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ABSTRACT

The shape of the lactation curve is linked to an 
animal’s health, feed requirements, and milk produc-
tion throughout the year. Random regression models 
(RRM) are widely used for genetic evaluation of total 
milk production throughout the lactation and for milk 
yield persistency. Genomic information used with the 
single-step genomic BLUP method (ssGBLUP) sub-
stantially improves the accuracy of genomic prediction 
of breeding values in the main dairy cattle breeds. The 
aim of this study was to implement an RRM using ss-
GBLUP for milk yield in Saanen dairy goats in France. 
The data set consisted of 7,904,246 test-day records 
from 1,308,307 lactations of Saanen goats collected in 
France between 2000 and 2017. The performance of this 
type of evaluation was assessed by applying a validation 
step with data targeting candidate bucks. The model 
was compared with a nongenomic evaluation and a 
traditional evaluation that use cumulated performance 
throughout the lactation model (LM). The incorpora-
tion of genomic information increased correlations be-
tween daughter yield deviations (DYD) and estimated 
breeding values (EBV) obtained with a partial data 
set for candidate bucks. The LM and the RRM had 
similar correlation between DYD and EBV. However, 
the RRM reduced overestimation of EBV and improved 
the slope of the regression of DYD on EBV obtained at 
birth. This study shows that a genomic evaluation from 
a ssGBLUP RRM is possible in dairy goats in France 
and that RRM performance is comparable to a LM 
but with the additional benefit of a genomic evaluation 
of persistency. Variance of adjacent SNPs was studied 
with LM and RRM following the ssGBLUP. Both ap-
proaches converged on approximately the same regions 
explaining more than 1% of total variance. Regions as-
sociated with persistency were also found.

Key words: random regression model, single-step 
genomic BLUP, dairy goat persistency

INTRODUCTION

Saanen is one of the most common dairy goat breeds 
in the world (Currò et al., 2019) and one of the 2 major 
dairy goat breeds in France. In France, genetic evalua-
tion for milk yield in dairy goats has traditionally been 
based on cumulative milk production over 250 d [i.e., 
on a lactation model (LM); Clément et al., 2002], and 
interpolation between test-day records (TD) has been 
based on the so-called Fleischmann method (Sargent et 
al., 1968).

Many countries use random regression models 
(RRM) to estimate genetic breeding values of dairy 
animals based on their TD (Oliveira et al., 2019a). The 
RRM can better account for environmental effects to 
compute EBV for lactation milk yield (Druet et al., 
2003). The RRM also represents an alternative model 
for generating EBV for milk yield persistency (Oliveira 
et al., 2019d). Persistency is commonly defined as the 
rate of decline in milk production after its peak (Cole 
and Null, 2009). Persistency EBV can be obtained 
from the eigenvectors of the genetic (co)variance ma-
trices of RRM; the first eigenvector is almost constant 
throughout lactation, but the second eigenvector can 
be made negative at the beginning of lactation, null in 
the middle of lactation, and positive at the end of lacta-
tion, as presented in Druet et al. (2003). These eigen-
vectors can be used instead of Legendre polynomials or 
other alternatives to model the genetic and permanent 
environment effects as follows: the first EBV obtained 
with the first eigenvector can be interpreted as the 
EBV of level of production throughout the lactation, 
and the second EBV obtained with second eigenvector 
measures the persistency EBV. These EBVs are also of 
interest because the genetic correlation between these 
2 traits is null by construction. In a breeding objective 
with milk level and milk persistency, a null correlation 
between those is a desirable feature. The persistency 
EBV obtained with the second eigenvector can be used 
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to select animals which produce less milk at the begin-
ning of the lactation cycle and more at the end than 
an average animal that produces the same amount of 
milk throughout the lactation. This selection strategy 
may be useful to reduce health disorders by limiting 
milk production at the peak of the lactation. Moreover, 
it allows to better spread milk production throughout 
the year, which is an advantage in dairy goats for which 
production follows strong seasonal patterns with most 
kidding happening in the middle of winter. The main 
disadvantage of RRMs is that they are time-consuming 
compared with LMs (Schaeffer et al., 2000).

Genomic information from SNP is commonly used 
in genetic evaluation to improve the accuracy of EBV 
(R2D2 Consortium et al., 2021). Single-step genomic 
BLUP (ssGBLUP) is the reference method for esti-
mating genetic merit values in populations in which not 
all animals are genotyped (Legarra et al., 2009; Aguilar 
et al., 2010). It directly uses the phenotypes, pedigree 
and SNP genotype information to build a relation-
ship matrix (H) associating genotyped animals with 
nongenotyped animals (Legarra et al., 2009). Building 
H can be quite time-consuming when there are many 
genotyped animals, so the H matrix does not often get 
used in RRM despite all the advantages of this type of 
model (Oliveira et al., 2019a).

The validation of a genetic evaluation usually uses 
a cohort of newborn male candidates for an artificial 
insemination scheme as the target population. Indeed, 
it is important to select the animals that have the best 
genetic values when they are newborn to save breeding 
costs. In a genetic evaluation validation, the EBV of 
bucks obtained with a partial data set (after deletion of 
recent data to mimic the absence of information in the 
newest generation) are compared with their daughter 
yield deviation (DYD) obtained with the complete 
data set (VanRaden and Wiggans, 1991). Two param-
eters are usually considered: the dispersion of EBV, 
which is measured through the regression coefficient of 
the real measure of daughter production (DYD) on the 
EBV obtained with the partial data set (this regres-
sion slope should be close to 1), and a measure of bias 
defined as the difference between the DYD means and 
the EBV obtained from the partial data set (a value 
close to zero is expected).

After a ssGBLUP evaluation, an association study 
between SNPs and traits studied (Aguilar et al., 2014) 
can be performed to study the genomic regions associ-
ated with the trait. Several studies have used an RRM 
to investigate the regions associated with persistency 
in cattle (Strucken et al., 2012; Oliveira et al., 2019c), 
and Cardona et al. (2016) showed in goats that genes 
can be expressed differently throughout the lactation 
cycle. The variance explained by n adjacent SNPs (for 

example n = 10) can be calculated to reduce noise and 
obtain a better signal than when considering SNPs in-
dividually (Wang et al., 2014).

The aim of this study was to implement a genomic 
ssGBLUP RRM evaluation in France for Saanen dairy 
goats and to evaluate the benefits of this type of model 
in our French population. To do this, we evaluated the 
predictive power of genetic values at birth of a cohort 
of young males (measured by accuracy, dispersion, 
and bias) from either RRM and LM with and without 
genomic information. Then, we compared analyses of 
SNP effects using an LM and an RRM, and we studied 
genomic regions associated with persistency evaluated 
with an RRM.

MATERIALS AND METHODS

Data

The study was based on already available data; 
therefore, ethical approval was not required.

Only the first 3 parities of Saanen goats were ana-
lyzed. Each lactation included TD between DIM 7 
and 270. The trait analyzed was milk yield (MY). 
To mimic a routine evaluation, all the lactations 
(from first to third parity) retained for the official 
evaluation (Larroque et al., 2011) were kept. Goats 
were milked twice a day, and one or 2 milkings were 
measured; if only a single daily measurement (32% of 
our data) was available, the production was multiplied 
by a coefficient that considers the difference in pro-
duction between morning and evening milkings. This 
coefficient was determined from the quantity of milk 
measured during the TD and the quantity of milk 
in the cooling tank that cumulates production over 
several milkings. The use of this coefficient allows the 
inclusion in the study of the records of protocols T 
(ICAR, 2018), where production is measured alter-
nately in the morning or evening. It is a refinement 
compared with a simple multiplication by 2. The total 
milk yields throughout the lactation were calculated 
in the same way as for routine genetic evaluations, 
using the Fleischmann method (Sargent et al., 1968). 
The Fleischmann method calculates total production 
by adding the cumulative production of the different 
periods defined by the TD (ICAR, 2022).

To test the quality of prediction of the genetic 
evaluation, a situation close to the current breeding 
scheme was assumed: the future bucks are selected as 
newborns. The newborn bucks, called candidate bucks, 
were the bucks born between 2010 and 2013. So, the 
complete phenotypic data set was split up and the part 
of the data collected from 2000 to 2011 formed the 
partial data set. The complete data set (c) consisted 
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of 7,908,192 TD records from 1,308,307 lactations of 
Saanen goats, collected in France between 2000 and 
2017. Table 1 gives details on the number of TD and 
of lactations per data set. The pedigree consisted in 
818,702 animals (40% of French dairy goats have a 
known sire and dam).

Goats were genotyped with the Illumina goat SNP50 
BeadChip (Tosser-Klopp et al., 2014). The rules applied 
for SNP quality control were the same as in Teissier et 
al. (2019). At the end of quality control, 47,206 SNPs 
were kept. Table 2 shows the number of genotyped ani-
mals and the number of animals in the pedigree: 1,242 
Saanen genotyped animals (430 Saanen genotyped 
bucks) were included in the evaluation. There were 
133 newborn genotyped candidate bucks in the Saanen 
pedigree (Table 2). The number of candidates was not 
large, but adding more candidates would have reduced 
further the reference population.

Models of Evaluation

Four different evaluations were implemented and 
compared. The evaluations were run using the blu-
p90iod2 software (Misztal et al., 2002).

Classical LM

A LM close to the one routinely used for official ge-
netic evaluations in France (Larroque et al., 2011) was 
implemented. The genetic evaluation model based on 
these phenotypes was

 yrnjlkmpi = Hrji + Ajkp + Mrjlp + Drjmp + an   

+ pn + ernjlkmpi,

where yrnjlkmpi is the observed lactation of goat n, in 
production year j (2000, …, 2017), in parity r (1, 2, 
3), belonging to kidding age, class k (7 classes for first 
lactation, in months: 9–11, 12, 13, 14, 15, 16, +17; 6 
classes for second lactation: 21–23, 24, 25, 26, 27, +28; 
6 classes for third lactation: 31–35, 36, 37, 38, 39, +40), 

kidding month, class l (7 classes: January, February, 
March–May, June–September, October, November, 
December), dry period length, class m (6 classes, in 
days: [First parity], [0,50], [50,75], [75,100], [100,125], 
125+), in region p (4 classes: North-West, North-East, 
South-West, South-East) and herd i. Hrji is the fixed 
effect of herd; Ajkp  is the fixed effect of age at kidding; 
Mrjlp is the fixed effect of kidding period; Drjmp the fixed 
effect of length of the dry period; an is the additive 
genetic breeding value that followed a normal distribu-
tion (mean: µLACT = 0, variance = σLACT

2A). A is the 
additive genetic relationship matrix based on pedigree 
information. H is the additive genetic relationship ma-
trix based on pedigree and genomic information, as in 
Legarra et al. (2009) with

 H A
G A A

− −
− −

= +
−( ) +



 −

















1 1

22
1

22
1

0 0

0 1τ ωw w
. 

We used τ = 1, w = 0.05, and ω = 1, which are the 
default values used in blup90iod2 (Misztal et al., 2002). 
For the scaling of G, the mean of the diagonal of G was 
set equal to the mean of the diagonal of A. The mean 
of the off-diagonal elements of G was set to be equal 
of the off-diagonal elements of A. pn is the permanent 
environment value that followed a normal distribution 
(mean: µPE_LACT = 0, variance: σPE_LACT

2), and ernjlkmpi 
is the residual term.. To account for missing ancestral 
pedigree, we used metafounders (MF) as in Legarra 
et al. (2015). For the relationship matrix Γ among 
MF defined in Garcia-Baccino et al. (2017), we used a 
modified Γ, called the gamma-robust estimator. This 
matrix is based on the median element of the original Γ 
calculated with the gammaf90 software.
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Table 1. Test day (TD) and lactation numbers stratified by parity for 
the different data sets

Data set  Parity TD Lactation

Complete data set 
 (2000–2017)

 First 3,466,430 570,641
 Second 2,628,369 431,407
 Third 1,809,447 304,656
 Total 7,904,246 1,306,704

Partial data set 
 (2000–2011)

 First 2,566,171 413,817
 Second 1,942,222 311,255
 Third 1,346,841 221,250
 Total 5,855,234 946,322

Table 2. Numbers of genotyped animals, with reference and candidate 
bucks stratified by year of birth, and number of individuals in the 
pedigree file (pedigree, n = 818,702; genotyped female, n = 812)

Genotyped animal  Year of birth No. of bucks Total

Reference bucks

1998 19

297

1999 21
2000 18
2001 25
2002 28
2003 29
2004 25
2005 29
2006 25
2007 29
2008 21
2009 28

Candidate bucks

2010 30

1332011 32
2012 35
2013 36
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Using the partial data set, the EBV obtained from 
the model that used pedigree information to build 
the relationship matrix were called A_LM, and the 
GEBV obtained from the ssGBLUP model were called 
H_LM.

Random Regression Model (RRM)

Various preliminary studies were performed (Arnal 
et al., 2019, 2020) to determine which type of functions 
should be used in the RRM. Based on these studies, the 
model used here was the “EGV_PM” model described 
in Arnal et al. (2020).
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where yrsijklmdgnp is the observed DIM d (7, …, 270) of 
goat n after g d of gestation (0, …, 100), in production 
year j (2000, …, 2017), in parity r (1, 2, 3), in parity, 
class s [primiparous (P) or multiparous (M)], belonging 
to kidding age, class k (7 classes for first lactation, in 
months: 9–11, 12, 13, 14, 15, 16, +17; 6 classes for 
second lactation: 21–23, 24, 25, 26, 27, +28; 6 classes 
for third lactation: 31–35, 36, 37, 38, 39, +40), kidding 
month, class l (7 classes: January, February, March–
May, June–September, October, November, December), 
dry period length, class m [6 classes, in days: (first par-
ity), (0,50), (50,75), (75,100), (100,125), 125+], in re-
gion p (4 classes: North-West, North-East, South-West, 
South-East), herd × test-date class i. HTDri is the fixed 
effect of herd test-date; Ajkp is the fixed effect of age at 
kidding; Mrjlp is the fixed effect of kidding period; Drjmp 
is the fixed effect of length of the dry period; θko, θτrlo, 
πrmo, γso are fixed regression coefficients for age at kid-
ding, kidding month, dry period length, and gestation 
stage, respectively; N(o,d) is the oth covariate at time d 
of a cubic natural spline function with 6 knots at d = 
7, 20, 50, 110, 190, 270; M(o,g) is the oth covariate at 
time d of a cubic natural spline function with 4 knots 
at d = 31, 53, 76, 100 (between g = 0 and g = 30, the 
coefficients were assumed to be equal to 0; if gestation 
stage was greater than 100, it was rounded down to 
100); bson and cson are the random additive genetic and 
permanent environmental regression coefficients for the 
oth eigenvectors of the genetic (co)variances matrix ob-
tained with a second-order Legendre polynomial model 

reduced to rank 2, χ(o,c) is the value of the oth eigenvec-
tor of the genetic (co)variances matrix obtained with 
a second-order Legendre polynomial model reduced to 
rank 2 at DIM d for parity class s, and ersijklmdgnp is the 
residual term. Due to software limitations, we first con-
sidered a homogeneous residual variance. The random 
additive genetic regression coefficient for the first eigen-
vector, b1, is noted LEV (related to production level), 
and the second eigenvector, b2, is noted PERS (for 
persistency), as presented in Druet et al. (2005); LEV 
is noted LEV_P for primiparous, or LEV_M for 
multiparous; PERS is noted PERS_P for primiparous 
or PERS_M for multiparous. The second and third 
parities were considered separately in the fixed part to 
be more precise because phenotypically the second and 
third lactation are different in the shape of lactation 
curve and in the level of production. However, we kept 
them together for the genetic part because the genetic 
correlation between them was close to 1 (Arnal et al., 
2020) and keeping them together substantially reduces 
the size and complexity of the model.

The EBVs for total production were computed 
separately for primiparous (primi) and multiparous 
(multi) goats. For that purpose, each daily EBV was 
computed as

 EBVprimi,d = LEV _P × χ(1,d) + PERS_P × χ(2,d), 

 EBVmulti,d = LEV _M × χ(3,d) + PERS_M × χ(4,d). 

Daily EBV were then added to obtain a total EBV 
for primiparous (EBVprimi) and multiparous (EBVmulti) 
animals to have a kilograms of MY as the common unit 
and be comparable (on the same scale) with an EBV 
from a LM as in the following:

 EBV EBVprimi primi d
d

=
=
∑ ,
1

264
 

 EBV EBVmulti multi d
d

=
=
∑ , .
1

264
 

Finally, EBV from primiparous and multiparous ani-
mals were combined as follows to have a readily com-
parable basis with the LM that has a unique EBV for 
the 3 lactations:

 EBVtot = 0.33 × EBVprimi + 0.66 × EBVmulti.  

The 2 coefficients were chosen to give a same weight to 
the first 3 parities.
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The same procedure was applied to obtain an EBV 
for milk production level and persistency.

 levtot = 0.33 × levprimi + 0.66 × levmulti, 

 perstot = 0.33 × persprimi + 0.66 × persmulti. 

Using the partial data set, EBVtot from the model that 
used only pedigree information to build the relation-
ship matrix was called A_RRM, GEBVtot from the 
ssGBLUP model was called H_RRM, levtot from the 
model that used only pedigree information to build the 
relationship matrix was called A_LEV, levtot from 
the model that used genomic information in addition 
to pedigree to build the relationship matrix as in Le-
garra et al. (2009) was called H_LEV, perstot from the 
model that used only pedigree information to build the 
relationship matrix was called A_PERS, and perstot 
from the ssGBLUP model was called H_PERS.

Daughter Yield Deviation 

The DYD was calculated from an RRM using the 
complete data set but without genomic information. 
The DYD term denotes total lactation production ob-
tained as EBVtot; DYD_LEV and DYD_PERS are 
the DYD for LEV and PERS calculated as levtot and 
perstot.

The DYD were calculated using the genekit software 
(Ducrocq, 1998), as in Täubert et al. (2010).

Criteria for Comparing Evaluations

The number of progeny of candidate bucks in 2018 
was observed and the genekit software was used to esti-
mate the reliability obtained in 2018, as in Ducrocq and 
Schneider (2007). Because the number of multiparous 
progeny differed strongly between bucks (from 6 to 152, 
with a median of 40 in the Saanen breed), the calcu-
lations of bias, slopes, and correlations were weighed 
according to the number of multiparous progeny.

Bias

The means of DYD and EBV were set to zero for the 
bucks (without restriction to AI bucks) that had more 
than 25 multiparous progeny born in 1997. The bias 
was calculated as

 µ
σDYD p
p

DYD

u DYD
,

ˆ
,=

−
 

where μ is bias, ûp is EBV obtained with partial data, 
and σDYD is a standard deviation of DYD.

Slope

The slope was calculated as

 b
cov u DYD

var uDYD p
p

p
,

ˆ ,

ˆ
,=

( )
( )

 

where bDYD,p is the regression slope of DYD on EBV 
obtained with the partial data set.

Correlation

The correlation was calculated as

 ρDYD p
p

p

cov u DYD

var DYD var u
,

ˆ ,

ˆ
,=

( )
( ) ( )

 

where ρDYD,p is the correlation coefficient between EBV 
obtained with the partial data set and the DYD.

Analysis of SNPs’ Effects

The variance explained by 10 adjacent SNPs was 
calculated after the ssGBLUP of H_LM and H_RRM 
with the complete data set using POSTGSF90 software 
(Aguilar et al., 2014). The sum of variance percentages 
is not equal to 100% of the total variance because the 
segments were overlapping.

RESULTS

Correlations Between Evaluations

The correlations between EBV for candidate bucks 
using the partial data set (without progeny perfor-
mance) are presented in Table 3. The correlation 
between A_LM and H_LM were high (0.82). The cor-
relation between A_RRM and H_RRM were very close 
to the correlations between A_LM and H_LM (0.81), 
which means that the genomic information brought 
the same changes in both models (LM or RRM). The 
correlation between A_LM and A_RRM were equal to 
0.95. The correlation between H_LM and H_RRM were 
close to the correlation between A_RRM and H_RRM 
(0.96). The biggest changes were obtained when adding 
genomic information and not by changing the type of 
model (LM and RRM).

Arnal et al.: SINGLE-STEP GENOMIC BLUP RANDOM REGRESSION MODELS IN GOATS
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Validation of the Different Genetic Evaluations

We used various criteria to test the predictive abili-
ties of the different models, comparing the EBV of new-
born genotyped bucks to their DYD obtained from the 
performances of their progeny. A model is desirable if 
the EBV of the newborn bucks are close to their mean 
DYD (studied by the bias), with a correlation close 
to one (assessed through the accuracy criterion) and a 
slope of the regression of the DYD on the EBV close 
to one, which is a measure of closeness and dispersion 
of the EBV. The results for LEV were the same as 
the results for RRM (EBVtot) observed in a previous 
study (Arnal et al., 2019), with a correlation close to 1 
between A_RRM and A_LEV.

Correlations

Correlations between the DYD from complete data 
set and A_LM, A_RRM, H_LM and H_RRM ob-
tained with partial data set are presented in Figure 
1. The correlations between DYD and H_LM was 
0.41 and between DYD and H_RRM was 0.43. The 
use of genomic information improved the correlations 
by 0.09 in the LM and by 0.11 in RRM. Correlations 
between DYD and LM or RRM were very close with 
or without genomic information. Correlations between 
DYD for PERS and the EBV for PERS obtained with 
partial data set with or without genomic information 
are presented in Figure 2. The correlation for persis-
tency was 0.46 without genomic information and 0.52 
with genomic information. Correlations for persistency 
were higher than correlations for production level. The 
genomic information improved LEV correlations more 
than PERS one (around +0.06).

Slope

Slopes were inferior to 1, indicating an overdispersion 
of buck EBV at birth. The RRM gave slopes closer 
to 1 than the LM without genomic information (0.6 

for A_LM and 0.68 for A_RRM) and with genomic 
information (0.69 for H_LM and 0.86 for H_RRM; 
Figure 1). The use of genomic information improved 
the slopes with both models. The slope was better for 
PERS than EBVtot without genomic information (0.73) 
but the use of genomic information led to less increase 
in the slope of PERS compared with EBVtot (+0.04 vs. 
0.17; Figure 2).

Bias

The LM introduced substantial bias, at 0.12 stan-
dard deviation on DYD. The bias was always positive, 
which means that EBVtot values were overestimated. 
The RRM introduced less bias than the LM (Figure 
1), at 0.06 standard deviations on DYD. The use 
of genomic information did not affect the bias. The 
means of A_PERS and H_PERS were smaller than 
DYD_PERS (−0.04; Figure 2). The bias for PERS was 
negative, which means that the EBV of PERS were un-
derestimated compared with DYD. The use of genomic 
information had no effect on the bias, as for EBVtot.

Evolution of Mean EBV Over the Years

Averages of EBV by birth year of bucks from the 
partial data calculated by RRM and LM were plot-
ted in Figure 3. The means of DYD of bucks by birth 
years were also plotted. The EBV from the partial data 
set were used to calculate genetic trends in EBV to 
be compared against the genetic trends in DYD. The 
EBV from LM and RRM with or without genomic in-
formation followed the same trend pattern as DYD, 
particularly for bucks with progeny (bucks born before 
2010). However, the means EBV from LM and RRM 
with or without genomic information by year of birth 
were not the same as DYD means by year of birth as it 
could be seen for the bias. The RRM EBV means were 
closer to DYD means than LM EBV. The mean differ-
ences increased from 1998, with a difference of 10 kg 
between RRM EBV and DYD (20 kg between LM EBV 
and DYD means), which was close to 40 kg in 2013 for 
RRM (80 kg between LM EBV and DYD means). Simi-
lar to A_RRM and H_RRM, A_LM and H_LM were 
very close to each other. For persistency, the evolution 
of the average persistence of EBV and DYD by year of 
birth was the same, even for bucks without offspring 
born between 2010 and 2013.

ANOVA Explained by Adjacent SNPs

Figure 4 shows the percentage of variance represented 
by overlapping segments of 10 SNPs for chromosomes 6 
and 19. These 2 chromosomes contained segments repre-
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Table 3. Correlations between EBV from the different models of the 
candidate bucks calculated with the partial data set1

Model A_LM H_LM A_RRM

H_LM 0.82   
A_RRM 0.95 0.76  
H_RRM 0.80 0.96 0.81
1A_LM: lactation model without genomic information used to build 
the relationship matrix. H_LM: lactation model with genomic infor-
mation used to build the relationship matrix. A_RRM: random regres-
sion model without genomic information used to build the relationship 
matrix. H_RRM: random regression model with genomic information 
used to build the relationship matrix. Correlations are progeny-num-
ber-weighed.
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senting more than 1% of the total variance. Percentages 
of variance explained by 10 adjacent SNPs segments 
representing more than 1% of variance are presented 
in Supplemental Table S1 (https: / / figshare .com/ 
articles/ figure/ JDS _ARNAL _SUPPLEMENTARY 
_MATERIAL _TABLE _S1/ 22592416; Arnal et al., 
2023). On chromosome 6, one segment (85.9–86.0 Mb) 
at the region of caseins (CSN1S1, CSN2), represented 
more than 1% of variance in LM (1.4%) and LEV_M 
(1.9%). On chromosome 19, one region (25.6–29.1 Mb) 
had several segments representing more than 1% of to-
tal variance for LM, LEV_P, and LEV_M. A segment 
between 26.1 and 26.6 Mb in the ALOX12 gene region 

explained the maximum of variance for 3 traits, with 
3.3% for LM, 3.9% for LEV_P, and 2.9% for LEV_M. 
This segment represented 0.9% of variance for PERS_P. 
In both chromosomes, LM had an intermediate per-
centage between LEV_P and LEV_M, which is logical 
because it is composed of LEV_P and LEV_M EBV.

DISCUSSION

Validation of the Different Genetic Evaluation Models

The DYD from RRM were considered as reference 
values rather than DYD from LM, because Arnal et 
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Figure 1. Plot between the buck-candidate EBV from the partial data set from A_LM (A), A_RRM (B), H_LM (C), H_RRM (D), and their 
daughter yield deviations (DYD). A_LM: lactation model without genomic information used to build the relationship matrix. H_LM: lactation 
model with genomic information used to build the relationship matrix. A_RRM: random regression model without genomic information used 
to build the relationship matrix. H_RRM: random regression model with genomic information used to build the relationship matrix. In black, 
the line y = x; in red, the line y = ax + b; the horizontal line is y = mean DYD; the vertical line is x = mean EBV total. cor = correlation 
between x and y.

https://figshare.com/articles/figure/JDS_ARNAL_SUPPLEMENTARY_MATERIAL_TABLE_S1/22592416
https://figshare.com/articles/figure/JDS_ARNAL_SUPPLEMENTARY_MATERIAL_TABLE_S1/22592416
https://figshare.com/articles/figure/JDS_ARNAL_SUPPLEMENTARY_MATERIAL_TABLE_S1/22592416
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al. (2019) showed that modeling the genetic and per-
manent environment effects according to DIM is more 
accurate with RRM than with LM. Moreover, with our 
RRM, other environmental parameters in the fixed part 
of the models were more precisely defined (gestation 
stage, age at kidding, month of kidding and dry period 
length depending on lactation stage, herd TD effect 
instead of herd-year effect, and separation of parities). 
The main difference between LM and RRM was in the 
means of EBV or DYD. Other studies (Arnal et al. 
2019, 2020) used a heterogeneous residual variance 
for DIM and found that considering residual variance 
as heterogeneous preformed somewhat better for con-
vergence properties. However, using a heterogeneous 
residual variance is a more complex task that cannot 
be done with the software (blup90iod2; Misztal et al., 
2002) used here. For total production throughout the 
lactation with A or H and LM or RRM, the EBV were 
overestimated, with overdispersion and poor accuracy 
(validation correlations <0.52). These results are con-
sistent with those obtained by Kang et al. (2017) in 
their simulation study using an RRM with an A and H 
matrix. In our study, the bias with RRM was reduced 
compared with LM. The lower bias and better slope 
with RRM were probably a consequence of a better fit 
of the model to the data, as described by Schaeffer and 
Jamrozik (2008). Here, regression slopes were less than 
1, so the EBV were overdispersed, as in the majority 
of genomic studies (Legarra and Reverter, 2018). For 
the construction of the H matrix, the parameters ω 
and τ used were default parameters, with ω = 1 and 
τ = 1 set based on recommendations in other studies 

(Kang et al., 2018; Oliveira et al., 2019d). Misztal et al. 
(2017) showed the importance of these values on bias. 
In dairy cattle, Oliveira et al. (2019b) found, as in our 
study, that RRM do not improve the validation correla-
tions compared with LM using A or H. The LM does 
not model the shape of the lactation curve but relies 
on a phenotype that takes it into account. This was 
certainly one of the reasons why the LM and the RRM 
were close in terms of correlation. Correlations between 
EBV of genotyped bucks and DYD were higher in both 
the LM and RRM when using genomic information 
for persistency. Several studies (Koivula et al., 2015; 
Mucha et al., 2015; Baba et al., 2017; Kang et al., 
2017, 2018; Oliveira et al., 2019b) that have compared 
A_RRM with H_RRM found an increase in validation 
correlations and a slope closer to 1, which was due to 
H considering the Mendelian sampling term. Oliveira 
et al. (2019b) obtained similar results when they com-
pared A_LM with H_LM.

The reference population in this study was very small, 
which limited the performance of genomic evaluation. 
With more animals genotyped, correlations and slope 
should improve. However, this reference Saanen popula-
tion is very convenient, because it features a large share 
of AI bucks. These bucks have been genotyped since at 
least 1998, so they have very accurate genetic values 
derived from goats of the entire population, regardless 
of the breeding system. Access to a larger population 
of candidate bucks was not possible because adequate 
numbers of bucks were needed both in the reference 
population and as newborn candidate bucks at least 5 
yr before the end of the performance data set in order 
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Figure 2. Plot between the buck-candidate EBV for persistency from the partial data set from A_RRM (A), H_RRM (B) and their daugh-
ter yield deviations (DYD). A_RRM: random regression model without genomic information used to build the relationship matrix. H_RRM: 
random regression model with genomic information used to build the relationship matrix. In black, the line y = x; in red, the line y = ax + b; 
the horizontal line is y = mean DYD; the vertical line is x = mean EBV total. cor = correlation between x and y.
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for these candidate males to have multiparous offspring. 
The analysis of the correlations between models showed 
that with the population considered, the gain from a 
LM_H to an RRM_H would be smaller than the gain 
from a LM_A to a LM_H. Another way to compare 
models is to study the correlations of buck rankings, as 
in Berry et al. (2011).

Analysis of SNPs’ Effects

We chose to consider groups of 10 adjacent SNPs to 
study the percentage of variance explained because a 
smaller size of the windows may have led to smaller 
signals and bigger noise. and windows of more than 
10 adjacent SNPs may combine certain QTLs. The 
genomic regions highlighted with LM on chromosome 
6 and 19 were the same as those found in other French 
studies (Martin et al., 2017, 2018; Talouarn et al., 2020) 
on the same breed but using other methodologies (link-
age association, linkage disequilibrium). The region 
around 26.1 Mb on chromosome 19 was also found by 
Mucha et al. (2018) for MY in crossbred goats (Saanen-
Toggenburg-Alpine) who identified it as the ALOX12 
gene linked to MY. The same region was also identified 
in a study from New Zealand in a mixed breed popula-
tion composed by Saanen (Scholtens et al., 2020). This 
region is densely packed with genes, making it difficult 
to nominate candidate genes (Martin et al., 2018). 
The region on chromosome 6 is well known for casein 

(CSN1S1 and CSN2) and its association with protein 
yield and protein content (Martin et al., 2018). The LM 
and RRM for LEV point out the same regions. These 
results confirm that the 2 models are quite equivalent 
and led to similar percentages of variance. Differences 
between primiparous and multiparous animals were 
observed, but it is known that EBV are not the same 
traits in primiparous and in multiparous animals, as 
the genetic correlation between them is 0.69 (Arnal et 
al., 2020). Regions associated with persistency were the 
same as the regions associated with LEV in primiparous 
animals. Cardona et al. (2016) also reported in Creole 
goats that regions associated with caseins on chromo-
some 6 are associated with fat yield persistency too. In 
dairy cattle, Pryce et al. (2010), Strucken et al. (2012), 
and Kolbehdari et al. (2009) also found regions asso-
ciated with persistency. They did not use persistency 
independent from LEV, as we did here, but instead 
used classes of DIM throughout the lactation. In dairy 
cattle, Macciotta et al. (2015) used the second eigenvec-
tor as we did to perform a GWAS but they did it at a 
phenotypic level. They found no region associated with 
the second eigenvector, possibly because they did not 
evaluate persistency at a genetic level. Studies in other 
dairy species have looked at the effect of genotypes on 
the shape of the lactation curve (Pauciullo et al., 2012; 
Szyda et al., 2014) based on different alleles, and found 
phenotypic differences in shape of the lactation curve 
according to genotypes. Here, the analysis of the SNPs’ 
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Figure 3. Plot of EBVs from the partial data set and daughter yield deviations (DYD) of genotyped bucks through years of birth (most of 
the time, the red curve is under the green curve). (A) Milk yield throughout the lactation EBV. (B) Milk persistency EBV. A_LM: lactation 
model without genomic information used to build the relationship matrix, H_LM: lactation model with genomic information used to build the 
relationship matrix, A_RRM: random regression model without genomic information used to build the relationship matrix, H_RRM: random 
regression model with genomic information used to build the relationship matrix, DYD_RRM: daughter yield deviations from random regres-
sion model, DYD_PERS: daughter yield deviations for persistency, EBV_PERS: estimated breeding value from RRM model without genomic 
information for persistency, GEBV_PERS: estimated breeding value obtained from the RRM with genomic information for persistency.
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effects from ssGBLUP for LEV and PERS shows that 
some SNPs are more associated with LEV and PERS 
than others and that these SNPs would be useful to 
weigh in a genomic evaluation model. A ssWeightedG-
BLUP RRM, as proposed in Karaman et al. (2018), 
could improve the accuracy of EBV on candidate bucks 
at birth.

CONCLUSIONS

An RRM using single-step genomic evaluation has 
been developed for dairy goats in France. The added 
genomic information increased correlations between 
DYD and EBV for candidate bucks. The LM and the 
RRM had fairly similar performances for correlations 
between candidate EBV and DYD. However, the ssG-
BLUP RRM reduced the bias between DYD and EBV 
and improved the slope between DYD and EBV. This 
study shows that a single-step RRM is feasible to evalu-
ate dairy goats in France and that it offers comparable 
performance to LM while adding a genomic evaluation 
of persistency, which is a trait of interest for dairy goat 
breeding. After the realization of this study, the French 
goat genetics team has arguments to change its LM for 
an RRM. Our analysis of SNPs’ effects highlights that 
both LM and RRM found the same genomic regions 
associated with MY, including interesting genomic 
regions associated with persistency. Further investiga-
tions are required to confirm and refine these genomic 
regions.
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