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ABSTRACT

Recently, high-dimensional omics data are becoming 
available in larger quantities, and models have been 
developed that integrate them with genomics to under-
stand in finer detail the relationship between genotype 
and phenotype, and thus improve the performance of 
genetic evaluations. Our objectives are to quantify the 
effect of the inclusion of microbiome data in the ge-
netic evaluation for dairy traits in sheep, through the 
estimation of the heritability, microbiability, and how 
the microbiome effect on dairy traits decomposes into 
genetic and nongenetic parts. In this study we analyzed 
milk and rumen samples of 795 Lacaune dairy ewes. 
We included, as phenotype, dairy traits and milk fatty 
acids and proteins composition; as omics measure-
ments, 16S rRNA rumen bacterial abundances; and as 
genotyping, 54K SNP chip for all ewes. Two nested 
genomic models were used: a first model to predict 
the individual contributions of the genetic and micro-
bial abundances to phenotypes, and a second model 
to predict the additive genetic effect of the microbial 
community. In addition, microbiome-wide association 
studies for all dairy traits were applied using the 2,059 
rumen bacterial abundances, and the genetic correla-
tions between microbiome principal components and 
dairy traits were estimated. Results showed that in 
general the inclusion of both genetic and microbiome 
effect did not improve the fit of the model compared 
with the model with the genetic effect only. In addition, 
for all dairy traits the total heritability was equal to the 
direct heritability after fitting microbiota effects, due 
to a microbiability being almost zero for most dairy 
traits and heritability of the microbial community was 
very close to zero. Microbiome-wide association studies 
did not show operational taxonomic units with major 
effect for any of the dairy traits evaluated, and the 

genetic correlations between the first 5 principal com-
ponents and dairy traits were low to moderate. So far, 
we can conclude that, using a substantial data set of 
795 Lacaune dairy ewes, rumen bacterial abundances 
do not provide improved genetic evaluation for dairy 
traits in sheep.
Key words: rumen microbiota, heritability, 
microbiability, microbiome-wide association studies, 
dairy sheep

INTRODUCTION

In plant and animal breeding, it has recently become 
possible to obtain high-dimensional omics data, such as 
metabolites, gene expression, proteins, microbial genes, 
in larger quantities, in addition to the already available 
genotypes. This has enabled the integration of different 
types of data to uncover the genotype-phenotype rela-
tionship (Morgante et al., 2020), which will be beneficial 
for the development of an optimized breeding strategy 
to improve complex traits (Fernie and Schauer, 2009; 
Guo et al., 2016).

However, to use omics information in genomic evalua-
tions, there must be methods and models available that 
can account for these high-dimensional data. To this 
end, first, Hayes et al. (2017) used a multitrait genetic 
model including as correlated traits near infrared and 
nuclear magnetic resonance-derived phenotypes. Then, 
Weishaar et al. (2020) used 2 models: a microbial model 
to describe the microbiome effect on phenotypes (i.e., 
the microbiability defined by Difford et al. (2018) for 
rumen microbiome in cattle), and a genetic model for 
microbial abundances, which quantify the host genetic 
control on the microbiota. The genetic effect on the 
trait, not mediated by the microbiome, is included in a 
final step in a selection index. However, in this regard, 
Christensen et al. (2021) proposed a joint model includ-
ing the genetic effect not mediated by the microbiome 
in the first model. This joint model was proposed for 
intermediate traits, which are those traits between 
the DNA action and phenotype expression. Although 
microbiome data are not strictly an intermediate trait 
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from a molecular point of view, in practice, it is a source 
of information between genotype and phenotype.

In ruminants, the rumen microbiome is crucial to 
digest plant fiber and is closely associated to produc-
tive traits (Difford et al., 2018; Xue et al., 2018; Mat-
thews et al., 2019). Particularly in dairy ruminants, the 
rumen fermentation products, such as VFA, and the 
microbial AA are used by the mammary gland to pro-
duce milk with a high solid content which allows the 
production of high-quality cheese. Our previous results 
showed that rumen bacterial abundances are controlled 
by host genetics in Lacaune dairy ewes (Martinez Bog-
gio et al., 2022) and that fine milk composition is linked 
with particular rumen bacteria (Martinez Boggio et al., 
2021). So, we hypothesized that there is an indirect 
genetic effect on dairy traits mediated by the bacterial 
abundances in the ewe’s rumen. Therefore, we propose 
to apply the method defined by Christensen et al. 
(2021) on a Lacaune dairy sheep dataset including 16S 
rRNA bacterial abundances, and fine milk composition 
traits as phenotypes, aiming at quantifying the effect of 
the inclusion of the rumen microbial abundance in the 
genetic evaluation of dairy traits, estimating model 
parameters such as the direct heritability (not mediated 
by the microbiome; hd

2), microbiability cm
2( ), and the 

heritability of the predicted microbiome effect hm
2( ), 

which amounts to a general heritability of the micro-
bial community (Christensen et al., 2021). In addition, 
to evaluate the link between rumen microbial structure 
and milk composition traits, we propose to aggregate 
the rumen microbiota into a few principal components 
(PrC), and for each of these to estimate the heritabil-
ity (h2) and genetic correlations with dairy traits.

MATERIALS AND METHODS

The study was conducted at the INRAE Experi-
mental Unit of La Fage (UE 321 agreement A312031, 
Roquefort, France) with a protocol for rumen sampling 
approved by the French Ministry of Higher Education, 
Research and Innovation – Animal Ethics Committee 
(approval number: APAFIS#6292–2016080214271984 
v8).

Animals’ Phenotyping

Data of dairy traits and rumen bacterial abundance 
from 795 multiparous Lacaune dairy ewes were collect-
ed from 2015 to 2019. For details, see Martinez Boggio 
et al. (2023). The data consisted of milk yield (MY) 
records and midinfrared (MIR) spectra predictions of 
the milk fat content (FC) and protein content (PC) 

for 795 ewes, and the fine profile of daily milk fatty 
acids (FA) and proteins for 563 ewes. The accuracies 
of the predictive equations of ewe milk FA and proteins 
were retrieved from Ferrand-Calmels et al. (2014) and 
Ferrand et al. (2012), respectively. The coefficients of 
determination for the FA retained for this study, were 
higher than 0.91, except for c9t11 C18:2 and C18: 3n -3 
with values of 0.74. Meanwhile, for caseins, the coef-
ficients of determination were higher than 0.82, and 
equal to 0.77 and 0.26, for β-LG and α-LA, respectively. 
The FA predicted by MIR were SFA, such as butyric 
acid (C4:0), caproic acid (C6:0), caprylic acid (C8:0), 
capric acid (C10:0), lauric acid (C12:0), and palmitic 
acid (C16:0), and UFA, such as oleic acid (c9 C18:1), 
rumenic acid (c9t11 C18:2) and α-linolenic acid (C18: 
3n -3). The proteins predicted by MIR were caseins, 
namely αS1-CN, αS2-CN, β-CN, and κ-CN, and 2 whey 
proteins, namely α-LA and β-LG.

Rumen Sampling

Rumen sampling was performed in morning or after-
noon within 3 d around the official milk recording of 
the flock. Ruminal contents were sampled from each 
ewe using a vacuum pump and a medical gastric tube. 
After extraction, the DNA strands of the 795 samples 
were sequenced using V3-V4 region of 16S rRNA gene 
with Illumina MiSeq technology at the Genomic and 
Transcriptomic Platform (INRAE, Toulouse, France). 
More details on rumen sampling, DNA extraction, 
amplicon sequencing and bioinformatic process are 
provided in Martinez Boggio et al. (2023). We obtained 
an abundance table with 2,059 operational taxonomic 
units (OTU) as result of the bioinformatic process of 
DNA sequences using FROGS 3.0 pipeline (Escudié et 
al., 2018). Note that, given the Swarm clustering (Mahé 
et al., 2015), chimera removal and abundance filtering 
applied, OTU obtained from FROGS can be considered 
as amplicon sequencing variants.

Genotyping

Among the 795 ewes, 743 were genotyped using Il-
lumina Ovine SNP50 BeadChip (54,241 SNPs), and 
52 ewes were genotyped with Illumina Ovine SNP15 
(16,681 SNPs) followed by imputation to a medium-
density SNP chip as part of the Lacaune dairy sheep 
genomic selection program (Larroque et al., 2017). 
Genotypes were subjected to quality control, includ-
ing minimum call rates of 90% for SNPs and 95% for 
individuals and exclusion of SNPs with a minor allele 
frequency lower than 5%. The final data set included 
773 genotyped individuals and 35,492 autosomal SNPs.
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Statistical Analyses

The methodology applied for inference with complete 
omics data was the one proposed by Christensen et al. 
(2021), where a joint model for omics and phenotypes 
was proposed, and a method for prediction of breeding 
values developed. The method consisted of the following 
2 steps: (1) prediction of the individual contributions 
of the genetic and microbiome to phenotypes, and (2) 
prediction of the additive genetic effect of the microbial 
community. Christensen et al. (2021) named the first 
genetic effect as the “residual additive genetic effect,” 
but here we prefer to name it the “direct genetic effect,” 
as it is the genetic effect directly influencing the pheno-
type (i.e., not mediated by the microbiome). Similarly, 
we here name the additive genetic effect of the micro-
bial community as “indirect genetic effect,” consistent 
with terminology in Bijma (2014) in the sense that it 
is the sum of indirect genetic effects of bacteria in the 
rumen. As an additional analysis, in the first step, we 
compared several mixed models to assess the relevance 
of including the microbiome effect to the genetic one, 
as well as the additive genetic and microbiome interac-
tion effect. The individual dairy traits were analyzed 
separately using single trait models.

Step 1. The first step consisted on fitting a single 
trait model including the direct genetic effect not me-
diated by the microbiome and the microbiome effect 
(Equation [1]):

 y = Xb + Z1ad + Z2m + e, [1]

where y is the vector of observations, b is the vector of 
fixed effects, ad is the vector of random direct (not 
mediated by the microbiome) additive genetic effects, 
m is the vector of individual effects due to microbiome, 
and e is the vector of random residual effects, X is the 
incidence matrix for b, and Z1 and Z2 are incidence 
matrices for ad and m, respectively. The distributional 
assumptions are a Gd ~ , ,N ad

0 2σ( )  m O~ , ,N m0 2σ( )  
e I~ , ,N e0 2σ( )  where G is a genomic relationship matrix 
computed based on the first method proposed by Van-
Raden (2008), O is the microbial similarity matrix, and 
I is an identity matrix; σad

2  is the direct additive ge-
netic variance, σm

2  is the microbiome effect variance, 
and σe

2 is the residual variance. The microbiability was 
estimated as cm m y

2 2 2= σ σ , and the direct heritability as 
hd a yd

2 2 2= σ σ  (hd
2 was called hr

2 by Christensen et al., 
2021), where σy

2 is the phenotypic variance.
The fixed effects considered in b (Equation [1]) were 

defined by ANOVA test with P < 0.05. For all dairy 
traits, we included the effects of DIM (28–133 DIM) 

as a covariate and the sampling year (with 5 levels: 
2015 to 2019). For FC and milk FA, we included the 
number of lactations nested in the sampling year (with 
7 levels: in 2015, ewes in second, third, or fourth and 
more lactations, and in 2016 to 2019 ewes in second 
lactation only), and for PC, milk proteins and FA, we 
also included litter size, with 2 levels (1, or 2 and more 
lambs).

The microbial similarity matrix (O) for the 795 ewes 
was computed based on the rumen bacterial abundance 
similarities between animals using the method proposed 
by Ross et al. (2013):

 O MM
=

′

n
. 

The matrix was computed as a variance-covariance 
matrix from rumen bacterial abundances as where M is 
the abundance matrix with n = 2,059 OTU, with zeros 
corrected with the geometric Bayesian-multiplicative 
method (Martín-Fernández et al., 2015) and centered 
log-ratio (CLR) transformed. Other corrections and 
transformations, such as adding one to all values, loga-
rithmic transformation, or use different number of 
OTU, did not greatly affect the results (not shown). 
The OTU abundances were precorrected for the signifi-
cant fixed effects (for more than 10% of OTU; P < 
0.05) not included in b (Equation [1]), such as total 
number of sequences per rumen sample, sequencing 
run, and sampling time and order, all of them nested on 
the sampling year. Note that the microbial matrix O, is 
called M by other authors (Difford et al., 2018; Weishaar 
et al., 2020), but here we use M for the abundance 
matrix to have the same notation as Christensen et al. 
(2021). Similarly, microbiability, that we call cm

2 , was 
named m2 in Difford et al. (2018). Matrix O had an 
overall mean of 0 and a mean of the diagonal of 1.

To assess the relevance of including the microbiome 
effect and its interaction with the genetic effect in the 
prediction model, we used the model with genetic and 
microbiome effects (Equation [1]), and a model with 
the genetic effect only, a model with the microbiome 
effect only, and the model in Equation [1] plus the 
genome-by-microbiome interaction as follows:

 y = Xb + Z1g + e, [2]

 y = Xb + Z2m + e, [3]

 y = Xb + Z1ad + Z2m + Z3am + e, [4]

where g is the vector of random additive genetic effects, 
am is the vector of additive genetic and microbiome 

Boggio et al.: TOTAL HERITABILITY OF SHEEP MILK COMPOSITION



Journal of Dairy Science Vol. 106 No. 9, 2023

interaction effect, Z3 is the incidence matrix for am, 
and y, b, ad, m, e, X, Z1, and Z2 are described above. 
The distributional assumptions are g G~ , ,N g0 2σ( )  
m O~ , ,N m0 2σ( )  and am G O~ , ,N am0 2°[ ]( )σ  where G is a 
genomic relationship matrix, O is the microbial similar-
ity matrix, and G O°  is the Hadamard product of G and 
O (as implemented by Khanal et al. 2020); σg

2 is the 
additive genetic variance, σm

2  is the microbiome effect 
variance, and σam

2  is the variance for the interaction ef-
fect. In Equation [2] the heritability was estimated as 
h g y

2 2 2= σ σ .
The model with the genetic effect only (Equation 

[2]), defined as the null hypothesis, was compared 
with models in Equations [1] and [4] on the basis of 
a likelihood ratio test. The P-values were computed 
considering that the distribution of likelihood ratio test 
asymptotically is a mixture of chi-squared distributions 
(Visscher, 2006). The significance for chi-squared test 
with one degree of freedom was defined at P < 0.05.

Step 2. The second step consisted on fitting a single 
trait model using the estimates of microbiome effect 
(obtained from Equation [1]) as phenotype,

 m̂ W Z g= + +β ε1 , [5]

where m̂ is the predicted effects m in Equation [1] for 
each individual, β is the vector of fixed effects (same 
effects as in b); g is the vector of indirect random (me-
diated by the microbiome) additive genetic effects; and 
ε is the vector of random residual effects; W is the in-
cidence matrix for β. The distributional assumptions 
are g G~ ,N g0 2σ( ) and ε ~ , ,N 0 2Iσε( )  where G is a ge-
nomic relationship matrix, and I is an identity matrix; 
σg

2 is additive genetic variance and σε
2 is residual vari-

ance. The heritability of m̂  was calculated as 
hm g gˆ .2 2 2 2= +( )σ σ σε  Here, contrary to our previous work 
(Martinez Boggio et al., 2022) we assume (or force) the 
same heritability for all OTU, which is a simplifying 
assumption in Christensen et al. (2021). In theory, 
whatever the trait used in Equation [5] and based on 
the assumption of equal heritability for all OTU, the 
appropriate heritability to use for such a phenotype m̂ 
is equal to the heritability of the microbial community 
hm

2( ). However, first, when σm
2 0→ , there is no variation 

in m̂, and hm
2  (although well defined) is not estimable. 

Second, because the variance components of Equation 
[1] are themselves estimates, the estimate of variance 
components in Equation [5], which uses inferred m̂, will 
suffer from incorrect estimation of variance components 
in Equation [1].

Thus, the total heritability ht
2( ) of a phenotype is 

decomposed into an indirect microbiome mediated 
heritability c hm m

2 2( ), and a direct heritability hd
2( ) accord-

ing to the formula h c h ht m m d
2 2 2 2= +  presented by Chris-

tensen et al. (2021). Note that when the model includes 
only the genetic effect, ht

2 is equal to h2. All variance 
components were estimated using BLUPF90+ (Misztal 
et al., 2002) through a mixture of EM-REML and AI-
REML.

Microbiome-Wide Association Study

Single-OTU regression analyses were applied to test 
the effect of the 2,059 OTUs, one at a time, and ob-
tain the associated P-value. The model used was the 
Equation [2] plus the specific OTU as a fixed covariate. 
The P-value of the estimate of the regression coefficient 
for the fitted OTU-covariate was obtained by convert-
ing the estimate and its standard error to Z-score and 
applying a chi-squared test. The model was fitted us-
ing BLUPF90+ (Misztal et al., 2002) with OPTION 
method VCE.

Genetic Parameters of Rumen Microbial Structure

Principal component analysis (PCA) was used to 
reduce the dimensionality and aggregate the rumen 
microbiota variance into few variables. We performed 
PCA on the CLR-transformed abundance matrix M, 
using the centered and scaled option of the prcomp 
function from the stats package in R (R Core Team, 
2021).

Principal components were used as phenotypic vari-
ables describing the rumen microbiota structure. The 
host genetic effect over microbiota and dairy traits was 
estimated using a 2-traits models including one of each 
PrC and one of each dairy trait:
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where y1 and y2 are the vectors of observations for PrC 
and dairy traits (1–18) for each individual, respectively, 
b1 and b2 are the vectors of fixed effects for each trait, 
g1  and g2 are the vectors of random additive genetic 
effects, and ε1 and ε2 are the vectors of random residu-
al effects; X1, X2, W1, and W2 are the incidence matri-
ces for b1, b2, g1, and g2, respectively. The distribu-
tional assumptions are g G K= ⊗( )N 0,  and 
ε = ⊗( )N 0, I R , where ⊗ denotes the Kronecker product 
between 2 matrices, G is a genomic relationship matrix 
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computed based on the first method proposed by Van-
Raden (2008), I is an identity matrix, and K and R are 
the genetic and residual variance-covariance matrices 
for the random additive genetic and residual effects, 
respectively.

The fixed effects considered in b1 and b2 (Equation 
[6]) were defined by ANOVA test with P < 0.05. For all 
PrC, we included the effects of DIM as a covariate, the 
sampling year, and the number of lactations nested in 
the sampling year, and for dairy traits the same effects 
as defined in Equation [1].

The heritability for each PrC was calculated as 
h g y

2 2 2= σ σ . The genetic correlations between ith PrC 
and jth dairy trait were computed as follows:

 corrg g g gPrCiDTj PrCiDTj PrCi DTj
= ×σ σ2 2σ , 

where σgPrCiDTj
 is the additive genetic covariance be-

tween PrCi and DTj, σgPrCi
2  is the additive genetic vari-

ance for PrCi, and σgDTj
2  is the additive genetic variance 

for DTj. Genetic correlations with absolute values 
higher than twice the standard error were considered to 
differ from zero.

RESULTS

Description of Phenotypes

A data summary on dairy traits and rumen bacte-
rial composition is available in Martinez Boggio et al. 
(2022). Briefly, MY averaged 1.95 ± 0.59 L, with an 
FC of 7.37 ± 1.14 g/100 mL and a PC of 5.71 ± 0.52 
g/100 mL. Among the fine milk components measured 
by MIR spectra, β-CN was the most abundant protein 
(2.10 ± 0.23 g/100 mL) and palmitic acid (C16:0) the 
most abundant FA (1.96 ± 0.37 g/100 mL).

Comparison Between Genetic, Microbiome  
and Interaction Models

Results of the comparison between mixed models are 
reported in Table 1. The models that included both mi-
crobiome and genomic information (Equation [1]), and 
microbiome, genomic information, and their interaction 
(Equation [4]) were better than the model that included 
only genomic information (Equation [2]) for only 3 of 
the 18 dairy traits. More specifically, the inclusion of 
the microbiome effect to the genetic one was significant 
for β-LG (P < 0.01), αS2-CN and κ-CN (P < 0.05). 
However, we obtained nonsignificant effects of the in-
clusion of the microbiome effect in all FA (Table 1).

Microbiability and Heritability  
of the Microbial Community

The microbiability estimated from the full model was 
almost zero for most dairy traits (Table 2), with excep-
tion of β-LG (0.06 ± 0.05), αS2-CN (0.07 ± 0.05), κ-CN 
and αS1-CN (0.04 ± 0.04) and PC (0.03 ± 0.03), where 
values were barely higher than zero. We also run mod-
els without fitting a genetic effect (Equation [3]), this 
analysis was called “microbial mixed model” by 
Weishaar et al. (2020) and the estimated microbiabili-
ties were also very low (even for β-LG cm

2 , it was esti-
mated as 0.07 instead of 0.06). So, we conclude that in 
our dataset, the microbiome effect is not “captured” by 
the genetic effect.

For all the dairy traits with a microbiability almost 
equal to zero, the model in step 2 did not run because 
the predicted phenotypes m̂ have zero variance and hm

2  
is therefore not estimable. For the remaining traits hav-
ing a nonzero microbiability (albeit small in all cases), 
hm

2  was very close to zero. So, in practice, ht
2 of dairy 

traits was equal to the direct heritability (from step 1) 
as shown in Table 2. Furthermore, we tested the contri-
bution of each specific OTU on dairy traits using a 
microbiome-wise association study, but no OTU for any 
dairy trait showed a significant effect (results not 
shown).

Genetic Correlations Between Microbiome PrC  
and Dairy Traits

The rumen microbiota with 2,059 OTU was aggre-
gated in few variables by applying PCA to the CLR 
abundances. We kept the first 5 PrC that explain up 
to 25% of the microbial variance, and the variance ex-
plained by each PrC is shown in Table 3. We obtained 
low to moderate genetic correlations (from −0.44 ± 
0.39 to 0.18 ± 0.44), mainly with PrC2 to PrC4, how-
ever the genetic correlations had large standard errors 
that were not significantly different from zero (Table 
3).

DISCUSSION

In this study, we evaluated the impact of rumen bac-
terial abundance on milk composition traits in dairy 
ewes, and its genetic control by the host. Rumen 16S 
rRNA gene sequencing were considered as a source of 
information between genotype and phenotype in the 
model of Christensen et al. (2021), because rumen 
bacteria are closely associated with milk composition 
traits (Matthews et al., 2019), even though they are 
not part of the molecular network which operates at 
various omics levels (e.g., transcriptomics, proteomics, 
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metabolomics). Moreover, a genetic control of bacterial 
abundances by the host, and genetic associations with 
the fine milk composition, had been shown Martinez 
Boggio et al. (2022). This close link of some rumen 
microbiota with milk FA is due to rumen fermentation 
products, such as VFA, which influence the milk FA 
profile through de novo synthesis of FA in the mam-

mary gland and biohydrogenation of UFA in the rumen 
(Lourenço et al., 2010; Osorio et al., 2016). Furthermore, 
the link between rumen microbiota and milk proteins 
is mainly due to the fact that the passage of microbial 
proteins to the intestine supplies the mammary gland 
with essential AA used for protein production (Osorio 
et al., 2016). Although rumen bacteria provide precur-

Boggio et al.: TOTAL HERITABILITY OF SHEEP MILK COMPOSITION

Table 2. Estimates of direct heritability (not mediated by the microbiome; hd
2), microbiability cm

2( ), heritability 
of the microbial community hm

2( ), and total heritability ht
2( ) as product of c hm m

2 2( ) plus hd
2( ); values shown ± SE 

(given in parentheses if exceptionally low)

Trait1 hd
2 cm

2 hm
2 ht

2

MY 0.25 ± 0.07 0.005 ± 0.02 —2 0.25
FC 0.54 ± 0.07 <10e-4 (<10e-3) —2 0.54
PC 0.51 ± 0.07 0.03 ± 0.03 0.004 ± 0.003 0.51
αS1-CN 0.49 ± 0.09 0.04 ± 0.04 0.006 ± 0.004 0.49
αS2-CN 0.70 ± 0.08 0.07 ± 0.05 0.03 ± 0.007 0.70
β-CN 0.42 ± 0.09 <10e-4 (<10e-3) —2 0.42
κ-CN 0.47 ± 0.08 0.04 ± 0.04 0.006 ± 0.003 0.47
α-LA 0.28 ± 0.10 <10e-4 (<10e-3) —2 0.28
β-LG 0.44 ± 0.09 0.06 ± 0.05 0.003 ± 0.002 0.44
C4:0 0.46 ± 0.09 <10e-4 (<10e-3) —2 0.46
C6:0 0.44 ± 0.09 <10e-4 (<10e-3) —2 0.44
C8:0 0.47 ± 0.09 <10e-4 (<10e-3) —2 0.47
C10:0 0.52 ± 0.09 <10e-4 (<10e-3) —2 0.52
C12:0 0.55 ± 0.08 <10e-4 (<10e-3) —2 0.55
C16:0 0.47 ± 0.08 0.01 ± 0.03 —2 0.47
c9 C18:1 0.43 ± 0.09 <10e-4 (<10e-3) —2 0.43
c9t11 C18:2 0.35 ± 0.09 <10e-4 (<10e-3) —2 0.35
C18: 3n -3 0.36 ± 0.09 <10e-4 (<10e-3) —2 0.36
1MY= milk yield; FC = milk fat content; PC = milk protein content.
2Model in Equation [5] not run.

Table 3. Proportion of the variance explained by the first 5 principal components (PrC), heritability, and 
genetic correlations between the first 5 principal components and dairy traits; values shown ± SE (given in 
parentheses if exceptionally low)

Item1 PrC1 PrC2 PrC3 PrC4 PrC5

Proportion of variance (%) 9.58 7.39 6.10 1.58 1.32
Heritability 0.01 ± 0.04 0.21 ± 0.06 0.23 ± 0.06 0.10 ± 0.06 0.11 ± 0.06
Genetic correlations      
 MY 0.24 ± 1.09 −0.003 ± 0.25 0.02 ± 0.24 −0.52 ± 0.78 0.18 ± 0.48
 FC −0.07 ± 0.65 −0.25 ± 0.20 −0.14 ± 0.18 0.14 ± 0.37 0.16 ± 0.34
 PC 0.25 ± 0.53 −0.27 ± 0.20 −0.24 ± 0.17 −0.04 ± 0.36 −0.11 ± 0.29
 αS1-CN 0.52 ± 0.72 −0.42 ± 0.22 −0.23 ± 0.20 0.18 ± 0.44 −0.01 ± 0.38
 αS2-CN −0.41 ± 0.72 −0.42 ± 0.28 −0.18 ± 0.17 0.17 ± 0.51 −0.07 ± 0.33
 β-CN 0.75 ± 2.07 −0.21 ± 0.23 −0.15 ± 0.22 0.14 ± 1.26 −0.01 ± 0.46
 κ-CN 0.07 ± 0.55 −0.35 ± 0.22 −0.21 ± 0.20 0.17 ± 0.51 −0.11 ± 0.45
 α-LAC 0.90 ± 0.56 0.08 ± 0.31 −0.06 ± 0.29 −0.18 ± 0.64 −0.22 ± 0.63
 β-LG 0.00 ± 0.70 −0.32 ± 0.23 −0.19 ± 0.21 0.14 ± 0.47 −0.13 ± 0.38
 C4:0 −0.46 ± 0.64 −0.20 ± 0.24 0.10 ± 0.20 0.09 ± 0.60 −0.23 ± 0.40
 C6:0 −0.77 ± 0.96 −0.25 ± 0.24 −0.06 ± 0.21 0.05 ± 0.40 −0.23 ± 0.38
 C8:0 −0.90 ± 0.49 −0.18 ± 0.22 −0.15 ± 0.21 0.03 ± 0.49 −0.06 ± 0.42
 C10:0 −0.85 ± 0.39 −0.16 ± 0.23 −0.19 ± 0.19 0.13 ± 0.44 −0.06 ± 0.37
 C12:0 −0.60 ± 0.57 −0.05 ± 0.20 −0.18 ± 0.18 0.16 ± 0.65 0.02 ± 0.42
 C16:0 0.59 ± 0.67 −0.19 ± 0.23 −0.02 ± 0.21 0.11 ± 0.44 0.01 ± 0.38
 c9 C18:1 0.99 ± 1.01 −0.21 ± 0.24 −0.05 ± 0.22 −0.21 ± 0.48 −0.13 ± 0.55
 c9t11 C18:2 0.95 ± 0.28 −0.12 ± 0.30 0.01 ± 0.25 −0.04 ± 0.48 0.11 ± 0.61
 C18: 3n -3 −0.16 ± 1.04 −0.44 ± 0.39 −0.28 ± 0.25 0.07 ± 0.51 0.10 ± 0.45
1MY= milk yield; FC = milk fat content; PC = milk protein content.
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sors to produce milk FA and proteins, the microbiota 
effect obtained in this study was only significant for 
some milk proteins, such as β-LG, αS2-CN, and κ-CN.

For all dairy traits included in this study, total heri-
tability was moderate to high (0.25–0.70). However, the 
contribution to total heritability was almost due to the 
direct genetic effect on the phenotype [i.e., total herita-
bility c h hm m d

2 2 2+( ) was almost equal to the direct herita-

bility hd
2( )]. This was due, first, to the weak effect of the 

microbiota on most dairy traits, as shown by low values 
of microbiability cm

2( ) estimated with each of the models 

evaluated. In the literature, a zero cm
2  was reported for 

most milk FA in dairy cows, except for C15:0 (0.42 ± 
0.18) and C18: 3n -3 (0.31 ± 0.14; Buitenhuis et al., 
2019), and there are no references for milk proteins, for 
which we obtained a very low impact of microbiota 
(e.g., αS2-CN 0.07 ± 0.05 and β-LG 0.06 ± 0.05). Sec-
ond, the heritability of the microbial community hm

2( ) as 
a whole estimated in step 2 was close to zero, and 
similar to the average heritability of 0.04 ± 0.03 ob-
tained for the 2,059 OTU that made up this commu-
nity (Martinez Boggio et al., 2022). Thus, those ele-
ments evidence a noncontribution of the genetic effect 
on the phenotype mediated by the rumen bacterial 
abundance c hm m

2 2( ).
Despite the results obtained with milk composition 

traits, the methodology proposed by Christensen et al. 
(2021) allowed to separate the direct genetic effect on 
phenotypes from the indirect genetic effect on pheno-
types mediated by the microbiome. This discrimina-
tion may be useful as Weishaar et al. (2020) proposed 
to improve a trait by changing the rumen microbiota 
composition, selecting for mediated breeding values, or 
by other metabolic pathways selecting for nonmediated 
breeding values. The method builds on some assump-
tions that are debatable.

In step 2, the model assumed a constant heritability 
for all OTU to simplify the calculations, even if across 
OTU heritability estimated varied between 0 and 0.29 
(Martinez Boggio et al., 2022). The method also as-
sumes (or imposes) that the direct and indirect genetic 
effects are uncorrelated. This means that a gene A that 
contributes to the genetic variation of the indirect ge-
netic effect on phenotype via the microbiota does not 
contribute to the genetic variation of the direct genetic 
effect and vice versa. This assumption is convenient, 
but probably also robust for microbiome data, because 
it has been seen that only a small percentage of the 
microbiota have genetic correlations with phenotypes 
different from zero, and these correlations have alter-
nating signs for different microbiota (Martinez Boggio 
et al., 2022; Martínez-Álvaro et al., 2022), resulting in 

an average genetic correlation between indirect and di-
rect genetic effect of zero, at least for traits where the 
proportion of variance explained by microbiota is small. 
Eventually, the model implies that the covariance be-
tween the (total) genetics background for the trait of 
interest and the genetics of the microbiome (each OTU 
weighted by its role in the trait) is a function of c hm m

2 2 . 
The squared genetic correlation between the trait of 
interest and the trait explained by microbiome is in fact 

r
c h
h

h
hg

m m

t

d

t

2
2 2

2

2

2
1= = −  (Legarra and Christensen, 2022). 

Note that for each OTU, there will be a different cor-
relation (which may be positive or negative), so genetic 
correlations between each trait and OTU may not be 
very informative. Moreover, in a previous study (Mar-
tinez Boggio et al., 2022) we estimated these correla-
tions to be weak (only 4% were higher than 0.50), and 
here most of the genetic correlations with the PrC were 
not significant. Finally, the use of a joint model may 
limit the quantification of host genetic control of the 
microbial community, since at the extreme when the 
predicted microbiota effects m̂ are zero, the parameters 
of the model in step 2 could not be estimated.

We evaluated the inclusion of the rumen microbiota 
as a correlated trait with the phenotype of interest 
through a 2-trait model, which was previously reported 
by (Saborío-Montero et al., 2021). In our study, we ob-
tained a genetic control of the host over the microbiota 
represented by 5 PrC, but most of the genetic correla-
tions although moderate have large standard errors, 
implying that the accuracy of genomic prediction may 
not be improved by the use of a multitrait model with 
omics traits as proposed Hayes et al. (2017).

The results here showed that including 16S rRNA 
gene sequencing as an additional information source of 
data will not improve accuracy of EBV. It would be 
interesting to evaluate some elements that may improve 
this accuracy. Firstly, the use of traits more closely as-
sociated with rumen microbiota, such as rumen FA or 
methane emissions, which are direct products of the 
rumen microbial community (Hurtaud et al., 1993; De-
hority, 2003). In the literature for those traits, moder-
ate but relevant effects of the rumen microbiota were 
obtained. For metabolic traits, such as milk acetone 
and β-hydroxybutyric acid, a cm

2  of 0.15 ± 0.09 were 
estimated for both traits (Gebreyesus et al., 2020). In 
addition, for methane emissions Difford et al. (2018) 
and Ramayo-Caldas et al. (2020) in dairy cows and 
Hess et al. (2020) in meat sheep, reported cm

2  of 0.13 ± 
0.09, 0.16 ± 0.09, and 0.19 ± 0.07, respectively. Sec-
ondly, replacing the use of microbiota abundances by 
microbial functions to construct the microbial similarity 
matrix would avoid functional redundancy at the ru-
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men microbiome (Weimer, 2015). Furthermore, we sug-
gest much further work is needed to evaluate more 
complex models that fit the biological nature of the 
microbial community in the rumen, because the meth-
odology used in this study was designed for intermedi-
ate -omics traits between DNA and the phenotype of 
interest, which is not really the case with microbiome.

CONCLUSIONS

Rumen microbial abundance does not contribute to 
the phenotypic variance of most of the fine milk com-
position traits and no causative OTU were detected. 
In turn, there was no genetic control of the microbial 
community. So far, we can conclude that, using a sub-
stantial data set of 795 Lacaune dairy ewes, rumen 
bacterial abundances do not provide improved genetic 
evaluation for dairy traits in sheep. Further work will 
be needed to evaluate traits that are a direct product of 
the microbiota (e.g., rumen VFA or methane emissions) 
as well as the substitution of microbial abundances for 
microbial functions.
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