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Abstract:  9 

Sorption regulates the dispersion of pesticides from cropped areas to surrounding water bodies as 10 

well as their persistence. Assessing the risk of water contamination and evaluating the efficiency of 11 

mitigation measures, requires fine-resolution sorption data and a good knowledge of its drivers. This 12 

study aimed to assess the potential of a new approach combining chemometric and soil 13 

metabolomics to estimate the adsorption and desorption coefficients of a range of pesticides. It also 14 

aims to identify and characterize key components of soil organic matter (SOM) driving the sorption of 15 

these pesticides. We constituted a dataset of 43 soils from Tunisia, France and Guadeloupe (West 16 

Indies), covering extensive ranges of texture, organic carbon and pH. We performed untargeted soil 17 

metabolomics by liquid chromatography coupled with high-resolution mass spectrometry (UPLC-18 

HRMS). We measured the adsorption and desorption coefficients of three pesticides namely 19 

glyphosate, 2,4-D and difenoconazole for these soils. We developed Partial Least Square Regression 20 

(PLSR) models for the prediction of the sorption coefficients from the RT-m/z matrix and conducted 21 

further ANOVA analyses to identify, annotate and characterise the most significant constituents of 22 

SOM in the PLSR models. The curated metabolomics matrix yielded 1213 metabolic markers. The 23 

prediction performance of the PLSR models was generally high for the adsorption coefficients Kdads 24 

(0.3 < R² < 0.8) and for the desorption coefficients Kfdes (0.6 < R² < 0.8) but low for ndes (0.03 < R² < 25 

0.3). The most significant features in the predictive models were annotated with a confidence level of 26 

2 or 3. The molecular descriptors of these putative compounds suggest that the pool of SOM 27 

compounds driving glyphosate sorption is reduced compared to 2,4-D and difenoconazole, and these 28 

compounds are generally more polar. This approach can provide estimates of the adsorption and 29 

desorption coefficients of pesticides, including polar pesticide, for contrasted pedoclimates. 30 

Keywords: Metabolomics; PLSR; UPLC-HRMS; Soil organic matter; Pesticide; Sorption coefficient. 31 
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Graphical abstract: 32 

 33 

 34 

Highlights 35 

 We used soil metabolomics to predict and specify sorption for a range of pesticides 36 

 Prediction performance of Kdads and Kfdes from soil metabolomics was good 37 

 Prediction performance was lower for glyphosate than for 2,4-D and difenoconazole 38 

 The pool of SOM compounds driving glyphosate sorption is reduced and more polar 39 

 40 

 41 

Introduction 42 

Over three million tons of synthetic pesticides are spread annually in the world to protect crops from 43 

pests and weeds (Sharma et al., 2019). This extensive use of pesticides in agriculture threatens the 44 

health of terrestrial and freshwater ecosystems worldwide (Sharma et al., 2019; Tang et al., 2021). 45 

Their persistence and offsite transport from agricultural plots to surrounding ecosystems have 46 

generated globalised contamination of surface and groundwater bodies used, among other anthropic 47 

usages, for drinking water production (Malla et al., 2021; Pietrzak et al., 2019; Sharma et al., 2019). 48 

Agricultural policies in several regions of the world tend to promote mitigation measures such as 49 

implementing buffer zones, innovating farming technics or restricted spraying areas near vulnerable 50 

drinking water wells (Farenhorst, 2006; Reichenberger et al., 2007; Srivastav, 2020). Assessing the 51 

risk of water contamination by pesticides and evaluating the efficiency of mitigation measures, 52 
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requires implementing modelling approaches at the watershed scale (Dagès et al., 2023; Farenhorst, 53 

2006; Gatel et al., 2019; Mottes et al., 2014). 54 

The dispersion of pesticides by runoff or leaching is regulated mainly by sorption mechanisms 55 

(Farenhorst, 2006; Kookana et al., 2014; Tang et al., 2012). Sorption also influences their persistence 56 

as it modulates their bioavailability to degrading microorganisms (Kookana et al., 2014). Therefore, 57 

sorption coefficients are the most sensitive parameters in models simulating the fate of pesticides in 58 

cropped watersheds (Farenhorst, 2006; Wauchope et al., 2002). Yet, conventional laboratory 59 

methods for measuring sorption coefficients are extremely time-consuming and expensive 60 

(Forouzangohar et al., 2009). The current challenge is to gain insight into the sorption mechanisms to 61 

identify and design suitable mitigation measures while generating fine-resolution sorption data for 62 

accurate parametrisation of the risk assessment tools (models/indicators). This requires developing 63 

methodologies for both predicting and specifying sorption mechanisms for a range of pesticides and 64 

pedoclimates. 65 

The estimation of sorption coefficients is traditionally based on the Koc. However, a significant 66 

discrepancy in Koc ranges for all pesticides, especially for polar pesticides, has been reported (PPDB, 67 

2023). While soil organic carbon (SOC) is indeed a major determinant of pesticide sorption (Weber et 68 

al., 2004), not only its content but also its nature determines the extent of pesticide sorption 69 

(Farenhorst, 2006; Kookana et al., 2014). Soil organic matter (SOM) is actually a complex and very 70 

heterogeneous mixture of thousands of molecules (Longnecker and Kujawinski, 2017). Chemometrics 71 

approaches for estimating pesticide sorption coefficients based on the functional or structural 72 

characterisation of SOM such as NMR or infrared spectroscopy therefore improves the prediction 73 

performance (Forouzangohar et al., 2009; Kookana et al., 2014). We hypothesised that characterising 74 

SOM at the molecular level with untargeted metabolomics would be a step further in the prediction 75 

accuracy, especially in understanding pesticide sorption mechanisms. 76 

Untargeted metabolomics enables the chemical profiling of biologically-derived molecules in a wide 77 

range of organisms (plants, microorganisms, algae, etc.) and environmental compartments such as 78 

soil or water (Kikuchi et al., 2018; Matich et al., 2019; Pétriacq et al., 2017; van Dam and 79 

Bouwmeester, 2016). This analytical technique aims to identify a maximum number of compounds in 80 

the 50-2000 Da range (Bell et al., 2022; Swenson et al., 2015). Metabolomics has been used to 81 

characterise biomarkers of exposure and effect of pesticides on soil microbial communities, 82 

earthworms or plants (Jones et al., 2014; Matich et al., 2019; Simpson and McKelvie, 2009). As it can 83 

provide information about the metabolic activity of soil microorganisms (Bell et al., 2022; Rodríguez 84 

et al., 2020), it has also been suggested to be a powerful approach to characterise pesticide 85 
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biodegradation along with other omic approaches (Rodríguez et al., 2020). Yet, it has never been 86 

applied to predict and specify pesticide sorption mechanisms. 87 

The objectives of this study were to 1) evaluate the predictive performance of a chemometric 88 

approaches based on untargeted metabolomics to estimate the adsorption and desorption 89 

coefficients of a range of pesticides, including polar pesticides, and 2) identify and characterise key 90 

components of SOM involved in the sorption mechanisms of these pesticides. 91 

 92 

2. Material and Methods 93 

 94 

2.1 Chemicals 95 

Three pesticides among the most used worldwide to protect a variety of crops, including cereals, 96 

orchards or vineyards (Matich et al., 2019; Sharma et al., 2019) and having contrasted physico-97 

chemical properties were selected for this study. These are: glyphosate, a hydrophilic broad-98 

spectrum post-emergence herbicide (logP -6.28); 2,4-D, a hydrophilic selective post-emergence 99 

herbicide (logP -0.82) and difenoconazole, a hydrophobic systemic fungicide (logP 4.36) (PPDB, 100 

2023). 101 

Glyphosate has a very high aqueous solubility (100 g/L) and is a zwitterion under pH 10.2 (PPDB, 102 

2023). 2,4-D also has a very high aqueous solubility (24 g/L) but is negatively charged under 103 

environmental pH ranges (PPDB, 2023). Difenoconazole has a low aqueous solubility (15 mg/L) and is 104 

uncharged under environmental pH ranges (PPDB, 2023).  105 

Non-labeled glyphosate, 2,4-D and difenoconazole were supplied by Merck and 14C-labeled 106 

pesticides by ISOBIO (Fleurus, Belgium). Sodium azide, calcium chloride, methanol and 107 

dichloromethane were supplied by Merck. Methyl vanillate (n° CAS 3943-74-6) was supplied by 108 

Sigma Aldrich. All the chemicals used were HPLC grade. 109 

 110 

2.2 Origin and characterisation of the soils 111 

A set of 43 soils sampled in four locations across the word was constituted with the purpose of 112 

covering an extended range of physico-chemical properties. Ten soils were sampled in Guadeloupe, 113 

West Indies (WI), over a toposequence of volcanic ash soils. The climate in this area is tropical and 114 

the main crops are sugar cane and banana. The other soils were collected in three sites characterised 115 
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by a Mediterranean climate. Six soils were sampled in the Lebna peninsula, Tunisia (TU), where crops 116 

are frequently rotating from vegetables to cereals or pasture. The other soils were sampled in two 117 

vineyard catchments in southern France, the Roujan and Rieutor watersheds (FR-RO and FR-RI), a 118 

few kilometers apart but characterised by contrasted soils due to variations of underground rocks 119 

and pedogenesis processes. Some of the TU and FR-RO soils were sampled in un-cropped areas of 120 

the sites such as fallows, hedgerows, grass strips or ditches to diversify the type and content of 121 

organic carbon. 122 

The texture, organic carbon content (OC), pHH2O and cationic exchange capacity (CEC) were measured 123 

with standardised methods at the INRAE LAS laboratory (Arras, France) for both FR-RO and FR-RI soils 124 

and at the Cirad US 49 laboratory (Montpellier, France) for WI and TU soils (specific habilitation for 125 

analysing foreign soils). These properties are displayed in Figure 1. 126 

 127 

2.3 Measurement of the sorption coefficients 128 

Both adsorption and desorption isotherms were characterised for all soils. The adsorption batch test 129 

procedure was designed following the OECD guidelines n°106 (OECD, 2000). 14C-labelled glyphosate, 130 

2,4-D and difenoconazole were used for the experiments. The concentration of the solutions used 131 

were 5, 10, 50, 100 and 1000 µg/L. All these solutions were composed of 50% labelled/non-labelled 132 

pesticides. The background electrolyte was composed of 0.01M CaCl2 plus 200 mg/L NaN3 except for 133 

glyphosate for which the background electrolyte contained only NaN3 to avoid an artificial increase of 134 

its sorption by cation bridging (Dollinger et al., 2015). The solid-to-liquid ratio for all materials was 135 

1:10 (g/mL). Solid matrices were equilibrated for 24h with the pesticide in glass tubes at a shaking 136 

speed of 150 rpm. The tubes were then centrifuged at 3000 rpm (1770 g) for 10 min, and the 137 

supernatant was sampled and analysed by liquid scintillation (LSC). The experiments were all 138 

conducted in triplicates. 139 

Following the adsorption phase, a five-step desorption was performed for all soils previously 140 

equilibrated with the 100 µg/L pesticide solutions. The supernatant was removed and replaced by an 141 

equivalent volume of fresh electrolyte. After 24h shaking, the tubes were centrifuged, and the 142 

supernatant was sampled for LSC analysis and replaced by fresh electrolyte.  143 

Both linear (Equation 1) and Freundlich (Equation 2) models were fitted to the adsorption isotherms. 144 

Given the excellent linearity of the adsorption isotherms (0.91<nads<1.01), only the linear adsorption 145 

coefficients Kdads are used for the rest of the study. However, the desorption isotherms are non-146 

linear. Therefore, the Freundlich Kfdes and ndes coefficients are used. The ranges of Kdads, Kfdes and ndes 147 
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are presented in Figure 2. The adsorption being linear, ndes provides an estimation of the desorption 148 

hysteresis that is considered significant when H < 0.70 (H = ndes/nads). 149 

Cs = Kd * Caq   (Equation 1) 150 

Cs = Kf * Caqn   (Equation 2) 151 

Where Caq is the concentration in the aqueous phase at equilibrium (µg/L), Kd the linear sorption 152 

coefficient (L/kg), Kf ([µg/kg]/[µg/L]n) and n (-) are the Freundlich coefficients and Cs the 153 

concentration in the soil (µg/kg). 154 

 155 

2.4 Extraction and UPLC-HRMS analysis of soils 156 

Soils were air-dried to a humidity of ≈ 10% and sieved at 2 mm prior to extraction. Methanol is 157 

generally used as an extraction solvent for metabolomics fingerprinting of soils (Bell et al., 2022; 158 

Jones et al., 2014; Swenson et al., 2015). Given their contrasted polarity, both methanol and 159 

dichloromethane (DCM) were selected as extraction solvents. This aimed to enlarge the range of 160 

extractible metabolites and target polar to apolar compounds likely involved in pesticide sorption 161 

mechanisms. Two successive extractions with methanol and a third with dichloromethane were 162 

performed. Methyl vanillate was used as an internal standard and added to the extraction solvents at 163 

25 mg/L. For each soil, five grams (equivalent dry weight) were ultrasonicated for an hour with 10 mL 164 

of methanol in glass tubes. The tubes were then centrifuged for 10 min at 3000 rpm (1770 g) and the 165 

supernatant was collected. Successively, 30 min ultrasonication with 10 mL methanol and 15 min 166 

ultrasonication with 10 mL DCM were performed. The extracts were collected, gathered, dried under 167 

nitrogen flux until dryness and suspended in 3 mL methanol. The extracts were then filtered with 168 

Nalgen 0.02 µm PTFE filters. Extracts were stored in HPLC amber vials in the freezer at -18 °C until 169 

analysis. For each soil, the extraction was performed in triplicates. Five methodological blanks were 170 

processed in the same way. 171 

Untargeted metabolomics of soil samples was performed by liquid chromatography coupled with 172 

high-resolution mass spectrometry (UPLC-HRMS) using a protocol developed by Bordeaux 173 

Metabolome, as previously described (Dussarrat et al., 2022). Briefly, we used an Ultimate 3000 174 

ultra-high-pressure liquid chromatography (UHPLC) system coupled to an LTQ-Orbitrap Elite mass 175 

spectrometer interfaced with an electrospray (ESI) ionisation source (ThermoScientific, Bremen, 176 

Germany), controlled by Thermo XCalibur v.3.0.63 software. Chromatographic separation was 177 

achieved at a flow rate of 350 μL/min using a GEMINI UHPLC C18 column (150 × 2 mm, 3 μm, Le 178 

Pecq, Phenomenex, France) coupled to a C18 SecurityGuard GEMINI pre-column (4 × 2 mm, 3 μm, Le 179 
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Pecq, Phenomenex, France). The column was maintained at 35 °C, and the injection volume was 5 μL. 180 

The mobile phase consisted of solvent (1) (0.05% (v/v) formic acid in water) and solvent (2) 181 

(acetonitrile) with the following gradient: 0–0.5 min 3% (2), 0.5–1 min 3% (2), 1–9 min 50% (2), 9–13 182 

min 100% (2), 13–14 min 100% (2), 14–14.5 min 3% (2), 14.5–18 min 3% (2). Ionisation was 183 

performed in negative mode with the following parameters: ESI- (Heater temp: 300 ◦C, Sheath Gas 184 

Flow Rate: 45 (arb), Aux Gas Flow Rate: 15 (arb), Sweep Gas Flow Rate: 10 (arb), I Spray Voltage: 2.5 185 

kV, Capillary Temp: 300 ◦C, S-Lens RF Level: 60%). Prior to analyses, the LTQ-Orbitrap was calibrated 186 

by infusing a solution of the calibration (Pierce© ESI Negative Ion Calibration Solution (ref: 88324). 187 

Sixteen QC samples (i.e. a pool of 15 μL of each sample extract) and five methodological blanks were 188 

injected to correct for mass spectrometer signal drift, and to filter out variables detected in blanks, 189 

respectively. MS2 Data Dependent Analysis (DDA) was performed on all samples, QC and blank 190 

extracts to generate fragmentation information for further annotation with the following 191 

parameters: FTMS (50 - 1500 Da) at a resolution of 60k at 200 m/z; activation type, CID; isolation 192 

width, 1 Da; normalised collision energy, 35 eV; activation Q, 0.250; activation time, 10 ms). In 193 

addition, high-resolution MS1 full scan detection of ions was performed for 3 QC samples by FTMS 194 

(50 - 1500 Da) at a resolution of 240k at 200 m/z. 195 

 196 

2.5 Metabolomic workflow 197 

Raw UPLC-HRMS data were processed using MS-DIAL v 4.90 (Tsugawa et al., 2015), yielding 17 770 198 

RT-m/z features (parameter report available as Supplementary material, Appendix A). Briefly, MS-199 

DIAL parameters were as follows: MS1, tolerance, 0.01 Da; MS2 tolerance, 0.025 Da; retention time 200 

begin, 0 min; retention time end, 18 min; minimum peak height, 10 000; mass slice width, 0.05 Da; 201 

smoothing filter, Linear Weighted Moving Average; smoothing level, 4 scans; minimum peak width, 5 202 

scans; sigma window value, 0.5. After data-cleaning (blank check, SN > 10, CV QC < 30%), 3936 203 

variables were retained for further chemometrics. MS-DIAL annotation of metabolic features was 204 

performed using the online library MSMS-Public-Neg-VS16.msp with the following parameters: 205 

retention time tolerance, 100 min; accurate mass tolerance (MS1), 0.01 Da; accurate mass tolerance 206 

(MS2), 0.05 Da; identification score cut off, 80%. Putative annotation of differentially expressed 207 

metabolites resulted from MS-DIAL screening of the MS1 detected exact HR m/z and MS2 208 

fragmentation patterns against multiple online databases 209 

(http://prime.psc.riken.jp/compms/msdial/main.html#MSP) (Tsugawa et al., 2015).  210 

Next, manual curation of the data matrix was performed. Features present in less than three soils 211 

were removed. The matrix was also screened for false positives. Therefore, features with the same 212 

http://prime.psc.riken.jp/compms/msdial/main.html#MSP


8 
 

retention time, same m/z and that correlated significantly were considered the same compound and 213 

merged. Out of the 3936 features in the curated matrix only 1213 remained after this step. The 214 

values of the matrix were then centered-reduced.  215 

One-way ANOVA analysis was conducted with the aov function of R (R Core Team, 2021) to identify 216 

features/metabolites with peak intensities significantly varying among the soils. A heatmap of the 50 217 

most discriminating features (lowest p-values) from ANOVA was constructed with R (Figure 3). 218 

Features that could not be annotated with MS-DIAL were annotated with METLIN 219 

(https://metlin.scripps.edu/) based on the MS1 exact HR m/z. The putative compounds, level of 220 

confidence and adducts are displayed in Table 1.  221 

 222 

2.6 Chemometric prediction and specification of the pesticide sorption coefficients 223 

Partial least square regression (PLSR) was performed with the pls package of R (R Core Team, 2021) 224 

to establish predictive models for Kads, Kfdes and ndes of the three pesticides. The number of 225 

components in the PLSR was adjusted for each predictive model with cross-validation data (lowest 226 

RMSEP). The number of components varied from 4 to 9 for Kads, from 5 to 25 for Kfdes and from 6 to 227 

20 for ndes. Leave-one-out cross-validation was used to evaluate the performance of the predictions. 228 

Both the R² and RMSEP values were used to evaluate the performance of the models. 229 

In order to gain insight into the adsorption mechanisms, the most discriminant features were 230 

selected from the PLSR. The top 20 features from the first component and the 10 top features from 231 

the other components were annotated (Supplementary material tables S1 to S3). Several molecular 232 

descriptors of these putative compounds, including the topological polar surface area (TPSA) (Å), the 233 

H-bound donor and acceptor count and the logP were extracted from PUBCHEM (Figure 4).  234 

 235 

3. Results  236 

3.1 Soil properties and pesticide sorption 237 

The set of soils selected for this study covers most of the texture classes (Fig. 1) and an extensive 238 

range of SOC (0.46 – 6.50%), pH (4.63 – 8.68) and CEC (5.90 – 48.50 cmol/kg). The untargeted-239 

metabolomic analyses provide information about the nature of SOC at a molecular level. This 240 

chemical profiling of SOC reveals that the extracted metabolites significantly differ in their nature 241 

and relative proportions among the 43 soils. ANOVA analysis based on the relative peak intensities of 242 

these metabolites enables identifying features having contrasted proportions among the studied 243 

https://metlin.scripps.edu/
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soils. The ANOVA analysis shows that out of the 1213 metabolites extracted (section 2.5), 1164 had 244 

peak intensity being significantly different among the 43 soils (p-value <0.05). The heatmap of the 50 245 

most significant features (lowest p-values) (Figure 3) shows that, except for four soils, the three 246 

replicates were grouped under the same sub-clusters. This suggests that each soil has a distinct 247 

chemical profile. The WI soils are grouped under two clusters well separated from the other soils. 248 

The soils from the other sampling sites were dispatched in several sub-clusters, especially the TU 249 

soils (Figure 3). Including more features in the clustering discriminated better the origin of the soils, 250 

especially for the FR-RO and FR-RI soils, as displayed in the top 100 features’ heatmap (Figures S1) 251 

and the heatmap based on all features (data not shown).  252 

Table 1 shows the annotation of the top 50 significant features. Most of these metabolites (49) could 253 

be annotated with MS-DIAL or METLIN (see section 2.5) with a confidence level 2 or 3. The putative 254 

annotation suggests that about 25% of these metabolites are fatty acids or other organic acids. Their 255 

accurate mass range from 114 to 1018 Da and their retention time from 0.9 to 18 min suggesting a 256 

large range of structure complexity and of polarity. Indeed, most of these putative compounds 257 

contain aromatic moieties as well as polar functional groups. Furthermore, some of these features 258 

correlated significantly with one or several other features having similar retention time, suggesting 259 

they might be a fraction of a bigger molecule.  260 

The adsorption and desorption coefficients of glyphosate, 2,4-D and difenoconazole covered several 261 

orders of magnitude across this set of soils (Figure 2). The sorption behaviour was also contrasted 262 

among the three pesticides. Glyphosate has a moderate to high adsorption (Kdads 3.2 – 28.8 L/kg) and 263 

a very strong desorption hysteresis (Kfdes 263 – 4844 ([µg/kg]/[µg/L]n) & ndes 0.03 – 0.25). 264 

Difenoconazole has a very high adsorption (Kdads 8.5 – 228.5 L/kg) and a strong desorption hysteresis 265 

(Kfdes 140 – 4116 ([µg/kg]/[µg/L]n) & ndes 0.03 – 0.65). Last, exception made for the WI soils (Kdads 1.5 – 266 

7.1 L/kg, Kfdes 189 – 624 ([µg/kg]/[µg/L]n) & ndes 0.11 – 0.40), 2,4-D is weakly adsorbed (Kdads 0.02 – 267 

0.6 L/kg) and has high to no desorption hysteresis (Kfdes 0 – 21 ([µg/kg]/[µg/L]n) & ndes 0.03 – 1.55). 268 

2,4-D was so weakly adsorbed on FR-RO soils and the desorption so elevate that accurate 269 

measurement of Kfdes and ndes for these soils was not possible. There was no 2,4-D left at a 270 

quantifiable level after the first desorption step so the values of Kfdes were set to 0 and ndes to 1 for 271 

these FR-RO soils. The correlation of these sorption coefficients with SOC are displayed in figure S2 272 

(supplementary material) 273 

 274 

3.2 Chemometric estimation of the pesticide sorption coefficients 275 
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Figure 5 displays the prediction performance of the PLSR models established to predict the 276 

adsorption and desorption coefficients of glyphosate, 2,4-D and difenoconazole. This performance, 277 

featured by the R² (-) and RSMEP (L/kg) values, varies across the range of coefficients and pesticides 278 

considered. The performance increase from glyphosate <difenoconazole < 2,4-D. For difenoconazole 279 

and 2,4-D the prediction performance is good for Kdads and Kfdes but the regressions are driven by the 280 

high values of the WI soils. It is interesting to note that the glyphosate-Kdads PLSR has only 4 281 

components while 2,4-D and difenoconazole have 8 and 9 components, respectively. This suggests 282 

that the range of metabolites involved in the adsorption of glyphosate is reduced compared to 2,4-D 283 

and difenoconazole. 284 

The putative annotation of the most significant features in the PLSR models (highest absolute loading 285 

weight (see section 2.6)) is presented in the supplementary material (Tables S1 to S3). 41 compounds 286 

were annotated for glyphosate, 70 for 2,4-D and 83 for difenoconazole. It is interesting to note that 287 

only one of these compounds was in these three datasets. This compound is also the only one that 288 

the glyphosate and difenoconazole datasets have in common. There are six compounds commons to 289 

the glyphosate and 2,4-D datasets and 22 commons to the 2,4-D and difenoconazole datasets. Few 290 

compounds of the 2,4-D (4) and difenoconazole (3) datasets (Tables S2 & S3) are in the top 50 291 

compounds discriminating most the SOM molecular profiles listed in Table 1.  292 

Figure 4 shows the density functions of six molecular descriptors of these putatively annotated 293 

datasets of compounds. Among these six descriptors only the accurate mass (m/z) and the retention 294 

time (RT) are independent of the annotation. The TPSA, the H-bound donor and acceptor counts and 295 

logP depend on the feature annotations that were achieved at the confidence levels 2-3. In general, 296 

the distribution of these molecular descriptors is larger for difenoconazole than for glyphosate and 297 

2,4-D has intermediate distribution patterns. It is interesting to note that the putative metabolites 298 

with the highest TPSA (≈ 500 Å) are found only in the glyphosate dataset that also have a greater 299 

proportion of compounds in the 100-200 Å TPSA range compared to the 2,4-D and difenoconazole 300 

datasets. There is also an occurrence of compounds with very low logP in the glyphosate dataset that 301 

is not observed in the two other datasets. Last, there is a lower proportion of compounds with high 302 

RT (10-18 min) in the glyphosate dataset. This suggests that the pool of metabolite involved in the 303 

adsorption of glyphosate is more polar than those involved in the adsorption of 2,4-D and 304 

difenoconazole. 305 

 306 

4. Discussion 307 
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The adsorption and desorption coefficients measured for the three selected pesticides cover a range 308 

of several orders of magnitude (Figure 2). This was expected from the great variability of physico-309 

chemical properties of the 43 sampled soils (Figure 1).  310 

For 2,4-D and difenoconazole, the measured Kdads values cover the entire ranges of Kd reported in 311 

the literature (Akyol et al., 2021; Godeau et al., 2021; Gurson et al., 2019; PPDB, 2023; Wang et al., 312 

2020; Werner et al., 2013). The Kdads values of glyphosate are in the low-medium range of values 313 

reported in the literature (Akyol et al., 2021; Dollinger et al., 2015; Gurson et al., 2019). However, 314 

higher Kd values reported for glyphosate were measured with CaCl2 as background electrolyte which 315 

significantly and artificially increases the Kd values (Cruz et al., 2007; de Jonge and Wollesen de 316 

Jonge, 1999; Dollinger et al., 2015). These extended Kdads ranges are ideal for testing the global 317 

performance of the chemometric estimation approach based on soil metabolomic profiles. However, 318 

its site-specific performance, which is the scale targeted by the risk assessment modelling, should be 319 

further evaluated.  320 

Desorption data are usually scarce in the literature and the desorption hysteresis is actually not 321 

represented in the pesticide fate models. The Kfdes and ndes coefficients show that the desorption 322 

hysteresis is very strong for glyphosate and difenoconazole. It is also relatively strong for 2,4-D on the 323 

WI soils (Figure 2). While these coefficients cannot be implemented in the models, they help evaluate 324 

the uncertainty of model outputs.  325 

The PLSR performance criteria (R² & RMSEP) indicate that for the three pesticides, the metabolomic 326 

profile explains, in part, the variability of the Kdads and Kfdes (Figure 5). Ndes seems to be less 327 

influenced by the chemical characteristics of SOM (Figure 5). The prediction performance of the PLSR 328 

models is lower for the glyphosate sorption coefficients than for those of 2,4-D and difenoconazole. 329 

However, for 2,4-D and difenoconazole, the PLSR are forced by the high WI values which questions 330 

the site-specific performance for the other sampling sites. For the three pesticides the coefficient of 331 

variation of the Kdads measures is 7-8% (calculated from the batch replicates see section 2.3). For the 332 

average Kdads values, it represents a disparity of 1.4 L/kg for glyphosate, 3.8 L/kg for difenoconazole 333 

and 0.09 L/kg for 2,4-D. The RMSEP are 3 to 8 times higher than these experimental uncertainties but 334 

are quite low compared to the Kdads ranges (Figure 5). 335 

The three pesticides selected for this study cover an extended range of polarity. Glyphosate 336 

comprises only polar functional groups and difenoconazole only hydrophobic groups, while 2,4-D 337 

contains both polar and hydrophobic moieties. The presence of polar functional groups in the 338 

pesticide structure tends to diversify the type of interaction between the pesticide and the soils 339 

compared to hydrophobic pesticides (Dollinger et al., 2015; Weber et al., 2004; Werner et al., 2013). 340 
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The adsorption coefficients of polar pesticides are generally significantly correlated to the SOM 341 

content (Akyol et al., 2021; Gurson et al., 2019; Weber et al., 2004), but also to other soil 342 

constituents, such as clay minerals (Dollinger et al., 2015; Weber et al., 2004). They are also very 343 

sensitive to soil pH, which dictates their speciation and the surface charges of edaphic constituents 344 

(Boivin et al., 2005; Kah and Brown, 2007; Wauchope et al., 2002; Weber et al., 2004).  345 

In particular, the adsorption of glyphosate was reported to be driven chiefly by clay minerals and 346 

metal oxides with a strong influence of pH and CEC (Dollinger et al., 2015). Some studies highlighted 347 

that the sorption of glyphosate was also strongly influenced by SOM (Akyol et al., 2021; Gurson et al., 348 

2019). However, for the set of studied soils, the influence of SOM was weak (Figure S2). This explains 349 

the low performance of the chemometric approach for estimating the adsorption and desorption 350 

coefficients of glyphosate from the SOM metabolite profile (Figure 5). Yet the correlations are 351 

significant and the RMSEP are lower than for traditional estimation approaches like pedotransfer 352 

functions (Dollinger et al., 2015). The number of components in the PLSR models (Figure 5) suggests 353 

that the pool of SOM compounds involved in the sorption of glyphosate is low compared to 2,4-D 354 

and difenoconazole. The distribution of the molecular descriptors (Figure 4) indicates that these are 355 

also more polar. However, the molecular descriptors depend on the annotation that was achieved at 356 

confidence levels 2-3 (Blaženović et al., 2018; Chaleckis et al., 2019; Creek et al., 2014).  357 

The metabolomics profile is highly depends on the soil extraction procedure (Bell et al., 2022; 358 

Chaleckis et al., 2019; Swenson et al., 2015). Water was not used as an extraction solvent to avoid 359 

the extraction of small and very polar metabolites that constitute most of the dissolved organic 360 

matter fraction (DOM) (Swenson et al., 2015). Indeed, DOM has a complex and ambiguous role in the 361 

sorption of pesticides (Barriuso et al., 2011) that falls behind the scope of this study. With methanol 362 

and dichloromethane we targeted larger and less polar compounds. Accurate annotation of the 363 

extracted compounds is still the major bottleneck of un-targeted metabolomics (Bell et al., 2022; 364 

Blaženović et al., 2018; Chaleckis et al., 2019). The potential of metabolomics is huge to specify the 365 

mechanism involved in the fate of pesticides in soils including sorption and degradation (Rodrigues et 366 

al., 2013). However, further specification of these mechanisms would require the identification of 367 

metabolites with a confidence level of 1 or 2. This therefore points to the lack of representation of 368 

soil compounds in metabolomic databases (Pétriacq et al., 2017). 369 

The metabolomic profiling procedure seems relatively stable, as displayed by the clustering of the 370 

replicates for 90% of the soils (Figure 3). For the present study, all extracts were injected in the same 371 

LC run. UPLC-HRMS analysis is subjected to retention time shifts which hinders the performance of 372 

the peak alignment if the extracts are not injected in the same run. Another limit to the number of 373 
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extracts that can be processed is the multiplication of the detected features. Indeed, multiplying the 374 

extracts increases the risk of noise in the matrix (i.e. features present in less than 5-10% of the 375 

samples). The curation of the metabolomics matrix to remove this noise is time-consuming. 376 

 377 

Conclusion 378 

Chemometrics based on metabolomics data is a powerful approach to predict the pesticide 379 

adsorption and desorption coefficients for soils having contrasted physico-chemical properties. The 380 

prediction performance is lower for glyphosate than for 2,4-D and difenoconazole but higher than for 381 

traditional pedotransfer functions. The establishment of the PLSR models is time-consuming. Yet 382 

once this is achieved, a single extract can provide estimations for both adsorption and desorption 383 

coefficients for the whole range of pesticides tested. Therefore, it is beneficial to diversify the range 384 

of pesticides included in the risk assessment modelling. It can also help to refine the resolution of the 385 

sorption parametrisation in the models. The approach was tested for a very diverse set of soils, but 386 

its site-specific precision remains to be evaluated. It might not be the most rapid and precise 387 

estimation methods for the spatialisation of sorption coefficients. However, metabolomics is also a 388 

potential indicator of other mechanisms involved in the fate of pesticides, including biodegradation. 389 

Its ability to provide information on the biodegradation of pesticides, their presence and their effect 390 

on the environment should be further investigated to develop a global estimation approach. 391 

Metabolomics also help to gain insight into the sorption mechanisms and the fraction of SOM 392 

involved. The spectra databases’ development should help improve the accuracy of the metabolite 393 

annotation. 394 
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Figures 

 

 

Figure 1: Physico-chemical properties of the soils. This set of 43 soils includes soils sampled in 

Guadeloupe in the French West Indies (WI), in the Cap Bon Peninsula in Tunisia (TU) and two 

catchments from southern France (FR-RO and FR-RI). The figure displays the texture range (a.), the pH 

range (b.), the soil organic fraction range (c.) and the cationic exchange capacity range (d.). 
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Figure 2: Measured sorption coefficients. The figure shows the distributions of adsorption (Kdads) and 

desorption (Kfdes & ndes) coefficients measured for the WI soils (turquoise dots), the TU soils (violet 

dots), the FR-RO (gold dots) and FR-RI (orange dots) soils for the pesticides glyphosate, 2,4-D and 

difenoconazole. 
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Figure 3: Heatmap of the top 50 discriminant metabolites. The heatmap shows the clustering of the 

soils according to the relative intensity of the top 50 metabolites identified by an ANOVA analysis. 

Each lines represent a given metabolite that is further described in Table 1. 
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Figure 4: Density functions of six molecular descriptors characterising the most significant features in the PLSR models established to predict the adsorption 

coefficients (Kdads) of glyphosate (blue), 2,.4-D (green) and difenoconazole (red). 
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Figure 5: Performance of the PLSR models for the estimation of the sorption coefficients. The plots represent the predicted vs the measured coefficients and 

their position relative to the 1:1 line (plain diagonal). The performance criteria (R² & RMSEP) as well as the number of components in the PLSR are indicated 

for each model. 
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Tables 

 

Table 1: Top 50 features identified by One-way ANOVA discriminating most the molecular profiles of soil organic matter 

Compound 
ID 

Average 
m/z 

Average 
RT 

(min) 

Putative compound 
(formulation) 

Putative 
level 

PPM Adduct type 
Correlation 
with other 

ions* 

f173 164.03572 8.91 
Phthalamic acid 

 (C8H7NO3) 
2* - 

[M+C2H3N+Na-
2H]- 

NO 

f3922 1018.36053 12.98 
Heptadecanoyl CoA 
 (C38H68N7O17P3S) 

3 7 [M-H]- NO 

f283 191.03487 7.96 
6-Methoxy-7-hydroxycoumarin 

 (C10H8O4) 
2* - [M+FA-H]- NO 

f136 159.10287 6.48 
2-hydroxy caprylic acid 

 (C8H16O3) 
3 1 [M-H]- NO 

f34 118.03001 6.67 
Furo[3,4-b]pyridine 

 (C7H5NO) 
3 1 [M-H]- NO 

f1045 305.89166 17.12 
2-chloro-4,6-bis(1,1-dichloroethyl)-1,3,5-triazine 

 (C7H6Cl5N3) 
3 4 [M-H]- NO 

f3624 738.77039 0.95 
Phosphoric acid--4-iodophenol (1/3) 

 (C18H18I3O7P) 
3 4 [M-H2O-H]- NO 

f1536 367.01822 5.33 
7-Methyl-8-(methylthio)-1-((phenylsulfonyl)oxy)-3,7-dihydro-

1H-purine-2,6-dione 
 (C13H12N4O5S2) 

3 1 [M-H]- NO 

f451 228.96368 0.96 
Diethyl bromomethylphosphonate 

 (C5H12BrO3P) 
3 1 [M-H]- 

YES (m/z 
702.87756 

& 
566.90424 

& 
498.9166) 

f992 301.89148 17.11 4-Bromo-6,6,6-trichloro-3,3-dimethylhex-4-enenitrile 3 1 [M-H]- NO 
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 (C8H9BrCl3N) 

f1331 339.02359 8.03 
Methanesulfonic acid--[1-(2,4-

dichlorophenyl)cyclopentyl]methanol (1/1) 
 (C13H18Cl2O4S) 

3 1 [M-H]- 
YES (m/z 

419.99090) 

f677 264.93481 1.01 
{[(Methanesulfonyl)methanesulfinyl]methanesulfinyl}methane-

SO-thioperoxol 
 (C4H10O5S4) 

3 4 [M-H]- NO 

f1715 385.96869 3.31 
5'-Hydroxylornoxicam 

 (C13H10ClN3O5S2) 
3 2 [M-H]- NO 

f3687 761.76508 0.97 
Mercury, (2,4-dibromo-6-((p-

bromophenyl)carbamoyl)phenoxy)phenyl- 
 (C19H12Br3HgNO2) 

3 5 [M+K-2H]- 

YES (m/z 
728.77887 

& 
598.82501 

& 
793.76123 

& 
533.84491) 

f736 273.02914 2.40 
Simonyellin 
(C14H10O6) 

2* - [M-H]- NO 

f865 288.06662 10.12 
2-Naphthalenol, 8-(4-amino-2-imino-1,3,5-triazin-1(2H)-yl)-, 

monohydrochloride 
 (C13H12ClN5O) 

3 2 [M-H]- NO 

f180 167.02280 5.25 
Uric acid 

(C5H4N4O3) 
2* - [2M+FA-H]- NO 

f781 277.10953 9.38 
8-(2,3-dihydroxy-3-methylbutyl)-7-methoxychromen-2-one 

 (C15H18O5) 
2* - [M-H]- NO 

f942 295.22842 13.11 
(±)9-HODE 

 (C18H32O3) 
3 1 [M-H]- NO 

f974 300.06815 12.42 
1-(azepan-1-yl)-3-(3,4-dichlorophenyl)urea 

 (C13H17Cl2N3O) 
3 1 [M-H]- NO 

f1512 363.04669 12.26 
Quinoxaline, 2-(3-chlorophenyl)-3-[(4-chlorophenyl)methyl]- 

 (C21H14Cl2N2) 
3 1 [M-H]- NO 

f1958 417.10638 3.15 2-[(E)-(6-Oxocyclohexa-2,4-dien-1-ylidene)methyl]-N-[4- 3 0 [M-H]- NO 
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(piperidine-1-sulfonyl)phenyl]hydrazine-1-carbothioamide 
 (C19H22N4O3S2) 

f1877 404.10434 1.31 
trans-Clovamide 

 (C18H17NO7) 
2* - 

[M+C2H3N+Na-
2H]- 

NO 

f675 264.93469 0.98 
3-Bromo-7-(trifluoromethyl)imidazo[1,2-b][1,2,4]triazine 

 (C6H2BrF3N4) 
3 1 [M-H]- NO 

f2996 566.90424 0.98 
Trisodium 3,3',3''-phosphinetriyltris(benzene-1-sulphonate) 

 (C18H12Na3O9PS3) 
3 7 [M-H]- 

YES (m/z 
430.92770 

& 
498.91660) 

f959 297.24380 13.52 
(9E)-12-hydroxyoctadec-9-enoic acid 

 (C18H34O3) 
2* - [M-H]- NO 

f2498 484.87045 1.00 
3,4-Dibutyl-2,5-diiodothiophene 

 (C12H18I2S) 
3 0 [M+K-2H]- NO 

f1493 359.87125 1.18 
Methanesulfonic acid--[1-(2,4-

dichlorophenyl)cyclopentyl]methanol (1/1) 
 (C13H18Cl2O4S) 

3 1 [M-H]- NO 

f1952 416.88364 1.00 
(2,2-Diiodo-1,1-dimethoxyethyl)benzene1,1-diiodo-2,2-

dimethoxy-2-phenylethane 
(C10H12I2O2) 

3 4 [M-H]- NO 

f1711 385.13504 1.40 
[3-hydroxy-2-methyl-4-(7-oxofuro[3,2-g]chromen-9-

yl)oxybutan-2-yl] (Z)-2-methylbut-2-enoate 
 (C21H22O7) 

2* - [M-H]- 

YES (m/z 
371.11993 

& 
369.14026 

& 
501.18210) 

f2613 501.18167 1.41 
NCGC00179938-02 

 (C25H28O8) 
2* - [M-H]- 

YES (m/z 
369.14026 

& 
355.12506 

& 
385.13504) 

f3677 759.76746 0.88 N,N'-(Hexane-1,6-diyl)didocosanamide 3 4 [M-H]- NO 
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 (C50H100N2O2) 

f1826 399.25348 14.52 
Anhydro simvastatin 

(C25H36O4) 
3 4 [M-H]- NO 

f402 219.96806 1.29 
N-Methyl-2-[(5-sulfanylidene-2,5-dihydro-1,2,4-thiadiazol-3-

yl)sulfanyl]acetamide 
 (C5H7N3OS3) 

3 0 [M-H]- NO 

f1562 369.14026 1.42 

NCGC00380677-01!5,7-dihydroxy-2-(4-hydroxy-3-
methoxyphenyl)-6-(3-methylbut-2-enyl)-2,3-dihydrochromen-4-

one 
(C21H22O6) 

2* - [M-H]- 

YES (m/z 
355.12506 

& 
385.13504 

& 
501.18167) 

f3502 695.78937 0.90 - 4 - - NO 

f3817 843.52698 15.57 
Phosphatidylglyceride 20:3-22:6 

 (C48H77O10P) 
2* - [M-H]- NO 

f2924 552.85876 1.00 
10,11-Dibromoundecyl 2,3-dibromobutanoate 

 (C15H26Br4O2) 
3 1 [M-H]- 

YES (m/z 
620.84650 

& 
484.87045) 

f353 209.93593 11.74 
(2-Bromo-5-fluorophenoxy)acetonitrile 

(C8H5BrFNO) 
3 2 [M-H2O-H]- NO 

f27 114.38640 2.54 - 4 - - NO 

f70 135.04543 6.07 
Caffeic acid 
 (C9H8O4) 

2* - [M-H]- NO 

f1299 332.92239 1.00 
4-(4-Chlorobenzene-1-sulfonyl)-3-methylthiophene-2-carbonyl 

chloride 
 (C12H8Cl2O3S2) 

3 0 [M-H]- NO 

f2516 486.03067 1.28 
9-Bromo-3,3-bis(4-fluorophenyl)-3,11-dihydropyrano[3,2-

a]carbazole 
 (C27H16BrF2NO) 

3 0 [M-H]- NO 

f1124 313.23865 13.17 
9,10-dihydroxy-12-octadecenoic acid 

 (C18H34O4) 
3 0 [M-H]- NO 

f1959 417.10754 4.43 1,3-dioxo-2-(oxolan-2-ylmethyl)-N-[4- 3 1 [M-H]- NO 
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(trifluoromethyl)phenyl]isoindole-5-carboxamide 
(C21H17F3N2O4) 

f2106 434.87146 1.16 
5,5-bis(2-iodoethyl)pyrimidine-2,4,6(1h,3h,5h)-trione 

 (C8H10I2N2O3) 
3 1 [M-H]- 

YES (m/z 
304.91415) 

f2539 489.12576 10.85 

3-(5-{[1-Butyl-5-cyano-4-methyl-2-(morpholin-4-yl)-6-oxo-1,6-
dihydropyridin-3-yl]methylidene}-4-oxo-2-sulfanylidene-1,3-

thiazolidin-3-yl)propanoic acid 
 (C22H26N4O5S2) 

3 2 [M-H]- NO 

f83 144.04565 7.69 
8-Hydroxyquinoline 

 (C9H7NO) 
2* - [M-H]- NO 

f2404 471.07892 1.45 
Propanamide, N-[2-[(2-bromo-6-cyano-4-nitrophenyl)azo]-5-

(diethylamino)phenyl]- 
(C20H21BrN6O3) 

3 1 [M-H]- NO 

f868 288.93649 1.06 
2-bromo-5-(trifluoro methyl)phenyhydrazine hydrochloride 

 (C7H7BrClF3N2) 
3 1 [M-H]- 

YES (m/z 
456.86319) 

f918 293.17630 11.45 
Embelin 

 (C17H26O4) 
2* - [M-H]- NO 

* Compounds annotated with MS-DIAL other annotations were performed with METLIN (see section 2.5) 

 

 


