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Abstract

Enzyme-efficient states are metabolic states that realize a given flux objective at a minimal enzyme cost. Enzyme-efficient
states can be hypothesized to be used under growth rate optimization regimes, as biomass production rate per enzyme
can be converted to into cell growth rate. In models without further constraints, enzyme-efficient states are Elementary
Flux Modes (EFMs). This allows for a algorithm to find enzyme-efficient states: Enumerate the EFMs, calculate the
minimal enzyme cost per EFM, and choose the one with the lowest enzyme investment. This algorithm allows for finding
of enzyme efficient states for larger models then can be optimized by ’brute force’, but still need to be small enough to
enumerate the EFMs. Such optimization has lead to the insights on the effect of changing external nutrient conditions:
As growth conditions are changing, the optimal flux profile either changes continuously (and metabolite and enzyme
concentrations change continuously as well) when the same EFM remains optimal, or fluxes change discontinuously
together with metabolite and enzyme concentrations when a different EFM becomes optimal.
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Chapter highlights

• Enzyme-efficient states are metabolic states that realize a given flux objective at a minimal enzyme cost.
• In models without further constraints, enzyme-efficient states are Elementary Flux Modes (EFMs).
• Elementary Flux Modes can be used to find enzyme-efficient states in networks that would be too large to
optimize metabolic states "by brute force".

• Biomass per enzyme efficiency can be converted to into cell growth rate.
• As growth conditions are changing, the flux profile either changes continuously (and metabolite and enzyme
concentrations as well) or fluxes change discontinuously together with metabolite and enzyme concentrations.

7.1. Introduction

In a simple economic picture of cells, we assume that cells adjust their metabolic state in each environment to obtain
a maximal fitness advantage. This may be impossible in reality, but it remains an interesting question what this best
metabolic state would look like, according to our knowledge of cells. So what is the best metabolic state overall
(comprising metabolic fluxes, metabolite concentrations and enzyme levels)? What pathways should a cell use, which
enzymes should be induced or repressed, and how should this change in a new environment? To answer this, we need to
remember that all metabolic variables (fluxes, metabolite levels, enzyme levels, and enzyme efficiencies) depend on each
other. Physically, fluxes depend on metabolite concentrations through kinetics and enzyme regulation (e.g. competitive
inhibition) and metabolites are produced and consumed by the fluxes until a steady state is reached. Hence, if we think
in terms of cellular economics (treating enzymes as control variables), then all metabolic variables must be optimized
together.

In the previous chapters we saw some ways to predict optimal metabolic fluxes, metabolite concentrations and enzyme
levels separately: in Flux Balance Analysis (FBA, Chapter 5 in [1]), we optimized fluxes (while ignoring kinetics or
assuming constant enzyme efficiencies); in Enzyme Costs Minimization (Chapter 6 in [1]), in contrast, fluxes were fixed
and given and concentrations (and enzyme efficiencies) were optimized. Each of these methods is based on a strong
assumption: FBA requires measured flux ranges and/or apparent catalytic rates and assumes enzyme saturation effects
can be neglected, while enzyme cost minimization requires a given flux distribution. But what if we don’t know any of
the variables in advance? How can we predict all of them from first principles?

Before thinking about this, let us briefly step back: what do we actually mean by an "optimal state"? What quantity
should be maximized in metabolism? There could be very different aims (e.g. production in biotechnology, vs offspring
and survival in a wild-type cell). However, in both cases an important aim is cell growth – or at least, avoiding strong
growth deficits. Below we will see that cell growth depends, to a good approximation, on biomass/enzyme efficiency,
that is, biomass production per total enzyme invested. Hence, whenever fast growth is important, cells should maximize
this efficiency.

Thus, we will consider the following optimality problem: maximize biomass/enzyme efficiency, defined as the production
flux per invested enzyme with respect to all metabolic variables (metabolites, enzymes and fluxes ) and under all
constraints (steady state, enzyme kinetics, etc). Solutions to this problem are considered optimal states.

7.2. The enzyme-efficient metabolic states are Elementary Flux Modes

The optimization problem in this chapter is to reach maximal objective flux(es) for minimal enzyme investment. The
biological interpretation is that this would lead to the highest growth rate, because it optimizes the ratio between gains
(flux(es)) and costs (enzymes). When we solve this optimization problem with mathematical tools, it is convenient
to either find the minimal enzyme investment for a certain flux, or the maximum flux for a fixed enzyme investment.
Although one could think of different biological explanations for those two ways to state the optimization problem,
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mathematically they are equivalent. For the outline of the proof that optimal states are Elementary Flux Modes, it is
convenient to fix the objective flux to an arbitrary value (we choose 1) and then minimize the enzyme investment. This
leads to the following optimization problem:

minimize
v,e,c

r∑
i=1

hiei (7.1)

subject to: N · v = 0 steady state

∀i : vi = eifi(c) enzyme kinetics

e, c ≥ 0 positive concentrations

vr = 1 fixed objective flux

c ≤ cmax metabolite bounds

where ∀i means for all reactions i, r is the number of reactions (with the last the objective), hi are the weights, and bold
face items denote vectors. This optimization problem states that by adjusting the fluxes (v), metabolite concentrations
(c) and enzyme concentrations (e), the cost (sum of the costs (hiei) for every reaction) is minimized, while keeping the
objective flux constant. The weights (hi) can be thought of as the size or production costs of the enzymes (measured
in e.g. molecular weight or gene length), which might be different for different enzymes. We need certain constraints
to be met for this solution: 1) the metabolic network needs to be in steady state to avoid built-up of intermediates, 2)
enzyme kinetics: the flux of each reaction (vi) has to be equal to the enzyme concentration (ei) times a metabolite
dependent term (fi(c)), 3) all enzyme metabolite concentrations have to be positive, and 4) the objective flux is equal to
1. Optionally, we can add bounds on the metabolite levels, which is mostly necessary with irreversible kinetics. Reversible
kinetics usually lead to bounded metabolite levels, because very high concentrations of products will inhibit the reaction
forming the products.

In this section we will explain why the optimal state is reached at an Elementary Flux Mode (EFM). One important
starting point is that, as we have seen before in Chapter 4 in [1], convex optimization problems with only positivity
or equality constraints (no other inequalities) lead to an optimal solution at an extreme points of the feasible solution
space, and those extreme points are Elementary Flux Modes (EFMs). However, the optimization problem (7.1) is not
convex, mainly due to the hyperbolic dependency of reaction rates on the metabolite concentrations (fi(c) is usually
not linear). There are several ways to proof that the solution of this optimization problem is an EFM, of which some are
outlined in the papers by Wortel et al. [2] and Müller et al. [3]. In this book we will outline the proof that a solution
that would not be an EFM, will lead to a contradiction.

Assume we have some optimal state that is not an EFM. Any optimal solution is associated with a set of fluxes, and
enzyme and metabolite concentrations. Now we set the metabolite concentrations to the concentrations of the assumed
optimal state. Then all metabolite dependent terms (fi(c)) become constants and we return to a convex problem. As
explained in Chapter 9 in [1] and Figure 7.1, the optimum (now in terms of enzyme concentrations and fluxes) of this
problem is a flux distribution that is an EFM. But that is a contradiction: we starting with assuming the optimal state
from which we took the set of enzyme concentrations was not an EFM. We conclude that the optimal state has to be
an EFM.

7.3. Illustration with an example network

To illustrate the proof, we study a simple network that we have seen previously in Chapter 5 in [1] (Figure 7.2), in which
we will now include enzyme kinetics. We will use the factorized rate law as in Chapter 6 in [1], but then generalized for
ns substrates and np products (also compare Eq. (3.15 in [1]) in Chapter 3 in [1]):
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Figure 7.1: Translation from flux to enzyme space retains EFMs as extreme rays. The top left panel shows the
feasible flux space with the steady state constraints, all fluxes postive (using splitting of fluxes, as explained in the text,
if necessary) and a fixed objective flux. The extreme points here are points where one flux becomes 0 and are Elementary
Flux Modes (see Chapter 5 in [1]). Here we show that when we have assumed metabolite concentrations, such as when
we keep them at an optimal solution, we get a linear transformation and the extreme rays are maintained. Different
metabolite levels, for example solutions to different environmental conditions, can lead to different transformations and
therefore different optima (miminal total enzyme), but those are always located at an EFM.

v = e · k+
cat ·

∏j=1
ns

sj/KS,j

1 +
∏k=1

np
pk/KP,k +

∏j=1
ns

sj/KS,j

·
(

1− e∆G′r/RT
)

(7.2)

See Box 7.4 for all detailed rate laws of the example networks. We can simplify this equation by combining the forward
catalytic constant, the thermodynamic efficiency factor, the saturation efficiency factor, and the regulation efficiency
factor (if that exists) in a function f(c), which only depends on the metabolites, and not on the enzyme concentrations.
We will below write f for f(c).

vi = ei · fi (7.3)

Now we take vBM = 1 and optimize all fluxes, enzymes concentrations and metabolite concentrations to minimize
the enzyme costs, while satisfying the constraints posed in Equations (7.1), for different levels of external glucose and
standard levels of the other external metabolites. We see that for different external glucose concentrations, we get
different optimal fluxes, enzyme levels and metabolite levels (Table 7.1).

We notice that the total enzyme needed for the biomass flux of one decreases with the increasing glucose levels, as we
expect. Also, the optimal level of internal glucose increases with increasing external glucose. Moreover, the fluxes of the
solutions do follow an EFM (see Figure 7.2b). We can now reformulate the problem for only the flux and enzyme levels,
while keeping the metabolite levels as they are in the table. With the metabolite levels in the first row of the table, we
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[Gex] Etot v0 v1 v2 v3 v4 vBM e0 e1 e2 e3 e4 eBM [G] [P] [ATP] [ADP]
0.01 156.2 5 5 0 9 0 1 54.4 4.4 0 94.4 0 2.9 0.08 15.14 0.05 20.09
0.1 91.3 50 50 99 0 0 1 61.3 11.3 14.2 0 0 4.4 0.13 4.55 0.11 20.09
1 36.2 50 50 99 0 0 1 13.0 8.0 12.5 0 0 2.7 0.60 7.65 0.11 20.09

Table 7.1: Outcomes of the optimization of the example network with standard kinetics, parameter values and external
concentrations (see Box 7.4) for varying levels of [Gex].

can linearly relate the enzyme and flux levels (with the factors fi), and thereby the extreme rays of the enzyme and flux
space will be equal and EFMs, as pointed out above (see also Chapter 5 in [1], Figure 7.1 ). Optimization in this space
will lead to the optimal flux distributions following an EFM. If the fluxes in the table would not follow an EFM, this
will lead to an inconsistency; if there is an optimum, this should still be the outcome if we keep some variables in the
optimum constant and optimize over the rest of the variables.

We point out two important aspects, using the network (Figure 7.2) as an example. First, it is convenient to split
reversible reactions, such that fluxes are always positive. In this case that means that the reversible reaction from P
to P1 is split into the forward reaction v2 and the reverse reaction v4, which both can have only positive flux. This
splitting makes sure that EFMs are the extreme rays of the flux space (see Chapter 5 in [1]). This splitting is purely
a mathematical conveniency, we still assume this to be one reaction in the biological sense, and therefore the kinetic
equations of both the forward and the backward reaction will be exactly the same. Only, depending on in which direction
the flux goes, either one of the reactions will be positive. Any solution with both reactions positive is infeasible, but
minimizing enzyme levels will never lead to such a solution, therefore we do not need to set additional constrains.
Second, the feasibility of EFMs can depend on external concentrations. In this network the biomass reaction (vBM ) is
the objective flux and there are three EFMs leading to the production of biomass: EFM1 consisting of v0, v1, v2 and
vBM , EFM2 consisting of v0, v1, v3 and vBM and EFM3 consisting of v4, v3 and vBM . However, if P1 is absent in the
environment, the uptake flux v4 will always be 0 and therefore EFM3 will not be feasible.

7.4. Computation of the optimal state

We can now use the result that states of maximal enzyme efficiency are reached at an Elementary Flux Mode to calculate
these states. We can follow the following steps to calculate these states:

1. Enumerate the Elementary Flux Modes
2. Calculate the minimal enzyme for each EFM scaled to an objective flux of 1
3. Compare the EFMs and select the one with minimal enzyme demands

Step 2 is a convex optimization problem as we have seen in Chapter 6 in [1]. Step 1 is possible for relatively large
networks, although usually not for genome scale metabolic networks. The method of these three steps is called Enzyme
Flux Cost Minimization, because it is similar to Enzyme Cost Minimization, but while that is focussed on fixes fluxes,
Enzyme Flux Cost Minimization simultaneously finds the optimal fluxes. In this section we will show the method on the
example network of Figure 7.2.

First, we describe the network with the Stoichiometric matrix (N) and the concentration vector (c):
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Figure 7.2: Maximal efficiency states in example model. (a) Example network from Chapter 5 in [1] with added
stoichiometry. (b) Three elementary flux modes of this network. (c) Calculated enzyme investment needed for a biomass
flux of 1. There is a single concentration of Gex for which the optimal EFM switches from EFM2 to EFM1. (d) Specific
fluxes (flux divided by total enzyme) associated with the optimal EFM for different levels of Gex. The rates show a
discontinuity when the optimital EFM switches form EFM1 to EFM2.

N =


1 −1 0 0 0 0
0 2 −1 −1 1 −1
0 2 0 10 0 −100
0 −2 0 −10 0 100



c ≡


[G]
[P]

[ATP]
[ADP]


(7.4)
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And with the stoichiometric matrix we can describe the steady state constraints:

ċ = Nv =


1 −1 0 0 0 0
0 2 −1 −1 1 −1
0 2 0 10 0 −100
0 −2 0 −10 0 100





v0

v1

v2

v3

v4

vBM


=


0
0
0
0

 (7.5)

Now we find the EFMs (for example with EFMtool [4]). It is easily cheched that the following EFMs are in the nullspace
of the Stoichiometric matrix:

EFM1 =



5
5
0
9
0
1


EFM2 =



50
50
99
0
0
1


EFM3 =



0
0
0
10
11
1


(7.6)

The next step is to do the convex optimization over the metabolite levels for all three EFMs. Therefore we convert
the enzyme levels to ratio of the flux and the function f(c), using Equation 7.3. By taking the sum of those we
make a function for the total enzyme as a function of fluxes, metabolite concentrations and parameters. We use the
standard parameters (Box 7.4) and for each EFM input the fluxes. We are then left with a convex optimization over
the metabolite levels, an Enzyme Cost Minimization problem as in Chapter 6 in [1]. For [Gex] = 0.05 we obtain a total
enzyme of 111.1 for EFM1 and of 146.3 for EFM2. That means that for this conditions we will conclude that EFM1 is
optimal, and we obtain the metabolite concentrations from the optimization of [G] = 0.08, [P] = 3.93, [ATP] = 0.11
and [ADP] = 20.09. We can next use the rate equations to calculate the enzyme levels from the fluxes and metabolite
levels, using the values for the parameters and external concentrations.

We can repeat this procedure for different levels of external concentrations and see that the optimal EFM can change
depending on the external concentration (Figure 7.2c). When the optimum shifts to using a different EFM, there is a
discontinuity in the fluxes at the external metabolite concentration (Figure 7.2d). Many cells show shifts in metabolic
strategies depending on the external conditions and with Enzyme Flux Cost Minimization those shift could be explained.

In conclusion, we have now found the metabolic state of maximum enzyme efficiency. Even though we obtained the
enzyme concentrations last, this is how the cell controls the system. When the cells makes enzymes in the concentrations
we calculated, a steady state will set in with the fluxes and metabolite levels that will lead to this optimal state.

Box 7.A: Kinetics of the example network

The detailed kinetic equations for the example model (Figure 7.2) using the factorized rate law (see Equation (7.2)
and Chapters 3 in [1] and 6 in [1]) are:
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v0 = e0 · k
+
cat,0 ·

[Gex]/KGex

1 + [G]/KG + [Gex]/KGex

·

(
1 − e

∆G′
r,0/RT

)
v1 = e1 · k

+
cat,1 ·

([G]/KG)([ADP]/KADP )

1 + ([P]/KP)([P]/KP)([ATP]/KAT P ) + ([G]/KG)([ADP]/KADP )
·

(
1 − e

∆G′
r,1/RT

)
v2 = e2 · k

+
cat,2 ·

[P]/KP
1 + [P1]/KP1 + [P]/Kp

·

(
1 − e

∆G′
r,2/RT

)
v3 = e3 · k

+
cat,3 ·

([P]/KP)([ADP]/KADP )([02]/K02 )

1 + ([C02]/KC02 )([ATP]/KAT P ) + ([P]/KP)([ADP]/KADP )([02]/K02 )
·

(
1 − e

∆G′
r,3/RT

)
v4 = e4 · k

+
cat,4 ·

[P1]/KP1
1 + [P1]/KP1 + [P]/KP

·

(
1 − e

∆G′
r,4/RT

)
vBM = eBM · k

+
cat,BM ·

([P]/KP)([ATP]/KAT P )

1 + ([BM]/KBM)([ADP]/KADP ) + ([P]/KP)(AT P /KAT P )
·

(
1 − e

∆G′
r,0/RT

)
(7.7)

Note that P is a product twice in v1, as v1 produces 2P. Note that v2 and v4 have a very similar rate equation, but
in the different direction, and both should only be used in the positive direction.

The standard set of parameters we used for the toy model is all kcat,i = 10 except kcat,3 = 0.1, all ∆G′
r,i = −1000,

R = 8.3, T = 293 and all KM = 1. For the external metabolites [P1] = 1, [Gex] = 0.05, [02] = 0.1, [BM] = 1 and
[C02] = 10 unless mentioned otherwise.

7.5. Translating enzyme efficiency into cell growth rate

In the section above, we learned how to optimize metabolic states for a maximal overall enzyme efficiency. Why is this
quantity relevant? One reason is that overall enzyme efficiency, according to some simple reasoning, determines the cell
growth rates. If microbes compete by growing fast, their fitness is largely determined by their momentary growth rate in
their respective environment. In such environments, the biomass/enzyme efficiency will be under selection, which makes
it one of the important objective functions in this book. If higher enzyme efficiency means higher growth rate, and if we
have a conversion formula for this, we can put “growth rate” instead of “overall enzyme efficiency” on the axes of our
plots.

Enzyme-efficient metabolic states allow us to compute specific biomass production rates, i.e. the rate of biomass produc-
tion per metabolic enzyme invested. If biomass consisted only of enzymes, the ratio "enzyme production rate / enzyme
concentration" would give us directly the growth rate. However, biomass does not only consist of metabolic enzymes,
but includes ribosomal enzymes, RNA, DNA, lipids, and other compounds. Therefore we need a formula for converting
biomass/enzyme efficiency into cellular growth rate.

Mathematically, a cell’s growth rate is given by µ = vBM/cBM , where vBM is the biomass production rate (biomass
produced per cell volume and time) and cBM is the biomass amount per cell volume. If a cell consisted only of metabolic
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Figure 7.4: Optimal growth rates of the two EFMs for different levels of the external metabolite Gex (using Equation
7.8)

enzymes (more precisely, of the enzymes described in our model) the biomass/enzyme efficiency KBM = vBM/henz

would directly descrive the cellular growth rate. Since that is not the case, we need to convert between henz and cBM .
The metabolic protein fraction decreases with the growth rate, leading to a hyperbolic dependency of the growth rate on
the biomass production rate (Figure 7.3). We may use the empirical approximation henz/cBM = fprot(a− b µ), where
fprot = 0.5 is the fraction of protein mass within the cell dry mass and the parameters a = 0.27 and b = 0.2 h were
fitted to describe the metabolic enzyme fraction in proteomics data, assuming a linear dependence on growth rate [5].
This yields the conversion formula (see also [6]):

µ = a fprot vBM

henz + b fprot vBM
. (7.8)

This formula has been used to convert the minimal enzyme cost per biomass flux for different external concentrations
in the toy model (Figure 7.2c) to the maximal growth for each EFM (Figure 7.4).

7.6. Conclusions

In this chapter we considered the metabolic network of a cell - and enzyme levels, metabolite concentrations, and
fluxes as the state variables - and studied its maximally efficient states. Finding such states can be difficult because
fluxes, metabolite concentrations, and enzyme levels are tightly coupled: metabolite concentrations determine enzyme
efficiencies, enzyme efficiencies determine optimal enzyme levels, and enzyme levels determine fluxes and metabolite
concentrations, which in turn determine enzyme efficiencies. To find an optimal state, all variables need to be optimized
at the same time, which is a non-linear optimality problem with (possibly) many local optima. In small toy models,
solutions can be found numerically, but for large detailed models, the computational effort becomes enormous. Instead of
simplifying the problem (as in the previous chapters) we here used the insight that (in models without extra flux bounds)
the optimal solutions must be EFMs. Biologically, it is enzyme levels rather than fluxes that are regulated directly (by
transcriptional regulation), while metabolite concentrations and fluxes respond dynamically. But from a functional point
of view, we may see this differently: we may first think of a task (a flux to be realized) and then ask how this flux can
be performed optimally.
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