)/n for the uniform localization of balanced n-
tuples x∗ ∈ Πn. We also proved that non-trivial estimation error is still pos-
sible when the latent points do not form a balanced n-tuple (x∗ /∈ Πn) to the
price of an additional bias d∞(x∗,Πn). This bias remains small compared to
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Fig 3. Localization error in d∞-distance for the Spectral algorithm (red) and the Localize-
and-Refine algorithm (blue). Top line: noise with sd=0.1. Bottom line: noise with sd=0.5.
Left: affine geometric affinity function. Right: Logit geometric affinity function.

the
√

log(n)/n rate when the points have been sampled uniformly at random
on C.

We also analyzed a spectral embedding alternative in Section 4, which ben-
efits from a polynomial-time complexity. When the function f is geometric and
when the associated Fourier coefficients are suitably separated, this spectral
method achieves the optimal rate

√
log(n)/n for uniform localization. Yet, the

spectral embedding takes advantage of the structure of Toeplitz R-matrix. Since
this structure disappears in the general case of bi-Lipschitz functions, there is
no apparent reason for the spectral algorithm to work over the whole class of
bi-Lipschitz functions.

As our non-polynomial-time algorithm is based on an instance of the Quadratic
Assignment Problem, which is known to be NP Hard and even hard to approxi-
mate, the existence of polynomial-time algorithms achieving the

√
log(n)/n rate

over the whole class of bi-Lipschitz functions remains an open question.
The latent positions are not identifiable when f is unknown, and our main

hypothesis is that there exists a representation (x, f) with x close to Πn and
f bi-Lipschitz. We use as reference the regular distribution Πn, since regu-
lar and uniform distributions are the ones that appear in classical models like
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Fig 4. Localization error in
( 1
n
d1

)
-distance for the Spectral algorithm (red) and the Localize-

and-Refine algorithm (blue). Top line: noise with sd=0.1. Bottom line: noise with sd=0.5.
Left: affine geometric affinity function. Right: Logit geometric affinity function.

graphon, f -random graphs, or statistical seriation. Our algorithms builds on this
hypothesis, and consequently the bias min(x,f)∈R(cl,cL,ce)d∞(x,Πn) appears in
our bounds, where the minimum is over the set R(cl, cL, ce) of bi-Lipschitz rep-
resentatives (x, f). This minimum leaves room to handle situations where the
latent positions do not match the regular grid Πn but are only more or less
evenly spread. For instance, the minimal bias is zero for some representations
(x, f), with x as far apart from Πn as d∞(x,Πn) ≥ π/8 (Proposition 2.2).
Yet, there are many practical situations where the affinity matrix is clustered,
that we cannot handle. In the case where the affinity matrix is clustered (f bi-
Lipschitz, but the xi are clustered), the problem becomes a clustering problem,
rather than a seriation problem, and our algorithms are not suited for clustering
data. The question of handling simultaneously clustering and seriation is very
interesting, but it is beyond the scope of this paper.

In this manuscript, we focused our attention to symmetric pairwise affin-
ity functions f . However, other one-dimensional localization models such as
Bradley-Terry model or more generally ranking problems, do not satisfy the
symmetry assumption. Still, we hope that our general two-step approach can
leverage other structural assumptions. In ranking, a natural counterpart of our
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model (3) is the so-called SST model introduced by [36], which is defined as
follows. We observe Aij = f(x∗

i , x
∗
j ) + Eij where the function f : (x, y) ∈

[0, 1] × [0, 1] �→ f(x, y) ∈ [0, 1] is non-decreasing with respect to x and non-
increasing with respect to y and satisfies the skew symmetry assumption, that
is f(x, y) = 1− f(y, x). In this setting, f(x∗

i , x
∗
j ) stands for the probability that

player i wins a game against player j. Note that the latent space is now [0, 1] and
not the torus C anymore. Although our methodology does not apply verbatim,
we could adapt the Localize and Refine procedure for the latent space [0, 1]. To
exploit the bi-isotonic and skew-symmetric assumptions, the refinement estima-
tor of (16) could for instance be replaced by

x̂
(2)
i ∈ argmax

z∈Gn0

〈
(Ai,S − 1

2), z − x̂(1)
S

〉
, for each i ∈ S ,

where Gn0 stands for the regular grid { 1
n0

, 2
n0

, . . . , 1} and x̂(1)
S is a suitable first-

step estimator. In comparison to (16), D(z, x̂(1)
S ) is replaced by z − x̂(1)

S . We
expect that, with a suitable initialization x̂(1)

S and under bi-Lipschitz assump-
tions, the resulting procedure achieves near-optimal localization rates. This is
an interesting direction for future research.

Appendix A: Some intuition on our analysis

To get some intuition on the rationale behind our analysis, we single out the
next lemma, which is a cornerstone of the analysis at least in the simplified
situation where ce = 0 and where the latent positions belong to Πn. Then, we
discuss some consequences in simplified versions of our work.

Lemma A.1. Let α, ε ≥ 0 be two non-negative constants, and let (aj)j=1,...,p
and (dj)j=1,...,p be two sequences fulfilling

a1 ≥ a2 ≥ . . . ≥ ap, d1 ≤ d2 ≤ . . . ≤ dp, and aj −aj+1 ≥ α(dj+1 − dj)− ε ,

for j = 1, . . . , p− 1. Then, for any permutation σ : [p] → [p] we have
p∑

j=1
aj(dσ(j) − dj) ≥

α

2

p∑
j=1

(dj − dσ(j))2 − ε

p∑
j=1

j(dj − dσ(j)). (26)

Proof of Lemma A.1. Let us set the notation Dj = d1+ . . .+dj , and dσj = dσ(j),
and Dσ

j = dσ1 + . . . + dσj for j = 1, . . . , p. Since d is non-decreasing, and since σ
is a permutation of [p], we have

Dσ
j ≥ Dj , for j = 1, . . . , p, and Dσ

p = Dp .

Writing dσj = Dσ
j −Dσ

j−1 and rearranging the sums, we get

p∑
j=1

aj(dσj − dj) =
p∑

j=1
aj

(
(Dσ

j −Dσ
j−1) − (Dj −Dj−1)

)
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= ap
(
Dσ

p −Dp

)︸ ︷︷ ︸
=0

+
p−1∑
j=1

(aj − aj+1)︸ ︷︷ ︸
≥α(dj+1−dj)−ε

(Dσ
j −Dj)︸ ︷︷ ︸
≥0

≥
p−1∑
j=1

[α(dj+1 − dj) − ε(j + 1 − j)](Dσ
j −Dj)

=
p∑

j=1
(αdj − εj)(dj − dσj )

= α

2

p∑
j=1

(dj − dσj )2 − ε

p∑
j=1

j(dj − dσj ) ,

where we used Abel transformation in the penultimate line. The proof of Lemma
A.1 is complete.

Let us discuss some immediate consequences of the above lemma for our
problem. Let us consider the case where the entries Aij of the matrix A decrease
with d(x∗

i , x
∗
j ) for some x∗ ∈ Πn. For a fixed i, let τ be a permutation of [n]

such that
{
d(x∗

i , x
∗
τ(j)) : j = 1, . . . , n

}
is ranked in increasing order. Let us set

aj = Aiτ(j) and dj = d(x∗
i , x

∗
τ(j)). Since the entries Aij decrease with d(x∗

i , x
∗
j ),

the sequences (aj)j=1,...,n and (dj)j=1,...,n fulfill the conditions of Lemma A.1
with α = ε = 0. Let us pick k ∈ [n] and let us denote by σk the permutation
of [n] such that d(x∗

k, x
∗
τ(j)) = d(x∗

i , x
∗
τ(σk(j))) = dσk(j) – this is possible because

x∗ ∈ Πn. We notice that σi = Id. Then, Lemma A.1 ensures that
n∑

j=1
Aiτ(j)d(x∗

k, x
∗
τ(j)) =

n∑
j=1

Aiτ(j)d(x∗
i , x

∗
τ(σk(j))) ≥

n∑
j=1

Aiτ(j)d(x∗
i , x

∗
τ(j)) ,

so that

x∗
i ∈ argmin

z∈Cn

n∑
j=1

Aijd(z, x∗
j ) .

This justifies that the criterion underlying the refined estimator (16) is able to
recover the true latent position x∗

j at least in an idealized setting where the
observations are noiseless, the entries of Aij are decreasing with d(x∗

i , x
∗
j ), and

the true latent positions x∗
j are plugged in (16) instead of the initial estimator

x̂(1).
When, in addition, we have a lower Lipschitz condition

Aiτ(j) −Aiτ(j+1) ≥ cl

(
d(x∗

i , x
∗
τ(j+1)) − d(x∗

i , x
∗
τ(j))

)
,

then, applying Lemma A.1, we can lower bound the difference
n∑

j=1
Aijd(x∗

k, x
∗
j ) −

n∑
j=1

Aijd(x∗
i , x

∗
j ) ≥

cl
2

n∑
j=1

(
d(x∗

i , x
∗
j ) − d(x∗

k, x
∗
j )
)2

.
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In particular, we observe that, for all z ∈ Cn,

n∑
j=1

Aijd(z, x∗
j ) ≥

n∑
j=1

Aijd(x∗
i , x

∗
j ) + cl

2

n∑
j=1

(
d(x∗

i , x
∗
j ) − d(z, x∗

j )
)2

,

so the sum
∑

j Aijd(z, x∗
j ) locally increases, when z moves away from x∗

i . In the
general case, where ce > 0 and the observations are noisy, the criterion does
not satisfy a simple local quadratic lower bound and we need to rely on finer
arguments than Lemma A.1 – see e.g. the proofs Lemma B.3 and B.16.

Finally, we sketch here the proof of the second result of Proposition 2.3, in the
specific case where ce = 0. Consider any two representations (x, f) and (x, f ′)
in R[F, cl, cL, 0] with x, x′ ∈ Πn. Since both x and x′ belong to Πn, this implies
that, for any fixed i, the vectors (d(xi, xj))j and (d(x′

i, x
′
j))j are equal, up to a

permutation of the entries. As ce = 0, the lower Lipschitz condition (6) ensures
that (Fi,j)j=1,...,n is decreasing both with respect to d(xi, xj) and d(x′

i, x
′
j). As

a consequence, we have d(xi, xj) = d(x′
i, x

′
j) for any i, j in [n]. We now show

that this implies that x = Qx′ for some Q ∈ O. Denote σ the permutation of
[n] such that σ(1) = 1 and the arguments xj satisfy xσ(i+1) = xσ(i) +2π/n. As a
consequence, we have d(x′

σ(i),x′
σ(i+1)) = d(xσ(i),xσ(i+1)) = 2π/n. This implies

that either x′
σ(i+1) = x′

σ(i) + 2π/n for all i, or x′
σ(i+1) = x′

σ(i) − 2π/n for all
i. In the former case, one easily sees that x = Qx′, where Q is the rotation
satisfying x1 = Qx′

1, whereas in the latter case, we have x = Qx′, where Q is
the reflection satisfying x1 = Qx′

1.

Appendix B: Proofs of main results

Recall that n = 4n0. Given an orthogonal transformation Q ∈ O, we define the
d1-loss relative to Q as

μx̂(1)
S ,x∗

S
(Q) := d1(x̂(1)

S , Qx∗
S)

n0
. (27)

Before proving Proposition 3.5, we study, as a warm-up, the simpler situation
where all the latent positions x∗

i are elements of the regular grid Cn0 and where
the vector x∗

S (composed of n0 coordinates of x∗) belongs to Πn0 . In this case,
d∞(x∗

S ,Πn0) = 0.

Lemma B.1. In addition of the assumptions listed in Proposition 3.5, we as-
sume that x∗ ∈ Cn

n0
and x∗

S ∈ Πn0 . Then for any Q ∈ O and any i ∈ S, the
estimator (16) satisfies the following bound

d∞(x̂(2)
i , Qx∗

i ) ≤ Cl,L,e

(
μx̂(1)

S ,x∗
S
(Q) +

√
log(n)

n

)
,

with probability at least 1 − 1/n3.
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Taking a union bound over the n− n0 indices i ∈ S, we

d∞(x̂S , Qx∗
S
) ≤ Cl,L,e

(
μx̂(1)

S ,x∗
S
(Q) +

√
log(n)

n

)
,

with probability higher than 1− 1/n2. This is exactly the conclusion of Propo-
sition 3.5 in the special case where x∗ ∈ Cn

n0
and x∗

S ∈ Πn0 . The proof of
Proposition 3.5 for general x∗ follows the same scheme as that of Lemma B.1,
but also requires some slight refinements. We first prove Lemma B.1 before
turning to the general case.

B.1. Proof of Lemma B.1

First, we claim that it suffices to restrict our attention to transformations Q ∈O
that let Cn0 invariant. Indeed, for general Q, there exists an orthogonal trans-
formation Q′, letting Cn0 invariant, and such that maxz∈Cn0

d(Qz,Q′z) � 1/n0.
Replacing Q′ by Q in the statement of Lemma B.1 only entails an additional
term of order 1/n0 which is negligible compared to the term

√
log(n)/n.

Let i ∈ S. In the two next lemmas, we bound

Li := 〈Fi,S , D(Q−1x̂
(2)
i ,x∗

S) −D(x∗
i ,x∗

S)〉 (28)

from above and below. We recall that Fi,S is the vector (f(x∗
i , x

∗
j ) for j ∈ S.

Lemma B.2. With probability at least 1 − 1/n3, we have

Li ≤ CL,ed(x̂(2)
i , Qx∗

i )
(
nμx̂(1)

S ,x∗
S
(Q) +

√
n log(n)

)
,

for some constant CL,e > 0.

Lemma B.3. We have

Li ≥ Cnd(x̂(2)
i , Qx∗

i )
(
cld(x̂(2)

i , Qx∗
i ) − εn

)
− c3e

πc2l

√
log3(n)

n
− 2ce

cl

√
log(n)

n
,

for some numerical constant C > 0 and all n larger than quantity Cl,e.

These two lemmas imply that, for n large enough and

d(x̂(2)
i , Qx∗

i ) ≥ 2C ′
l,e

√
log(n)/n ,

with C ′
l,e large enough, we have

C ′
l,end

2(x̂(2)
i , Qx∗

i ) ≤ Li ≤ CL,ed(x̂(2)
i , Qx∗

i )
(
nμx̂(1)

S ,x∗
S
(Q) +

√
n log(n)

)
.

We conclude that the error bound d(x̂(2)
i , Qx∗

i ) ≤ Cl,L,e[μx̂(1)
S ,x∗

S
(Q)+

√
log(n)/n]

holds with probability at least 1 − 1/n3.
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B.1.1. Proof of Lemma B.2

Since |S| = n0, we can assume that S = [n0] for the ease of exposition. Let
i ∈ S. First, we decompose Li as follows

Li =
n0∑
j=1

f(x∗
i , x

∗
j )
(
d(Q−1x̂

(2)
i , x∗

j ) − d(x∗
i , x

∗
j )
)
.

The regular grid Cn0 is invariant by Q, and x∗
S belongs to Πn0 . Besides, x̂(1)

S

belongs to Πn0 . As a consequence, we have {x∗
j ; j ∈ [n0]} = Cn0 = {Q−1x̂

(1)
j ; j ∈

[n0]}. Hence, we can reorder the sum in Li as follows

Li =
n0∑
j=1

f(x∗
i , Q

−1x̂
(1)
j )

(
d(Q−1x̂

(2)
i , Q−1x̂

(1)
j ) − d(x∗

i , Q
−1x̂

(1)
j )

)
.

To alleviate the notation, we write ẑi := Q−1x̂
(2)
i and z

(1)
j := Q−1x̂

(1)
j so that

Li =
n0∑
j=1

f(x∗
i , z

(1)
j )

(
d(ẑi, z(1)

j ) − d(x∗
i , z

(1)
j )

)
.

Lemma B.4. We have
n0∑
j=1

(
f(x∗

i , z
(1)
j ) − f(x∗

i , x
∗
j )
)(

d(ẑi, z(1)
j ) − d(x∗

i , z
(1)
j )

)
≤ CL,ed(x̂(2)

i , Qx∗
i )

[
nμx̂(1)

S ,x∗
S
(Q) +

√
n log(n)

]
.

Gathering this lemma with the definition of Li leads us to

Li ≤ CL,ed(x̂(2)
i , Qx∗

i )
[
nμx̂(1)

S ,x∗
S
(Q) +

√
n log(n))

]
(29)

+
n0∑
j=1

f(x∗
i , x

∗
j )

(
d(ẑi, z(1)

j ) − d(x∗
i , z

(1)
j )

)
.

The orthogonal transformation Q preserves the distances, hence the last term
of (29) is equal to
n0∑
j=1

f(x∗
i , x

∗
j )
(
d(ẑi, z(1)

j ) − d(x∗
i , z

(1)
j )

)
= 〈Fi,S , D(x̂(2)

i , x̂(1)
S ) −D(Qx∗

i , x̂
(1)
S )〉 .

(30)
To handle this term, we come back to the definition (16) of x̂(2)

i . Since Qx∗
i ∈ Cn0 ,

we have
〈Ai,S , D(x̂(2)

i , x̂(1)
S )〉 ≤ 〈Ai,S , D(Qx∗

i , x̂
(1)
S )〉 .

This yields

〈Fi,S , D(x̂(2)
i , x̂(1)

S ) −D(Qx∗
i , x̂

(1)
S )〉 ≤ 〈Ei,S , D(Qx∗

i , x̂
(1)
S ) −D(x̂(2)

i , x̂(1)
S )〉 .
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The right hand-side 〈Ei,S , D(Qx∗
i , x̂

(1)
S ) −D(x̂(2)

i , x̂(1)
S )〉 depends on x̂

(2)
i which

belongs to Cn0 . This is why we simultaneously control the expression 〈Ei,S ,
D(Qx∗

i , x̂
(1)
S ) − D(z, x̂(1)

S )〉 for all z ∈ Cn0 . This expression is distributed as a
mean zero sub-Gaussian random variable with norm at most C‖D(Qx∗

i , x̂
(1)
S )−

D(z, x̂(1)
S )‖2. Applying a union bound over all z ∈ Cn0 leads us to

〈Ei,S , D(Qx∗
i , x̂

(1)
S )−D(x̂(2)

i , x̂(1)
S )〉 ≤ C

√
log(n0)‖D(Qx∗

i , x̂
(1)
S )−D(x̂(2)

i , x̂(1)
S )‖2

with probability higher than 1−1/n3. Invoking the triangular inequality for the
distance d, we deduce that ‖D(Qx∗

i , x̂
(1)
S ) −D(x̂(2)

i , x̂(1)
S )‖2 ≤ d(x̂(2)

i , Qx∗
i )
√
n0.

It follows that, with probability at least 1 − 1/n3,

〈Fi,S , D(x̂(2)
i , x̂(1)

S ) −D(Qx∗
i , x̂

(1)
S )〉 ≤ Cd(x̂(2)

i , Qx∗
i )
√
n0 log(n0) .

Gathering this bound with (29) and (30) concludes the proof.

Proof of Lemma B.4. The first bi-Lipschitz condition (5) ensures that

|f(x∗
i , z

(1)
j ) − f(x∗

i , x
∗
j )| ≤ cLd(z(1)

j , x∗
j ) + εn .

By triangular inequality, we also have |d(ẑi, z(1)
j ) − d(x∗

i , z
(1)
j )| ≤ d(ẑi, x∗

i ) so
that

n0∑
j=1

(
f(x∗

i , z
(1)
j ) − f(x∗

i , x
∗
j )
)(

d(ẑi, z(1)
j ) − d(x∗

i , z
(1)
j )

)
≤ d(ẑi, x∗

i )
n0∑
j=1

(cLd(z(1)
j , x∗

j ) + εn) .

We have d(z(1)
j , x∗

j ) = d(x̂(1)
j , Qx∗

j ) since Q is an orthogonal transformation.
Hence, we obtain
n0∑
j=1

(
f(x∗

i , z
(1)
j ) − f(x∗

i , x
∗
j )
)(

d(ẑi, z(1)
j ) − d(x∗

i , z
(1)
j )

)
≤ d(x̂(2)

i , Qx∗
i )

(
cLn0μx̂(1)

S ,x∗
S
(Q) + ce

√
n log(n)

)
.

B.1.2. Proof of Lemma B.3

An interval I = [a, b] denotes the set of points lying between a and b in the
one-dimensional torus R/(2π), when following the trigonometric direction from
a to b. The length of I is denoted by |I|. For any point x in the sphere C, its
argument in [0, 2π) is denoted by x.
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Fig 5. Partition of [n0] in I1–I4.

Since |S| = n0, we can assume that S = [n0] for the ease of exposition. Let
i ∈ S and denote ẑi := Q−1x̂

(2)
i . Since d(x∗

i , ẑi) ≤ π, we can assume without
loss of generality that the arguments x∗

i = 0 and ẑi ∈ (0, π], so that we have
the equality d(x∗

i , ẑi) = |x∗
i − ẑi|. If ẑi = x∗

i , Lemma B.3 is trivial. We therefore
assume in the following that ẑi ∈ (0, π]. Below, we introduce a partition of [n0]
according to the relative positions of x∗

j , x∗
i and ẑi. This partition is depicted in

Figure 5.

I1 = {j ∈ [n0] : x∗
j ∈ [x∗

i , ẑi)} ; I2 = {j ∈ [n0] : x∗
j ∈ [ẑi, x∗

i + π)} ;
I3 = {j ∈ [n0] : x∗

j ∈ [x∗
i + π, ẑi + π)} ; I4 = {j ∈ [n0] : x∗

j ∈ [ẑi + π, x∗
i )} .

Although Is stands for a subset of indices, with a slight abuse of notation,
we still write |Is| for the length of the corresponding interval in R/(2π). For
instance, |I1| := |x∗

i − ẑi|.
We decompose L according to this partition of indices Li = L

(1)
i + L

(2)
i +

L
(3)
i + L

(4)
i , where L

(s)
i is the restriction of Li to the set Is. In particular, if

ẑi = π, then the intervals I2 and I4 are empty, and L
(2)
i = L

(4)
i = 0.

Next, we heavily rely on the fact that the elements of x∗
S are evenly spaced

on the sphere, that is {x∗
i : i ∈ [n0]} = Cn0 which holds true since we have

assumed x∗
S ∈ Πn0 . Using the symmetry of the set Cn0 , we establish below that

the sums L
(2)
i and L

(4)
i nearly compensate so that L(2)

i +L
(4)
i admits a positive

lower bound.

Lemma B.5. We have

L
(2)
i + L

(4)
i ≥ n0|I4|

2π cld
2(x̂(2)

i , Qx∗
i ) − n0d(x̂(2)

i , Qx∗
i )εn .

As for L
(1)
i (resp. L(3)

i ), we rely on the symmetry of I1 (resp. I3) around the
point of C whose argument is (x∗

i + ẑi)/2 (resp. ((x∗
i + ẑi)/2) + π).

Lemma B.6. For some numerical constant C > 0, we have

L
(1)
i + L

(3)
i ≥ Cn

( |I1|
4 − c−1

l εn
)d(x̂(2)

i , Qx∗
i )

2 (cl
d(x̂(2)

i , Qx∗
i )

2 − εn)
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− (πc2l )−1c3e

√
log3(n)/n− 2ce

cl

√
log(n)

n
.

By definition, |I1| + |I4| = π, which yields the desired bound

Li ≥ Cnd(x̂(2)
i , Qx∗

i )
(
cld(x̂(2)

i , Qx∗
i )− εn

)
− c3e

πc2l

√
log3(n)

n
− 2ce

cl

√
log(n)

n
.

Proof of Lemma B.5. In Figure 5, we can see that the difference d(ẑi, x∗
j ) −

d(x∗
i , x

∗
j ) is equal to −d(ẑi, x∗

i ) for all j ∈ I2, whereas it is equal to d(ẑi, x∗
i ) for

j ∈ I4. Thus, we obtain

L
(2)
i =

∑
j∈I2

f(x∗
i , x

∗
j )
(
d(ẑi, x∗

j ) − d(x∗
i , x

∗
j )
)

= −d(ẑi, x∗
i )

∑
j∈I2

f(x∗
i , x

∗
j ) ;

L
(4)
i =

∑
j∈I4

f(x∗
i , x

∗
j )
(
d(ẑi, x∗

j ) − d(x∗
i , x

∗
j )
)

= d(ẑi, x∗
i )

∑
j∈I4

f(x∗
i , x

∗
j ) .

Let φ denote the reflection with respect to the line going through the two points
of C of arguments

a = x∗
i + ẑi

2 and b = (x∗
i + π) + (ẑi + π)

2 .

As can be checked in Figure 5, for any l ∈ I2, we have φ(x∗
j ) = x∗

l for some j in
I4. Hence,

L
(2)
i + L

(4)
i = d(ẑi, x∗

i )
∑
j∈I4

(
f(x∗

i , x
∗
j ) − f(x∗

i , φ(x∗
j ))

)
.

To lower bound the difference in the sum, we invoke the bi-Lipschitz condi-
tion (6), which gives

f(x∗
i , x

∗
j ) − f(x∗

i , φ(x∗
j )) ≥ cl(d(x∗

i , φ(x∗
j )) − d(x∗

i , x
∗
j )) − εn ,

since x∗
j is closer to x∗

i than φ(x∗
j ) – see again Figure 5. Also, we can check

from Figure 5 that d(x∗
i , φ(x∗

j )) − d(x∗
i , x

∗
j ) = d(ẑi, x∗

i ) for all j ∈ I4. Since Cn0

is evenly spaced, the number of indices j in I4 is larger than n0|I4|/(2π). This
leads us to

L
(2)
i + L

(4)
i ≥ n0|I4|

2π d(ẑi, x∗
i )cld(ẑi, x∗

i ) − n0d(ẑi, x∗
i )εn .

Since d(ẑi, x∗
i ) = d(x̂(2)

i , Qx∗
i ), this concludes the proof.

Proof of Lemma B.6. From Figure 5, we see that, for all j ∈ I1,

d(ẑi, x∗
j ) − d(x∗

i , x
∗
j ) = |ẑi − x∗

j | − |x∗
i − x∗

j | = ẑi + x∗
i − 2x∗

j .
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For α ∈ (0, 1), write I
(α)
1 the sub-interval of I1 defined as

I
(α)
1 =

{
j ∈ [n0] : x∗

j ∈ [x∗
i , (1 − α)x∗

i + αẑi)
}

.

In particular, for all j ∈ I
(1/2)
1 , the above expression leads us to

d(ẑi, φ(x∗
j )) − d(x∗

i , φ(x∗
j )) = −

(
ẑi + x∗

i − 2x∗
j

)
,

where φ is the symmetry introduced in the proof of Lemma B.5. Hence, the
terms with j ∈ I

(1/2)
1 partially compensate with the terms with j outside I

(1/2)
1 .

L
(1)
i =

∑
j∈I1

f(x∗
i , x

∗
j )
[
d(ẑi, x∗

j ) − d(x∗
i , x

∗
j )
]

=
∑

j∈I
(1/2)
1

[
f(x∗

i , x
∗
j ) − f(x∗

i , φ(x∗
j ))

][
ẑi + x∗

i − 2x∗
j

]
.

For any j ∈ I
(1/2)
1 , we have d(x∗

i , φ(x∗
j )) ≥ d(x∗

i , x
∗
j ). As a consequence, it follows

from the bi-Lipschitz condition (6) that

f(x∗
i , x

∗
j ) − f(x∗

i , φ(x∗
j )) ≥ cl

[
d(x∗

i , φ(x∗
j )) − d(x∗

i , x
∗
j )
]
− εn .

Since d(x∗
i , φ(x∗

j )) − d(x∗
i , x

∗
j ) = |φ(x∗

j ) − x∗
j | for all j ∈ I

(1/2)
1 , we get

L
(1)
i ≥

∑
j∈I

(1/2)
1

(cl|φ(x∗
j ) − x∗

j | − εn)(ẑi + x∗
i − 2x∗

j ) . (31)

To control (31), we split the interval I(1/2)
1 according to the sign of the term

(cl|φ(x∗
j ) − x∗

j | − εn). That is, we write I
(1/2)
1 = I

(1/2)−
1 ∪ I

(1/2)+
1 where I

(1/2)−
1

is the set of indices j such that cl|φ(x∗
j ) − x∗

j | < εn.

Claim B.7. We have∑
j∈I

(1/2)−
1

(cl|φ(x∗
j ) − x∗

j | − εn)(ẑi + x∗
i − 2x∗

j )

≥ −(c2l 8π)−1c3e

√
log3(n)/n− ce

cl

√
log(n)

n
.

Claim B.8. For some numerical constant C > 0, we have∑
j∈I

(1/2)+
1

(cl|φ(x∗
j ) − x∗

j | − εn)(ẑi + x∗
i − 2x∗

j )

≥ Cn
( |I1|

4 − c−1
l εn

) |ẑi − x∗
i |

2 (cl
|ẑi − x∗

i |
2 − εn) .
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Gathering these two claims leads us to

L
(1)
i ≥ Cn

( |I1|
4 − c−1

l εn
) |ẑi − x∗

i |
2 (cl

|ẑi − x∗
i |

2 − εn)

− (c2l 8π)−1c3e

√
log3(n)/n− ce

cl

√
log(n)

n
,

which is the desired bound since |ẑi − x∗
i | = d(ẑi, x∗

i ) = d(x̂(2)
i , Qx∗

i ). By sym-
metry, the term L

(3)
i is handled as L

(1)
i and admits the same lower bound.

Proof of Claim B.7. For simplicity, the notation x is dropped out in the proof
of Claim B.7, and x is simply denoted by x. By definition of φ, we know that
(ẑi +x∗

i )/2 = (φ(x∗
j )+x∗

j )/2 for all j ∈ I
(1/2)
1 , which gives the equality ẑi +x∗

i −
2x∗

j = φ(x∗
j ) − x∗

j . Since 0 ≤ φ(x∗
j ) − x∗

j < c−1
l εn for all j ∈ I

(1/2)−
1 , we have

0 ≤ ẑi + x∗
i − 2x∗

j ≤ c−1
l εn .

Since cl|φ(x∗
j ) − x∗

j | − εn < 0 for j in I
(1/2)−
1 , we obtain

(cl|φ(x∗
j ) − x∗

j | − εn)(ẑi + x∗
i − 2x∗

j ) ≥ (cl|φ(x∗
j ) − x∗

j | − εn)c−1
l εn ≥ −c−1

l ε2
n .

Since the number of indices in I
(1/2)−
1 is at most 1 + n0/(2π)|I(1/2)−

1 | (where
|I(1/2)−

1 | is the arc length), and the length of this arc is at most c−1
l εn, we

conclude that∑
j∈I

(1/2)−
1

(cl|φ(x∗
j ) − x∗

j | − εn)(ẑi + x∗
i − 2x∗

j ) ≥ −n0

2π c
−2
l ε3

n

= − c3e
8πc2l

√
log3(n)

n
− c−1

l εn .

Proof of Claim B.8. Again, for convenience the notation x is dropped out here.
Since all the terms in the sum are nonnegative, we can simply consider indices
j in I

(1/2)+
1 ∩ I

(1/4)
1 . Using φ(x∗

j ) − x∗
j = ẑi + x∗

i − 2x∗
j for all j ∈ I

(1/2)
1 and

x∗
i = 0, we obtain that, for j ∈ I

(1/4)
1 , φ(x∗

j ) − x∗
j ≥ ẑi/2. This gives

(cl|φ(x∗
j ) − x∗

j | − εn)(ẑi + x∗
i − 2x∗

j ) ≥ (cl
ẑi
2 − εn) ẑi2 ,

and, for some numerical constant C > 0,∑
j∈I

(1/2)+
1

(cl|φ(x∗
j )−x∗

j |−εn)(ẑi +x∗
i −2x∗

j ) ≥ Cn
∣∣I(1/2)+

1 ∩ I
(1/4)
1

∣∣ ẑi
2 (cl

ẑi
2 −εn) .

(32)
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Since either I
(1/2)+
1 ⊂ I

(1/4)
1 or I

(1/4)
1 ⊂ I

(1/2)+
1 and |I(1/4)

1 | = |I1|/4 and
|I(1/2)+

1 | = |I(1/2)
1 | − |I(1/2)−

1 | ≥ |I(1/2)
1 | − c−1

l εn = |I1|
2 − c−1

l εn, we deduce
that

|I(1/2)+
1 ∩ I

(1/4)
1 | ≥ |I1|

4 − c−1
l εn .

Thus, we have∑
j∈I

(1/2)+
1

(cl|φ(x∗
j )− x∗

j | − εn)(ẑi + x∗
i − 2x∗

j ) ≥ Cn
( |I1|

4 − c−1
l εn

) ẑi
2 (cl

ẑi
2 − εn) .

Since ẑi = |ẑi − x∗
i | (recall that x∗

i = 0), this concludes the proof.

B.2. Proof of Proposition 3.5

Let x∗∗
S be a best approximation of x∗

S in Πn0 , that is, such that d∞(x∗
S ,x∗∗

S ) =
d∞(x∗

S ,Πn0). As in the proof of Lemma B.1, we restrict our attention to or-
thogonal transformations Q ∈ O that let Cn0 invariant. Fix i in S. To prove
Proposition 3.5, it suffices to establish variants of Lemmas B.2 and B.3 with

L̃i := 〈Fi,S , D(Q−1x̂
(2)
i ,x∗∗

S ) −D(x∗
i ,x∗∗

S )〉, (33)

instead of Li. In the definition of L̃i, x∗
S has been replaced by x∗∗

S .
Lemma B.9. With probability at least 1 − 1/n3, we have

L̃i ≤ CL,e

[
1 + d(x̂(2)

i , Qx∗
i )
(
nd∞(x∗

S ,Πn0) + nμx̂(1)
S ,x∗

S
(Q) +

√
n log(n)

)]
.

Lemma B.10. For n large enough, one has

L̃i ≥ C ′
l,end(x̂

(2)
i , Qx∗

i )
(
d(x̂(2)

i , Qx∗
i ) −

√
log(n)
n

)
− C ′′

l,e

√
log3(n)

n

−CL,e

{
1 + n

[
d∞(x∗

S ,Πn0) +
√

log(n)
n

]
d(x̂(2)

i , Qx∗
i )
}

.

These two lemmas enforce that, with probability higher than 1 − 1/n3,

d(x̂(2)
i , Qx∗

i ) ≤ Cl,L,e

[
d∞(x∗

S ,Πn0) + μx̂(1)
S ,x∗

S
(Q) +

√
log(n)/n

]
.

Indeed, assume that d(x̂(2)
i , Qx∗

i ) ≥ C ′
l,L,e

(
d∞(x∗

S ,Πn0) +
√

log(n)/n
)

where
C ′

l,L,e is large enough. Then, Lemma B.10 implies that L̃i �cl,cL,ce nd2(x̂(2)
i , Qx∗

i ).
Together with Lemma B.9, we deduce that

d(x̂(2)
i , Qx∗

i ) ≤ Cl,L,e

[
d∞(x∗

S ,Πn0) + μx̂(1)
S ,x∗

S
(Q) +

√
log(n)/n

]
.

In any case, we conclude that

d(x̂(2)
i , Qx∗

i ) ≤ (Cl,L,e ∨ C ′
l,L,e)

[
d∞(x∗

S ,Πn0) + μx̂(1)
S ,x∗

S
(Q) +

√
log(n)/n

]
,

with probability higher than 1−1/n3. Taking the minimum over all Q ∈ O that
let Cn0 invariant and a union bound over all i ∈ S, leads to Proposition 3.5.
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B.2.1. Proof of Lemma B.9

To ease the exposition, we assume that S = [n0]. Fix i ∈ S. We start from

L̃i =
n0∑
j=1

f(x∗
i , x

∗
j )
(
d(Q−1x̂

(2)
i , x∗∗

j ) − d(x∗
i , x

∗∗
j )

)
. (34)

In order to come back to the setting of Lemma B.1, we replace f(x∗
i , x

∗
j ) by

f(x∗
i , x

∗∗
j ), using the bi-Lipschitz condition (5) so that

f(x∗
i , x

∗
j ) − f(x∗

i , x
∗∗
j ) ≤ (cL ∨ ce)

[
d∞(x∗

S ,Πn0) +
√

log(n)
n

]
.

By triangular inequality, we have d(Q−1x̂
(2)
i , x∗∗

j )− d(x∗
i , x

∗∗
j ) ≤ d(Q−1x̂

(2)
i , x∗

i )
which implies

n0∑
j=1

(
f(x∗

i , x
∗
j ) − f(x∗

i , x
∗∗
j )

)(
d(Q−1x̂

(2)
i , x∗∗

j ) − d(x∗
i , x

∗∗
j )

)
≤ (cL ∨ ce)d(x̂(2)

i , Qx∗
i )rn ,

where we define rn = nd∞(x∗
S ,Πn0) +

√
n log(n). This leads us to

L̃i ≤ (cL ∨ ce)d(x̂(2)
i , Qx∗

i )rn +
n0∑
j=1

f(x∗
i , x

∗∗
j )

(
d(Q−1x̂

(2)
i , x∗∗

j ) − d(x∗
i , x

∗∗
j )

)
.

Since x∗∗
j now runs over Πn0 , we can replace as in the proof of Lemma B.2 the

sum over x∗∗
j by a sum over Q−1x̂

(1)
j using a suitable permutation:

L̃i ≤ (cL ∨ ce)d(x̂(2)
i , Qx∗

i )rn

+
n0∑
j=1

f(x∗
i , Q

−1x̂
(1)
j )

(
d(Q−1x̂

(2)
i , Q−1x̂

(1)
j ) − d(x∗

i , Q
−1x̂

(1)
j )

)
.

The remainder of the proof follows the same lines as for Lemma B.2, except
for small differences. Still, we provide some details for the sake of completeness.
as in that proof we write ẑi = Q−1x̂

(2)
i and z

(1)
i = Q−1x̂

(1)
i . We first apply

Lemma B.4 to obtain

L̃i ≤ CL,ed(x̂(2)
i , Qx∗

i )
[
nd∞(x∗

S ,Πn0) + nμx̂(1)
S ,x∗

S
(Q) +

√
n log(n)

]
+

n0∑
j=1

f(x∗
i , x

∗
j )
(
d(ẑi, z(1)

j ) − d(x∗
i , z

(1)
j )

)
.

The last expression simplifies in
n0∑
j=1

f(x∗
i , x

∗
j )
(
d(ẑi, z(1)

j ) − d(x∗
i , z

(1)
j )

)
= 〈Fi,S , D(x̂(2)

i , x̂(1)
S ) −D(Qx∗

i , x̂
(1)
S )〉 .
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In Lemma B.2, we had Qx∗
i ∈ Cn0 so that we could use the definition of x̂(2)

i

to deduce that 〈Ai,S , D(x̂(2)
i , x̂(1)

S )〉 ≤ 〈Ai,S , D(Qx∗
i , x̂

(1)
S )〉. Unfortunately, Qx∗

i

does not necessarily belong to Cn0 anymore. To handle this minor issue, we
replace x∗

i by the closest element y∗i in Cn0 . It satisfies d(x∗
i , y

∗
i ) ≤ 2π/n0 and

Qy∗i ∈ Cn0 . This leads us to

〈Ai,S , D(x̂(2)
i , x̂(1)

S )〉≤〈Ai,S , D(Qy∗i , x̂
(1)
S )〉

≤〈Ai,S , D(Qx∗
i , x̂

(1)
S )〉+〈Ai,S , D(Qy∗i , x̂

(1)
S )−D(Qx∗

i , x̂
(1)
S )〉 .

Since |d(Qy∗i , xi) − d(Qx∗
i , xi)| ≤ 2π/n0 and |f(x, y)| ≤ 1, the above additional

error term satisfies

〈Ai,S , D(Qy∗i , x̂
(1)
S ) −D(Qx∗

i , x̂
(1)
S )〉 ≤ 〈Fi,S , D(Qy∗i , x̂

(1)
S ) −D(Qx∗

i , x̂
(1)
S )〉

+ 〈Ei,S , D(Qy∗i , x̂
(1)
S ) −D(Qx∗

i , x̂
(1)
S )〉

≤ 2π+

C ′√log(n)‖D(Qy∗i , x̂
(1)
S ) −D(Qx∗

i , x̂
(1)
S )‖2

� 1 ,

with probability higher than 1− 1/(2n3). Putting everything together, we have
shown that

L̃i ≤ CL,ed(x̂(2)
i , Qx∗

i )
[
nd∞(x∗

S ,Πn0) + nμx̂(1)
S ,x∗

S
(Q) +

√
n log(n)

]
+ C + 〈Ei,S , D(x̂(2)

i , x̂(1)
S ) −D(Qx∗

i , x̂
(1)
S )〉 ,

with probability higher than 1 − 1/(2n3). To conclude, it suffices to the rhs in
the above expression. We do it exactly as in the end of the proof of Lemma B.2
except that we now consider a probability 1 − 1/(2n3).

B.2.2. Proof of Lemma B.10

Fix i ∈ S and define y∗i ∈ Cn0 as a closest point to x∗
i in Cn0 . We introduce the

quantity

L′
i =

n0∑
j=1

f(y∗i , x∗∗
j )

(
d(Q−1x̂

(2)
i , x∗∗

j ) − d(y∗i , x∗∗
j )

)
,

which has the same properties as the Li used in Lemma B.1, since each point
involved in the expression of L′

i is an element of Cn0 , and the sum runs over
a vector x∗∗

S in Πn0 . This allows us to invoke Lemma B.3 –from the proof of
Lemma B.1 – to get

L′
i ≥ Cnd(x̂(2)

i , Qy∗i )
[
cld(x̂(2)

i , Qy∗i ) − εn

]
− c3e

πc2l

√
log3(n)

n
,

for n large enough.
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By definition of y∗i , we know that d(y∗i , x∗
i ) ≤ 2π/n0. Hence, by triangular

inequality, d(x̂(2)
i , Qy∗i ) ≥ d(x̂(2)

i , Qx∗
i ) − 2π/n0 and we derive that

L′
i ≥ C ′

l,end(x̂
(2)
i , Qx∗

i )
[
d(x̂(2)

i , Qx∗
i ) −

√
log(n)

n

]
− C ′′

l,e

√
log3(n)

n
.

Next, we rely on the following lemma to replace L′
i by L̃i.

Lemma B.11. We have

|L̃i − L′
i| ≤ CL,e

[
1 +

(
nd∞(x∗

S ,Πn0) +
√

n log(n)
)
d(x̂(2)

i , Qx∗
i )
]
.

Gathering these two bounds completes the proof of Lemma B.10.

Proof of Lemma B.11. From the definition of y∗i and the triangular inequality,
we have ∣∣∣d(x∗

i , x
∗∗
j ) − d(y∗i , x∗∗

j )
∣∣∣ ≤ 2π/n0 .

This allows us to deduce that the quantity

L′′
i =

n0∑
j=1

f(x∗
i , x

∗
j )
(
d(Q−1x̂

(2)
i , x∗∗

j ) − d(y∗i , x∗∗
j )

)
(35)

satisfies |L̃i − L′′
i | ≤ 2π. Besides, we deduce from the bi-Lipschitz condition (5)

and the triangular inequality that

|f(x∗
i , x

∗
j ) − f(y∗i , x∗∗

j )| ≤ cL
(
d(x∗

i , y
∗
i ) + d(x∗

j , x
∗∗
j )

)
+ 2εn

≤ 2cLd∞(x∗
S ,Πn0) + 2εn .

Then, we deduce that

|L′
i − L′′

i | ≤ 2nd(Q−1x̂
(2)
i , y∗i )

(
cLd∞(x∗

S ,Πn0) + εn
)
.

All in all, we have

|L̃i − L′
i| ≤ |L̃i − L′′

i | + |L′′
i − L′

i|

≤ CL,e

[
1 + d(Q−1x̂

(2)
i , y∗i )

(
nd∞(x∗

S ,Πn0) +
√

n log(n)
)]

,

and the result follows.

B.3. Proof of Proposition 3.6

B.3.1. Main arguments

Assume that S = [n0] for the ease of presentation. In this proof, we both in-
terpret x̂(1)

S and x∗
S as vectors in Cn and matrices of size 2 × n0. We recall
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that ‖.‖q refers to the entry-wise lq norm for matrices. We shall establish that
the estimator x̂(1)

S is such that the matrix x̂(1)T
S x̂(1)

S is close to x∗T
S x∗

S . In other
words, the distances between x̂

(1)
1 , . . . , x̂

(1)
n0 are close to the respective distances

between the x∗
1, . . . , x

∗
n0

. Then, relying on a recent matrix perturbation result
from [1], we deduce that, up to an orthogonal transformation, x̂(1)

S and x∗
S are

close. Let us first state this perturbation result. Given any p × 2 matrix M
with real coefficients, we denote its transpose by MT , and the Moore-Penrose
pseudo-inverse by M†, and the usual operator norm by ‖M‖op. In this proof,
the transformations Q ∈ O are interpreted as orthogonal matrices of size 2× 2.

Proposition B.12 (Theorem 1 in [1]). For any positive integer p and any p×2
matrices M and N , with N having full rank, let ν = ‖MMT −NNT ‖2. Then,
we have

min
Q∈O

‖M −NQ‖2 � ν‖N†‖op ,

as soon as 2ν‖N†‖2
op ≤ 1.

Let x∗∗
S ∈Πn0 denote a best approximation of x∗

S in Πn0 , so that d∞(x∗
S ,x∗∗

S )=
d∞(x∗

S ,Πn0). In order to invoke the above proposition for M = (x̂(1)
S )T and

N = (x∗∗
S )T in R

n0×2, we need to check that the condition 2ν‖N†‖2
op ≤ 1 is

fulfilled. First, to bound the term ‖N†‖2
op, we work out

N† = (NTN)−1NT =
(
x∗∗
S x∗∗T

S

)−1 x∗∗
S =

(∑n0
i=1(x∗∗

1i )2 0
0

∑n0
i=1(x∗∗

2i )2
)−1

x∗∗
S

= 2
n0

x∗∗
S ,

since
∑n0

i=1(x∗∗
1i )2 =

∑n0
i=1(x∗∗

2i )2 = n0/2 – see e.g. (76) for a proof. As a conse-
quence,

‖N†‖2
op ≤ ‖N†‖2

2 = 4
n0

.

The following lemma bounds ν = ‖x̂(1)T
S x̂(1)

S − x∗∗Tx∗∗
S ‖2.

Lemma B.13. With probability at least 1 − 1/n2, we have

ν ≤ Cl,L,e

(
nd∞(x∗

S ,Πn0) +
√

n log(n)
)

.

Hence, with probability higher than 1 − 1/n2, we obtain

2ν‖N†‖2
op ≤ C ′

l,L,e

(
d∞(x∗

S ,Πn0) +
√

log(n)
n

)
.

If d∞(x∗
S ,Πn0)+

√
log(n)/n ≥ 1/C ′

l,L,e, the conclusion of Proposition 3.6 obvi-
ously holds since minQ∈O d1(x̂(1)

S , Qx∗
S) ≤ n0 ≤ n. Hence, it suffices to consider
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the case where d∞(x∗
S ,Πn0) +

√
log(n)/n ≤ 1/C ′

l,L,e so that the condition of
Proposition B.12 is fulfilled. This implies

min
Q∈O

‖x̂(1)T
S − x∗∗TQ‖2 � C

(√
nd∞(x∗

S ,Πn0) +
√

log(n)
)

,

and so

min
Q∈O

‖x̂(1)
S −Qx∗∗

S ‖1 �
√

2C
(
nd∞(x∗

S ,Πn0) +
√

n log(n)
)

.

Since the distances in R
2 and C are equivalent, we have ‖Qx∗∗

S − Qx∗
S‖1 �

d1(Qx∗∗
S , Qx∗

S) = d1(x∗∗
S ,x∗

S). Then, using the definition of d∞(x∗
S ,Πn0), we

get ‖Qx∗∗
S − Qx∗

S‖1 � nd∞(x∗
S ,Πn0). Together with the triangular inequality,

this leads us to

min
Q∈O

‖x̂(1)
S −Qx∗

S‖1 ≤ Cl,L,e

[
nd∞(x∗

S ,Πn0) +
√
n log(n)

]
.

Using again the equivalence between the distances, that is d(x, y) � ‖x − y‖1
for all x, y ∈ C, we conclude that

min
Q∈O

d1(x̂(1)
S , Qx∗

S)≤Cmin
Q∈O

‖x̂(1)
S −Qx∗‖1≤Cl,L,e

[
nd∞(x∗

S ,Πn0) +
√

n log(n)
]

,

and the proof of Proposition 3.6 is complete.

B.3.2. Proof of Lemma B.13

Both x̂(1)
S and x∗∗

S are elements of Πn0 ⊂ R
2×n0 , hence they both satisfy

x̂(1)
S 1 = 0 and x∗∗

S 1 = 0 where 1 denotes the vector of ones. Indeed, since∑n0−1
k=0 eι2πk/n0 = 0, we have

∑n0−1
k=0 cos(2πk/n0) = 0 and

∑n0−1
k=0 sin(2πk/n0) =

0. We can then invoke the next lemma to bound ν = ‖x̂(1)T
S x̂(1)

S − x∗∗Tx∗∗
S ‖2.

Lemma B.14. For any Z = (z1, . . . , zn0) and Z ′ = (z′1, . . . , z′n0
) in R

2×n0

with Z1 = Z ′1 = 0, let D = (Dij) and D′ = (D′
ij) be their (squared) distance

matrices, that is Dij = ‖zi − zj‖2
2 and D′

ij = ‖z′i − z′j‖2
2 for all i, j ∈ [n0]. Then

we have
‖ZTZ − Z ′TZ ′‖2 ≤ ‖D −D′‖2 .

For Z = x∗∗
S and Z ′ = x̂(1)

S , and accordingly Dij = ‖x∗∗
i − x∗∗

j ‖2
2 and D′

ij =
‖x̂(1)

i − x̂
(1)
j ‖2

2, it follows from Lemma B.14 that ν ≤ ‖D−D′‖2. Since all square
distances Dij and D′

ij are at most equal to 4, we get

ν ≤ 4‖
√
D −

√
D′‖2 ,

where
√
D and

√
D′ denote the matrices of coefficients

√
Dij = ‖x∗∗

i − x∗∗
j ‖2

and
√

D′
ij = ‖x̂(1)

i − x̂
(1)
j ‖2.
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For any x, y ∈ C, elementary geometry gives ‖x−y‖2 = 2 sin(d(x, y)/2). Since
the sinus function is 1-Lipschitz, we have∣∣ ‖x− y‖2 − ‖x′ − y′‖2

∣∣ ≤ |d(x, y) − d(x′, y′)| ,

for any x, y, x′, y′ ∈ C. Hence, we deduce that ν ≤ 4‖D(x∗∗
S )−D(x̂(1)

S )‖2, where
D(x∗∗

S ) and D(x̂(1)
S ) respectively denote the matrices of coefficients d(x∗∗

i , x∗∗
j )

and d(x̂(1)
i , x̂

(1)
j ). As a consequence, we mainly have to control with high prob-

ability ‖D(x∗∗
S ) −D(x̂(1)

S )‖2.

Lemma B.15. With probability at least 1 − 1/n2, we have

‖D(x∗∗
S ) −D(x̂(1)

S )‖2 ≤ C ′
l,L,e

[
nd∞(x∗

S ,Πn0) +
√
n log(n)

]
.

Hence ν ≤ Cl,L,e[nd∞(x∗
S ,Πn0) +

√
n log(n)] and the proof of Lemma B.13

is complete.

Proof of Lemma B.14. Let H = I − J/n0, where I is the identity and J the
matrix of ones. Since Z1 = 0, we have ZH = Z, so that

ZTZ = HZTZH = −1
2HDH,

since D is the matrix of distances associated with Z. Then we have

‖ZTZ − Z ′TZ ′‖2 = 1
2‖H(D −D′)H‖2 ≤ 1

2‖D −D′‖2 ,

where the last inequality derives from the general relation ‖AB‖2 ≤ ‖A‖op‖B‖2
for any matrices A,B, and the fact that ‖H‖op = 1 – because H is an orthogonal
projection. Lemma B.14 is proved.

Proof of Lemma B.15. First, we come back to the definition of the estimator
x̂(1)
S defined in (18). We have 〈AS,S , D(x̂(1)

S )〉 ≤ 〈AS,S , D(x∗∗
S )〉, which implies

that
〈FS,S , D(x̂(1)

S ) −D(x∗∗
S )〉 ≤ 〈ES,S , D(x∗∗

S ) −D(x̂(1)
S )〉.

As in the last lines of the proof of Lemma B.2, we bound the term
〈ES,S , D(x∗∗

S )−D(x̂(1)
S )〉 by a union bound over all possible vectors x̂(1)

S . Hence,
we get

〈FS,S , D(x̂(1)
S ) −D(x∗∗

S )〉 ≤ 〈ES,S , D(x∗∗
S ) −D(x̂(1)

S )〉
�

√
n log(n)‖D(x∗∗

S ) −D(x̂(1)
S )‖2 , (36)

with probability at least 1−1/n2. Conversely, we shall lower bound 〈FS,S , D(x̂(1)
S )−

D(x∗∗
S )〉.

〈FS,S , D(x̂(1)
S ) −D(x∗∗

S )〉 =
n0∑

i,j=1
f(x∗

i , x
∗
j )
(
d(x̂(1)

i , x̂
(1)
j ) − d(x∗∗

i , x∗∗
j )

)
.
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Using the bi-Lipschitz property of the function f , we deduce that∣∣f(x∗
i , x

∗
j ) − f(x∗∗

i , x∗∗
j )

∣∣ ≤ cL
(
d(x∗

i , x
∗∗
i ) + d(x∗

j , x
∗∗
j )

)
+ 2ce

√
log(n)/n

≤ 2cLd∞(x∗
S ,Πn0) + 2ce

√
log(n)/n ,

by definition of x∗∗. Then, we get∑n0
i,j=1

∣∣f(x∗
i , x

∗
j ) − f(x∗∗

i , x∗∗
j )

∣∣∣∣d(x̂(1)
i , x̂

(1)
j ) − d(x∗∗

i , x∗∗
j )

∣∣
≤ CL,e

(
d∞(x∗

S ,Πn0) +
√

log(n)
n

)
‖D(x∗∗

S ) −D(x̂(1)
S )‖1

≤ CL,en0

(
d∞(x∗

S ,Πn0) +
√

log(n)
n

)
‖D(x∗∗

S ) −D(x̂(1)
S )‖2 ,

where we applied Cauchy-Schwarz inequality on R
n0×n0 . As a consequence,

〈FS,S ,D(x̂(1)
S ) −D(x∗∗

S )〉 ≥
n0∑

i,j=1
f(x∗∗

i , x∗∗
j )

(
d(x̂(1)

i , x̂
(1)
j ) − d(x∗∗

i , x∗∗
j )

)

− CL,en

(
d∞(x∗

S ,Πn0) +
√

log(n)
n

)
‖D(x∗∗

S ) −D(x̂(1)
S )‖2 . (37)

The following result bounds
∑n0

i,j=1 f(x∗∗
i , x∗∗

j )[d(x̂(1)
i , x̂

(1)
j )−d(x∗∗

i , x∗∗
j )] in terms

of the Frobenius norm ‖D(x∗∗
S )−D(x̂(1)

S )‖2
2. This is a key step in our proof. Had

the slack constant ce been equal to zero, the following result would have been
a consequence of Lemma A.1. Here the proof is slightly more involved and is
provided below.

Lemma B.16. We have
n0∑

i,j=1
f(x∗∗

i , x∗∗
j )

(
d(x̂(1)

i , x̂
(1)
j ) − d(x∗∗

i , x∗∗
j )

)
≥ cl

2 ‖D(x∗∗
S ) −D(x̂(1)

S )‖2
2

− ce
√

n log(n)‖D(x∗∗
S ) −D(x̂(1)

S )‖2.

We conclude from (36) and the above lemma that

C
√
n log(n)‖D(x∗∗

S ) −D(x̂(1)
S )‖2 ≥ cl

2 ‖D(x∗∗
S ) −D(x̂(1)

S )‖2
2

− CL,e

(
nd∞(x∗

S ,Πn0) +
√

n log(n)
)
‖D(x∗∗

S ) −D(x̂(1)
S )‖2

which in turn implies that

‖D(x∗∗
S ) −D(x̂(1)

S )‖2 ≤ C ′
l,L,e

[
nd∞(x∗

S ,Πn0) +
√

n log(n)
]

.

Lemma B.15 is proved.
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Proof of Lemma B.16. To alleviate the notation, we introduce
γi =

∑n0
j=1 f(x∗∗

i , x∗∗
j )[d(x̂(1)

i , x̂
(1)
j )− d(x∗∗

i , x∗∗
j )] so that we aim at establish-

ing a lower bound for each γi and in turn for γ =
∑n0

i=1 γi. To simplify the
arguments, we only consider the case where n0 is odd, the case of n0 even being
almost similar.

Both x∗∗
S and x̂(1)

S belongs to Πn0 and we shall heavily rely on the symmetries
of Πn0 . Assume without loss of generality that i = 1 and x∗∗

j = eι2π(j−1)/n0 for
all j = 1, . . . , n0. Then, d(x∗∗

i , x∗∗
j ) = 2π

n0
[|j − 1| ∧ |n0 − j + 1|]. Since x̂(1)

S also
belongs to Πn0 , there exists a permutation σ of [n0] such that σ(1) = 1 and
d(x̂(1)

i , x̂
(1)
j ) = 2π

n0
[|σ(j) − 1| ∧ |n0 + 1 − σ(j)|]. Recall that we consider the case

where n0 is odd. Besides, we can focus on n0 larger than 3 since Lemma B.16
is trivial for n0 = 1. Thus, there exists a surjective map σ : [n0 − 1] �→ [�n0/2�]
such that |σ−1({z})| = 2 for any z ∈ [�n0/2�] and d(x̂(1)

i , x̂
(1)
j ) = 2π

n0
σ(j − 1) for

any j = 2, . . . n0. Finally, we write ψj = f(1, eι2πj/n0) and ψ′
j = f(1, e−ι2πj/n0)

for j = 1, . . . �n0/2�. Equipped with this new notation, we arrive at

γi = 2π
n0


n0/2�∑
j=1

ψj [σ(j) − j] + ψ′
j [σ(n0 − j) − j] .

Finally, we denote aj = σ(j) − j and a′j = σ(n0 − j) − j for j = 1, . . . , �n0/2�.
Obviously, we have

∑
n0/2�
j=1 aj + a′j = 0. More generally, one easily checks that,

for any positive integer s ≤ �n0/2�, the sum
∑s

j=1(aj + a′j) is nonnegative.
Starting from

γi = 2π
n0


n0/2�∑
j=1

ψjaj + ψ′
ja

′
j

we partition the indices according to the signs of aj and a′j . Define A+ =
{j ∈ [�n0/2�] : aj ≥ 0}, A− = {j ∈ [�n0/2�] : aj < 0}, A′

+ = {j ∈
[�n0/2�] : a′j ≥ 0}, and A′

− = {j ∈ [�n0/2�] : a′j < 0}. Intuitively, we want
to group indices j such that aj > 0 with indices k such that ak < 0. This
can be done by recursion. First, consider the smallest index k ∈ A− ∪ A′

−. By
symmetry, suppose that ak < 0. Since

∑k
j=1(aj + a′j) ≥ 0, this implies that∑k

j=1 1j∈A+aj +1j∈A′
+
a′j ≥ |ak|+1k∈A′

−
|a′k|. Hence, it is possible to build non-

negative numbers bj,k,1 ≤ aj for j ∈ A+ ∩ [k] and b′j,k,1 ≤ a′j for j ∈ A′
+ ∩ [k]

such that
∑k

j=1 1j∈A+bj,k,1 + 1j∈A′
+
b′j,k,1 = |ak|. Iterating the construction we

obtain the following decomposition

n0

2πγi =
∑
j∈A+

⎛⎝ ∑
k∈A−

(ψj − ψk)bj,k,1 +
∑

k∈A′
−

(ψj − ψ′
k)bj,k,2

⎞⎠
+

∑
j∈A′

+

⎛⎝ ∑
k∈A−

(ψ′
j − ψk)b′j,k,1 +

∑
k∈A′

−

(ψ′
j − ψ′

k)b′j,k,2

⎞⎠ ,
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where all bj,k,t’s are nonnegative, bj,k,t = 0 for k < j, and⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

k∈A−
bj,k,1 +

∑
k∈A′

−
bj,k,2 = aj for j ∈ A+ ;∑

k∈A−
b′j,k,1 +

∑
k∈A′

−
b′j,k,2 = a′j for j ∈ A′

+ ;∑
j∈A+

bj,k,1 +
∑

j∈A′
+
b′j,k,1 = −ak for k ∈ A− ;∑

j∈A+
bj,k,2 +

∑
j∈A′

+
b′j,k,2 = −a′k for k ∈ A′

− .

In the above decomposition all the terms bj,k,1, bj,k,2, b′j,k,1, and b′j,k,2 are
nonnegative. Besides, they are positive only when k ≥ j, so that we can use the
bi-Lipschitz condition (6)

(ψj−ψ′
k) = f(1, eι2π(j−1)/n0)−f(1, e−ι2π(k−1)/n0) ≥ cl

2π(k − j)
n0

−ce

√
log(n)

n
.

We obtain similarly the same lower bound for ψj − ψk, ψ′
j − ψk, and ψ′

j − ψ′
k.

Coming back to the expression γj and the definition of the bi,j,t with t = 1, 2
yields

n0

2πγi ≥ cl
2π
n0


n0/2�∑
j=1

−j
[
aj + a′j

]
− ce

√
log(n)

n


n0/2�∑
j=1

|aj | + |a′j |

≥ −cl
2π
n0


n0/2�∑
j=1

[j(σ(j) − j) + j(σ(n0 − j) − j)]

−ce

√
log(n)

n


n0/2�∑
j=1

|σ(j) − j| + |σ(n0 − j) − j| .

Let us work out these two expressions in the rhs. By symmetry and definition
of σ and σ we get


n0/2�∑
j=1

−j(σ(j) − j) − j(σ(n0 − j) − j)

= 1
2


n0/2�∑
j=1

(σ(j) − j)2 + (σ(n0 − j) − j)2

= n2
0

8π2

n0∑
j=1

[
d(x̂(1)

i , x̂
(1)
j ) − d(x∗∗

i , x∗∗
j )

]2
.

Similarly, we get


n0/2�∑
j=1

|σ(j) − j| + |σ(n0 − j) − j| = n0

2π

n0∑
j=1

|d(x̂(1)
i , x̂

(1)
j ) − d(x∗∗

i , x∗∗
j )| .
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Putting everything together yields

γi ≥
cl
2

n0∑
j=1

[
d(x̂(1)

i , x̂
(1)
j ) − d(x∗∗

i , x∗∗
j )

]2

− ce

√
log(n)

n

n0∑
j=1

|d(x̂(1)
i , x̂

(1)
j ) − d(x∗∗

i , x∗∗
j )| ,

which in turn allows us to conclude

γ ≥ cl
2 ‖D(x∗∗

S ) −D(x̂(1)
S )‖2

2 − ce
√

log(n)/n‖D(x∗∗
S ) −D(x̂(1)

S )‖1

≥ cl
2 ‖D(x∗∗

S ) −D(x̂(1)
S )‖2

2 − ce
√

n log(n)‖D(x∗∗
S ) −D(x̂(1)

S )‖2 .

Lemma B.16 is proved.

B.4. Proof of Theorem 3.1 and 3.2

In this section, we prove Theorem 3.2. Theorem 3.1 then follows directly from
this result.

B.4.1. Main arguments

Recall that n = 4n0. For n0 ≤ 3, the bound of Theorem 3.2 is trivially true.
Assume that n0 ≥ 4 in the following. In Step 1 of the main procedure, it follows
from Propositions 3.5 and 3.6 that the output x̂(2)

S
satisfies the following uniform

bound

min
Q∈O

d∞(x̂(2)
S

, Qx∗
S
) ≤ Cl,L,e

[
d∞(x∗

S ,Πn0) +
√

log(n)
n

]
, (38)

with probability higher than 1− 2/n2. Similarly, for the output x̂(2′)
S

′ in Step 2,
we have

min
Q∈O

d∞(x̂(2′)
S

′ , Qx∗
S

′) ≤ Cl,L,e

[
d∞(x∗

S′ ,Πn0) +
√

log(n)
n

]
, (39)

with probability higher than 1− 2/n2. In (38) and (39), we shall prove that the
bias terms d∞(x∗

S ,Πn0) and d∞(x∗
S′ ,Πn0) are of the same order as d∞(x∗,Πn)

up to an additional error of the order of
√

log(n)/n – see Lemma B.17 below.

Lemma B.17. Assume that n0 ≥ 4 and fix x∗ ∈ Cn. There exists an event of
probability higher than 1 − 1/n2 such that

d∞(x∗
S ,Πn0) ≤ C

[
d∞(x∗,Πn) +

√
log(n)

n

]
;
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d∞(x∗
S′ ,Πn0) ≤ C

[
d∞(x∗,Πn) +

√
log(n)

n

]
;

d∞(x∗
S∩S

′ ,Π2n0) ≤ C

[
d∞(x∗,Πn) +

√
log(n)

n

]
.

Thus, by a union bound, the following inequalities hold together with prob-
ability at least 1 − 5/n2:

∃Q1 ∈ O : d∞(x̂(2)
S

, Q1x∗
S
) ≤ Cl,L,e

[
d∞(x∗,Πn) +

√
log(n)

n

]
, (40)

∃Q2 ∈ O : d∞(x̂(2′)
S

′ , Q2x∗
S

′) ≤ Cl,L,e

[
d∞(x∗,Πn) +

√
log(n)

n

]
. (41)

Since the final estimator x̂ := (x̂(2)
S

, Q̂x̂(2′)
S

) satisfies x̂S = x̂(2)
S

, we deduce
from (40) that

d∞(x̂S , Q1x∗
S
) ≤ Cl,L,e

[
d∞(x∗,Πn) +

√
log(n)

n

]
.

To prove Theorem 3.2, it suffices to show the counterpart of this bound on S:

d∞(x̂S , Q1x∗
S) ≤ Cl,L,e

[
d∞(x∗,Πn) +

√
log(n)

n

]
. (42)

By the triangle inequality, we have

d∞(x̂S , Q1x∗
S) ≤ d∞(x̂S , Q̂Q2x∗

S) + d∞(Q1x∗
S , Q̂Q2x∗

S)

= d∞(x̂(2′)
S , Q2x∗

S) + max
y∈C

d(Q1y, Q̂Q2y) , (43)

since x̂S = Q̂x̂(2′)
S by definition of x̂. By (41) and since S ⊂ S

′, we have

d∞(x̂S , Q̂Q2x∗
S) ≤ Cl,L,e

[
d∞(x∗,Πn) +

√
log(n)

n

]
.

In view of (42) and (43), it remains to prove that

max
y∈C

d(Q1y, Q̂Q2y) ≤ Cl,L,e

[
d∞(x∗,Πn) +

√
log(n)

n

]
. (44)

Before consider this maximum, we control the quantity d∞(Q1x∗
S∩S

′ , Q̂Q2x∗
S∩S

′)
that will turn out to be instrumental. By the triangular inequality,

d∞(Q1x∗
S∩S

′ , Q̂Q2x∗
S∩S

′) ≤ d∞(Q1x∗
S∩S

′ , x̂(2)
S∩S

′) + d∞(x̂(2)
S∩S

′ , Q̂x̂(2′)
S∩S

′)
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+ d∞(Q̂x̂(2′)
S∩S

′ , Q̂Q2x∗
S∩S

′) .

By definition of Q̂, the second term of the right hand-side is bounded by
d∞(x̂(2)

S∩S
′ , Q1Q

−1
2 x̂(2′)

S∩S
′), which, in turn, is bounded as follows

d∞(x̂(2)
S∩S

′ , Q1Q
−1
2 x̂(2′)

S∩S
′)≤d∞(x̂(2)

S∩S
′ , Q1x∗

S∩S
′)+d∞(Q1x∗

S∩S
′ , Q1Q

−1
2 x̂(2′)

S∩S
′) .

Together with (40) and (41), this leads us to

d∞(Q1x∗
S∩S

′ , Q̂Q2x∗
S∩S

′) ≤ 2d∞(x̂(2)
S

, Q1x∗
S
) + 2d∞(x̂(2′)

S
′ , Q2x∗

S
′)

≤ ClLe

[
d∞(x∗,Πn) +

√
log(n)

n

]
. (45)

Let us now come back to proving (44). Since the symmetric group on the plane
is only made of rotations and reflections, we consider two cases.
Case 1: Q−1

1 Q̂Q2 is a rotation. Then, d(Q1y, Q̂Q2y) does not depend on y.
In particular, maxy∈C d(Q1y, Q̂Q2y) = d∞(Q1x∗

S∩S
′ , Q̂Q2x∗

S∩S
′) and (44) is a

consequence of (45).
Case 2: Q−1

1 Q̂Q2 is a reflection. Then, maxy∈C d(Q1y, Q̂Q2y) = π.
If d∞(x∗

S∩S
′ , Q

−1
1 Q̂Q2x∗

S∩S
′) ≥ π/4, then

max
y∈C

d(Q1y, Q̂Q2y) ≤ 4d∞(Q1x∗
S∩S

′ , Q̂Q2x∗
S∩S

′) ,

and (44) is again a consequence of (45). If d∞(x∗
S∩S

′ , Q
−1
1 Q̂Q2x∗

S∩S
′) ≤ π/4,

this implies that the points in x∗
S∩S

′ belong to two arcs of length π/4 that are
(individually) symmetric around the axis of the reflection Q−1

1 Q̂Q2. It follows
that d∞(x∗

S∩S
′ ,Π2n0) ≥ π/8 as soon as 2n0 ≥ 4, that is n ≥ 8. Indeed, if

d∞(x∗
S∩S

′ ,Π2n0) < π/8 and 2n0 ≥ 4, this would imply that, any point on C is
at distance less than 3π/8 from x∗

S∩S
′ which is impossible because those points

in x∗
S∩S

′ belong to these two arcs of length π/4. Since Lemma B.17 ensures that
d∞(x∗

S∩S
′ ,Π2n0) is of the same order as d∞(x∗,Πn), this implies that the latter

is of the order of a constant and (44) is obviously valid.

B.4.2. Proof of Lemma B.17

We claim that it suffices to restrict our attention to the case where x∗ =
(x∗

1, . . . , x
∗
n) are n distinct points. Indeed, for general points x∗

1, . . . , x
∗
n in C,

there exist points y1, . . . , yn that are all distinct and satisfy d(yj , x∗
j ) ≤ 1/n for

all j ∈ [n]. Replacing x∗
1, . . . , x

∗
n by y1, . . . , yn in the statement of Lemma B.17

only entails an additional term 1/n which is negligible compared to the term√
log(n)/n.
For any k ∈ [n] and any vector x ∈ Ck, we introduce a new quantity that is

equivalent to d∞(x,Πk), but more easy to handle. For any interval I ⊂ R/(2π),
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we write NI(x) the number of coordinates of x that lie in the interval I, i.e. the
number of i ∈ [k] such that xi ∈ I. We then define the quantity VI(x) as

VI(x) = NI(x) − k
|I|
2π . (46)

Remark that, for a uniform k-sample of C, the fraction k|I|/(2π) would be the
expected number of points in I. The next lemma shows that the supremum
supIVI(x) is equivalent to k d∞(x,Πk). We note I the set of all closed intervals
I ⊂ R/(2π).

Lemma B.18. For any integer k ∈ [n] and any vector x = (x1, . . . , xk) of k
distinct points of C, we have

sup
I∈I

|VI(x)| − 4 ≤ k

π
d∞(x,Πk) ≤ 2 sup

I∈I
|VI(x)| + 4 .

Thus, to prove Lemma B.17, it is enough to show that, for T = S, S′, and
S ∩ S

′, one has

P

[
sup
I∈I

∣∣∣∣|VI(x∗
T )| − |T |

n
|VI(x∗)|

∣∣∣∣ > C
√
n log(n)

]
≤ 1

n3 . (47)

The next Lemma states a uniform concentration bound for VI .

Lemma B.19. Consider any integer n > 4 and any integer k < n. Fix any x ∈
Cn. Sampling uniformly at random k coordinates of x without replacement, we
write x(k) ∈ Ck the resulting vector. Then, with probability higher than 1−1/n3,
one has

sup
I∈I

∣∣∣∣∣∣∣VI(x(k))
∣∣∣− k

n
|VI(x)|

∣∣∣∣ ≤ 6
√
n log(n) . (48)

Since the marginal distributions of S, S′, and S ∩ S
′ are uniform, we can

apply Lemma B.19 to x∗
S , x∗

S′ , and x∗
S∩S

′ and the conclusion of the Lemma
holds with probability higher than 1− 3/n3, which is higher than 1− 1/n2.

Proof of Lemma B.19. We start with a fixed interval I ∈ I. Since NI(x(k)) is
a hypergeometric random variable with parameters (k, NI(x)

n , n), we can invoke
Hoeffding inequality (82) for hypergeometric distributions and get

P

(∣∣∣∣NI(x(k)) − k
NI(x)

n

∣∣∣∣ ≥
√

7k log(n)
2

)
≤ 2

n7 ≤ 1
n6 . (49)

We combine (49) with

NI(x(k)) − k
|I|
2π =

(
NI(x(k)) − k

NI(x)
n

)
+ k

n

(
NI(x) − n

|I|
2π

)
,

to conclude that

P

[∣∣∣∣|VI(x(k))| − k

n
|VI(x)|

∣∣∣∣ ≤
√

7n log(n)
2

]
≤ 1

n6 . (50)
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In order to extend (50) to all intervals I ∈ I, we use an ε-net approach
with a subcollection In(x) of I. Let In(x) be the collection of all intervals
In = [an, bn] where an, bn ∈ {x1 . . . , xn}∪Cn, i.e., an, bn are either coordinates of
x or elements of the n-regular grid {2πi/n; i ∈ [n]}. We then apply (50) together
with a union bound over all intervals I ∈ In(x). Since |In(x)| ≤ (2n)2 ≤ n3, we
obtain

sup
I∈In(x)

∣∣∣∣∣∣∣VI(x(k))
∣∣∣− k

n
|VI(x)|

∣∣∣∣ ≤
√

7n log(n)
2 , (51)

with probability higher than 1 − 1/n3.
To obtain (51) for all I ∈ I, we observe that, for any I ∈ I, there exists

In ∈ In(x) such that
I = I(l) ∪ In ∪ I(r), (52)

where I(l) and I(r) are two closed intervals of I \ In whose lengths are smaller
than 2π/n and that satisfy NI(l)(x) = NI(r)(x) = 0. In particular, we have
NI(l)(x(r)) = NI(l)(x(k)) = 0. We then deduce that

VI(x(k)) = VI(l)(x(k)) + VIn(x(k)) + VI(r)(x(k))

= −k
|I(l)|
2π + VIn(x(k)) − k

|I(r)|
2π .

Since the same decomposition holds for VI(x), we get∣∣∣∣|VI(x(k))| − k

n
|VI(x)|

∣∣∣∣ ≤ 4 +
∣∣∣∣|VIn(x(k))| − k

n
|VIn(x)|

∣∣∣∣
Together with (51), we obtain

sup
I∈I

∣∣∣∣∣∣∣VI(x(k))
∣∣∣− k

n
|VI(x)|

∣∣∣∣ ≤ 4 +
√

7n log(n)
2 ,

with probability higher than 1 − 1/n3. Lemma B.19 is proved

Proof of Lemma B.18. We first prove the upper bound

kd∞(x,Πk) ≤ 2π[sup
I∈I

|VI(x)| + 2] .

Recall that for a vector x = (x1, x2, . . . , xk) ∈ Ck, we say that x is ordered, if
these points are consecutive when one walks on the sphere with the trigonometric
direction. Without loss of generality and for ease of exposition, we assume that
the identity permutation is a latent order, that is x1, . . . , xk is ordered.

We define x∗∗
S = (x∗∗

1 , . . . , x∗∗
k ) a vector of Πk as follows. The first point

x∗∗
1 ∈ Ck is a closest point to x∗

1 with respect to d and the other points x∗∗
j+1 are

elements of Ck with arguments

x∗∗
j+1 = x∗∗

1 + j
2π
k

(mod 2π) , for j = 1, . . . , k − 1 .



Localization in 1D latent space 1639

Fix any i ∈ {2, . . . , k} and consider the intervals Ii = [x1, xi] and I ′i = [x1, x
∗∗
i ].

We have
d(xi, x

∗∗
i ) ≤

∣∣|Ii| − |I ′i|
∣∣ . (53)

Observe that NIi(x) = i since x1, . . . , xk are ordered and all distinct. Hence,∣∣∣∣2πik − |Ii|
∣∣∣∣ =

∣∣∣∣2πNIi

k
− |Ii|

∣∣∣∣ = 2π |VIi(x)|
k

≤ 2π sup
I∈I

|VI(x)|
k

. (54)

Besides, we know that the length of I ′i is equal to
∣∣[x∗∗

1 , x∗∗
i ]

∣∣ up to an additional
term d(x1, x

∗∗
1 ), that is ∣∣|I ′i| − ∣∣[x∗∗

1 , x∗∗
i ]

∣∣∣∣ ≤ d(x1, x
∗∗
1 ) .

By construction of the x∗∗
j ’s, we have d(x1, x

∗∗
1 ) ≤ 2π/k and

∣∣[x∗∗
1 , x∗∗

i ]
∣∣ = 2π(i−

1)/k. Hence, we obtain k||I ′i| − 2πi| ≤ 4π. We then deduce from (54) and the
triangular inequality that k

∣∣|Ii| − |I ′i|
∣∣ ≤ 2π sup

I∈I
|VI |+ 4π. Coming back to (53),

taking the supremum over all i ∈ {2, . . . , k}, and noting that d(x1, x
∗∗
1 ) ≤ 2π/k

leads us to
d∞(x,x∗∗) ≤ 2π

k

[
sup
I∈I

|Vi| + 2
]

,

where x∗∗ ∈ Πk. Finally, we take the minimum over Πk to get the desired
bound.

We now turn to the lower bound kd∞(x,Πk) ≥ π[sup
I∈I

|VI(x)| − 4]. Consider

any such interval I and x∗∗ ∈ Πk. Since the entries of x∗∗ are regularly spaced on
C, it follows that |NI(x∗∗)−k|I|/(2π)| ≤ 1 so that |VI(x)| ≤ |NI(x)−NI(x∗∗)|+
1. Now, assume that NI(x) > NI(x∗∗). We claim that supj: xj∈I |xj − x∗∗

j | ≥
π
k [|NI(x) − NI(x∗∗)| − 3]. Otherwise, the set of x∗∗

j with j satisfying xj ∈ I is
included in an interval of size

|I| + 2π
k

[NI(x) −NI(x∗∗) − 3] ≤ 2π
k

[NI(x) − 2] .

This contradicts the fact that this set of equi-spaced points has size NI(x). If
NI(x) < NI(x∗∗), we simply consider the complement3 interval I that satisfies
NI(x) = k −NI(x) and NI(x∗∗) = k −NI(x∗∗) to conclude that

sup
j: xj∈I

|xj − x∗∗
j | ≥ π

k
[|NI(x) −NI(x∗∗)| − 3] = π

k
[|NI(x) −NI(x∗∗)| − 3] .

Putting everything together, we have shown that

d∞(x,x∗∗) ≥ π

k
[|NI(x) −NI(x∗∗)| − 3] ≥ π

k
[|VI(x)| − 4] .

Taking the infimum over x∗∗ and the supremum over I leads to the desired
result.

3Although I is an open interval, the arguments are still valid.
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B.5. Proof of Corollary 3.3

Theorem 3.2 ensures that, conditionally to x∗,

min
Q∈O

d∞(x̂, Qx∗) ≤ C ′
lLe

(
d∞(x∗,Πn) +

√
log(n)

n

)
,

with probability at least 1−5/n2. Thus, it suffices to show that, with probability
at least 1 − 2/n2, one has

d∞(x∗,Πn) ≤ C

√
log(n)

n
,

for some C > 0. We shall rely on Dvoretzky–Kiefer–Wolfowitz (DKW) inequal-
ity. Indeed, the arguments x∗

1, . . . , x
∗
n are independent and uniformly distributed

on [0, 2π). Besides, any interval I of the torus R/(2π) can be represented as a
union of at most two intervals of [0, 2π). For any interval I, we denote |I| its
length and NI(x∗) the number of points x∗

i whose argument lies in I. Then, we
deduce from DKW inequality that, for any t > 0,

P

(
sup

I⊂R/(2π)

∣∣∣∣NI(x∗)
n

− |I|
2π

∣∣∣∣ > 4t
)

≤ 2e−2nt2 .

We then choose t =
√

log(n)/n to obtain

P

(
sup

I⊂R/(2π)

∣∣∣∣NI(x∗)
n

− |I|
2π

∣∣∣∣ > 4
√

log(n)
n

)
≤ 2

n2 ,

Besides, by Lemma B.18, we know that the quantity VI(x∗) = NI(x∗) − n|I|
2π

introduced in (46) satisfies

d∞(x∗,Πn) ≤ C

(
sup
I⊂I

|VI(x∗)|
n

+ 1
n

)
,

where I stands for the set of interval on the torus R/(2π). The last two displays
lead to the desired result.

Appendix C: Proof of the identifiability results and minimax lower
bound

C.1. Proof of Proposition 2.2

For simplicity, we assume that n/8 is an integer in the rest of the example
and we write n = 8n1. The construction of f ′ mainly amounts to contracting
the function f in some regions and dilating it in other regions which allows to
contracting and dilating the positions x.
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Consider a partition of the latent space C = C1 ∪ C2 ∪ C3 in three arcs C1 =
(xn, xn1

] = (0, π/4], C2 = (xn1
, x4n1

] = (π/4, π] and C3 = (x4n1
, xn] = (π, 2π].

For x and y belonging C1, define f ′
1(x, y) by f ′

1(x, y) = 1 − d(x, y)/π. For k =
1, . . . , 2n1, define x′

k = eιkπ/n and let x′
n = xn = 1. In other words, we contract

the positions xk for k = 1, . . . , 2n1. Although we have not yet completely defined
x′, we already can certify that minQ∈O d∞(x, Qx′) ≥ π/8. Besides, we have
f ′
1(x′

i, x
′
j) = f(xi, xj) for all i, j ∈ [2n1] ∪ {n}.

For x and y in C2, we define f ′
2(x, y) by f ′

2(x, y) = 1 − d(x, y)/(3π). For
k = 1, . . . , 2n1, we set x′

k+2n1
= eιπ/4eιk3π/n. Again, observe that f ′

2(x′
i, x

′
j) =

f(xi, xj) for all integers i, j in [2n1 + 1, 4n1]. Finally, for x and y in C3, set
f ′
3(x, y) = f(x, y), and let x′

k = xk for all integers k = 4n1 + 1, . . . , n − 1.
Obviously, we have f ′

3(x′
i, x

′
j) = f(xi, xj) for all integers i, j ∈ [4n1, n].

It remains to deal with the situations where the pairs of points lie in different
parts of the partition C1 ∪ C2 ∪ C3. In the case where x ∈ C1 and y ∈ C2,
define f ′

1−2(x, y) = f ′
1(x, eιπ/4) + f ′

2(eιπ/4, y) − 1. For all integers i ∈ [0, 2n1]
and j ∈ [2n1, 4n1], we have already seen that f ′

1(x′
i, e

ιπ/4) = f(xi, e
ιπ/2) and

f ′
1(eιπ/4, x′

j) = f(eιπ/2, xj). Hence f ′
1−2(x′

i, x
′
j) = f(xi, e

ιπ/2)+f(eιπ/2, xj)−1 =
f(xi, xj).

In the case where x ∈ C1 and y ∈ C3, define f ′
1−3(x, y) = f ′

1(x, eι0) +
f ′
3(eι0, y)−1 if the length of the arc [x, eι0]∪(eι0, y] is less than π; otherwise, set
f ′
1−3(x, y) = f ′

1(x, eιπ/4) + f ′
2(eιπ/4, eιπ) + f ′

3(eιπ, y) − 2. Since f admits similar
decompositions, one can deduce from the above that f ′

1−3(x′
i, x

′
j) = f(xi, xj) for

all i ∈ [1, 2n1] and j ∈ [4n1 + 1, n].
The remaining cases can be handled in the same manner. Finally, we de-

fine the symmetric function f ′ on C × C relying on f ′
1, f ′

2, f ′
3, f ′

1−2, f ′
1−3,

and f ′
2−3. Then, we can readily check that f ∈ BL[(3π)−1, π−1, 0] and that

f(xi, xj) = f ′(x′
i, x

′
j) for all i, j ∈ [n]. As a consequence, (x′, f ′) belongs to

R[F, (3π)−1, π−1, 0]. One easily check that x′ ∈ Sev and the result follows.

C.2. Proof of (9) in Proposition 2.3

We show in the paragraph below that (9) is a consequence of the proof of
Theorem 3.2 in the noiseless case (E = 0), after application of the triangular
inequality. Indeed, since the noise is equal to zero, the conclusion of Theorem 3.2
is deterministic (and not with high probability anymore), so it can be used to
prove deterministic inequalities such as (9). By doing so, we establish (9) via
our localization algorithm (Theorem 3.2), though (9) is an approximation result
(independent of any algorithm) which could be proved directly.

Consider any two representations (x, f) and (x′, f ′) in R[F, cl, cL, ce] and
apply our Localize-and-Refine procedure to noiseless observations A = F . The
conclusion of Theorem 3.2 applies to both x and x′, so that we have

min
Q∈O

d∞(x̂, Qx) ≤ C ′
lLe

(
d∞(x,Πn) +

√
log(n)

n

)
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min
Q∈O

d∞(x̂, Qx′) ≤ C ′
lLe

(
d∞(x′,Πn) +

√
log(n)

n

)
.

Hence, it follows from the triangular inequality that

min
Q∈O

d∞(x, Qx′) = min
Q1, Q2∈O

d∞(Q1x, Q2x′)

≤ C ′
lLe

(
d∞(x,Πn) + d∞(x′,Πn) + 2

√
log(n)

n

)
.

C.3. Proof of Theorem 5.1

We establish the lower bound
√

log(n)/n in the particular setting where the
observations Aij are independent Bernoulli random variables of parameters
Fij = f0(xi, xj), for the specific function

f0(xi, xj) = (3/4) − d(xi, xj)/(4π), (55)

with x = (x1, . . . , xn) ∈ Πn. The corresponding probability distribution is de-
noted by P(x,f0).

This minimax lower bound is based on Fano’s method as stated below. For
two configuration x and x′ in Πn, we denote the Kullback-Leibler divergence
of P(x,f0) and P(x′,f0) by KL(P(x,f0) ‖P(x′,f0)). Besides, we quantify the quasi-
metric ρ(x,x′) = minQ∈O d∞(x, Qx′). Given a radius δ > 0 and a subset S ⊂
Πn, the packing number M(δ,S ′, ρ) is defined as the largest number of points
in S ′ that are at quasi-distance ρ at least δ away from each other. Below, we
state a specific version of Fano’s lemma.

Lemma C.1 (from [41]). Consider any subset S ′ ⊂ Πn. Define the Kullback-
Leibler diameter of S ′ by

dKL(S ′) = sup
x,x′∈S′

KL(P(x,f0) ‖P(x′,f0)) .

Then, for any estimator x̂ and for any δ > 0, we have

sup
x∈S′

P(x,f0)

[
ρ(x̂,x) ≥ δ

2

]
≥ 1 − dKL(S ′) + log(2)

logM(δ,S ′, ρ) .

In view of the above proposition, we mainly have to choose a suitable subset
S ′, control its Kullback diameter, and get a sharp lower bound of its pack-
ing number. The main difficulty stems from the fact that the loss function
ρ(x,y) = minQ∈O d∞(x, Qy) is a minimum over a collection of orthogonal
transformations. It is therefore challenging to derive a tight lower bound for
this loss.

Let k := C ′√n log(n), for a small enough constant C ′ ∈ (0, 1] that will be
set later. Define n/2 vectors x(s) ∈ Πn, s = 1, . . . , n/2, as follows. For each
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s ∈ [n/2], we define x
(s)
j by its argument x

(s)
j

x
(s)
j = 2πj

n
, ∀j ∈ [n] \ {s, s + k} , x(s)

s = 2π(s + k)
n

, x
(s)
s+k = 2πs

n
.

Each vector of arguments x(s) is therefore equal to the vector (2πj/n)j∈[n] up
to an exchange of the positions 2πs/n and 2π(s + k)/n. This collection of n/2
vectors is denoted by S ′ := {x(1), . . . ,x(n/2)}. Obviously S ′ ⊂ Πn, and one can
readily checks that

ρ(x(t),x(s)) ≥ πk

n
, ∀s, t ∈

[n
2

]
, s �= t , (56)

which in turn ensures that the packing number M(δn,S ′, ρ) of radius δn := πk/n
satisfies M(δn,S ′, ρ) ≥ n/2. To upper bound the KL diameter of S ′, we use the
following claim whose proof is postponed to the end of the section.

Claim C.2. For any x,x′ ∈ Cn, we have

KL(P(x,f0) ‖P(x′,f0)) ≤ 8
∑
i,j

(f0(xi, xj) − f0(x′
i, x

′
j))2 .

Together with the definition (55) of f0, we get

KL(P(x(t),f0) ‖P(x(s),f0)) ≤ Cnδ2
n ≤ C(C ′)2 log(n) ,

for some numerical constant C. Then, choosing the constant C ′ in the definition
of k such that C ′ = (2

√
C)−1 leads to dKL(S ′) ≤ log(n)/4.

Applying Lemma C.1 to this set S ′, we arrive at

inf
x̂

sup
x∈S′

P(x,f0)

[
ρ(x̂,x) ≥ δn

2

]
≥ 1 − log(n)/4 + log(2)

log(n/2) ≥ 1
2 ,

as soon as n is large enough. Theorem 5.1 is proved.

Proof of Claim C.2. By definition of the Kullback-Leibler divergence, and Fij =
f0(xi, xj) and F ′

ij = f0(x′
i, x

′
j), we have

KL(P(x,f0) ‖P(x′,f0)) =
∑
i<j

Fij log Fij

F ′
ij

+ (1 − Fij) log 1 − Fij

1 − F ′
ij

,

and since log(t) ≤ t− 1 for all t > 0, it follows that

KL(P(x,f0) ‖P(x′,f0)) ≤
∑
ij

(Fij − F ′
ij)2

F ′
ij(1 − F ′

ij)
≤ 8

∑
i,j

(Fij − F ′
ij)2 ,

where the second inequality follows from the fact that 1/4 ≤ F ′
ij ≤ 3/4.
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Appendix D: Proof for the spectral method

D.1. Proof of Theorem 4.1

Recall that the Spectral Localization (LS) algorithm is applied to the data
matrix ASS , where S is a subset of indices of [n], with a cardinal number |S| =
n0 = n/4. We can assume that S = {1, . . . , n0} for the ease of exposition.
Vanilla Spectral Localization in LS algorithm returns x̂VSA

S := (x̂VSA
1 , . . . , x̂VSA

n0
)

with x̂VSA
i := (x̂VSA

ij )j∈[2] =
√

n0
2 (ûi, v̂i) ∈ R

2, i = 1, . . . , n0. We denote by
λ̂

(S)
0 ≥ . . . ≥ λ̂

(S)
n0−1 the eigenvalues of the adjacency matrix ASS .

Note that the position estimates x̂VSA
i do not lie on the unit sphere C. As

a consequence, the quantity d(x̂VSA
i , x∗

i ) is not defined, and we will use the
distance ‖x̂VSA

S − x∗
S‖1 =

∑n0
i=1

∑2
j=1 |x̂VSA

ij − x∗
ij | where x∗

S is interpreted as
a 2 × n0 matrix. Besides, since x∗

S can only be recovered up to orthogonal
transformations, we consider the loss min

Q∈O
‖x̂VSA

S −Qx∗
S‖1 where Q is interpreted

as 2 × 2 orthogonal matrix.
Let λ

∗(S)
0 ≥ . . . ≥ λ

∗(S)
n0−1 denote the eigenvalues of the signal matrix FSS :=

[f(x∗
i , x

∗
j ))]i,j∈S . We denote by Δ(S)

1 := λ
∗(S)
0 − λ

∗(S)
1 and Δ(S)

2 := λ
∗(S)
2 − λ

∗(S)
3

the two relevant spectral gaps.

Proposition D.1. Let n0 ≥ 4, and f be a geometric function as defined in (23),
such that f belongs to BL[cl, cL, ce]. Let ca > 0 be any positive constant. Assume
that the latent positions x∗

S fulfill the following inequality

d∞(x∗
S ,Πn0) ≤ ca

√
log(n)

n
. (57)

Then, with probability higher than 1−1/n2, the spectral estimator x̂VSA
S satisfies

min
Q∈O

‖x̂VSA
S −Qx∗

S‖1 ≤ ClLea
n
√

n log(n)(
Δ(S)

1 ∧ Δ(S)
2

)
∨ 1

.

Proposition D.1 is based on the fact that the signal matrix FSS is well approx-
imated by a circulant and circular-R matrix, which benefits from nice spectral
properties. See Appendix D.4 for a proof.

Assumption (24) of the theorem states that d∞(x∗,Πn) ≤ ca
√

log(n)/n.
Since Lemma B.17 ensures that d∞(x∗

S ,Πn0) ≤ C[d∞(x∗,Πn) +
√

log(n)/n]
with probability higher than 1 − 1/n2, we get the bound

d∞(x∗
S ,Πn0) ≤ Ca

√
log(n)/n , (58)

which holds with probability higher than 1 − 1/n2.
The �1-type localization bound in (D.1) depends on the spectral gap Δ(S)

1 ∧
Δ(S)

2 of the signal matrix FSS . We combine the next lemma with the assumption
Δ1 ∧ Δ2 ≥ cbn of the theorem to get the following lower bound

Δ(S)
1 ∧ Δ(S)

2 ≥ cbn/4 , (59)
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which holds with probability higher than 1 − 1/n2, as soon as n ≥ CabL.

Lemma D.2. If Δ1 ∧Δ2 ≥ cbn for some constant cb > 0, then with probability
higher than 1 − 1/n2 we have Δ(S)

1 ∧ Δ(S)
2 ≥ cbn/4 for all n ≥ Cab where CabL

is a positive quantity depending only on ca, cb, and cL.

Hence, By (59) and (58) the conditions of Proposition D.1 are satisfied. In
summary, there exists an event of probability higher than 1 − 3/n2 such that

min
Q∈O

‖x̂VSA
S −Qx∗

S‖1 ≤ ClLeab

√
n log(n) , (60)

as soon as n ≥ CabL. For n ≤ CabL, the bound (60) trivially holds provided that
we adjust the constant ClLeab if necessary.

Since x̂VSA
S does not lie in Πn0 ⊂ Cn0 , we cannot directly plug it into the

local refinement step defined by (16). Accordingly, the Uniform Approximation
(UA) in LS algorithm, projects x̂VSA

S onto Πn0 ⊂ Cn0 . The UA outputs a vector
x̃(1)
S in Πn0 that is close to the input x̂VSA

S – see Lemma D.3 below.
Lemma D.3 actually gives a more general result that holds for any input

in R2×n0 given to UA. For clarity, we write below the UA procedure in full
generality.

Uniform Approximation (UA) in Πn0

Input: xS = (x1, . . . , xn0) ∈ R2×n0 .
1. Set zi = xi/‖xi‖2, for i = 1, . . . , n0.
2. Pick any permutation σ such that zσ(1), . . . , zσ(n0) is in trigonometric order.

3. Set x̃σ(i) = e
ι
2π(k̂+i)

n0 , where k̂ ∈ argmink∈[n0]
∑n0

i=1

∥∥∥∥eι 2π(k+i)
n0 − zσ(i)

∥∥∥∥
1
.

Output: x̃S ∈ Πn0 .

Lemma D.3. Let x∗
S ∈ Cn0 . For any input xS ∈ R

2×n0 , UA returns a vector
x̃S ∈ Πn0 such that

min
Q∈O

‖x̃S −Qx∗
S‖1 � min

Q∈O
‖xS −Qx∗

S‖1 + nd∞(x∗
S ,Πn0) + 1 .

By (58–60) and Lemma D.3, the projection x̃(1)
S satisfies

min
Q∈O

‖x̃(1)
S −Qx∗

S‖1 � min
Q∈O

‖x̂VSA
S −Qx∗

S‖1+nd∞(x∗
S ,Πn0)+1 ≤ ClLeab

√
n log(n)

(61)
with probability higher than 1 − 3/n2.

Finally, we plug x̃(1)
S in the criterion (16) to localize the remaining points. In

other words, we compute, for i ∈ S,

x̂
(2)
i = argmin

z∈Cn0

〈Ai,S , D(z, x̃(1)
S )〉 , (62)
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and get the position estimates x̂(2)
S

= [x̂(2)
i ]i∈S . As a direct consequence of (61)

and Propositions 3.5 (and the equivalence between the �1 norm in R
2 and the

distance d1 in the sphere C), we arrive at the following uniform bound

min
Q∈O

d∞(x̂(2)
S

, Qx∗
S
) ≤ ClLeab

√
log(n)

n
,

which holds with probability higher than 1 − 4/n2.
As in section 3.4, we finally rely on a cross-validation scheme to estimate and

realign all the positions. This straightforwardly allows us to uniformly localize,
with probability higher than 1 − 9/n2, all positions x∗

i within an error of the
order of

√
log(n)/n. This concludes the proof of Theorem 4.1.

D.2. Proof of Lemma D.2

Recall that S = [n0] for the ease of exposition. In order too show that the
spectrums of F and FSS := [f(x∗

i , x
∗
j )]i,j∈S are linked together, we introduce an

intermediate matrix F (4) := [f(x∗(4)
i , x

∗(4)
j )]i,j∈[n] based on the vector x∗(4)

S ∈
Cn with coordinates x

∗(4)
i = x∗

�i/4� for i ∈ [n0] (where �·� denotes the ceiling
function). In other words, we replicate 4-times each coordinate of the vector x∗

S

to get the vector x∗(4)
S of size n which is close to x∗.

Let us show first that the spectrums of FSS and F (4) are almost the same. By
construction of F (4), each of the n0 eigenvectors of FSS can be transformed into
an eigenvector of F (4), by replicating 4-times the coordinates of these vectors.
Besides, the rank of F (4) is the same as that of FSS . We deduce that all non-zero
eigenvalues of F (4) are eigenvalues of 2FSS . Formally, denoting the eigenvalues of
F (4) by λ′

0 ≥ . . . ≥ λ′
n−1, and recalling that the eigenvalues of FSS are denoted

by λ
∗(S)
0 ≥ . . . ≥ λ

∗(S)
n0−1, we have

2λ∗(S)
i = λ′

i , for i = 1, . . . , n0 . (63)

We then show that the spectrums of F (4) and F are close. By (58) there is
a probability higher than 1 − 1/n2 that d∞(x∗

S ,Πn0) ≤ Ca

√
log(n)/n. Hence,

one can readily check that

d∞(x∗(4),Πn) ≤ d∞(x∗(4),Πn0) + 2π/n0 ≤ C ′
a

√
log(n)/n .

Furthermore, Assumption (24) of the theorem ensures that

d∞(x∗,Πn) ≤ ca
√

log(n)/n .

Therefore, both x∗(4) and x∗ are close to Πn. Since (any) two elements of Πn

are equal up to a permutation of their indices [n], we deduce that there exists a
permutation σ of [n] satisfying d∞(x∗(4),x∗

σ) ≤ Ca

√
log(n)/n. Combining this

with the bi-Lipschitz condition (5) we deduce that

‖F (4) − Fσ‖2 ≤ CacL
√

n log(n) .
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We are now ready to control the difference between the spectrums of F and
F (4). Recalling that λ∗

0 ≥ . . . ≥ λ∗
n−1 denote the eigenvalues of F , and since Fσ

has the same eigenvalues as F , it follows from Weyl’s inequality (see e.g. [39,
page 45]) that

|λ′
i − λ∗

i | ≤ ‖F (4) − Fσ‖op ≤ ‖F (4) − Fσ‖2 ≤ CaL

√
n log(n) , (64)

for all i = 0, . . . , n− 1, and some constant CaL depending only on ca and cL.
Gathering (63–64), we conclude that the following implication holds. If Δ1 :=

λ∗
0 − λ∗

1 and Δ2 := λ∗
2 − λ∗

3 satisfies Δ ∧ Δ2 ≥ cbn, then Δ(S)
1 := λ

∗(S)
0 − λ

∗(S)
1

and Δ(S)
2 := λ

∗(S)
2 − λ

∗(S)
3 fulfills Δ(S)

1 ∧ Δ(S)
2 ≥ cb

2 n − C
√
n log(n) which is

larger than cbn/4 as soon as n ≥ nab for nab the smallest integer satisfying
cbn ≥ 4CaL

√
n log(n).

D.3. Proof of Lemma D.3 (Uniform approximation)

Recall that for a vector x = (x1, x2, . . . , xn0) ∈ Cn0 , we say that x is ordered, if
these points are consecutive when one walks on the circle following the trigono-
metric direction.

We introduce some notation. For any vector v = (v1, . . . , vn0) ∈ Cn0 , denote
Πn0(v) all elements u = (u1, . . . , un0) of Πn0 such that, for all permutations σ
making vσ(1), . . . , vσ(n0) ordered, the sequence uσ(1), . . . , uσ(n0) is ordered. For
any vector v ∈ Cn0 with distinct values, the set Πn0(v) can be described by a
single element u ∈ Πn0(v) and all circular permutations of u.

The bound of Lemma D.3 trivially holds for n0 ≤ 3. Henceforth, we assume
that n0 ≥ 4. The next lemma is a key element in the proof; it states that re-
ordering two vectors is almost optimal for minimizing their d1 distance. This
result is fairly classical for real vectors. Here, as the vectors v and u take their
values on C the proof is slightly more complicated.

Lemma D.4. Consider any v ∈ Cn0 . Provided that n0 ≥ 4, we have

min
u∈Πn0 (v)

d1(v,uσ) � min
u∈Πn0

d1(v,u) .

Recall that S = {1, . . . , n0} for the ease of exposition. We shall prove the
following statement which implies Lemma D.3. For any x∗

S ∈ Cn0 , any input
xS ∈ R

2×n0 , and any Q ∈ O, the vector x̃S of Πn0 fulfills

‖x̃S −Qx∗
S‖1 � ‖xS −Qx∗

S‖1 + nd∞(x∗
S ,Πn0) + 1. (65)

UA computes in step 1 the projection zS = [xi/‖xi‖2]i∈S of the input xS

onto Cn0 . Given the projection zS , UA picks in step 3 a vector x̃S ∈ Πn0(zS)
that has the smallest �1-error:

x̃S ∈ argmin
u∈Πn0 (zS)

‖zS − u‖1.
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It follows from these definitions and the equivalence between the distance d on
C and �1-norm in R

2 that

‖zS − x̃S‖1 = min
v∈Πn0 (zS)

‖zS − v‖1 � min
v∈Πn0 (zS)

d1(zS ,v) .

Gathering this bound with Lemma D.4, we derive that

‖zS − x̃S‖1 � min
u∈Πn0

d1(zS ,u) � min
u∈Πn0

‖zS − u‖1 .

As a consequence, it suffices to exhibit some u ∈ Πn0 such that its �1 distance
to the projection zS is small. This is precisely the purpose of the next lemma.

Lemma D.5. Consider any matrix Q ∈ O. There exists y ∈ Πn0 such that

‖zS − y‖1 � ‖xS −Qx∗
S‖1 + nd∞(x∗

S ,Πn0) + 1 .

We conclude that

‖zS − x̃S‖1 � ‖zS − y‖1 � ‖xS −Qx∗
S‖1 + nd∞(x∗

S ,Πn0) + 1 .

By triangular inequality, we have

‖x̃S − xS‖1 ≤ ‖x̃S − zS‖1 + ‖zS − xS‖1 .

The definition of a projection –and the equivalence between the �1-norm and
the euclidean norm in R

2– ensure that

‖zS − xS‖1 � ‖Qx∗
S − xS‖1 ,

since zS is the projection of xS on Cn0 and Qx∗
S is an element of Cn0 . The last

three displays allow us to conclude that

‖x̃S − xS‖1 � ‖xS −Qx∗
S‖1 + nd∞(x∗

S ,Πn0) + 1 ,

which gives (65) using the triangle inequality again.

D.3.1. Proofs of Lemma D.5

Let x∗∗
S ∈ Πn0 be a closest approximation of x∗

S in Πn0 , that is, such that
d∞(x∗

S ,x∗∗
S ) = d∞(x∗

S ,Πn0). The triangular inequality gives

‖Qx∗∗
S − zS‖1 ≤ ‖Qx∗∗

S − xS‖1 + ‖xS − zS‖1 � ‖Qx∗∗
S − xS‖1 ,

where the last inequality comes from the definition of a projection and the equiv-
alence between the �1-norm and the euclidean norm in R

2. By the triangular
inequality again, we get

‖Qx∗∗
S − xS‖1 ≤ ‖Qx∗∗

S −Qx∗
S‖1 + ‖Qx∗

S − xS‖1 .
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An orthogonal transformation preserves the distances.

‖Qx∗∗
S −Qx∗

S‖1 = ‖x∗∗
S − x∗

S‖1 � d1(x∗∗
S ,x∗

S) ≤ nd∞(x∗
S ,Πn0) ,

where we use again the equivalence between the distance d in C and the �1-norm
in R2. Putting everything together, we conclude that

‖Qx∗∗
S − zS‖1 � ‖xS −Qx∗

S‖1 + nd∞(x∗
S ,Πn0) .

Although x∗∗
S belongs to Πn0 , this is not necessarily the case for Qx∗∗

S . Never-
theless, it is easy to check that there exists some Q′ ∈ O such that Q′x∗∗

S ∈ Πn0

and ‖Q′x∗∗
S −Qx∗∗

S ‖1 � 1. Setting y := Q′x∗∗
S ∈ Πn0 , then we see that

‖y − zS‖1 � ‖xS −Qx∗
S‖1 + nd∞(x∗

S ,Πn0) + 1 , (66)

which concludes the proof.

D.3.2. Proof of Lemma D.4

Fix any vector v ∈ Cn0 and any u ∈ Πn0 . We shall prove that

min
w∈Πn0 (v)

d1(v,w) � d1(v,u) .

Let τ be a permutation ordering the coordinates of v on the unit sphere, meaning
that vτ(1), . . . vτ(n0) is ordered. For simplicity and without loss of generality,
assume that τ is the identity. Since u ∈ Πn0 , it there suffices to prove the
existence of a permutation σ of [n0] such that uσ is ordered and

d1(v,uσ) � d1(v,u)

Define the set of ‘bad’ indices B = {i : d(ui, vi) ≥ π/16}. If the cardinal
of B is larger than n0/2, then d1(u,v) ≥ n0π/32 and any vector uσ satisfies
d1(v,uσ) ≤ n0π ≤ 32d1(v,u). Hence, we assume henceforth that |B| ≤ n0/2.
First, we focus on the set of ‘good’ indices G = [n0]\B. We establish the following
claim at the end of the proof.

Claim D.6. There exists a permutation σ of G such that the sequence (uσ(j))
with j ∈ G is ordered and∑

i∈G
d(uσ(i), vi) ≤

∑
i∈G

d(ui, vi)

Hence, it is possible to order the restriction of u to G without increasing
the sum of the distances. It remains to transform σ into a permutation of [n0].
We iteratively add elements of B into σ. Consider any i ∈ B. Let k and l be
the two consecutive (modulo n0) elements of G such that ui belongs to the
interval [uσ(k), uσ(l)) of the torus R/(2π). Let r and s be the two consecutive
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elements of G such that i ∈ (r, s) (where we work modulo n0). Then, we define
the permutation σ′ of (G ∪ {i}) as follows.

If (r, s) = (k, l), then we take σ′(j) = σ(j) if j ∈ G and σ′(i) = i. One
readily checks that the sequence (uσ′(j)) with j ∈ G ∪ {i} is ordered and that∑

j∈G∪{i} d(uσ′(j), vj) ≤
∑

j∈G∪{i} d(uj , vj).
Otherwise, we set σ′(i) = σ(s) and σ′(k) = i. For j ∈ G, let succG(j) be

the successor of j ∈ G, that is the smallest index j′ ∈ G which is larger than j
(modulo n0). For any j ∈ G in the segment [s, k), we set σ′(j) = σ(succG(j)).
Besides, we set σ′(j) = σ(j) for all j ∈ G in the segment [l, r]. In other words,
we have shifted all elements in the segment [s, k] to successfully include i in
the permutation σ′. It follows from this definition that the sequence uσ′(j) with
j ∈ G ∪ {i} is ordered. By the triangular inequality, we have∑
j∈G∪{i}

d(uσ′(j), vj) =
∑

j∈G∩[l,r]

d(uσ(j), vj) + d(uσ(s), vi) + d(ui, vk)

+
∑

j∈G∩[s,k)

d(uσ(succG(j)), vj)

≤ 2π +
∑
j∈G

d(uσ(j), vj) +
∑

j∈G∩[s,k)

d(uσ(j), uσ(succG(j)))

≤ 4π +
∑
j∈G

d(uσ(j), vj) ≤ 4π +
∑

j∈G∪{i}
d(uj , vj) ,

where we used in the third line that
∑

j∈G∩[s,k) d(uσ(j), uσ(succG(j))) ≤ 2π. In-
deed, the sequence (uσ(j))j∈G∩[s,k) is ordered on the sphere and this sum is
therefore equal to the length of the arc [uσ(s), uσ(k)].

By a straightforward induction, we manage to build a permutation σ on [n0]
such that (uσ(j))j∈[n0] is ordered and∑

j∈[n0]

d(uσ(j), vj) ≤ 4π
∣∣{i ∈ [n0] : d(ui, vi) ≥

π

16
}∣∣ +

∑
j∈[n0]

d(uj , vj)

≤ 65
∑

j∈[n0]

d(uj , vj) ,

where we used Markov’s inequality in the last line. We have shown the desired
result.

Proof of claim D.6. Without loss of generality, we assume in the proof that
B = ∅ so that we build a permutation σ of [n0]. Since B = ∅, u ∈ Πn0 satisfies
d∞(u,v) ≤ π/16. We shall iteratively build a permutation σ such that uσ is
ordered. Let us first partition the one-dimensional torus R/(2π) into three parts
R/(2π) = D1 ∪ D2 ∪ D3 where Ds =

[
(s− 1)2π

3 , s2π
3
)

for s = 1, 2, 3.
For s = 1, 2, 3, define Is = {i : vi ∈ Ds}. Since d∞(u,v) ≤ π/16, it follows

that {ui : i ∈ Is} ⊂
[
(s− 1)2π

3 − π
16 , s

2π
3 + π

16
)

= D′
s. Note that the diameter of
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D′
s is smaller 2π/3 + π/8 < π. We have the decomposition

d1(v,u) =
3∑

s=1

∑
i∈Is

d(vi, ui) .

For s = 1, 2, 3, let σs denote the permutation of Is such that the sequence uσs(i)
is ordered when i is in Is. Since the diameter of D′

s is at most π, the sequence
uσs(i) in D′

s is isometric to an increasing sequence of points in [0, π] ⊂ R endowed
with the absolute value distance. It goes the same for the ordered sequence vi
in D′

s. Next, we use the following classical property.

Claim D.7. Let l ≥ 1 be an integer and a,b be two monotonic vectors of Rl,
that is, a1 ≤ a2 ≤ . . . ≤ al and b1 ≤ b2 ≤ . . . ≤ bl. Then, for any permutation τ
of the indices {1, . . . , l}, we have

l∑
j=1

|ai − bi| ≤
l∑

j=1
|ai − bτ(i)| and max(|ai − bi|) ≤ max(|ai − bτ(i)|) .

It follows that, for s = 1, 2, 3, we have∑
i∈Is

d(vi, uσs(i)) ≤
∑
i∈Is

d(vi, ui) .

Let σ be the permutation such that σ(i) = σs(i) if i ∈ Is. Obviously, we
have d1(v,uσ) ≤ d1(v,u). Besides, uσ is ordered except possibly at the in-
dices Js = {i : uσ(i) ∈ [(s − 1)2π

3 − π
16 ; (s − 1)2π

3 + π
16 ]} with s = 1, 2, 3. Since

maxi d(uσ(i), vi) ≤ π
16 by the second part of the above claim, all uσ(i) and vi

with i ∈ Js belong to an interval of length smaller than π. Besides,

d1(v,uσ) =
∑

j /∈(∪sJs)

d(vi, uσs(i)) +
3∑

s=1

∑
i∈Js

d(vi, uσ(i)) .

Hence, we can build as previously partitions σ′
s of Js that make uσ′

s(σ(i)) ordered
on Js and so that ∑

i∈Js

d(vi, uσ′
s(σ(i))) ≤

∑
i∈Js

d(vi, uσ(i)) .

Defining σ(i) = σ′
s(σ(i)) if i ∈ Js for s = 1, 2, 3 and σ(i) = σ(i) otherwise, we

conclude that uσ is ordered and that d1(v,uσ) ≤ d1(v,u).

D.4. Proof of Proposition D.1

Under the extra assumption that f is geometric, i.e. f satisfies (23), we will show
that the estimation error of the spectral algorithm is bounded by n

√
n log(n)(

Δ(S)
1 ∧Δ(S)

2

)
∨1
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in �1-type norm. The proof consists in approximating the signal FSS by a circu-
lant and circular-R matrix (Definition D.8) whose spectrum is known (Lemma
D.9) and provides information on the latent positions x∗

S . The difference be-
tween the spectrums of FSS and ASS will be bounded using the Davis-Kahan
perturbation bound.

D.4.1. Preliminaries: General facts on R-matrices

Let us start by introducing the notion of circulant matrix (see [23, 33]).

Definition D.8. For any integer n ≥ 1, a symmetric matrix M ∈ R
n×n is

circulant if there exists a vector a of size n such that Mij = a|i−j| and

∀k = 1, . . . , n− 1, ak = an−k.

Moreover, M is a circulant and circular R-matrix if the above holds and the
sequence (aj)0≤j≤
n/2� is non-increasing.

The spectrum of circulant matrices is known –see [23] and the references
therein, which allows to easily deduce the spectrum of symmetric circulant ma-
trices, see Proposition C.4 from [33]. For clarity, we recall this result below –with
a small correction on the first coordinate of the eigenvector v(m).

Lemma D.9 (spectrum of symmetric circulant matrices). Let M ∈ R
n×n be

any symmetric circulant matrix associated to a vector a (as above).

• For n = 2p + 1, the eigenvalues of M are equal to

αm = a0 + 2
p∑

j=1
aj cos

(
j
2πm
n

)
, m = 0, . . . , p ,

where each αm, for m = 1, . . . , p, has multiplicity 2 and is associated with
the two following eigenvectors

u(m) = (1, cos(2πm/n), . . . , cos((n− 1)2πm/n)) (67)
v(m) = (0, sin(2πm/n), . . . , sin((n− 1)2πm/n)) .

For m = 0, α0 has multiplicity 1 and is associated to u(0) = (1, . . . , 1).
• For n = 2p,

αm = a0 + 2
p−1∑
j=1

aj cos(j 2πm
n

) + ap cos(πm) , m = 0, . . . , p ,

where each αm, for m = 1, . . . , p−1, is associated with the two eigenvectors
in (67). The eigenvalue αp is associated with u(p) = (1,−1, . . . , 1,−1). For
m = 0, α0 has multiplicity 1 and is associated to u(0) = (1, . . . , 1).
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If the vector a has nonnegative entries, then α0 is obviously the largest eigen-
value. The next lemma ensures that, for circular R-matrices, α1 is the second
largest eigenvalue. Its proof can be found in [33, Proposition C.5].

Lemma D.10 (second largest eigenvalue). For any symmetric and circulant
circular R-matrix, with nonnegative entries and eigenvalues {αm} for m =
0, . . . , �n/2� (as defined in Lemma D.9), we have α1 ≥ αj for all j = 2, . . . , �n/2�.

Remark. If aj = g(j 2π
n ), then the discrete Fourier transform Fk,n(g) as defined

in (25) satisfies Fk,n(g) = αk, for all for k = 0, . . . , p. In addition, Fn−k,n(g) =
Fk,n(g) for all k = 1, . . . , p.

D.4.2. Main Proof of Proposition D.1

Recall that S ⊂ {1, 2, . . . , n} satisfies |S| = n0 = n/4. For the ease of exposition
we assume that S = {1, 2, . . . , n0} and we only consider the case where n0 is odd
(the case of even n0 being similar). Thus, we write n0 = 2p+1 in the following.
If Δ(S)

1 ∧ Δ(S)
2 ≤ ClLea

√
n log(n), then the bound in Proposition D.1 trivially

holds

min
Q∈O

‖x̂VSA
S −Qx∗

S‖1 ≤ 2n0 ≤ ClLea
n
√

n log(n)(
Δ(S)

1 ∧ Δ(S)
2

)
∨ 1

.

We assume therefore that Δ(S)
1 ∧ Δ(S)

2 ≥ ClLea

√
n log(n) for a quantity ClLea

that will be set later. By definition of Δ(S)
1 and Δ(S)

2 , this means that

|λ∗(S)
0 − λ

∗(S)
1 | ∧ |λ∗(S)

2 − λ
∗(S)
3 | ≥ ClLea

√
n log(n). (68)

Let u(1) = (u(1)
1 , . . . , u

(1)
n0 ) and v(1) = (v(1)

1 , . . . , v
(1)
n0 ) denote the eigenvectors

of a circular and circulant R-matrix as described in Lemma D.9. For any matrix
M = (mij), we write ‖M‖∞ its entry-wise l∞ norm, that is ‖M‖∞ = maxij mij .
Recall that FSS := [f(x∗

i , x
∗
j )]i,j∈S .

Lemma D.11. There exist a permutation σ and a circulant circular R-matrix R
with nonnegative entries such that the following inequality holds ‖FSS−Rσ‖∞ ≤
ClLea

√
log(n)/n. Besides, the vector x∗∗

S ∈ Πn0 defined by x∗∗
i := (u(1)

σ(i), v
(1)
σ(i))

for i = 1, . . . , n0 satisfies

min
Q∈O

d∞(x∗∗
S , Qx∗

S) ≤ Ca

√
log(n)

n
. (69)

Denote λ0 ≥ . . . ≥ λn0−1 the eigenvalues of R. Lemmas D.9 and D.10 ensure
that

λ0 = α0 ≥ λ1 = α1 ≥ λ2 = α1 ≥ λj , (70)

where λj ∈ {α2, . . . , α
n0/2�} for all j = 3, . . . , n0 − 1.
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Lemma D.11 ensures that there exists a constant C ′′
lLea depending only on

cl, cL, ce, ca such that ‖FSS − Rσ‖2 ≤ C ′′
lLea

√
n log(n). Since Rσ has the same

eigenvalues as R, it follows from Weyl’s inequality (see e.g. [39, page 45]) that

|λ∗(S)
i − λi| ≤ ‖FSS −Rσ‖op ≤ ‖FSS −Rσ‖2 ≤ C ′′

lLea

√
n log(n) , (71)

for all i = 0, . . . , n0 − 1.
If the constant ClLea in (68) is chosen as 4C ′′

lLea where C ′′
lLea is introduced

in (71), it follows that

λ0 − λ1 ≥ (λ∗(S)
0 − λ

∗(S)
1 ) − (λ∗(S)

0 − λ0) − (λ1 − λ
∗(S)
1 )

≥ (ClLea − 2C ′′
lLea)

√
n log(n) (72)

≥ ClLea

2
√

n log(n) ,

and similarly,

λ2 − λ3 ≥ (λ∗(S)
2 − λ

∗(S)
3 ) − (λ∗(S)

2 − λ2) − (λ3 − λ
∗(S)
3 ) ≥ ClLea

2
√
n log(n) .

Since the eigenvectors (
√

2/n0)u(1) and (
√

2/n0)v(1) of R are orthonormal
(see Lemma D.12 below), the vectors (

√
2/n0)u(1)

σ and (
√

2/n0)v(1)
σ are or-

thonormal eigenvectors of Rσ, with the same eigenvalue λ1 = λ2 = α1.

Lemma D.12. The vectors (
√

2/n0)u(1) and (
√

2/n0)v(1) are orthonormal.

Next, we state a variant of Davis-Kahan perturbation bound [42, see Theorem
2].

Lemma D.13 (Davis-Kahan). Let M , M̂ ∈ R
n0×n0 be two symmetric matrices,

with eigenvalues λ0 ≥ . . . ≥ λn0−1 and λ̂0 ≥ . . . ≥ λ̂n0−1 respectively. Fix
0 ≤ r ≤ s ≤ n0−1 and assume that (λr−1−λr)∧(λs−λs+1) > 0, where λ−1 = ∞
and λn = −∞. Let d = s − r + 1, and let V = (vr,vr+1, . . . ,vs) ∈ R

n0×d and
V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ R

n0×d have orthonormal columns satisfying Mvj =
λjvj and M̂ v̂j = λ̂jv̂j for j = r, r + 1, . . . , s. Then, there exists an orthogonal
matrix Q ∈ R

d×d such that

‖V̂Q− V‖2 ≤
√

8d ‖M̂ −M‖op
(λr−1 − λr) ∧ (λs − λs+1)

.

The assumptions of Lemma D.13 are therefore fulfilled for the orthonor-
mal eigenvectors (

√
2/n0)u(1)

σ and (
√

2/n0)v(1)
σ and the positive spectral gaps

(λ0 − λ1) ∧ (λ2 − λ3) > 0. Hence, for x̂VSA
S and x∗∗

S = (u(1)
σ ,v(1)

σ )T in R
2×n,

Lemma D.13 entails√
2
n0

‖Qx̂VSA
S − x∗∗

S ‖2 � ‖AS,S −Rσ‖op
(λ0 − λ1) ∧ (λ2 − λ3)

for some Q ∈ O.
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It remains to control ‖AS,S − Rσ‖op and the spectral gap. Since Aii = 0 for
all i (by convention), we introduce the matrix F

(0)
SS such that F

(0)
ii = 0 for all i,

and F
(0)
ij = Fij for all i �= j.

‖ASS −Rσ‖op ≤ ‖ASS − F
(0)
SS ‖op + ‖F (0)

SS − FSS‖op + ‖FSS −Rσ‖2 , (73)

using the triangular inequality and the fact that the operator norm is smaller
than the Frobenius norm. The second term ‖F (0)

SS − FSS‖op is smaller than 1
since FSS −F

(0)
SS is the diagonal matrix with diagonal coefficients f(x∗

i , x
∗
i ) ≤ 1,

the last inequality coming from f ∈ BL[cl, cL, ce]. To control the operator norm
of the noise matrix, we shall use the following result [40, Corollary 4.4.8]. See
the same reference for the definition of sub-Gaussian norms ‖.‖ψ2 .

Lemma D.14 (norm of symmetric matrices with sub-gaussian entries). Let A
be an n0 × n0 symmetric random matrix whose entries Aij on and above the
diagonal are independent mean-zero sub-gaussian random variables. Then, for
any t > 0, we have

‖A‖op ≤ CK(
√
n + t)

with probability at least 1 − 4e−t2 . Here K = maxi,j‖Ai,j‖ψ2 .

Applying the above lemma with t = C
√

log(n) (for a large enough numerical
constant C) to the difference ASS −F

(0)
SS , we obtain ‖ASS −F

(0)
SS ‖op � √

n with
probability higher than 1 − 1/n2.

Together with Lemma D.11 and the bound (73), we deduce that ‖ASS −
Rσ‖op ≤ ClLea

√
n log(n), so that

‖Qx̂VSA
S − x∗∗

S ‖2 ≤ ClLea
n
√

log(n)
(λ0 − λ1) ∧ (λ2 − λ3)

.

Then, we deduce from the Cauchy-Schwarz inequality that

min
Q′∈O

‖x̂VSA
S −Q′x∗∗

S ‖1 ≤ ‖Qx̂VSA
S − x∗∗

S ‖1 ≤ ClLea
n
√
n log(n)

(λ0 − λ1) ∧ (λ2 − λ3)
.

The bounds (68) and (71) for ClLea = 4C ′′
lLea allow us to replace the above spec-

tral gaps by (λ∗(S)
0 −λ

∗(S)
1 )∧(λ∗(S)

2 −λ
∗(S)
3 ). Finally, by (69) and the equivalence

between the distance d in C and the �1-norm in R
2, we have min

Q∈O
‖x∗

S−Qx∗∗
S ‖1 ≤

Ca

√
n log(n). Since λ0 ≤ n (all the entries of FSS belong to [0, 1]), we then de-

duce from the triangular inequality that

min
Q∈O

‖x̂VSA
S −Qx∗

S‖1 ≤ C ′
lLea

n
√

n log(n)
(λ∗(S)

0 − λ
∗(S)
1 ) ∧ (λ∗(S)

2 − λ
∗(S)
3 )

.

Proposition D.1 is proved.
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D.4.3. Proofs of technical lemmas

Proof of Lemma D.11. In this proof, we replace the notation FSS by F(x∗
S ,f) for

clarity. Since the vector x∗
S satisfies (57), there exists xS ∈ Πn0 such that the

following inequality holds

d∞(x∗
S ,xS) ≤ Ca

√
log(n)/n . (74)

Combining this with the bi-Lipschitz condition (5), we get maxij∈[n0] |f(x∗
i , x

∗
j )−

f(xi, xj)| ≤ CLea

√
log(n)/n, that is,

‖F(x∗
S ,f) − F(xS ,f)‖∞ ≤ CLea

√
log(n)

n
, (75)

for the matrices F(x∗
S ,f) := [f(x∗

i , x
∗
j )]i,j∈[n0] and F(xS ,f) := [f(xi, xj)]i,j∈[n0].

Recall that S = {1, . . . , n0} for the ease of exposition. Let τ be some per-
mutation that orders xS = (x1, . . . , xn0) on the unit sphere, that is, such that
xτ(1), . . . , xτ(n0) is ordered. Then, one can observe that the matrix F(xS ,f),τ is
symmetric circulant since f is a symmetric function which satisfies the geomet-
ric condition (23) with respect to the geodesic distance d on the unit sphere
C.

The matrix F(xS ,f),τ is therefore defined by a single vector a of size n0 as
in Definition D.8 of circulant matrices. This vector satisfies as = g(2πs/n0) for
s = 0, . . . , �n0/2�, where we recall that g(d(x, y)) = f(x, y) in the geometric
setting. From the Lipschitz condition (6), we deduce that a satisfies some kind
of weak non-increasing condition, that is at ≥ as ≥ 0 for all 0 ≤ t < s ≤ �n0/2�
such that s− t ≥ Cle

√
n log(n).

From the bi-Lipschitz condition (5), it is easy to see that a can be uni-
formly approximated by a non-increasing vector a′ such that maxj |aj − a′j | ≤
ClLe

√
log(n)/n. Denoting R the circulant circular R-matrix based on the vector

a′, this means that maxij |Rij − f(xτ(i), xτ(j))| ≤ ClLe

√
log(n)/n . Hence,

‖F(xS ,f) −Rτ−1‖∞ = ‖F(xS ,f),τ −R‖∞ ≤ ClLe

√
log(n)

n
.

The first result of Lemma D.11 is a consequence of (75) and the last display,
setting σ = τ−1.

Next, by definition of τ , the vector (xS)σ−1 = (xS)τ is ordered, and it there-
fore equals any other ordered vector in Πn0 up to an orthogonal transforma-
tion. Hence, we have [(xS)σ−1 ]i = Q(u(1)

i , v
(1)
i ) for some orthogonal transfor-

mation Q in R
2, by definition of u(1) and v(1). Equivalently, we have (xS)i =

Q((u(1)
σ )i, (v(1)

σ )i). Then, we conclude again from (74) that the vector x∗∗
S :=

(u(1)
σ ,v(1)

σ ) satisfies the second result of the lemma.

Proof of Lemma D.12. Since
∑n0−1

k=0 eι4πk/n0 = 0, we have
∑n0−1

k=0 cos(4πk/n0)=
0 and

∑n0−1
k=0 sin(4πk/n0) = 0. Then, combining with the trigonometric formu-
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las, cos(2x) = 2 cos2(x) − 1, and sin(2x) = 2 cos(x) sin(x), we get

‖u(1)‖2
2 =

n0−1∑
k=0

cos2(2πk/n0) = n0

2 , (76)

〈u(1),v(1)〉 =
n0−1∑
k=0

cos(2πk/n0) sin(2πk/n0) = 0 .

Besides, ‖u(1)‖2
2 + ‖v(1)‖2

2 = n0 since (u(1)
i , v

(1)
i ) for any i ∈ [n0] is a point of

the unit sphere C. The combination with (76) leads to ‖v(1)‖2
2 = n0/2.

D.5. Proof of Lemma 4.2

Similarly to the proof of Lemma D.11, we consider a vector x ∈ Πn achieving
d∞(x∗,x) = d∞(x∗,Πn) ≤ Ca

√
log(n)/n. By the Bi-Lipschitz condition, the

matrices Fx∗,f and Fx,f satisfy

‖Fx,f − Fx∗,f‖∞ ≤ CLea

√
log(n)

n
.

Since f is geometric and x belongs to Πn, it follows that, up to a permutation,
Fx,f is a symmetric circulant matrix associated to the vector aj = g(j 2π

n ) for
j = 0, . . . , �n

2 �. It then follows from Lemma D.9, that the eigenvalues of Fx,f
are equal to the discrete Fourier transform Fm,n(g) of g.

The sequence (aj), for j = 0, . . . , �n
2 � is not non-increasing because the func-

tion g is not exactly decreasing with respect to the distance. Still, arguing as in
the proof of Lemma D.11, we can build an non-increasing sequence a′ satisfying
maxj |aj − a′j | ≤ ClLe

√
log(n)/n. The eigenvalues of the corresponding circu-

lant and circular R-matrix R are also given by Lemma D.9. We denote them
α0, α1, . . . , α
n/2�. It follows from the definition of the Fourier transform that

|Fm,n(g) − αm| ≤ ClLea

√
n log(n) , 0 ≤ m ≤ �n2 � .

Hence, the gaps in the Fourier transform Φ1 = F0,n(g) − F1,n(g) and Φ2 =
minj=2,...,
n/2� F1,n(g) −Fj,n(g) satisfy∣∣∣Φ1 − (α0 − α1)

∣∣∣ ∨ ∣∣∣Φ2 − min
m=2,...,
n

2 �
(α1 − αm)

∣∣∣ ≤ ClLea

√
n log(n) .

To conclude, it remains to prove that∣∣∣(α0 − α1) − Δ1

∣∣∣ ≤ C ′
lLea

√
n log(n) ; (77)∣∣∣ min

m=2,...,
n
2 �

(α1 − αm) − Δ2

∣∣∣ ≤ C ′
lLea

√
n log(n) .
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By Lemma D.10, we have α0 > α1 ≥ maxj=2,...,
n
2 � αj . Hence, if we denote

λ0 ≥ λ1 . . . ≥ λn−1 the ordered eigenvalues of R we have

λ0 = α0 ≥ λ1 = α1 ≥ λ2 = α1 ≥ λ3 , (78)

where λ3 = max{α2, . . . , α
n/2�}. By definition of a′ and x, there exists a per-
mutation τ of [n] such that

‖Fx∗,f −Rτ‖∞ ≤ ClLea

√
log(n)

n
,

which implies that ‖Fx∗,f−Rτ‖op ≤ ‖Fx∗,f−Rτ‖2 ≤ ClLea

√
n log(n). Denoting

λ∗
0 ≥ λ∗

1 ≥ λ∗
2 ≥ . . . the ordered eigenvalues of Fx∗,f , we deduce from Weyl’s

inequality that
max

j=0,...,n−1
|λ∗

j − λj | ≤ ClLea

√
n log(n) .

Together with (78), we deduce that Δ1 = λ∗
0 −λ∗

1 and Δ2 = λ∗
2 −λ∗

3 satisfy (77)
which concludes the proof.

D.6. Proof of Corollary 4.3 (spectral gap for affine functions)

We will show that, for n large enough, the gaps in the Fourier Φ1 := F0,n(g) −
F1,n(g) and Φ2 := minj=2,...,
n/2� F1,n(g)−Fj,n(g) are at least of the the order
of n. Corollary 4.3 will then follow directly from Theorem 4.1 and Lemma 4.2.

Recall that the m-th coefficient Fourier transform is defined as

Fm,n(g) =
n−1∑
j=0

g

(
j
2π
n

)
cos

(
j
2πm
n

)
.

For simplicity, we only consider the case where n is odd – the case of even n
being similar. Let n = 2p+1 with p ≥ 2. Using the fact that g(x) = 1−x/(2π),
we get

Fm,n(g) = 1 + 2
p∑

j=1
(1 − j

n
) cos

(
j
2πm
n

)
, m = 0, . . . , p . (79)

For convenience, Fm,n(g) is denoted by αm in the sequel. Let us show that, for
n large enough, (α0 − α1) � n and minm≥2(α1 − αm) � n. For m = 0,

α0 = 1+2p− 2
n

p∑
j=1

j = 1+2p−p(p + 1)
n

= n− (n− 1)(n + 1)
4n = 3n

4 + 1
4n . (80)

For m ≥ 1, we can still work out explicitly αm.

αm = −2
p∑

j=0

j

n
cos

(
j
2πm
n

)
= − 2

n
Re

⎡⎣ p∑
j=1

jeιj2πm/n

⎤⎦ (81)
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= − 2
n
Re

[
−ιf ′

(
2πm
n

)]
,

where the function f is defined as f(x) :=
∑p

j=0 e
ιjx = eι(p+1)x−1

eιx−1 for x ∈ (0, π).
We work out f ′(x):

−ιf ′(x) = (p + 1)eι(p+1)x(eιx − 1) − eιx(eι(p+1)x − 1)
(eιx − 1)2

= − (p + 1)eιpx(eιx − 1) − (eι(p+1)x − 1)
4 sin2(x/2)

,

= −ι
(p + 1)eι(p+ 1

2 )x sin(x2 ) − eι
p+1
2 x sin(p+1

2 x)
2 sin2(x/2)

,

where the second line follows from (eιx − 1)2 = −4 sin2(x/2)eιx. Hence,

Re [−ιf ′(x)] =
(p + 1) sin((p + 1

2 )x) sin(x2 ) − sin2(p+1
2 x)

2 sin2(x/2)
.

Taking xm = 2πm
n , the first term of the numerator is equal to zero since sin((p+

1
2 )xm) = sin(πm) = 0. Then, combining the above with (81) yields

αm = − 2
n
Re

[
−ιf ′

(
2πm
n

)]
=

sin2(p+1
2 xm)

n sin2(πmn )
.

Since p+1
2 xm = mπ

2 + m π
2n ,

αm =

⎧⎪⎪⎨⎪⎪⎩
cos2(mπ

2n )
n sin2(πm

n ) ifm is odd,

sin2(mπ
2n )

n sin2(πm
n ) ifm is even.

Hence, the sequence of eigenvalues with odd indices is decreasing:

α1 > α3 > α5 > . . . > . . . ,

since the fraction cos2(mπ/2n)/ sin2(πm/n) decreases with m ∈ [p]. In the (re-
maining) case of even indices, the numerator can be upper bounded as follows:
sin2(mπ

2n ) ≤ sin2(π/4) ≤ mink∈[p] cos2(kπ2n ), which leads to α2r ≤ α2r−1 for all
r = 1, . . . , �p/2�.

In other words, each eigenvalue of even index is upper bounded by the previ-
ous eigenvalue. In light of this, we only need to prove that, for n large enough,

(α0 − α1) ∧ (α1 − α2) ∧ (α1 − α3) � n .

From (80), we deduce that α0 is equivalent to 3n/4. Besides, we deduce from
the explicit form of αm in the general case that α1, α2, and α3 are respectively
equivalent to n

π2 , 1/(4n), and n/(4π2). This completes the proof.
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D.7. Proof of Proposition 4.4

For the first inequality of the proposition, the proof is the same as for Proposi-
tion D.1, after replacing x̂VSA

S ,x∗
S , ASS respectively by x̂VSA,x∗, A. The second

inequality of the proposition follows from Lemma 4.2.

Appendix E: Probabilistic inequalities

We recall Hoeffding inequality for hypergeometric distributions.

Lemma E.1. For N ≥ 1, p ∈ [0, 1] and n ≥ N , let X be a hypergeometric
random variable with parameters (N, p, n). Then, for all t > 0,

P

(
|X −Np| ≥

√
Nt

2

)
≤ 2e−t . (82)
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