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Abstract
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Chapter highlights

• Resource balance analysis models are cell models based on three basic constraints formulated at genome-
scale: stationary fluxes (balancing production and consumption fluxes, uptake and excretion fluxes, as well
as compound dilution by cell growth); flux coupling constraints relating fluxes to the amounts of catalyzing
enzymes (or other machines); and density constraints, limiting molecule amounts in cell compartments, or
molecule concentrations.

• These constraints narrow down the solution space predicted by FBA towards more physiological solutions
• Large resource allocation models build on the same principles, and have been implemented as different
variations (RBA models in a narrow sense, ME-models, and pc-models).

9.1. Introduction: Quantifying cell investments at genome-scale

9.1.1. Can we build detailed models of entire growing cells?

In the previous chapter on growing cells, we derived possible growth rates and corresponding cell compositions and
metabolic strategies based on resource allocation ideas. We asked what amounts of cellular machines will allow a cell
to self-replicate, and possibly, to self-replicate at a maximal possible speed. However, the models described were rather
simple, with reactions coarse-grained into proteome sectors. Following the same idea, would it be possible to model
an entire cell by a one-to-one mapping of all of its reactions, including realistic kinetics and find the configuration for
this entire system that would allow the cell to optimally self-replicate? Such models would in principle be capable of
describing the detailed resource allocation into each reaction in the cell: they would extend genome-scale models of
metabolism (such as in FBA) to models covering all cell subsystems, at the same time accounting for all important
constraints on growth, in particular realistic kinetics.

So why don’t we directly describe metabolism and macromolecule production in one single, detailed model? If do that
and attempt to find the optimal state, we quickly see that the optimality problems for genome-size models are hard to
solve, and maybe unsolvable with current means. The reason is simple: due to non-linearities in the rate laws (where rates
are typically dependent on substrates and machines, and are therefore at least quadratic), the optimality problem may
have multiple local optima. Since the space for optimization is very high-dimensional (with the number of dimensions on
the order of the number of compounds and reactions considered) and non-convex (because certain regions of the initially
convex solution space are excluded by thermodynamic constraints), the global optimum may be hard (or in practice,
impossible) to find.

We can also see this more formally. While kinetic self-replicator models could be formulated, the resulting problems would
be non-convex [1, 2, 3] and potentially hard to solve. How do we know this? In the optimal solution, the flux distribution
must be an elementary flux mode [2]. Since no better method is known, to find the globally optimal metabolic fluxes,
protein and metabolite abundances all elementary flux modes must be enumerated. For large-scale metabolic networks
this is hard, and in fact this problem is computationally #P-complete.[4], which prevents its resolution for large-scale
models. However, recent attempts of integration of thermodynamics constraints in EFM computation drastically reduced
their number [5], which may provide significant help in future developments to solve large self-replicator models.

So in order to model a cell in high resolution (including individual metabolic reactions and their enzymes), what can we
do? In previous chapters, we approached this problem from two directions. Flux Balance Analysis (FBA) models, as
described in Chapter 5 in [6], capture metabolic fluxes in detail, but ignore the rest of the cell (such as macromolecule
production; and also the fact that all cellular compounds are diluted by cell growth). Self-replicator models, as
described in Chapter 8 in [6], describe a growing cell directly and consider whole-cell aspects such as dilution by growth.
However, they contain only very few reactions. Larger cell processes are lumped into a few global variables, ignoring the
details. This makes it impossible to model the effects of detailed changes (e.g. the fate of individual metabolites, the
inhibition of single proteins, or deletions of single genes).
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So why don’t we just combine the two approaches? In Chapter 6 in [6] we already did this, to an extent: we considered
a metabolic (FBA-like) model to compute biomass/enzyme productivity, and then used a formula derived from bacterial
growth laws (see Chapter 8 in [6]) to convert biomass/enzyme productivity into cell growth rate. But there were still
some disadvantages, most importantly, that the biomass composition has to be known. Biological facts such as biomass
composition should not just come as empirical knowledge, but should be explained ab initio. Subdividing a system
into metabolism and other systems (with “fixed interfaces”, like a predefined biomass composition) makes it impossible
to understand details of complex behavior. For example, if some proteins are needed to retrieve iron via metabolism
and other proteins (or possibly, the same proteins) also contain iron, this will creates a complicated protein allocation
response to changing iron supply. Iron depletion is expected lead to an upregulation of the first type of proteins, and
a downregulation of the second type. However, FBA can only capture the first effect, because its biomass function is
fixed.

9.1.2. Linearization: replacing kinetics by catalytic constraints

So how can large-scale models be made tractable? If we radically linearize all formulae, then instead of a biconvex or
convex/concave problem, we obtain a linear problem (a bit like FBA); more precisely, a system of linear equalities and
inequalities that define a set of feasible states. This set is a polytope, and linear optimality problems on this set can be
solved easily. More specifically, to model metabolism in a growing cell, we need to consider dilution in the growing cell
volume. If compounds are described by concentration, dilution can be effectively modeled by "consuming reactions",
with a flux given by vdil = µ c, the compound concentration multiplied by the growth rate. By adding these hypothetical
dilution reactions to the metabolic network, we obtain a new stationarity condition N v = µ c that connects the vectors
of fluxes and compound concentrations, and in which the growth rate µ appears as a parameter. For each choice of
the parameter µ, we can ask whether a feasible steady growth state – i.e. a feasible combination of v and c exists,
Furthermore, the feasible combinations (µ,v, c) form a convex set, with possible solutions (v, c) for low values of µ and
no solutions above a critial value µmax. Finding this critical value – the maximal possible growth rate for our model – as
well as the corresponding optimal fluxes v and compound concentrations c is relatively easy, and can be done by solving
a series of Linear Programming problems (checking for potential solutions (v, c) for different values of µ).

The main downside of this approach is that all relationships between models variables need to be linearized. This
concerns, most importantly, all catalyzed processes, in which we assume a linear dependence between catalyzed flux and
catalyst (enzyme or machine) concentration, but ignore the dependence on the concentrations of substrates, products,
cofactors, or additional regulators. What does this mean in practice? As we know from Chapter 3 in [6], typical
enzymatic rate laws have the form v = e k(c): the rate v is proportional to enzyme level e and enzyme efficiency k,
which is given by a kinetic rate law k(c), a nonlinear function of the metabolite concentrations. Depending on the
context, k is also called catalytic rate or apparent kcat. The kinetic rate laws k(c) have typical shapes, as described in
Chapter 3 in [6]. To linearize the expression for v, while keeping the dependence on e, we need to replace k by a fixed
number, a model parameter. If the metabolite concentrations were known (experimentally, or from kinetic models under
optimality assumptions, see Chapter 6 in [6]), the value of k could be computed. Otherwise, it can also be determined
experimentally, by measuring v and e and setting k = v/e. Obviously, in reality, neither c nor k will be fixed and
given, but for our linearized model, we need to assume this. This holds both for metabolic reactions (with enzymes
as catalysts) and for macromolecular reactions (with molecular machines as catalysts). Under this assumption, we can
replace all kinetic constraints by two linear constraints on the enzyme to fulfill its function as −e k′ ≤ v ≤ e k, where
coefficients k and k′ are the approximation coefficients of the enzyme kinetics in the forward and backward direction
respectively. These constraints, which replace the kinetic rate laws, are called capacity constraints and resemble the
linear flux/enzyme relation in FBA with molecular crowding. Finally, there is one important exception: like in satFBA.
some kinetic rate laws can remain, namely those in which the metabolite concentrations themselves are not variables (or
disregarded completely), but are given as model parameters. This concerns, in particular, all transport reactions whose
substrate is an extracellular compound with a known concentration in the growth medium. Nonlinearities can be kept
as long as they do not depend on decision variables (even if the nonlinear problem can still sometimes be solved for a
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few nonlinearities if convexity is kept)

9.1.3. Towards fine-grained resource allocation models

Some FBA variants account for extra empirical constraints on the total concentration of metabolic enzymes (FBA
with molecular crowding, or FBAwMC), or on proteome sectors (Constrained-Allocation FBA, or CAFBA). While these
can predict metabolic states more reliably, the empirical constraints come as model assumptions and thus cannot be
understood by the models themselves. In these models, the primary assumption is that the cell phenotype is obtained by
genetic regulations, and the main goal and utility of genetic regulation can be interpreted as ways of saving resources.
Thus in many cases when we predict cell phenotype maximizing growth, we find predictions in good agreement with the
experimental observations.

To obtain an ideal detailed cell model, the self-replicator models from the previous chapter would have to be extended
with explicit kinetics and thermodynamic constraints. Since we know that such problems are hard to solve , simplifications
are currently necessary to keep linearity (and convexity) to solve optimization problems for large-scale models.

9.2. Additional constraints in resource allocation models

The canonical FBA/genome-scale metabolic models (GEMs), as described above (and in previous chapters), hold a num-
ber of assumptions which allow metabolic states irregardless of the corresponding resource allocation pattern. Therefore,
we need to impose sets of additional constraints on metabolic networks. The fine-grained models build on the genome-
scale metabolic models to encompass all the reactions that potentially could happen in a metabolic network, and different
extensions of GEMs were proposed to predict optimal resource allocation in different microorganisms [7].

Resource allocation models describe optimal resource allocation in constraint-based, genome-scale whole-cell models
and formalizes the mathematical relationships defining the interactions and allocation of resources between the cellular
processes. All these relationships take the form of linear, growth-rate dependent equalities and inequalities, and form a
convex feasibility problem [8, 9, 10]. We will now expand on the three types of constraints used in resource allocation
models; note that the description is not exhaustive and peculiarities may vary among different formulations.

Box 9.A: Current frameworks for cell modelling with protein constraints

Constraining metabolic models to represent limited metabolic capacity of cells is not a new idea. There are two ways
to approach this budgeting problem: "protein budgeting", where a fixed amount of protein needs to be partitioned
in the optimal manner (maximizing growth), and "resource budgeting", where models include both the protein
budgeting and the descriptions of demands for protein synthesis. However, "protein budgeting" problems assume
that investments in protein production follow the budget, and not vice versa. Therefore, resource allocation models
extend and embed the ideas of proteome partitioning beyond frameworks like CAFBA [11] and GECKO [12], or
representing metabolic capacity limitations beyond FBAwMC [13].

Currently, there are three main implementations of large-scale resource allocation models: Resource Balance Analysis
(RBA) [14], Models of Metabolism and Macromolecular Expression (ME-models) [15] and proteome-constrained
models (pc-models) [16]. All these implementations are formalized as LP feasibility problems at fixed growth rate.

Originally, ME-models were considered as an extension of M-models, by including predictions for mRNA, protein,
and ribosome levels. Importantly, they do not consider density constraints that, for instance, RBA does. Therefore,
limitations on the capacity of exchange fluxes (as in FBA) are necessary to obtain a solution.
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9.2.1. Types of constraints

The general description of these constraints in fact is the same as for small, coarse-grained self-replicator models, only
the number of individual constraints increases. Although the precise formulations vary, resource allocation models build
on three principal types of constraints:

• Mass-conservation constraints
• Flux coupling constraints
• Compartment capacity constraints

Alongside these three major classes there is another set of constraints, which we could call "environment" constraints
- these correspond to, e.g. the composition of growth medium, biomass composition at at given growth rate µ, etc.
They are implemented by setting target values for amounts and/or fluxes defining a viable cell in a given (or several)
environmental conditions, but they are not structural constraints. These constraints usually are added ad hoc and do
not need to bear any functional meaning per se.

The mass-conservation constraints define the metabolic network (stoichiometry and relation between fluxes). The initial
building blocks of these extended models are GEMs, and thus the metabolic network stoichiometry is already there;
what remains to be defined are the protein turnover processes. We consider 4 types of protein turnover reactions in
fine-grained resource allocation models: protein synthesis, folding, degradation and dilution-by-growth. So, for every
protein present in such a model, we add these four reactions: two of them, translation and degradation, include the
stoichiometry of amino acids needed for its translation and released during degradation based on the protein sequence.
Protein folding and dilution are modeled by the same types of reactions for different proteins (a series of two steps,
"unfolded" → "folded" → ∅).

Next, the flux coupling constraints couple the metabolic fluxes with protein usage: usually, the usage scales with
the catalytic turnover value kcat of the enzyme. In this step we have to collect the kinetic information (in most
cases, kcat values), which are used as model input. We establish the coupling between fluxes and protein synthesis
by setting v = kcat e η, where e is the enzyme concentration and 0 < η ≤ 1 is an efficiency term summarizing the
effects of reaction thermodynamics, enzyme saturation, and possibly small-molecule regulation. Coupling constraints
are introduced to couple both (i) the metabolic reactions with enzyme usage (as described above) and (ii) protein
turnover reactions with the respective macromolecular machinery (e.g. sum demand of ribosomes for protein translation,
vtranslation = [Ribosome]×kcat,ribosome). The sheer number of the kinetic parameters needed for formulating the coupling
constraints in the fine-grained models requires the modeller to consider different assumptions and simplifications when
building and parametrizing these models, as briefly discussed below.

The number of processes described in a fine-grained manner directly translates to the number of reactions and metabolites
in the model. For instance, transcription is modelled explicitly in the ME-models [15]. The modellers’ decision is key
here: under assumption that transcription and translation form a linear pathway with fixed scaling factors (i.e. there is a
fixed ratio of peptides translated per mRNA transcribed), the flux through mRNA translation reaction can be computed
post-optimization based on the flux through the protein translation reaction. Explicit modelling of transcription would
require describing processes of mRNA transcription, processing, export from nucleus, and then cytosolic degradation after
the mRNA is translated – for each of the transcripts, with precise stoichiometry and a new set of coupling constraints.

The next issue is kinetic parametrization of these fine-grained models. We currently can use only very simplified kinetics
in the models (flux coupling v = kcat e η), and simplify such factors as enzyme saturation and thermodynamic driving
force into a single value of factor η. Two approaches are used to deal with this, as a large fraction of parameters are
not even available. First, condition-dependent kinetic parameters ("apparent catalytic constants", kapp) are fitted from
experimental (mostly quantitative proteomics) data (setting keff = kcat α, where 0 < α ≤ 1) with a value α chosen
to match predicted enzyme abundance and experimental measurements. Otherwise, for the enzymes with measured
kcat values, we can assume that enzymes work at their maximal rate, i.e. the saturation function η = 1. Then the
model computes the minimal protein requirement to sustain the flux through the metabolic reactions. The comparison of
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minimal predicted vs. observed protein abundance can represent the "apparent saturation", or "overcapacity" of enzymes.
For instance, it is common in yeast S. cerevisiae that the flux and not protein expression varies across conditions, and
the relationship between predicted and measured expression can suggest the nature of the observed protein expression
[17].

The final layer of information in the fine-grained resource allocation models is a set of capacity constraints. These con-
straints describe the [upper] limit of cellular process(es), e.g. maximal protein capacity of a compartment. The capacity
constraints are formulated as weighted sums of protein abundance, and usual weighing multipliers are proportional to the
molecular weight of the protein. Usually, the capacity constraints are expressed in terms of mass, area, and volume of
the compartment (e.g. "what is the maximal mass the mitochondrial proteins can take up in gDW of cells?"). Based on
the biological interpretation of the constraints, we formulate the weighing multipliers to represent either of the metrics
(mass/area/volume) that every protein occupies.

The capacity constraints can be both equality and inequality constraints: more frequent are the latter (usually defining
the "upper limit" of, e.g. amount of protein targeted to mitochondria). However, some cell properties should be described
through equality constraints: one of these is the protein density of biomass, defining the "target" protein translation per
gram dry cell biomass.

Box 9.B: Protein abundance versus concentration in fine-grained resource allocation models

Here we would like to include a relevant note for interpretation of the output of the fine-grained resource allocation
models. Both the classical FBA and these extensions do not consider "metabolite concentration" as a concept:
optimization variables are all fluxes. Frameworks discussed in this chapter model protein synthesis from amino acids
and energy equivalents explicitly, with a typical flux dimension of mmol gDW−1 h−1 (as for any other fluxes).
To compute the amount of protein that has to be produced in the steady-state growth, we should consider the
flux balance for the protein e: vsynthesis,e = vdegradation,e + vdilution,e, or, rewritten with the respective parameters,
vsynthesis,e = (kdeg,e + µ) e. Here, kdeg,e is the degradation rate for the protein e, and µ is the specific growth
(= dilution-by-growth) rate. The [e] in the rewritten equation holds dimension of mmol gDW−1, which is protein
abundance, rather than concentration.

The predicted amount of protein in cells can be compared to experimental measurements in two ways. First option
is to convert abundance to concentration using the relationship between the cell volume and dry weight (e.g.
VgDW = 1.7 mL gDW−1 in Saccharomyces cerevisiae, [18]). Alternatively, proteome mass fractions are a popular
unit in label-free mass spectrometry-based protein quantification, a popular method in quantitative microbiology.
Respectively, predicted proteome mass fractions can be inferred by converting protein abundance in mmol to g,
and scaling to the protein content in dry cell biomass. Here, it is important to consider the conversion factors
(protein content in dry biomass). Fast-growing bacteria, e.g. E. coli, maintains rather constant protein content in
dry weight across growth rates (ca. 0.55 (g protein) gDW−1) [19, 20]. On the contrary, the protein content is
known to vary in S. cerevisiae as a function of growth rate [18].

9.2.2. Interpretation and outcomes of the additional constraints

For cells growing in exponential phase at a growth rate µ, the constraints listed above formalize different structural
constraints:

(I) the metabolic network has to produce all metabolic precursors necessary for biomass production and mass conser-
vation must hold for all intracellular molecule species - i.e. intracellular metabolites and molecular machines.

(II) the capacity of each type of molecular machine must be sufficient to ensure its function, i.e. to catalyze chemical
conversions at a sufficient rate;

(III) the intracellular density of compartments and the occupancy of membranes must not exceed the defined limits.

Metabolism and protein production depend on each other in both ways!
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Figure 9.1: Resource balance analysis model: overview of biological components and mathematical constraints. (a)
Typically, an RBA model describes metabolisms and macromolecule production in a growing cell (yellow blocks). Pre-
cursors from metabolism are needed to produce macromolecules, and some macromolecules serve as enzymes to catalyze
metabolic reactions. In addition, macromolecules are diluted and are localized in cell compartments. (b) Mathematical
constraints. The variables and processes described by an RBA model must satisfy a number of constraints, include
mass-balance constraints (between production, degradation, and dilution of compounds); capacity constraints (relating
process velocities to the concentrations of catalysts); density constraints (on the total amount of compounds in a cell
compartment); and possibly empirical physiological constraints on any types of "target variables", to ensure realistic
models.

• Possible states are defined by constraints:
(i) stationarity, including dilution
(ii) kinetics/capacity constraints
(iii) density constraints
(iv) other physiological bounds (“targets”)

• Select an optimal state by an assumed objective (e.g. maximal growth; protein production; in chemostat, growth
at a given growth rate and at minimal external substrate level)

• A change in one cell component may lead to small perturbations or global rearrangements
• Relaxing one constraint can lead to changes in the entire system!

9.3. Resource balance analysis

Resource Balance Analysis (RBA) has been developed as (and is considered) a flexible and generic modeling framework
which describes the functioning of an organism using the most relevant set of linear equality and inequality constraints.
Importantly, RBA does not refer to a specific unique set of constraints, but it provides the framework in which such
constraints can be taken into account. Here we distinguish the general RBA framework from a specific type of RBA
model, i.e. the model of a specific organism, which contains by definition a set of specific constraints. The general
structure of such models, as well as the typical constraints, are shown in Figure 9.1.
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9.3.1. Mathematical description

Notation. Below AT refers to the transpose of the matrix A. Rn
>0

∆=
{
x ∈ Rn |xi > 0 for all i ∈ {1, · · · , n}

}
,

R>0
∆= R1

>0, Rn
≥0

∆= {x ∈ Rn |xi ≥ 0 for all i ∈ {1, · · · , n}} and R≥0
∆= R1

≥0.

In a standard RBA model, we consider balanced growth, that is, the average state of a cell in a cell bacterial population
growing exponentially at the specific (constant) growth rate µ ≥ 0, i.e. the amount of produced biomass per biomass
per cell per unit of time. Our simulated average cell is composed of different molecule species:

(i) ny types of molecular machines, which can be subdivided further into ne enzymes and transporters involved
in the metabolic network E ∆= (E1, . . . ,Ene

) at the concentrations e ∆= (e1, . . . , ene
)T and metabolic fluxes

ν
∆= (ν1, . . . , νne

)T ; and nm macromolecular machines M ∆= (M1, . . . ,Mnm
) involved in non-metabolic cellular

processes, such as the translation apparatus, at the concentrations m ∆= (m1, . . . ,mnm
)T ;

(ii) np proteins P ∆= {P1, . . . ,Pnp
} belonging to unspecified cellular processes. p ∆= (p1, . . . , pnp

)T denotes the set of
concentrations of P;

(iii) ns intracellular and mass-balanced metabolites S ∆= (S1, . . . ,Sns
). Within the set S, we distinguish a subset B ∆=

(B1, . . . ,Bnb
) of abundant metabolites which have fixed growth-independent concentrations b̄ ∆= (b̄1, . . . , b̄nb

)T

(and usually coincide with biomass macro-components such as DNA, cell wall or plasmic membrane). We also con-
sider a set of extracellular metabolites Sext

∆= (Sext,1, . . . ,Sext,next) of concentrations sext
∆= (sext,1, . . . , sext,next)T

that are not mass-balanced.

Finally, let us introduce the vector yT ∆= (eT ,mT ) of concentrations of molecular machines of size ny. Typical units of
concentrations e, m and p are in millimoles per gram of cell dry weight, and fluxes ν in millimoles per gram of cell dry
weight per unit of time.

For a given cell growth rate µ ≥ 0, the RBA optimization problem (named Prba(µ)) can be formalized mathematically
as follows.
For a fixed vector of concentrations p ∈ RNnp

>0 and the given growth rate µ ≥ 0,

find possible cell states y ∈ Rny

≥0, ν ∈ Rne ,

subject to
(C1) −Ων + µ(CS

Y y + CS
B b̄ + CS

P p) = 0

(C2a) µ(CM
Y y + CM

P p)−KT y ≤ 0

(C2b) −K′

E y ≤ ν ≤ KE y

(C3) CD
Y y + CD

P p− d̄ ≤ 0

where all the inequalities are defined componentwise and:

• Ω is the stoichiometry matrix of the metabolic network of size ns×ne, where Ωij corresponds to the stoichiometry
of metabolite Si in the j-th enzymatic reaction;

• CS
Y (resp. CS

P) is an ns ny (resp. ns np) matrix where each coefficient CS
Yij

corresponds to the number of
metabolite Si consumed (or produced) for the synthesis of one machine Yj (resp. Pj); CS

Yij
is then positive,

negative or null if Si is produced, consumed or not involved in the the synthesis of one machine Yj (resp. Pj);
• CS

B is an ns × nb matrix in which each coefficient CS
Bij

corresponds to a metabolite Si consumed (or produced)
for the synthesis of one Bj;

• KT (KE and K′

E, respectively) are matrices of size nm× ny (ne× ny, respectively) in which each coefficient kTi

(kEi and k′

Ei
, respectively) is positive and corresponds to the efficiency of molecular machine Mi , i.e. the rate

of the process per amount of the catalyzing molecular machine, (the efficiency of the enzyme Ei in forward and
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backward sense, respectively);
• CM

Y (resp. CM
P ) is an nm × ny (resp. nm × np) matrix in which each coefficient CM

Yij
typically corresponds to the

length in amino acids of the machine Yj (resp. Pj). In some cases (for instance for the constraints on protein
chaperoning), the length in amino acids can be multiplied by a coefficient, such as the fraction of the whole
proteome that necessitates chaperoning;

• d̄ is a vector of size nc, where nc is the number of compartments (compartment membrane and/or compartment
interior for which density constraints are considered. d̄i is the density of molecular entities within the volume or
surface area. Densities are typically expressed as a number of amino-acid residues by volume or surface area.

• CD
Y (resp. CD

P) is an nc ×Ny (resp. nc × np) matrix in which each coefficient CD
Yij

corresponds to the density of
one machine Yj (resp. Pj) in the compartment i. By construction, we have one unique localization per machine.

At given µ, Prba(µ) is a feasibility optimization problem, where constraints (C1-C3) define the feasibility domain. The
feasibility domain can be empty or non-empty. If there exists a solution (y, ν) to Prba(µ) -i.e. the feasibility domain is
non-empty-, then there exists a feasible resource distribution compatible with the given growth rate. In other words, the
cell can grow at this growth rate value.

Remarks:

1. In practice, the vector b̄ contains non-zero values only for the concentrations of macro-components such as DNA,
cell wall, and lipid membranes, and for a few set of metabolites. These values are usually extracted from the
biomass formation reaction used in FBA models (see Chapter 5 in [6]).

2. To model reversible enzymes, we introduced two diagonal matrices containing the enzyme efficiencies, i.e. KE and
K′

E, describing the capacity constraints of enzymes in both directions. If an enzyme Ei is considered irreversible,
k′Ei

is set to 0.
3. In [9, 21], an RBA model was built for Bacillus subtilis. It integrates two macromolecular processes in constraint
C2a, the translation and chaperoning of proteins, and two density constraints, the limitation of the cytosolic density
and of the membrane occupancy. An RBA model can be refined by integrating for instance other cellualr processes
and molecular machines, such as the transcription machinery, the protein secretion apparatus (see [21, 22]), or
molecule turnover [23], as well as other types of constraints.

How to incorporate the medium composition. We represent the medium composition by extracellular concentrations,
which determine the efficiencies of metabolic transporters via Michaelis-Menten like rate laws (as nonlinear k(c) functions;
see section 9.1.2). For an extracellular nutrient Sext,i with concentration sext,i ≥ 0, the efficiency of the corresponding
metabolic transporter(s) is given by kE(sext,i) = kcatsext,i

Km+sext,i
, with parameters kcat and Km for the turnover number and

the affinity of the transporter, respectively.

Convexity. For given growth rate and medium composition, all equalities and inequalities in our RBA problem Prba(µ)
is linear in the decision variables (y, ν) and is proven to be convex [8, 10]. By construction, the feasibility domain of
Prba(µ) corresponds to the set of all possible phenotypes of the cell at a growth rate µ ≥ 0.

Parsimonious resource allocation. The principle of parsimonious resource allocation between cellular processes coin-
cides with principles of optimal performance, for example, that a cell phenotype should maximize growth rate. Impor-
tantly, for an RBA problem with given parameters, there exists a maximal growth rate µ∗ ≥ 0, such that for any µ,
Prba(µ) is feasible if and only if µ ≤ µ∗ [8, 10]. For a given medium composition, the maximal growth rate µ∗ can
computed by using a bisection algorithm, in which a series of LP problems are solved to narrow down the exact growth
rate at which the problem becomes infeasible. Together with the maximal feasible growth rate one obtains the optimal
cell configuration maximizing growth (µ∗,y∗, ν∗).

Exploration of the feasibility domain. It was proven that the feasibility domain contracts with increasing growth rate
[8, 10]. In the same vein as Flux Variability Analysis ([24], see Chapter 5 in [6]), the feasibility domain can be explored at
optimal (µ∗) or sub-optimal (µ ≤ µ∗) growth rates. For one decision variable yi (resp. νi), two LP problems are solved,
where (i) constraints C1, C2 and C3 remain unchanged; (ii) the decision variable yi (resp. νi) is maximized (LP 1) and
minimized (LP 2). This operation is repeated for each decision variable to obtain in fine the feasibility domain of all
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decision variables. In practice, at the optimum, the cell configuration (µ∗,y∗, ν∗) is often unique. Indeed, non-unique
solutions will exist if two alternative metabolic pathways have exactly the same cost in resources. Since all enzymes
have different amino acid sequences, use different cofactors, are differently localization, etc, this is highly unlikely. A
caricatural example of a model with non-unique solutions would be one in which an enzyme pool is arbitrarily split into
two, and the two new “enzyme species” are given different names, although they are physically exactly the same.

9.3.2. How to build and calibrate RBA models?

For a given organism, an RBA model can include all known metabolic reactions and all (potentially relevant) cell
processes with major protein investments (including in particular metabolism, transport, ribosomes, chaperones). Which
metabolic reactions and cell processes are regarded as relevant may vary between organisms and is a modeling choice.
RBA integrates the description of the stoichiometry of the metabolic network, the composition of some macromolecular
components as DNA, mRNA, lipids, cell wall components, but also a detailed description of molecular machines including
the precise protein and nucleic sequences, their dependency on metallic ions, vitamins, cofactors for activity, and their
cellular localization.

Requirement for RBA model creation. Several pieces of information, that is, several types of biological data, are
needed to build an RBA model for an organism:

• Metabolic network and reaction stoichiometry
• Mapping from reactions to enzymes and further to proteins
• Protein amino acid sequences and cofactors (e.g. metal ions)
• Efficiencies of metabolic enzymes,
• Types of cellular machines (e.g. ribosomes and chaperones), their efficiencies and cofactor demands
• Molecule sizes and localisations (for density constraints)
• Other constraints on concentrations or fluxes (“targets”) defining a viable cell

In practice, RBA models can be built and simulated using a software called RBApy [22]. It takes as input (i) a genome-
scale metabolic network in SBML format [25] and having a high-quality mapping between genes and reactions; (ii) the
description of molecular machines involved in macromolecular processes (e.g ribosomes); (iii) the NCBI taxon of the
organism of interest. Then it automatically extracts information on protein sequences and cofactors, subunit structures,
localization from public repositories such as Uniprot, maps enzymes to the reactions they catalyze and to the proteins
they consist of, and builds a draft uncalibrated RBA model.

Calibration of RBA model parameters. An RBA model may contain a high number of model parameters. How can
we obtain them? Remember that the main parameters to be estimated are the abundance of housekeeping proteins
(p), densities (d̄) and efficiencies of molecular machines (KE, K′

E,KT)1. As we learned in Chapter 3 in [6], the
rate of an enzymatic reaction, v = e kapp, depends on the enzyme’s efficiency or “apparent catalytic rate”, given by
kapp = f(c) = k+

cat · ηrev(c) · ηsat(c) < k+
cat. The kapp values are always below the kcat value, but may vary from state

to state depending on metabolite concentrations. Since internal metabolite concentrations c are unknown and difficult
to measure at genome-scale, we cannot estimate kapp from the explicit kinetic law f(c). We need to obtain these kapp

parameters empirically, for example by measuring the flux v and the protein abundance e in one condition and taking
their ratio. Hence, for a given environmental condition, RBA parameters can be estimated using quantitative proteomics
[26] for p and d̄, and a combination of quantitative proteomics and fluxomics (if available) as in [21] or FBA to estimate
the flux distribution as in [22] for efficiency parameters. To account for variable enzyme efficiencies, one may make the
simplifying assumption that enzyme efficiencies depend mostly on growth rate. By estimating the enzyme efficiencies at
different growth rates and interpolating between them, one obtains empirical relationships between them and the growth
rate [21] that can be further used in Prba(µ). For instance, several estimates of enzymatic efficiencies obtained in several
contrasted growth conditions will provide a relationship such as KE(µ) instead of a constant KE value.

1b̄ is deduced from the biomass reaction of the genome-scale metabolic network of the organism
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9.3.3. Examples of RBA applications

Despite its assumptions and simplifications, RBA is able to predict realistic complex adaptations (e.g. some proteins
contain iron; under iron starvation, the cell may increase the import of iron, but also avoid using proteins that contain
iron, and the pathways in which they operate), even in complex growth conditions [21, 27]. These effects cannot
be captured by standard CBM methods in an autonomous way, i.e. without the addition of specific constraints on
fluxes. Thus altogether, RBA provides a reasonable compromise between numerical tractability, cell phenotype prediction
accuracy and model complexity.

9.4. Prediction of variable biomass composition

Cell models describe, among other things, what a cell is composed of (see Chapter 2 in [6]). In such models, cell
composition may either serve as input information (e.g. putting a certain amount of lipids as a constraint) or model
results (to be validated by data).Cell composition may be described broadly by molecule classes (e.g. the overall amounts
of lipids, protein, DNA, RNA, and so on), or more precisely for individual molecule types (indiviual lipids, proteins, mRNA
species, and so on), or even in terms of atomic composition (which in turn gives clues about the amounts of molecule
classes). Another measure of biomass composition is the amounts of precursors that are made in metabolism in order to
produce macromolecules. In FBA, specifically, “biomass” refers to the proportions of these precursor amounts (including
cofactors), assuming that the total production may change, but the proportions stay fixed.

Cell composition may greatly vary between cell types, and also for a given cell type between conditions (for instance,
because of the different ribosome content of a cell at different growth rates). This variable composition often poses a
challenge for models. Just like the uptake rates, the varying biomass composition reflects complex global rearrangements
of resources, and choices between metabolic strategies. In classical FBA, uptake rates and biomass composition need to
be predefined; if they are not known from experiments, predictions may not be reliable (see Chapter 5 in [6]).

A main achievement of RBA models is that the biomass composition is not fixed and given as input information as in
FBA, but is predicted by the model itself. The model predicts the optimal macromolecule composition of the cell and –
unlike in small self-replicator models (see the models in Chapter 8 in [6]) - this prediction is very detailed: it follows from
the predicted proteome and may comprise details like trace elements (e.g. iron, which appears in some of the proteins)
and whose contribution to the overall biomass will vary with the expression level of those proteins. How does this
work? In RBA models, in contrast to FBA, uptake rates and biomass composition are usually not predefined (although
this is possible, if required, and may be used to fit models to data), but obtained as model predictions from resource
allocation ideas. For example, in RBA, the proportions of biomass precursors would reflect the types and amounts of
macromolecules (to be made from these precursors) in the optimal state, which in turn (among other things) reflect the
amounts of enzymes needed to make the precursors.

Recommended readings

• Website rba.inrae.fr for further details on RBA
• A recent review on large-scale resource allocation models: K. de Becker et al. "Using resource constraints derived
from genomic and proteomic data in metabolic network models" Curr Opin Syst Biol 2022, 29:100400

Problems

Problem 9.1 The role of metabolite concentrations

• What if the metabolite content of the cell has been underestimated? Assume that the amount of small metabolites
in cells is currently underestimated. What problems in model predictions would arise from the fact? In what way

rba.inrae.fr
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1016/j.coisb.2021.100400
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would predictions (by FBA or other methods) be distorted?
• In what way would a cell, in reality, profit from a lower small metabolite content? Can we assume that the
ratio between small metabolites and proteins is optimized? Describe possible aspects of this compromise! For
inspiration, see [28].
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