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1  |  INTRODUC TION

The mammary gland (MG), an organ that defines mammalian, plays a 
key role in nutrition of the offspring through the production of milk, 
as well as being essential in the early moments of life through the 
production of colostrum.

Over the years, bovine genetic selection for increased produc-
tion of milk for human consumption has achieved a specialization 
of the organ, making it the ultimate example of milk secreting gland 
(Miglior et al., 2017; VandeHaar & St-Pierre, 2006). Yet, this focus on 
milk production led to increased susceptibility to udder inflamma-
tory diseases known as mastitis (Rupp & Boichard, 1999).

Better knowledge of the immune defence mechanisms of the 
mammary gland are needed to improve genetic selection schemes 
and to develop additional preventive measures such as vaccination 
or immune-stimulation strategies.

We will review the specific immune mechanisms of the dairy ru-
minants' MG, starting with a presentation of constitutive defences 
and then emphasizing on the immune response induced by infection.

2  |  DESCRIPTION OF THE HE ALTHY 
MAMMARY GL AND ENVIRONMENT

The organization of the MG has been well documented over the 
years, from macroscopic descriptions to fine ultrastructural stud-
ies (Nickerson et al., 1984; Smolenski, 2018; Weber, 1977). Starting 
from the teat end, access to the lumen of the MG is sealed in be-
tween milkings by the streak canal made of multilayered keratinized 
epithelium. The canal gives access to the teat cisternae where a par-
ticular structure called the Furstenberg's rosette is found. The teat 
cisternae epithelium then evolves to a bi-layered epithelium, which 
continues into the mammary gland cisterna. From the cisterna, mam-
mary ducts emerge and are connected to multiple alveoli clustered in 
lobules where milk is produced, forming the mammary parenchyma. 
Alveoli feature a single layer of mammary epithelial cells, responsible 
for milk production, surrounded by myoepithelial cells involved in 
contraction for ejection of milk (Adriance et al., 2005).

The MG fulfils dual function as nutrition and immunological pro-
tection that are reminiscent to its origin, the MG either deriving from 

Received: 4 April 2023  | Accepted: 29 April 2023

DOI: 10.1111/rda.14372  

R E V I E W

Immune defences of the mammary gland in dairy ruminants

Pierre Germon  |   Rodrigo Prado Martins

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Reproduction in Domestic Animals published by Wiley-VCH GmbH.

ISP UMR 1282, INRAE, Université de 
Tours, Nouzilly, France

Correspondence
Rodrigo Prado Martins, ISP UMR 1282, 
INRAE, Université de Tours, Nouzilly, 
France.
Email: rodrigo.prado-martins@inrae.fr

Abstract
The mammary gland (MG) of ruminants is essential for assuring the immune protec-
tion and nutrition of the suckling youngs. The domestication of these species aimed 
at increasing milk production for human consumption enhanced udder susceptibility 
to infections and in this context, a better understanding of the MG immune defences 
has become a cornerstone for the success of dairy farming. In this review, we explore 
constitutive and inducible immune mechanisms of the mammary gland and briefly 
discuss the knowledge gaps that remain to be elucidated for the implementation of 
strategies focused on boosting mammary immune responses.

K E Y W O R D S
adaptive immunity, innate immunity, mammary gland, mastitis, ruminants

www.wileyonlinelibrary.com/journal/rda
https://orcid.org/0000-0003-3078-876X
mailto:rodrigo.prado-martins@inrae.fr
https://orcid.org/0000-0002-8213-4015
http://creativecommons.org/licenses/by/4.0/
mailto:rodrigo.prado-martins@inrae.fr
http://crossmark.crossref.org/dialog/?doi=10.1111%2Frda.14372&domain=pdf&date_stamp=2023-07-12


2  |    GERMON and MARTINS

the apocrine gland of a hair follicle or from an integumental skin gland 
(McClellan et al., 2008; Oftedal, 2013; Vorbach et al., 2006). This dual 
function of the MG is reflected by the multiple cell types present 
in the mammary gland: mammary epithelial cells that produce milk 
along with leukocytes involved in protection (Riollet et al., 2000a).

Plasma cells (PC), involved in immunoglobulin secretion, are 
found distributed throughout the mammary gland parenchyma with 
more cells in the rosette and teat, less in the parenchyma and none 
in the streak canal (Nickerson et al., 1984).

MHCII and CD11c-positive cells, probably macrophages and/
or dendritic-like cells, are present in the mammary gland, either in 
the subepithelial compartment or in the vicinity of ductal epithelium 
(Fitzpatrick et al., 1992; Lee et al., 1989; Maxymiv et al., 2012). Ductal 
macrophages were recently characterized by single-cell RNAseq and 
immunohistochemistry in murine mammary glands (Hassel et al., 2021).

T-lymphocytes have been described in uninfected mammary 
glands with CD4 lymphocytes in the connective tissue, while CD8 
lymphocytes are present both in the connective tissue and in the 
ductal epithelium (Nickerson & Heald, 1982; Yamaguchi et al., 1999).

Finally, neutrophils are a population of importance for the de-
fence of the MG (Paape et al., 2003). Present in low numbers in the 
healthy mammary gland, they are recruited in large numbers in the 
mammary gland upon infection. Recently, two different neutrophil 
subsets have been described in bovine blood and milk but their pre-
cise contribution to the host response deserves further investiga-
tion (Rambault et al., 2023).

In the next parts of this review, we will distinguish the constitu-
tive defences of the MG and the inducible defences that are acti-
vated upon infection.

3  |  ‘CONSTITUTIVE’  DEFENCES

3.1  |  The teat canal as the first barrier

Because of its anatomic position as the entry gate for mammary 
gland pathogens, the teat canal is the first barrier to prevent infec-
tion by bacteria colonizing the teat apex (Hohmann et al.,  2020; 
Newbould & Neave, 1965; Paduch et al., 2012; Zecconi et al., 1992).

The teat canal is not only a physical barrier but also a biochem-
ical one. Keratins that constitute the epithelial surface of the teat 
canal are associated with lipids showing antibacterial activities for 
some mastitis pathogens (Hogan et al., 1988; Paulrud, 2005). Other 
proteins with antibacterial activities, such as S100 calcium-binding 
proteins, were shown to be present in the teat canal lining (Hibbitt 
et al., 1969; Smolenski et al., 2015).

3.2  |  Soluble defences

Milk is a rich medium in which a number of bacteria can survive and 
multiply (Roussel et al., 2017); it is also equipped, probably because 
of the dual nature of the MG evoked previously, with a number of 
soluble defences that contribute both to the defence of the offspring 

and to that of the mammary gland itself. The relative contribution of 
these soluble components to the antibacterial activity of milk, de-
spite being lower than that of cellular components, should not be 
overlooked (Koshiishi et al., 2017).

These defences include immunoglobulins, complement and a va-
riety of other antimicrobial components. The diversity and function 
of immunoglobulins in defence of the MG will be dealt with later in 
this review when adaptive defences are considered.

3.2.1  |  The complement system in milk

The complement system plays a peculiar function as it is both in-
volved in antibacterial activities and in the signalling required for 
an efficient inflammatory response. Activation of the complement 
system can occur through three different mechanisms: the classical, 
C1q-dependent and alternate pathways, following spontaneous con-
version of C3 to C3b and the lectin pathway, initiated after recogni-
tion of carbohydrates motifs. Activation of one of these pathways 
results in initiation of the complement cascade which ultimately 
leads to the formation of the membrane-attack complex (MAC) and 
release of the chemoattractant C5a (Stoermer & Morrison, 2011).

Not all activities of complement are efficient in milk, probably be-
cause of variable concentrations of the different cascade components 
(Rainard, 2003). C1q, required for activation of the classical pathway, 
is not present in significant amounts in milk. Yet, adding exogeneous 
C1q to milk allows the deposition of C3 to occur, indicating that the 
other components of complement are available for the events down-
stream of C1q activation to occur (Rainard & Poutrel, 1995).

The deposition of C3 fragments and C4 on the surface of patho-
gens, shown to occur in milk with a reduced speed compared to 
serum, should promote their ingestion by milk phagocytes (Rainard 
& Poutrel,  1995). Yet, the relevance of complement-mediated op-
sonization with regard to phagocytosis is not obvious: C3 deposition 
has little impact on phagocytosis of S. aureus by neutrophils and that 
of S. uberis by macrophages (Barrio et al., 2003; Grant & Finch, 1997).

Deposition of complement also triggers the formation of the 
MAC with pore-forming activity. However, the contribution of the 
MAC to the direct clearance of bacteria is limited: Gram-positive 
bacteria are naturally resistant to complement-mediated lysis and 
mastitis E. coli isolates are able to grow in normal milk (Rautemaa & 
Meri, 1999; Roussel et al., 2017; Védrine et al., 2018).

Maybe the most significant contribution of the complement to 
the defence of the MG is the release of C5a after cleavage of milk 
C5. Although concentration of C5 is 10 times less than that in serum 
and is highly variable between cows, it is enough to generate suf-
ficient amount of C5a that plays a significant role in attraction and 
activation of neutrophils (Rainard et al., 1998; Stevens et al., 2012).

3.2.2  |  Antimicrobial components

Several proteins/molecules with antibacterial activities have been 
detected in normal milk and can be categorized as acting directly 
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    |  3GERMON and MARTINS

on the bacteria, producing toxic compounds or acting by inter-
fering with bacterial growth. Although present constitutively in 
milk, the expression of most of these soluble antibacterial compo-
nents is often induced upon infection (Carlsson et al., 1989; Kawai 
et al., 2015; Tsugami et al., 2022).

3.2.2.1 | Direct antibacterial action—defensins
Defensins are short positively charged proteins (<10 kDa) ex-
pressed by mammary epithelial cells and neutrophils that kill 
bacteria after binding to their surface and permeabilizing their 
membrane (Goldammer et al.,  2004; Isobe et al.,  2009; Selsted & 
Ouellette, 2005). Among defensins identified in cattle, only a few 
have so far been detected in milk, in particular, the lingual antimi-
crobial peptide (LAP), the tracheal antimicrobial peptide (TAP), the 
bovine neutrophil ß-defensin (BNBD) and the enteric ß-defensin 
(Isobe, 2017).

3.2.2.2 | Enzymes involved in production of toxic compounds
Among the enzymes present in milk, only a few stand out when one 
considers their antibacterial potential (Shahani et al., 1973).

Lactoperoxydase (LPO) is constitutively present in milk and 
displays antibacterial activity by producing toxic products when 
sources of thiocyanate and H2O2 are provided (Marshall et al., 1986). 
LPO activity, highly variable between cows, is increased during mas-
titis and correlates with the recruitment of somatic cells in milk. This 
process is probably related to the production of hydrogen peroxide 
by the recruited neutrophils or by xanthine oxydoreductase, another 
abundant milk enzyme (Björck & Claesson, 1979; Fonteh et al., 2002; 
Isobe et al., 2011). Besides its activity in aerobic conditions, which 
generates hydrogen peroxide, XO shows antibacterial activity 
against E. coli through the production of nitric oxide in the presence 
of nitrite (Hancock et al., 2002).

The presence of lysozyme in bovine milk was discovered early in 
the twentieth century (Fleming, 1932). Its antibacterial activity relies 
on its ability to break ß1-4 bonds between peptidoglycan subunits 
in the envelope of bacteria. However, the antibacterial potential of 
lysozyme in healthy bovine udder is hampered by its low concentra-
tion in milk (Seyfert, 1999).

3.2.2.3 | Iron chelation or ‘nutritional immunity’
Lactoferrin is an iron-binding glycoprotein that has the ability to 
interfere with the growth of bacteria in the presence of bicarbo-
nate (Masson & Heremans, 1968). However, during lactation, this 
chelation activity has limited impact because iron is chelated by 
citrate rather than lactoferrin and certain mastitis causing bacte-
ria, for instance E. coli, have the ability to acquire iron by capture of 
this iron-citrate complex (Goldstone et al., 2016; Rainard, 1983). 
As a consequence, the antibacterial activity of lactoferrin is sig-
nificant only when large quantities of lactoferrin are present and 
when citrate concentrations are low, that is, during involution 
or mastitis (Hurley & Rejman,  1993; Isobe et al.,  2011; Oliver & 
Bushe, 1987).

4  |  RESPONSE TO INFEC TIOUS AGENTS

Although these soluble compounds contribute to the defence of the 
MG, an efficient defence depends on the recruitment of neutrophils 
as demonstrated by experiments where bacterial clearance, after 
experimental intra-mammary inoculation of Klebsiella aerogenes, 
was abolished by neutrophil depletion (Jain et al., 1971). The mas-
sive neutrophil recruitment observed in clinical mastitis relies on a 
series of events that start with the recognition of the bacteria by 
the host-innate immune system followed by the production of pro-
inflammatory mediators that ultimately lead to the recruitment of 
neutrophils in the MG. Return to a normal non-inflammatory status 
is then controlled by anti-inflammatory mediators.

4.1  |  C5a production and early response

An early mechanism to contribute to the recruitment of neutrophils 
is the cleavage of C5 following activation of the complement cas-
cade which leads to release of C5a (Stevens et al., 2012). C5a, similar 
to TNFα and IL-1β, is released in milk as early as 12 h post-inoculation 
of a low dose of E. coli in the MG and this release coincides with 
the chemotactic activity of milk (Shuster et al., 1997). The binding 
of C5a to its receptor C5aR not only results in neutrophil attrac-
tion to the site of infection, but it also contributes to their activation 
and increases their phagocytic and bactericidal activities (Nemali 
et al., 2008; Rainard et al., 2000).

4.2  |  Mammary epithelial cells and macrophages as 
sentinels for the detection of pathogens

The two other pathways involved in the initiation of inflammation 
rely on the production of cytokines and lipid-derived mediators or 
oxylipids. These pathways are activated when MG resident cells, 
mammary epithelial cells or macrophages, are exposed to invading 
pathogens (Griesbeck-Zilch et al., 2008; Rainard & Riollet, 2006). 
Recognition of pathogens is mediated by so-called pattern recog-
nition receptors (PRR) expressed either at the surface or in the cy-
tosol that detect conserved motifs expressed by microbes called 
microbe-associated molecular patterns (MAMP). Five families of 
PRR have so far been described in eukaryotes: Toll-like receptors 
(TLR), C-type lectin receptors (CLR), nucleotide-binding domain 
leucine-rich repeat (LRR)-containing receptors (NLRs or NOD-
like receptors), RIG-I-like receptors (RLRs) and the AIM2-like 
receptors (ALRs) (Brubaker et al.,  2015). Not all these receptors 
have been described in bovine. Among the 10 bovine TLR genes, 
only some of them have been demonstrated to be expressed by 
mammary epithelial cells (MEC) and macrophages (Menzies & 
Ingham, 2006). TLR2 and TLR4 expression was detected in bovine 
milk macrophages but the full repertoire of TLR receptors ex-
pressed by milk macrophages remains to be determined (Alhussien 
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4  |    GERMON and MARTINS

et al.,  2021; Werling et al.,  2006). In MEC, expression of TLR1, 
TLR2, TLR4 and TLR6 was detected, either at the gene or protein 
level (Ibeagha-Awemu et al.,  2008; Petzl et al.,  2008; Porcherie 
et al.,  2012). Surprisingly, the expression of TLR5 gene was not 
detected in MEC, consistent with the observation that the MG is 
not responsive to injection of flagellin, a well-known TLR5 agonist 
(Porcherie et al., 2012).

MEC are responsive to LPS treatment via the TLR4/MD2/CD14 
receptor complex (Boudjellab et al.,  1998; Pareek et al.,  2005; 
Porcherie et al., 2012; Strandberg et al., 2005). A significant amount 
of soluble CD14 is present in milk, which contributes to the efficient 
recognition and clearance of coliform bacteria (Lee et al.,  2003a, 
2003b; Lee, Paape, & Zhao,  2003; Reinhardt & Lippolis,  2006; 
Védrine et al., 2018).

In MEC, lipoproteins, particularly those present in the envelope 
of bacteria, are recognized by the TLR1/TLR2 or TLR2/TLR6 het-
erodimers while peptidoglycan subunits are recognized by NOD1 
and NOD2 receptors (Porcherie et al., 2012).

The relative contribution of MEC and macrophages to the onset 
of inflammation is not very well understood. Although MEC are 
likely to be responsible for the recognition of coliform through the 
detection of LPS, their role in responding to other pathogens is less 
obvious. Indeed, recent data suggest that detection of Streptococcus 
uberis, a major mastitis pathogen, is rather accomplished by milk or 
tissue macrophages (Archer et al., 2020; Gunther et al., 2016).

4.3  |  Inflammatory cascade

Upon binding of MAMP to their cognate receptors, signalling path-
ways are activated leading to the expression of pro-inflammatory 
mediators and antimicrobial peptides (Kawai et al.,  2015; Shuster 
et al., 1997). MEC switches from milk secretion to inflammatory re-
sponse with decreased secretion of ß-casein and triglycerides, glu-
cose being preferentially directed towards immune response rather 
than lactose biosynthesis (Blum et al.,  2020; Huang et al.,  2019; 
Tsugami et al., 2021).

Kinetics analyses clearly showed a progressive response of MG 
to stimuli, with MEC from teat cisternae and gland cisternae as early 
responders, while response of MEC from the parenchyma occurs 
later (Petzl et al.,  2016; Rinaldi et al.,  2010). IL-1ß, IL-6 and TNFα 
are detected 10–12 h post-inoculation in the MG, whereas CXCL8 
is detected later (Bannerman et al., 2004; Rinaldi et al., 2010; Riollet 
et al., 2000b; Shuster et al., 1997).

Another early event that occurs upon recognition of patho-
gens is the release of oxylipids (Hayashi et al., 2019; Sordillo, 2018). 
Platelet-activation factor (PAF) and leukotriene B4 were suggested 
to play a role in endotoxin-induced mastitis (Persson et al.,  1993; 
Waller,  1997). Interestingly, PAF is released by MEC very quickly 
after stimulation with LPS (Corl et al., 2008).

Later in the process, the response is characterized by the 
secretion of anti-inflammatory mediators, such as IL-10 and 

TGFß or certain oxylipids, which permits a return to the ini-
tial non-inflammatory status (Chockalingam et al.,  2005; Rinaldi 
et al., 2010).

4.4  |  Adaptive immunity of the mammary gland

In addition to the above-mentioned innate mechanisms, the MG is 
armed of a second line of defence relying on soluble and cellular 
components of the adaptive immune system. Over the innate re-
sponse, the adaptive immune system confers specificity and mem-
ory to the host immune response to infection.

4.4.1  |  Humoral adaptive response

The activity and antigen specificity of humoral adaptive immune 
system is assured by more than 108 possible antibody or immuno-
globulin (Ig) clonotypes, produced by the random recombination of 
genes encoding for their light chain variable (V), diversity (D) and 
joining (J) regions or by somatic hypermutation. Upon recognition 
of specific soluble extracellular antigen through their B-cell recep-
tors (BCR), B cells are activated; they proliferate and mature into 
plasma cell. Plasma cells secrete antibodies recognizing the same 
antigen as their BCR and long-term survival of subsets of activated 
B cells confers immunological memory, allowing a rapid reactivation 
of humoral responses on reexposure to antigen (Harrison,  2016). 
Upon clonal expansion and differentiation, plasma cells can re-
side in their secondary lymphoid tissue of origin or traffic through 
the efferent lymph to the blood to populate distant sites (Kunkel 
& Butcher,  2003). In mice, the efficient migration of IgA antibody 
secreting cells (ASC) to the lactating MG depends on the vascular 
adhesion molecule VCAM-1 and the lymphocyte-expressed integrin 
α4, as well as on the chemokine CCL28 and CCR10. Previous evi-
dence suggest that MAdCAM-1, VCAM-1 and peripheral node ad-
dressin (PNAd) are not involved in the homing of lymphocytes to 
the bovine mammary gland (Hodgkinson et al., 2009). To date, the 
molecules mediating this process in ruminant species are not known 
(Hine et al., 2019).

In ungulates, Igs found in the mammary secretion are determi-
nant for the transfer of passive immunity from mother to young. This 
transfer is particularly critical for the survival of young ruminants, 
since in these species, newborns are agammaglobulinaemic or hy-
pogammaglobulinaemic (Watson,  1980). The colostrum-forming 
MG accumulates IgG1, IgG2, IgA, IgE and IgM from the blood serum 
or produced in situ by intramammary plasma cells, transported by 
transcytosis from the interstitial fluid into the lumen of alveoli (Hine 
et al., 2010; Stelwagen et al., 2009; Watson, 1980). This active and 
highly selective process, mediated by the neonatal Fc receptor 
(FcRN), leads to the production of an IgG1-rich secretion, which 
is available for ingestion by the newborn immediately after birth 
(Brandon et al., 1971; Hine et al., 2019).
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    |  5GERMON and MARTINS

In human and rodents, lactating mammary tissue contains sig-
nificant numbers of IgA-containing plasma cells and a substantial 
amount of IgA is observed in colostrum and milk. Nevertheless, IgG1 
is the most predominant Ig isotype found in the colostrum and milk 
of cows and ewes (Watson, 1980). Besides, although Igs make ap-
proximately 5% of bovine colostrum content, the cow lactating MG 
is characterized by a low presence of Ig-containing plasma cells and 
little amount of Igs (Stelwagen et al., 2009). A 10-fold enhancement 
of IgG1 levels can be observed in bovine colostrum relative to serum, 
whereas milk show IgG1 concentrations 10-fold inferior to blood 
(Baumrucker et al., 2010).

Humoral adaptive mechanisms of the ruminant MG are not only 
relevant for the establishment of the offspring immune defences, but 
they also contribute to the protection of the mammary gland itself. 
IgG1, lgG2 and lgM act as opsonins in milk, leading to the phagocyto-
sis of bacteria by macrophages and neutrophils (Sordillo et al., 1987). 
Milk opsonizing capacity is clearly weak when compared to serum, 
but local stimulation due to infections or by vaccination increases 
the capacity of local antibodies to modulate immune response. 
Igs show an elevated influx from blood into milk during mastitis 
due to an impairment of blood–milk barrier (BMB). Consequently, 
the selective transport of IgG1 into the mammary alveoli is lost, 
leading to an increase of IgG2 levels which becomes the predom-
inant Ig in milk and plays a critical role in the control of infections 
by facilitating the activity of migrating neutrophils. Ewes affected 
by Streptococcus epidermidis-caused mastitis, but not healthy con-
trols, show pathogen-specific IgG and IgA in milk (Queiroga, 2018; 
Wellnitz & Bruckmaier,  2021). Staphylococcus aureus-specific IgG1 
are also found in mammary quarters of clinically healthy lactating 
cows and the presence of higher pre-existing IgG1 titres was associ-
ated to lower S. aureus shedding (Boerhout et al., 2016).

Enhancement of mammary gland humoral adaptive mechanisms 
also relies on an increase of antibody-producing cells in tissue. 
Although B-lymphocytes represent a minor portion of milk lym-
phocytes, the percentage of these cells is significantly increased 
in the milk of cows affected by chronical S. aureus mastitis (Riollet 
et al.,  2001). Vaccination through the intramammary route also 
proved to elicit an increase of IgA, IgG and IgM-producing cells in 
the mammary tissue, reinforcing the role of local stimulation in the 
triggering of adaptive humoral responses in the MG (Hodgkinson 
et al., 2009; McDowell & Lascelles, 1971). The presence of anticap-
sular IgG1, IgG2, IgA and IgM has been also reported in the MG dry 
secretion of cows immunized in the supramammary lymph node 
with S. aureus. These antibodies led to an enhancement of S. aureus 
phagocytosis by neutrophils, with the exception of IgG1, which 
is not opsonic for bovine neutrophils, but increase macrophages 
phagocytic capacities and their role in the defence against bacteria 
(Guidry et al., 1994).

The involvement of epithelial cells adherence/invasion by bacte-
ria in the pathogenesis of mastitis is controversial (Anderson, 1978; 
Cifrian et al.,  1994; Frost et al.,  1977). Nevertheless, different re-
ports have shown that vaccination-induced antibodies could inhibit 
the invasion of a mammary epithelial cell line by pathogens and 

increase phagocytosis by macrophages (Prado et al.,  2011; Renna 
et al., 2014). Although IgG1 and IgG2 constitute the majority of Ig 
in serum, IgA has also been reported to hamper the adhesion of in-
vading pathogens to the mammary epithelial surface (Sheldrake & 
Husband,  1985; Sordillo et al.,  1987). Plasma cells residing in the 
mammary gland produce the IgA found in bovine colostrum and 
milk. IgA is then transported to mammary alveoli by the polymeric 
immunoglobulin receptor (pIgR) and is released with a portion of 
pIgR named secretory component (SC). SC contributes to the de-
fence of MG by enhancing the functionality of IgA and eosinophils 
as well as by acting as a microbial scavenger (Stelwagen et al., 2009).

Staphylococci can produce toxins, such as staphylococcal en-
terotoxins (SEs), toxic shock syndrome toxin-1 (TSST-1), leucocidins, 
haemolysis and exfoliatin to evade host defences and cause dis-
eases, including mastitis (Abril et al., 2020). Interestingly, local anti-
bodies take part in the protection of mammary tissue by neutralizing 
these toxins (Kuroishi et al., 2003).

4.4.2  |  Cell-mediated adaptive immunity

The cell-mediated immunity (CMI) relies on the activity of T lym-
phocytes (or T cells) specifically sensitized by contact with a foreign 
antigen presented in the context of major histocompatibility com-
plex (MHC) molecules. MHC class I (MHC-I) molecules are present 
on all nucleated cells, whereas MHC class II (MHC-II) molecules are 
expressed by professional antigen presenting cells (APCs): dendritic 
cells (DCs), monocytes, macrophages and B cells. Upon cell infection 
or pathogen phagocytosis, MHC-I and MHC-II molecules present 
peptide antigens to T-cell receptors (TCR) of CD8+ and CD4+ lym-
phocytes respectively (Harrison, 2016).

Cell-mediated immune response can be classified as type 1, 2 or 
3 according to the implicated effector cells, their functions and their 
pathophysiological effects. Type 1 (IFNγ-dependent) and type 3 (IL-
17-dependent) responses are the most relevant in the context of 
bacterial infections. They involve CD4+ and CD8+ T cells producing 
IFNγ (Th1 and Tc1 respectively) and those producing IL-17 (Th17 and 
Tc17). Type 3 immunity is characterized by the recruitment of neu-
trophils and stimulation of epithelial antimicrobial defences against 
extracellular bacteria and fungi, whereas type 1 immunity provides 
an effective response against intracellular microbes by boosting 
the killing capacity of phagocytes and infected cells (Annunziato 
et al., 2015). A general overview of CMI mechanisms in the MG of 
ruminants will be provided in this article. For a more comprehensive 
review, refer to Rainard et al., 2022.

Studies carried out in the early 1980s provide the initial obser-
vations associating the CMI to the defence of the MG. S. aureus mas-
titis leads to monocytes migration to the mammary tissue and their 
maturation into macrophages (Nickerson & Heald,  1982). Besides 
phagocytosing degenerate neutrophils and milk constituents, mac-
rophages are supposed to enter lymphatics and migrate to lymphoid 
organs or process antigens for presentation to lymphoid cells lo-
cated in the interalveolar stroma. These lymphoid cells, accumulated 
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in the MG after infections, were initially considered as precursors 
of antibody-producing plasma cells. However, further research 
showed that mononuclear cells found in the MG could also induce 
local neutrophil responses in an antigen-specific way (Colditz & 
Watson, 1982).

Since then, accumulating evidence highlight a major role of cel-
lular immunity, in particular IL-17 mediated CMI, in the defence of 
the MG. Mammary antigen-specific reaction marked by a neutro-
philic inflammation essential for the clearing of invading organisms 
has been associated to IL-17A-producing CD4+ T cells (Rainard 
et al.,  2015). Using an immunization schedule exploiting the in-
tramammary route, Cebron et al.  (2020) associate a better clear-
ance of E. coli intramammary infections to an increased homing 
and/or proliferation of T-lymphocytes producing IL-17 in the MG. 
IL17A and IL17F are key cytokines for the recruitment, activation 
and migration of neutrophils (Annunziato et al., 2015). IL-17A ex-
pression, at both mRNA and protein levels, has been described 
in mammary tissue and milk from cows experimentally infected 
with E. coli (Herry et al.,  2017; Roussel et al.,  2015) and S. uberis 
(Tassi et al.,  2013). Bovine mammary epithelial cells express the 
two components of the IL-17 receptor and respond to IL-17 by 
releasing more chemokines and antimicrobial peptides (Bougarn 
et al., 2011).

An increase of IFN-γ expression/abundance in the MG has been 
reported during mastitis caused by multiple pathogens includ-
ing S. aureus, E. coli and S. uberis. This cytokine, produced mainly 
by T-lymphocytes and natural killer cells (NK cells), enhances the 
microbicidal activity of macrophages and neutrophils and upregu-
lates the expression of MHC molecules, boosting CD4+ and CD8+ 
T cells activation (Bannerman, 2009). Despite its role in linking the 
innate and adaptive arms of the immune response, the impact of 
IFNγ in the pathogenesis of mastitis is still ambiguous, as it varies 
depending on the causing agent. Herry et al. (2017) observed that 
immunization with heat-killed E. coli generates a marked increase 
of IFNγ concentrations in milk that is inferred to improve bacte-
rial clearance and enhance resistance to mastitis. Better bacte-
ricidal response against S. uberis has been also attributed to the 
induction of IFNγ-mediated mechanisms in non-immunized (Denis 
et al., 2011a) and immunized cows (Wedlock et al., 2014). Contrary 
to this, high concentrations of IFN-γ have been reported in milk 
of animals infected with pathogens causing persistent infections 
(Schukken et al., 2011). IFN-γ has been additionally related to an 
enhancement of susceptibility to mastitis by S. aureus in bovine 
(Liu et al., 2020).

Unlike peripheral blood, T cells in healthy mammary glands 
and milk are mostly CD8+ (Sordillo & Streicher,  2002). However, 
increased amounts of CD4+ T cells concurrent with a decrease of 
their CD8+ counterparts is observed in milk during mastitis (Riollet 
et al.,  2001; Soltys & Quinn,  1999; Tucker et al.,  2023) indicating 
that these cells are important mediators of MG immune defences. 
Nevertheless, the contribution of CD8+ T cells to the protection 
of mammary tissue should not be neglected. Denis et al.  (2011b) 
demonstrated that a high proportion of S. uberis-specific T cells from 

bovine blood and MG secretion shows a memory CD8+ phenotype 
and potent bactericidal activity in vitro. Nevertheless, evidence also 
attributes a suppressive role to CD8+ T cells during mastitis by S. au-
reus (Park et al., 1993) and further research is necessary to clarify the 
impact of these cells in the establishment of persistent infections.

During mastitis, epithelial cells are the first barrier to infection 
and pathogens adapted to the mammary gland can eventually pene-
trate these cells and survive in the intracellular milieu. Since antigen-
specific responses by CD8+ T cells are efficiently triggered during 
bacterial infections (Joffre et al., 2012), it is possible that activated 
IFNγ-producing cytotoxic T cells fight the bacterial intracellular niche 
by eliminating infected cells. Additionally, IL-17-producing CD8+ T 
cells have been identified as relevant sources of IFNγ, TNFα, IL-21 
and IL-22 in human (Srenathan et al., 2016). These cells have been 
recently reported in bovine (Elnaggar et al.,  2018) and their func-
tions in the protection of the mammary gland remains to be clarified.

5  |  CONCLUDING REMARKS AND 
KNOWLEDGE GAPS

The different families of immune system mediators present in the ru-
minant mammary gland are now rather well identified. Nevertheless, 
the diversity of cell populations and molecules composing these 
families remains to be deciphered. Current high-throughput tech-
niques would be very valuable to finely characterize the different 
MG lymphocytes, neutrophils and macrophages sub-populations. To 
foster the development of new and innovative vaccination strate-
gies, further knowledge of the functionality of milk and tissue lym-
phocytes is eagerly needed, as well as of the biology of antigen 
presenting cells in the MG. A better understanding of how MG cell 
populations interact with each other and what are their respective 
roles in host response is also necessary.

Although current trends often focus on cytokines, they may not 
be the earliest signals in the host response to infection. A deeper 
comprehension of how oxylipids, for example, contribute to the de-
fence of the MG is needed and this is of particular interest given 
that these molecules derive from polyunsaturated fatty acids, which 
metabolism could be adjusted through nutrition (Lin et al.,  2013). 
Similarly, the role of C5a in the early steps of inflammation has been 
suggested and would deserve renewed investigations (Stevens 
et al., 2012). Finally, one should bear in mind that innate and adaptive 
immunity go hand in hand and should not be considered separately.
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