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GRAPHICAL ABSTRACT  8 

 9 

HIGHLIGHTS 10 

.  A suspect database of 291 TPs of tebuconazole was created. 11 

. Twelve cutting-edge in silico predictors were used and compared. 12 

. RT and a priori fragmentation predictions were conducted on predicted TPs. 13 

. Comparison of prediction from transformation predictors revealed the known TPs. 14 

.  Workflow-aided retrospective analysis of surface-water samples highlighted new TPs. 15 
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ABSTRACT  16 

The search and identification of organic contaminants in agricultural watersheds has become a crucial 17 

effort to better characterize watershed contamination by pesticides. The past decade has brought a 18 

more holistic view of watershed contamination via the deployment of powerful analytical strategies 19 

such as non-target and suspect screening analysis that can search more contaminants and their 20 

transformation products. However, suspect screening analysis remains broadly confined to known 21 

molecules, primarily due to the lack of analytical standards and suspect databases for unknowns such 22 

as pesticide transformation products. Here we developed a novel workflow by cross-comparing the 23 

results of various in silico prediction tools against literature data to create an enhanced database for 24 

suspect screening of pesticide transformation products. This workflow was applied on tebuconazole, 25 

used here as a model pesticide, and resulted in a suspect screening database counting 291 26 

transformation products. The chromatographic retention times and tandem mass spectra were 27 

predicted for each of these compounds using 6 models based on multilinear regression and more 28 

complex machine-learning algorithms. This comprehensive approach to the investigation and 29 

identification of tebuconazole transformation products was retrospectively applied on environmental 30 

samples and found 6 transformation products identified for the first time in river water samples. 31 

 32 
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 35 

ENVIRONMENTAL IMPLICATION 36 

The in silico workflow presented in our work represents an improvement in the suspect screening of 37 

transformation products, which are undeniable ubiquitous environmentally hazardous contaminants. 38 

Applied on the fungicide tebuconazole as a model compound, the workflow led to the detection of 39 

seven new transformation products in surface waters. Based on accessible and transposable in silico 40 

tools, the proposed workflow can be replicated to a wide range of organic substances and reused by 41 

other environmental analysis laboratories. We therefore believe in the relevance of publishing our 42 

work in Journal of Hazardous Material.  43 



 
 

1.  Introduction 44 

Pesticides are chemical compounds used mainly in agriculture to control plant pests and 45 

improve crop yields. Once in the environment, pesticides can be degraded into transformation 46 

products (TPs) via both biotic and abiotic transformation processes [1, 2]. The chemical compounds 47 

formed by these transformations processes are generally lower, more persistent in the environment 48 

and more mobile than the parent compound, which can increase their transport to surface water and 49 

groundwater by runoff or seepage from agricultural soils [3, 4]. As a rule, these structural and property 50 

changes do not specifically increase the toxicity of TPs compared to parent compounds. However, 51 

within the multitude of products formed, some may be exceptions to this rule, which makes it 52 

important to identify them [2]. This blind-spot in identification means that the toxicity of pesticides 53 

and their TPs in water bodies is globally underestimated [5, 6]. Novel approaches are needed in order 54 

to identify these unknown TPs compounds. 55 

The simultaneous quantification of pesticides and their known TPs in waterbodies has revealed 56 

the presence of TPs at higher levels of concentration and occurrence than their parent compounds. As 57 

an example, in headwater streams, Le Cor et al. [7] highlighted that pesticide TPs accounted for more 58 

than half of the substances detected and that TP concentrations were often ten times higher than the 59 

parent-compound concentrations (0.46 ± 0.02 μg/L for the TP metazachlor-ESA versus 0.047 ± 0.007 60 

μg/L for the parent metazachlor). However, such targeted analyses are limited by the lack of standards 61 

for most pesticide TPs. To overcome this gap, powerful techniques such as high-resolution mass 62 

spectrometry (HRMS) have been developed over the last decade. Gas chromatography (GC) or liquid 63 

chromatography (LC) coupled with HRMS can serve to develop suspect and non-target screening (NTS) 64 

strategies that bring a more holistic understanding of the environmental fate of organic chemicals by 65 

untangling the unknowns [8].   66 

Suspect screening strategies involve comparing key characteristics of compounds, compiled in 67 

a database (DB), to analytical data on actual environmental samples acquired by HRMS. The minimum 68 

data required to suspect a compound in a water sample is the exact mass of the compounds of interest. 69 

Levels of confidence in suspected presence can be increased with additional compound-related data 70 

such as mass fragmentation patterns (MS/MS spectra) and chromatographic retention times (RT) [9]. 71 

This additional data is usually obtained by injecting analytical standards into a LC or GC-HRMS 72 

instrument or is already contained in commercial or public databases, such as the NORMAN Suspect 73 

List Exchange (https://www.norman-network.com/nds/SLE/). However, when analytical standards 74 

and databases are unavailable, analysts should consider using extensive suspect screening with 75 

enhanced databases built from in silico prediction tools. Recent developments in extensive suspect 76 

screening for pesticide TPs within water bodies has made it possible to identify many new focal 77 

compounds [10, 11], which underscores the value of creating improved databases for suspect 78 

screening analysis.  79 

In silico tools are defined here as commercially or freely-available software or web platforms 80 

that use sophisticated algorithms to perform predictive tasks that would be too time-consuming or 81 

even impossible for a human to perform. The practicality of such in silico tools stems from their ability 82 

to predict compound properties solely from their chemical identifiers—as with the simplified 83 

molecular-input line-entry specification; SMILES—, thus overcoming the need for analytical standards. 84 

Some in silico tools, called transformation predictors, can predict the formation of possible TPs 85 

by using the chemical identifiers of the parent compound as an input. These tools are based on various 86 

pre-established physicochemical reactions that can occur in various environmental compartments (e.g. 87 

aquatic, terrestrial or biological) via both abiotic and biotic transformation processes on scales running 88 
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from microbial up to mammalian metabolism. The appropriate transformation predictor has to be 89 

selected based on the environmental degradation processes investigated. TPs predicted by these 90 

transformation predictors carry a relatively high rate of false-positives, but some predictors can use 91 

relative reasoning to address this issue [12]. The efficiency of these tools has already been proven. For 92 

instance, Jiao et al. [13] recently detected 14 new TPs of the fungicide pyrisoxazole using literature 93 

data and one in silico tool, Envipath [14], for database construction. 94 

Another important subset of in silico tools are chromatographic RT prediction tools, which are 95 

usually based on quantitative structure–activity relationship (QSAR) models principles, extended to so-96 

called quantitative structure–retention relationship (QSRR) models. Predictions are made based on the 97 

assumption that there are relationships between the chemical structures of the compounds and their 98 

chromatographic RTs. These prediction tools are developed from predicted or experimental molecular 99 

descriptors—which are associated with experimental chromatographic RTs—of a group of compounds. 100 

This group is generally split into two: one called the “training set” that establishes the relationship 101 

between molecular descriptors and chromatographic RT, and the other called the “testing set” that is 102 

used for validation. This group can also be divided into three, with an addition to the training and 103 

testing set of a “validation set”, which deals with any overfitting produced during the QSRR 104 

construction [15]. The complexity of these QSRR models varies according to the amount and type of 105 

molecular descriptors required to build them, but also depending on the algorithms establishing the 106 

relationships, from multiple linear regression (MLR) to non-linear machine-learning (ML)-based QSRR. 107 

Taking into account the range of prediction error given by the QSRR model, the predicted 108 

chromatographic RTs can serve to eliminate outliers during suspect screening [16].  109 

Other in silico tools can be used to annotate acquired MS/MS spectra a posteriori, such as 110 

SIRIUS [17], MAGMA [18] or MetFrag [19], in order to identify compounds or at least increase their 111 

confidence in detection during suspect and non-target analysis [11, 20]. A complementary approach 112 

consists of predicting MS/MS spectra before analytical acquisition (i.e. a priori) in order to enhance the 113 

suspect compounds database. This can be done with fragmentation predictors like competitive 114 

fragmentation modeling-ID (CFM-ID) that employ neural network algorithms for a priori prediction of 115 

MS/MS spectra based solely on SMILES compounds as an input [21, 22]. This addition of predicted 116 

MS/MS spectra strengthens the identification performance and limits compound mismatches during 117 

suspect screening analysis. 118 

With that vision, a solution to better characterize water-body contamination by pesticide TPs 119 

could be to combine a selected set of these in silico tools, which are often used alone but, to our 120 

knowledge, have never been grouped into a comprehensive workflow. Here we address this gap by 121 

developing a comprehensive workflow for the creation of detailed databases for suspect screening of 122 

unknown compounds such as pesticide TPs in agricultural watersheds. Each step of this workflow 123 

allows the prediction of specific information about the TP compounds, such as their identity, 124 

chromatographic RT, and fragmentation spectra. The novelty of this approach is that it uses several in 125 

silico prediction tools based on innovative algorithms and cross-compares them together and against 126 

literature data. In addition to being easily transferable to other compounds or analytical conditions, 127 

this approach provides an enhanced ready-to-use database of a pesticide’s TPs for suspect screening 128 

analysis on environmental samples. 129 

 130 



 
 

2.  Materials and methods 131 

2.1.  Experimental 132 

2.1.1  Pesticide selection 133 

To demonstrate the potential of using a combination of in silico tools to create a suspect 134 

screening database of TPs, the triazole fungicide tebuconazole (TBZ) was used as a model compound. 135 

The main characteristics of this compound are presented in Table 1. 136 

 137 

Table 1. Main chemical identifiers and environmental behavior of tebuconazole. 138 

Structure Compound name 

 

1-(4-chlorophenyl)-4,4-dimethyl-3-(1,2,4-

triazol-1-ylmethyl)pentan-3-ol 

SMILES 

Clc1ccc(cc1)CCC(O)(C(C)(C)C)Cn2ncnc2 

InChiKey 

PXMNMQRDXWABCY-UHFFFAOYSA-N 

DT50Soil  (EFSA 2014) 19.9–91.6 days Formula C16H22ClN3O 

DT50Water – pH7 (EFSA 2014) 590 days Mass (g.mol-1) 307.8180 

 139 

TBZ was selected primarily because it is one of the best-selling fungicides in the world and it 140 

has been applied for over twenty years in Europe due to its broad-spectrum activity [23, 24]. Moreover, 141 

the formation of TBZ TPs in the soil matrix has been extensively studied, mainly through the EU-funded 142 

Love-to-Hate project between 2013 and 2016 (http://lovetohate.bio.uth.gr). Over the course of this 143 

project, a series of analytical developments were carried out in order to identify the TPs of TBZ under 144 

laboratory [25] and field [26] exposure conditions. Furthermore, recent studies have shown that TBZ 145 

is one of the most frequently detected fungicides in surface waters worldwide [27], and some of its 146 

TPs have been identified in situ [28]. 147 

 148 

2.1.2. Instrumentation 149 

The analytical conditions used to construct the chromatographic RT prediction models and 150 

acquire the compound spectra are detailed elsewhere in Bride et al. [29]. Briefly, the conditions used 151 

consists in a chromatographic separation on a LC system (ACQUITY UPLC H-Class system, Waters) with 152 

a 100 mm × 2.1 mm, 1.8-µm Acquity HSS T3 column (Waters, Milford, MA) at 30°C. The LC analyses 153 

were performed at a flowrate of 0.5 mL/min using water + 0.1% formic acid (A) and acetonitrile + 0.1% 154 

formic acid (B) as mobile phases. The gradient program consisted of an initial hold for 2 min at 2% B, 155 

followed by a linear gradient up to 99% B in 13 min, a hold for 2 min at 99% B, then a decrease from 156 
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99% to 2% B in 1 min, and a final hold for 2 min at 2% B. This separation was completed by detection 157 

with an Xevo G2-S (Waters) quadrupole time-of-flight (QToF) mass spectrometer. The QToF systems 158 

was operated in MSE data-independent acquisition (DIA) mode (i.e. all ions simultaneously 159 

fragmented) with an energy ramp of 10–45eV and a mass acquisition range of 50–1200 m/z. 160 

 161 

2.2. Database creation for pesticide transformation products 162 

The different steps of the workflow developed to create the database are detailed in this 163 

section and schematized in Figure 1. The first step in this workflow is to implement the TPs to be 164 

searched within the database. This step uses 6 in silico tools, defined as ‘transformation predictors’, in 165 

order to predict the transformation of the parent compound into its TPs. As described in Figure 1, a 166 

thorough literature review was performed to complement the TPs prediction implemented using in 167 

silico transformation predictors. This literature search was performed on January 2021, on the Web-168 

of-Science and Scopus platforms using the search terms “tebuconazole AND transformation product*” 169 

or “tebuconazole AND metabolite*”. The majority of the compounds listed by this search are from 170 

publications derived from the Love-to-Hate project [25, 26]. All the TPs resulting from this literature 171 

search were incorporated into our database under the term “in biblio” TPs in contrast to the “in silico” 172 

predicted TPs. The second step in this workflow uses five in-silico tools, defined as QSRR, to predict the 173 

chromatographic RTs of TPs. The third step in the workflow mobilizes a fragmentation predictor to 174 

predict high-resolution tandem mass spectra. 175 

 176 

Figure 1. Overview of the database creation workflow, including the numbers and names of in silico 177 

tools used for the three workflows steps. The acronyms used for the in silico tools are spelled out in 178 

section 2.2. 179 

 180 

2.2.1. Step 1: Prediction of tebuconazole transformation products using transformation 181 

predictors 182 

We used 6 transformation predictors to predict TPs of TBZ: EnviPath, in its ‘EnviPathTBZ’ and 183 

‘EnviPathPred’ versions, plus ‘Meteor’, ‘Eawag_BDD’, ‘PathPred’, and ‘Zeneth’ (Figure 1). Due to the 184 

high chemical stability of TBZ in water (Table 1), most of the transformation predictors used are based 185 

on degradation processes driven by microbial metabolism. Certain other transformation predictors are 186 

used to predict abiotic hydrolysis and reduction, such as the ‘chemical transformation simulator’ (CTS) 187 



 
 

[30]. This transformation predictors were not included in this study as they were ineffective in their 188 

prediction output, producing small numbers of irrelevant TPs. 189 

Envipath is a transformation predictor for the microbial biotransformation of compounds that 190 

proposes a “store-and-view” system of experimentally-observed biotransformation pathways [14]. In 191 

the present study, the model includes two in silico transformation predictors: i) ‘EnvipathPred’, which 192 

results from the prediction of TBZ degradation by Envipath, and ii) ‘EnvipathTBZ’, which is a 193 

prerecorded TBZ degradation pathway stored within the platform. 194 

The University of Minnesota Pathway Prediction System (UM-PPS, named ‘Eawag_BDD’ in this 195 

study), which is hosted on the Eawag website (http://eawag-bbd.ethz.ch/predict/), predicts microbial 196 

catabolic reactions using substructure searching, a rule-base, and atom-to-atom compound mapping 197 

[31]. 198 

PathPred is a transformation predictor, hosted on the GenomeNet website, that predicts 199 

plausible biodegradation pathways of compounds based on enzyme-catalyzed reactions [32].  200 

To complement these four transformation predictors that are based on microbial 201 

metabolisms, we used two other transformation predictors: Meteor Nexus [33] and Zeneth [34]. 202 

Meteor Nexus is based on mammalian biotransformation reactions, while Zeneth is based on forced 203 

degradation pathways of compounds under various abiotic conditions (temperature, aerobic or 204 

anaerobic, with or without metal presence, or exposure to light). These transformation predictors 205 

were mobilized here to provide a more holistic picture of the range of TPs that can form in the 206 

environment. These two transformation predictors are the only in silico tools used in this study that 207 

are not freely-available. 208 

The inputs needed for all these transformation predictors are the chemical identifiers of the 209 

parent compounds, such as SMILES, but the output format depends on the transformation predictor. 210 

OpenBabel (V2.4.1) was used to convert chemical identifiers (i.e. from .mol or SMILES to InChi) in order 211 

to harmonize the output and allow comparison of results between the 6 transformation predictors. 212 

The comparison between predicted TPs was done on InChiKey, a short-coded, compound-specific, one-213 

way readable chemical identifier (http://inchi.info/inchikey_overview_en.html). 214 

 215 

2.2.2. Step 2: Chromatographic retention time prediction by QSRR models 216 

For step 2 of the workflow, two types of QSRR models were used for RT prediction: a QSRR 217 

model based on multiple linear regression (MLR), and four models based on machine-learning (ML) 218 

algorithms. 219 

More information about the MLR-based QSRR model used can be found in Bride et al. [29]. 220 

Briefly, this model (named ‘EB’ here) was built from 8 molecular descriptors selected for their 221 

relevance-for-purpose in LC (MW, logD, DBE, nbO, nbC, nbH, HBdD, logSw - described in 222 

Supplementary data, Excel spreadsheet #1), using 273 experimental chromatographic retention time 223 

(ERT). The ERTs were split into a training set and a testing set at a 65:35 ratio (training set size: 204 224 

ERTs, testing set size: 69 ERTs). This EB model enables chromatographic RT prediction within a range 225 

of ± 1.96 min (at 95% confidence intervals) for a 20-minutes chromatographic run. The prediction of 226 

the molecular descriptors used by the model is not automated.  227 

The Retip package (v0.5.4.) [35] in R (v4.0.4) was used to build the ML-based QSRR models. 228 

The models created were based on the same training set as the MLR-based QSRR named ‘EB’ to 229 
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facilitate cross-comparison (experimental compounds used in training or testing are listed in 230 

Supplementary data, Excel spreadsheet #2). The molecular descriptors for each analytical standard 231 

were predicted using the RCDK (v3.5.0.) package. As their prediction is not automated and requires 232 

special external software, the descriptors used for the EB model were not included in the construction 233 

of the ML-based QSRR models. After cleaning missing values, this resulted in 146 molecular descriptors 234 

(listed in Supplementary data, Excel spreadsheet #3) used for constructing the models. Four ML 235 

algorithms were used: XGBoost (XGB, an extreme gradient boosting algorithm for trees algorithms), 236 

Light Gradient Boosting Machine (LGBM), a random forest (RF, a decision-tree algorithm), and a 237 

Bayesian regularized neural network (BRNN). Ten-fold cross-validation was employed for all models 238 

[35].  239 

The model performances for RT prediction were evaluated by a set of standard performance 240 

criteria calculations found in the literature on evaluation of QSRR models [16, 29]. Thus, the following 241 

performance criteria were calculated on the testing set: RMSE (root-mean-square error) (1), MAE 242 

(mean absolute error in minutes) (2), R² (coefficient of determination) (3), and A95% (prediction 243 

accuracy with a 95% confidence interval). For the sake of harmonization and comparison between 244 

models, A95% was recalculated for the EB model, following the calculations made by the Retip-package 245 

"get.score()". This function uses the "qnorm()" function, bundled as standard with R, in order to find 246 

the 95th percentile of a normal distribution whose mean and standard deviation correspond to the 247 

prediction errors.  248 

(1) 𝑅𝑀𝑆𝐸 =  ∑ √
(𝐸𝑥𝑝𝑅𝑇𝑖−𝑃𝑟𝑒𝑑𝑅𝑇𝑖)2

𝑛
𝑛
𝑖=1  249 

(2)  𝑀𝐴𝐸 =  ∑
|𝐸𝑥𝑝𝑅𝑇𝑖−𝑃𝑟𝑒𝑑𝑅𝑇𝑖|

𝑛
𝑛
𝑖=1  250 

(3)  𝑅2 =  1 −
∑ 𝑖(𝑃𝑟𝑒𝑑𝑅𝑇𝑖− 𝐸𝑥𝑝𝑅𝑇𝑖)²

∑ 𝑖(𝐸𝑥𝑝𝑅𝑇𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐸𝑥𝑝𝑅𝑇𝑖)²
 251 

 252 

2.2.3. Step 3: Tandem-mass spectra prediction by a fragmentation predictor 253 

A fragmentation predictor, CFM-ID (v4.0), was used to predict the MS/MS spectra of the TPs 254 

predicted in step 1. This web-based model predicts a priori tandem mass spectra resulting from an 255 

electrospray ionization high-resolution tandem mass spectrometry (ESI-MS/MS). It was built using a 256 

neural network algorithm on a panel of experimental spectra of several compounds [36]. The 257 

prediction of compound spectra is carried out for three fragmentation levels, depending on their 258 

ionization energy value: low (10eV), medium (20eV), and high (40eV) energy. The SMILES of the TBZ 259 

TPs predicted in step 1 were taken as inputs. The model output for each SMILES consists of an 260 

individual text file containing the predicted spectra for the three energy levels (10eV/20eV/40eV) 261 

associated with potential intensities. The most abundant fragment of each predicted spectra was 262 

retained, resulting in a “blended” spectrum for each SMILES computed by the model. This blended 263 

strategy was performed using an in-house R script on the text file containing the compound spectra; 264 

the most abundant fragments of each spectrum predicted for a compound were compiled in an Excel 265 

spreadsheet. The most abundant fragment at each energy level was selected considering the use of a 266 

DIA mode ramping from 10 to 45eV. The associated predicted intensities were not included in the 267 

database as they are strongly influenced by the instrumentation and analytical conditions used. 268 

In order to test the effectiveness of the fragments prediction and the proposed “blended” 269 

strategy, the predicted spectra were compared to experimental spectra for TBZ. The experimental 270 



 
 

spectra were acquired as described in section 2.1.2., resulting in the “home-ramp” spectra. Four LC-271 

ESI-QToF spectra were compiled from the MassBank database (https://massbank.eu/MassBank): three 272 

at the energy levels used by CFM-ID (10eV/20eV/40eV) and one at an “optimized” energy ramp (21.8–273 

32.6 eV). A score of mass spectra similarity between all these spectra was calculated using the 274 

OrgMassSpecR package (v0.5-3) in R (v4.0.4). In addition to this calculation, the number of common 275 

fragments between mass spectra was investigated. The tolerance used to align the m/z values of the 276 

spectral fragments was 0.001 m/z, which is consistent with the use of mass spectra from HRMS 277 

acquisition with a QToF. 278 

 279 

2.3. Statistical analysis 280 

All statistical analyses, comparisons and graphing of results were performed using R (v4.0.4) 281 

and Microsoft Excel (v16.0.4849.1000) software. The statistical relationship between sets of 282 

quantitative values was evaluated using Pearson’s correlation coefficient. Coefficients were 283 

considered significant at a p < 0.01. 284 

 285 

3.  Results and discussion 286 

3.1. Comparison of in silico and in biblio predictions for transformation products 287 

The six transformation predictors used were able to predict 215 distinct TPs for TBZ. Literature 288 

search yielded 97 TPs, predominantly from the work of Storck et al. [26], and El Azhari et al.[25] that 289 

included previous experimental studies on TBZ degradation. The full database of TBZ TPs created at 290 

this workflow step can be consulted at the following address: https://doi.org/10.57745/Y3JLTV 291 

The overlap between the in silico transformation predictors and in biblio approaches was less 292 

than 7% (20 TPs in common, Figure 2 – A). This low overlap may be explained by the number and 293 

variety of transformation predictors used. These results are consistent with previous research, as Kern 294 

et al. [37] found a similar overlap of 8.4% between in silico prediction and literature data in a study on 295 

24 pesticides using one transformation predictor, UM-PPS (named ‘Eawag_BDD’ in our study). The 296 

workflow proposed here differs from previous studies as it uses a large number of in silico prediction 297 

tools in combination. Given the range and variety of tools used, this low level of overlap is nevertheless 298 

unexpected and underscores the need for literature searches during the process of database creation 299 

for suspect screening of TPs. 300 

The overlap in predicted TPs between the different in silico transformation predictors was also 301 

investigated (Figure 2). No TPs were predicted by all in silico transformation predictors. Four of the 6 302 

transformation predictors predicted the formation of 1,2,4-triazole, considered as the terminal TP [38]. 303 

Also, four of the 6 transformation predictors predicted the formation of hydroxytebuconazole (5-(4-304 

chlorophenyl)-2,2-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-1,3-pentanediol), one of the few TBZ TPs 305 

that can be readily purchased as an analytical standard. Despite these cases, the overall picture 306 

matched to the comparison between in silico transformation predictors and in biblio search. Indeed, 307 

most of the compounds predicted in silico do not have overlapping identities across the different 308 

transformation predictors used (Figure 2), with only 8% of compounds sharing identity overlap. This 309 

low level of overlap highlights the fact that models tend to over-predicting transformation products. 310 

https://massbank.eu/MassBank
https://doi.org/10.57745/Y3JLTV


 
 

Nevertheless, this overlap should not be interpreted as a weakness of the transformation predictors 311 

used for prediction, as it can be explained by the complementary of the transformation predictors 312 

chosen for this study. As the selected transformation predictors cover a wide range of biotic processes 313 

occurring in the environment, they can predict a large number of structurally-different TPs [12, 37]. 314 

 315 

Figure 2. Results of all-in-silico prediction and in biblio search with (A) the Venn diagram representing 316 

the overlap between overall in silico prediction tools and in biblio search of TBZ TPs. (B) Number of 317 

transformation products (TPs) and tebuconazole (TBZ) from the six in silico tools (purple) and the in 318 

biblio search (cyan). (C) The barchart shows the number of intersecting and non-intersecting TBZ TPs 319 

between in silico tools and in biblio. (D) Table presenting the intersection between tools for each bar of 320 

the barchat.  321 

 322 

Qualitatively speaking, such a large number of predicted TPs (n=215) could lead to possible 323 

mismatching in identification or false-positives during subsequent suspect screening analyses of real 324 

samples. This is especially true with isomers that may be tricky to differentiate, as reported by El Azhari 325 

et al. [25]. Nonetheless, this in silico approach led to the identification of TPs that had never be 326 

searched or detected before. Moreover, the cross-comparison of the predicted TBZ TPs obtained using 327 

several in silico transformation predictors highlighted some well-known TPs, such as 1,2,4-triazole or 328 

hydroxytebuconazole. Jiao et al. [13] recently detected 14 new TPs of the fungicide pyrisoxazole using 329 

literature data and one in silico tool, Envipath [14], for database construction. All these findings 330 

demonstrate that the creation of a TPs database using in silico transformation predictors can serve as 331 

a complementary approach rather than a substitute for literature review. 332 



 
 

 333 

3.2. Chromatographic retention time prediction by QSRR models 334 

Results of the performance criteria calculations executed on the testing set (n=69, 335 

supplementary data - Excel spreadsheet #4) for the four ML-based QSRR algorithms (XGB, LightGBM, 336 

BRNN, and RF) are summarized in Table 2, along with the calculations for the MLR-based QSRR model 337 

(EB). 338 

Among the four ML models, XGB showed the best performance with the lowest RMSE, MAE, 339 

R², and A95% values for the testing set. These results are consistent with previous studies that have 340 

highlighted the good performance of gradient boosting models such as XGB among ML algorithms 341 

while emphasizing the importance of a large training set (> 100 experimental RT) for model building 342 

[39]. The prediction accuracy, A95%, computed for XGB (1.64 min for a 20-min chromatographic run or 343 

±8.2% of the total chromatographic run) is in line with a recent study by Feng et al. (2021) who built 344 

an XGB model for RT prediction of pesticides and achieved an A95% of 1.14 min for a 15-minutes 345 

chromatographic run (±7.6% of the total chromatographic run), with 321 pesticides used as training 346 

set and 77 used as testing set [40]. This level of accuracy is also consistent with previous studies using 347 

other models (such as logP-based MLR, Artificial Neural Network, and QSRR-MLR) resulting in a 348 

prediction accuracy ranging from ±9% to ±15% of the total chromatographic run [41-44]. 349 

 350 

Table 2. Performance values calculated on the testing set (n=69) for the five QSRR models tested in this 351 

study. The acronyms used for the in silico tools are spelled out in section 2.2. 352 

 Performance criteria   

Model code Algorithm RMSE MAE R² A95% 

XGB 

ML 

1.09 0.84 0.80 1.64 

LGBM 1.13 0.78 0.86 1.81 

BRNN 1.17 0.80 0.77 1.75 

RF 1.23 0.95 0.75 1.72 

EB MLR 0.95 0.74 0.84 1.56 

 353 

 354 

According to these performance results, the MLR-based QSRR (EB in Table 2) seems to be a 355 

better model than XGB. Indeed, it has the lowest RMSE and highest prediction accuracy of the five 356 

models tested, even though it was built from the least complex algorithm. This startling finding may 357 

be explained by the QSRR-based construction of the EB model, the high analytical relevance of the 358 

molecular descriptors used, and the optimization of the training and testing set used [29]. In order to 359 

compare the six models, we used the same training and testing set as described in Bride et al. [29]. 360 

These sets were optimized for the construction of a MLR-based QSRR model and may not be fit for the 361 

construction of a QSRR model based on ML algorithms. The main difference between literature and 362 

this work and lies in the ratio used for splitting the training and testing sets, which is closer to 80:20 363 

(training set:test set) in literature [35, 40] versus a 65:35 ratio used by Bride et al. [29] and here. This 364 

change in ratio is reflected by a larger training set thus theoretically more efficient ML-based QSRR 365 

models. 366 



 
 

The five QSRR models, compared on the training set of known compounds, were used to 367 

predict the RTs of the 291 TPs databased (Figure 3 and supplementary data - Excel spreadsheet #5). 368 

The predictions made by the models that performed best, i.e. XGB and EB, show an acceptable 369 

Pearson’s correlation of 0.82 (supplementary data - Table S1). A more troubling result is the large 370 

number of outliers predicted by the EB model (Figure 3), with some values exceeding the 371 

chromatographic run time (>20 minutes). This may point to limitations of the MLR-based QSRR model, 372 

which may not be suited for this set of TPs. Indeed, the predicted properties of the TPs must be outside 373 

the field of application of the MLR-based QSRR model. As the MLR model (EB) is built solely on 8 374 

molecular descriptors, its field of application is easily surpassed, which limits its potential for use in 375 

predicting RTs of unknown compounds. 376 

 377 

Figure 3. Violin plots for predicted chromatographic retention times (RT, in minutes) for the five QSSR 378 

models (XGB, LGBM, RF, BRNN, and EB) applied to the database of the 291 tebuconazole 379 

transformation products. Tools are classified according to model type (machine learning: ML; 380 

multilinear regression: MLR). 381 

 382 

Based on the results of the present study, we suggest preferentially using the XGB model 383 

among the ML and MLR-based QSRR models for predicting chromatographic RTs. This is mainly 384 

because the XGB model had the best overall performances on the testing set, with the lowest RMSE, 385 

the highest A95%, and the fewest outliers in its prediction for this set of TPs. Moreover, like the other 386 

ML-based QSRR models tested here, the XGB model can be easily constructed from data obtained 387 

using different LC methods [35] and it can be automated for the molecular descriptors search using 388 

the RCDK package. All these factors make the XGB model easily transposable and less time-consuming 389 

for RT predictions than the MLR-based QSRR models like EB. 390 

 391 

3.3. Tandem-mass spectra prediction by the fragmentation predictor  392 

In order to test the effectiveness of the fragments prediction and the proposed “blended” 393 

strategy, we compared the predicted and experimental spectra of TBZ. The similarity scores calculated 394 

to evaluate the similarity of the spectra, as well as the number of common fragments between all the 395 

spectra discussed here, are presented in Table 3 (all values are compiled in a larger comparison matrix 396 

in Table S3). For visual observation of compared mass spectra, their head-to-tail plots are given in 397 



 
 

supplementary data - figures S2 and S3. The comparison of predicted vs experimental TBZ spectra 398 

revealed poor similarity scores at the corresponding fixed ionization energies (10, 20, 40 eV). This is 399 

connected to the small number of common fragments between the predicted and experimental 400 

spectra. In contrast, the comparison of ‘blended’ predicted spectra vs experimental energy-ramped 401 

spectra shows good similarity scores (0.84) as well as two common fragments. A low similarity score 402 

between the “Home-ramp” spectra and “MassBank-ramp” spectra (0.14), for the same number of 403 

common fragments, is explained by the way the score itself is calculated. Indeed, the calculation takes 404 

into account the intensity of the fragment, which biases this comparison, given the different ionization 405 

energy values of the ramps applied (“Home-ramp”: 10–45 eV, “MassBank-ramp”: 21.8–32.6 eV). 406 

Nevertheless, these calculated scores are important for theoretical comparison, and what matters 407 

most for suspect screening analysis in practice is the fragments found in samples corresponding to 408 

screened compounds. The highest number of common fragments was found between the 409 

experimental and “blended” predicted mass spectra, highlighting its effectiveness.  Based on these 410 

comparison results for tebuconazole, we suggest the use of a fragmentation with an energy ramp, 411 

which revealed more predicted fragments than a fragmentation at fixed energies. To corroborate 412 

these findings, this spectra similarity comparison should be performed for a TBZ TP, such as the 413 

hydroxytebuconazole or 1,2,4-triazole. However, the MassBank database does not have QToF-414 

acquired spectra of these very specific TPs. 415 

 416 

Table 3. Comparison of experimental and predicted mass spectra for tebuconazole. For each set of 417 

mass spectra compared, the score obtained by the “SpectrumSimilarity()” function is given along with 418 

the number of fragments in common (in brackets). This table is an excerpt from the full comparison 419 

matrix detailed in Supporting Information (Table S3). 420 

 Experimental 

 Home-ramp 
MassBank-

ramp 
MassBank- 

10 eV 
MassBank- 

20 eV 
MassBank- 

40 eV 

Experimental: 

MassBank-ramp 
0.14 (3)     

      

Predicted: Blended 0.10 (2) 0.84 (2)    

Predicted: 10 eV   0.91 (1) 0.93 (1) 0.00 (0) 

Predicted: 20 eV   0.00 (0) 0.00 (0) 0.00 (0) 

Predicted: 40 eV   0.00 (0) 0.00 (0) 0.00 (0) 

 421 

 422 

The MS/MS spectra of the 291 TPs of TBZ incremented in the database developed here were 423 

predicted with CFM-ID (v4.0) at three ionization energy levels, which resulted in 873 spectra contained 424 

within 291 distinct text files. Applying the blended strategy on the spectra (Figure 4, supplementary 425 

data - figure S1) led to a set of 634 fragments compiled in the database. These fragments are often 426 

shared by multiple TPs; among these 634 predicted fragments, only 179 (around 30%) were unique. 427 

Indeed, the 291 TPs were predicted from a single compound, TBZ, and so most of them logically share 428 

similar parts of molecular structures (database available at the following address: 429 

https://doi.org/10.57745/Y3JLTV), resulting in similar fragmentation patterns. Furthermore, a single 430 

TP may share the same most abundant fragment at two different energy levels, which limits the 431 

number of different fragments per compound. As a result, one to three predicted fragments per 432 

https://doi.org/10.57745/Y3JLTV


 
 

compound were incorporated in the database. Nevertheless, incrementing the associated fragments 433 

of TBZ TPs enhanced the database and is expected to limit mismatches during subsequent suspect 434 

screening analysis. For example, TP_096 and TP_220 share the same chemical formula and are 435 

predicted to elute at similar RTs (7.61 and 7.34 minutes, respectively), but they disassemble into 436 

different fragments according to fragmentation model used (supplementary data – table S2). If this 437 

predicted difference in fragmentation pattern is verified during the analysis, it will allow discrimination 438 

of the two TPs.  439 

 440 

Figure 4. Head-to-tail plot of different mass spectra of the tebuconazole transformation product 441 

TP_095 from the database. (A) Predicted isotope pattern with no ionization energy applied. (B) 442 

‘Blended’ spectra, emerging from the predicted spectrum of different energy levels used in the 443 

fragmentation prediction. (C) Predicted spectra on energy = 10eV. (D) Predicted spectra on energy = 444 

20eV. (E) Predicted spectra on energy = 40eV. 445 

 446 

The main limitation of the use of predicted fragments in this study is the sensitivity of the 447 

instrument used here. Indeed, no precursor ions were isolated with the DIA mode used, which leads 448 

to exhaustive fragmentation spectra that are not specific to a compound but specific to the scan 449 

previously acquired. In addition, TPs are often present at trace amounts in environmental samples, 450 

which could result in fragments of TPs close to or below the analytical background noise, thus negating 451 

their identification during suspect screening. 452 



 
 

With these points in mind, using CFM-ID predictions and incorporating predicted fragments 453 

into the database still increases the elucidation power of the database. Indeed, it provides an 454 

additional a priori filter on the fragmentation pattern during suspect analysis and thus enables some 455 

outliers to be ruled out. This a-priori filter, obtained by prediction by CFM-ID, can be strengthened by 456 

a comparison with an a posteriori prediction based on experimentally-acquired spectra, using tools 457 

such as MetFrag. In a complementary way, a common fragmentation pathway approach as applied by 458 

Ibáñez and al. (2017)[45] as well as Wielens Becker and al. (2020)[46] could be considered, given the 459 

large number of common fragments shared between the tebuconazole TPs, as predicted by CFM-ID. 460 

Applying this complementary approach could reveal TPs missed during the prediction step or confirm 461 

those already identified. 462 

 463 

3.4. Application of the workflow to environmental samples 464 

To illustrate the efficiency of the database created here, we ran retrospective suspect 465 

screening for TBZ TPs on environmental samples. The selected samples used here were collected 466 

within the framework of the French prospective surveillance network [47] (supplementary data – 467 

figure S4). Surface waters collected from 20 sites in France were filtered, in order to analyze the 468 

dissolved fraction, extracted, and then analyzed by LC-HRMS in our laboratory in 2018. The data were 469 

collected using the same acquisition method as described in the instrumentation section (2.1.2.), and 470 

the resulting information was purpose-stored to allow retrospective screening. 471 

The whole suspect screening workflow was applied to the water samples using Waters’ UNIFI 472 

software and the created database containing information on TBZ and 291 of its TPs. Identification of 473 

TBZ and its TPs was performed with the following threshold criteria: (1) mass accuracy: ≤ 10 ppm; (2) 474 

chromatographic RT: ≤ 2 minutes; (3) isotopic pattern match m/z RMS ≤ 10 ppm, isotopic pattern 475 

match intensity RMS ≤ 20%; (4) uniqueness; no detection in the analytical or field blanks. TBZ was 476 

detected at 8 of the 20 sites and its TPs were detected at 5 sites (information about the detected 477 

compounds and detailed detection results and can be found in supplementary data, Excel spreadsheet 478 

#6 and Excel spreadsheet #7). The TBZ TPs were only detected in samples from agricultural catchments 479 

where TBZ was also quantified. To the best of our knowledge, six of seven TPs suspected in the present 480 

study were detected for the first time in surface waters samples. 481 

Among the 7 different TPs found, 6 come from in silico prediction (Figure S5), 4 of which 482 

originate from the ‘EnviPath’ predictor [14]. These results demonstrate the ability of ‘EnviPath’ to 483 

generate accurate TPs for river waters, and justify its exclusive use in recent works [13, 40, 48]. 484 

Nevertheless, the application of several other in silico transformation predictors, as in the workflow 485 

proposed here, led to a more exhaustive detection of TPs. The two remaining TPs from in silico 486 

predictions were predicted by the transformation predictors ‘PathPred’ [32] and ‘Zeneth’ [34]. The 487 

whole identification process was enhanced by the use of predicted chromatographic RTs, with the 488 

accuracy of the XGB prediction used as a threshold. Using this threshold over the 24 hits among the 489 

injections, 16 outliers candidates were eliminated for 7 retained TPs. CFM-ID failed to predict enough 490 

fragments of the detected TPs to make it useful in the discrimination of compounds in our suspect 491 

screening strategy. This is probably due to the very low concentrations of TPs in these water samples, 492 

which resulted in fragment intensities that were below the analytical background. These suspected 493 

transformation products could be qualified with a certitude at level 4 (“tentative candidates”) to 3 494 

(“unequivocal molecular formula”) [9], as for some of them, no fragmentation pattern was detected. 495 

In order to reach the level 2B (“diagnostic probable structure”), further search of specific fragments 496 



 
 

need to be performed. This could be done manually, or with a posteriori tool such as MetFrag [19] 497 

which make predictions on acquired fragmentation spectra. It is important to note that these detection 498 

results have relatively large mass error values for a HRMS instrument, with a mean of 5.7 Da 499 

(Supplementary data, Excel spreadsheet #5). This lack of accuracy can cause identification problems, 500 

as illustrated for the TP_052 on figure 5. No fragmentation pattern was confirmed for this compound 501 

mainly due to mass error value higher than 10 ppm on the predicted fragments. This large mass error 502 

values are potentially due to a strong matrix effect in the surface water samples. Nonetheless, targeted 503 

analysis operated on a liquid chromatography – tandem mass spectrometry (UHPLC TQ-XS, Waters) 504 

confirmed the presence of tebuconazole in the same samples. These results highlight the effectiveness 505 

of the proposed workflow in the search for unknown TPs in environmental matrices. Applied on TBZ, 506 

the created database of TPs was used on a set of previously analyzed surface water samples, and led 507 

to the detection of 6 previously-unseen TPs for this matrix. 508 

Figure 5. Tentative Identification of TP_052. (A) Extracted ion chromatogram (EIC) of protonated 509 

TP_052 at Low Energy (LE) with a 33 ppm mass error window (resulting from the UNIFI treatment), and 510 

at a 0.02 Da mass error window (from a manual extraction). EIC of predicted fragments of TP_052 at 511 

High Energy (HE) with a 0.02 Da mass error window. (B) Mass and detected isotopic pattern of TP_052, 512 

on LE and HE mass spectra generated by UNIFI. Blue symbols on HE spectra show which fragment is 513 

taken in account in fragmentation prediction that UNIFI operates. 514 

 515 

4.  Conclusions 516 

This study proposed a comprehensive workflow for the implementation of detailed and ready-517 

to-use databases to support suspect screening analyses of unknown compounds in agricultural 518 

watersheds. This novel workflow, combining several in silico tools, was applied on tebuconazole. It 519 



 
 

allowed the creation of a database of 291 tebuconazole transformation products, incremented with 520 

their predicted chromatographic retention times and fragment patterns. 521 

The six transformation predictors allowed to predict a large number of TPs (215), including 522 

several TPs that have never been searched before. This large number of predicted compounds 523 

highlights the over-prediction that models may perform. We demonstrated that in silico prediction is 524 

a complementary approach to literature review. The low overlap between the prediction process and 525 

literature data (7%) and between the various transformation predictors (8%) should be considered as 526 

an opportunity to extend the range of transformation products investigated. Moreover, the cross-527 

comparison of the transformation predictors may be useful in order to single out well known TPs. Given 528 

the chemical properties of TBZ, we only used one in silico transformation predictor for abiotic 529 

degradation (‘Zeneth’). Depending on the compounds studied, the workflow described here may need 530 

to be complemented by other suitably appropriate prediction tools. However, abiotic degradation is 531 

often considered difficult to predict and suffers from a lack of a freely-available transformation 532 

predictor. 533 

Concerning the prediction of chromatographic retention times, XGB, a machine learning-based 534 

QSRR, was the model that performed the best, with the lowest of RMSE values and highest prediction 535 

accuracy. We therefore advocate preferentially using XGB to predict the retention times of further 536 

unknown compounds. 537 

Regarding fragments prediction, CFM-ID was used to predict a priori the MS/MS spectra of 538 

tebuconazole transformation products. This approach mobilizing a priori in silico fragmentation 539 

prediction together with a blended strategy on predicted spectra limited compound mismatching and 540 

thus enhanced the database created. This a priori approach could be further strengthened by a 541 

posteriori prediction of fragments on LC-HRMS spectra acquired from environmental samples.  542 

The strength of the complete workflow presented here lies in the hyphenated use of several 543 

cutting-edge in silico tools—most of which are freely available—transposable to different LC-MS 544 

methods and to various organic contaminants, whether they already known or still unknown. Used on 545 

tebuconazole, this workflow resulted in a database of 291 transformation products which was then 546 

applied on a set of 20 real-world surface-water samples acquired in 2018. This retrospective suspect 547 

screening analysis led to the detection of 6 transformation products that had never been detected 548 

before. We anticipate this novel workflow approach as a starting point for studies on other pesticides 549 

in different environmental samples such as surface waters or groundwaters and sediments or soils, in 550 

order to further demonstrate its effectiveness for in situ suspect screening of a wide range of pesticides 551 

transformation products. 552 

  553 

Acknowledgments 554 

This work was performed as part of the “TAPIOCA” project funded by the French National 555 

Office for Biodiversity (OFB) and the Ecophyto II program. The authors thank the OFB’s Réseau de 556 

surveillance prospective’ and Céline Guillemain for the acquisition of UHPLC-HRMS data on surface 557 

water samples. We thank Sylvain Merel for providing access to the predictions done using Meteor 558 

Nexus and Zeneth software packages. We also thank MetaForm Langues for English editing. We are 559 

grateful to reviewers and editor for their helpful comments.  560 



 
 

References 561 

 562 
[1] K. Fenner, S. Canonica, L.P. Wackett, M. Elsner, Evaluating Pesticide Degradation in the 563 
Environment: Blind Spots and Emerging Opportunities, Science, 341 (2013) 752-758. 564 

[2] B.I. Escher, K. Fenner, Recent Advances in Environmental Risk Assessment of Transformation 565 
Products, Environmental Science & Technology, 45 (2011) 3835-3847. 566 

[3] A.B.A. Boxall, C.J. Sinclair, K. Fenner, D. Kolpin, S.J. Maund, Peer Reviewed: When Synthetic 567 
Chemicals Degrade in the Environment, Environmental Science & Technology, 38 (2004) 368A-375A. 568 

[4] C. Postigo, D. Barceló, Synthetic organic compounds and their transformation products in 569 
groundwater: Occurrence, fate and mitigation, Science of The Total Environment, 503-504 (2015) 32-570 
47. 571 

[5] B.J. Mahler, L.H. Nowell, M.W. Sandstrom, P.M. Bradley, K.M. Romanok, C.P. Konrad, P.C. Van 572 
Metre, Inclusion of Pesticide Transformation Products Is Key to Estimating Pesticide Exposures and 573 
Effects in Small U.S. Streams, Environmental Science & Technology, 55 (2021) 4740-4752. 574 

[6] C. Moschet, I. Wittmer, J. Simovic, M. Junghans, A. Piazzoli, H. Singer, C. Stamm, C. Leu, J. Hollender, 575 
How a Complete Pesticide Screening Changes the Assessment of Surface Water Quality, Environmental 576 
Science & Technology, 48 (2014) 5423-5432. 577 

[7] F. Le Cor, S. Slaby, V. Dufour, A. Iuretig, C. Feidt, X. Dauchy, D. Banas, Occurrence of pesticides and 578 
their transformation products in headwater streams: Contamination status and effect of ponds on 579 
contaminant concentrations, Science of The Total Environment, 788 (2021) 147715. 580 

[8] B.I. Escher, H.M. Stapleton, E.L. Schymanski, Tracking complex mixtures of chemicals in our 581 
changing environment, Science, 367 (2020) 388. 582 

[9] E.L. Schymanski, J. Jeon, R. Gulde, K. Fenner, M. Ruff, H.P. Singer, J. Hollender, Identifying Small 583 
Molecules via High Resolution Mass Spectrometry: Communicating Confidence, Environmental 584 
Science & Technology, 48 (2014) 2097-2098. 585 

[10] E. Fonseca, A. Renau-Pruñonosa, M. Ibáñez, E. Gracia-Lor, T. Estrela, S. Jiménez, M.Á. Pérez-586 
Martín, F. González, F. Hernández, I. Morell, Investigation of pesticides and their transformation 587 
products in the Júcar River Hydrographical Basin (Spain) by wide-scope high-resolution mass 588 
spectrometry screening, Environmental Research, 177 (2019) 108570. 589 

[11] K. Kiefer, A. Müller, H. Singer, J. Hollender, New relevant pesticide transformation products in 590 
groundwater detected using target and suspect screening for agricultural and urban micropollutants 591 
with LC-HRMS, Water Research, 165 (2019) 114972. 592 

[12] A.A. Bletsou, J. Jeon, J. Hollender, E. Archontaki, N.S. Thomaidis, Targeted and non-targeted liquid 593 
chromatography-mass spectrometric workflows for identification of transformation products of 594 
emerging pollutants in the aquatic environment, TrAC Trends in Analytical Chemistry, 66 (2015) 32-44. 595 

[13] B. Jiao, Y. Zhu, J. Xu, F. Dong, X. Wu, X. Liu, Y. Zheng, Identification and ecotoxicity prediction of 596 
pyrisoxazole transformation products formed in soil and water using an effective HRMS workflow, 597 
Journal of Hazardous Materials, 424 (2022) 127223. 598 

[14] J. Wicker, T. Lorsbach, M. Gütlein, E. Schmid, D. Latino, S. Kramer, K. Fenner, enviPath – The 599 
environmental contaminant biotransformation pathway resource, Nucleic Acids Research, 44 (2016) 600 
D502-D508. 601 



 
 

[15] R.I.J. Amos, P.R. Haddad, R. Szucs, J.W. Dolan, C.A. Pohl, Molecular modeling and prediction 602 
accuracy in Quantitative Structure-Retention Relationship calculations for chromatography, TrAC 603 
Trends in Analytical Chemistry, 105 (2018) 352-359. 604 

[16] R. Aalizadeh, M.-C. Nika, N.S. Thomaidis, Development and application of retention time 605 
prediction models in the suspect and non-target screening of emerging contaminants, Journal of 606 
Hazardous Materials, 363 (2019) 277-285. 607 

[17] K. Dührkop, M. Fleischauer, M. Ludwig, A.A. Aksenov, A.V. Melnik, M. Meusel, P.C. Dorrestein, J. 608 
Rousu, S. Böcker, SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure 609 
information, Nature Methods, 16 (2019) 299-302. 610 

[18] L. Ridder, J.J.J. van der Hooft, S. Verhoeven, R.C.H. de Vos, R. van Schaik, J. Vervoort, Substructure-611 
based annotation of high-resolution multistage MSn spectral trees, Rapid Communications in Mass 612 
Spectrometry, 26 (2012) 2461-2471. 613 

[19] C. Ruttkies, E.L. Schymanski, S. Wolf, J. Hollender, S. Neumann, MetFrag relaunched: incorporating 614 
strategies beyond in silico fragmentation, Journal of Cheminformatics, 8 (2016) 3. 615 

[20] E. Eysseric, F. Beaudry, C. Gagnon, P.A. Segura, Non-targeted screening of trace organic 616 
contaminants in surface waters by a multi-tool approach based on combinatorial analysis of tandem 617 
mass spectra and open access databases, Talanta, 230 (2021) 122293. 618 

[21] Y. Djoumbou-Feunang, A. Pon, N. Karu, J. Zheng, C. Li, D. Arndt, M. Gautam, F. Allen, D.S. Wishart, 619 
CFM-ID 3.0: Significantly Improved ESI-MS/MS Prediction and Compound Identification, Metabolites, 620 
9 (2019) 72. 621 

[22] A. Chao, H. Al-Ghoul, A.D. McEachran, I. Balabin, T. Transue, T. Cathey, J.N. Grossman, R.R. Singh, 622 
E.M. Ulrich, A.J. Williams, J.R. Sobus, In silico MS/MS spectra for identifying unknowns: a critical 623 
examination using CFM-ID algorithms and ENTACT mixture samples, Analytical and Bioanalytical 624 
Chemistry, 412 (2020) 1303-1315. 625 

[23] P. Cabras, A. Angioni, V.L. Garau, M. Melis, F.M. Pirisi, E.V. Minelli, F. Cabitza, M. Cubeddu, Fate of 626 
Some New Fungicides (Cyprodinil, Fludioxonil, Pyrimethanil, and Tebuconazole) from Vine to Wine, 627 
Journal of Agricultural and Food Chemistry, 45 (1997) 2708-2710. 628 

[24] S. Li, Q. Sun, Q. Wu, W. Gui, G. Zhu, D. Schlenk, Endocrine disrupting effects of tebuconazole on 629 
different life stages of zebrafish (Danio rerio), Environmental Pollution, 249 (2019) 1049-1059. 630 

[25] N. El Azhari, E. Dermou, R.L. Barnard, V. Storck, M. Tourna, J. Beguet, P.A. Karas, L. Lucini, N. 631 
Rouard, L. Botteri, F. Ferrari, M. Trevisan, D.G. Karpouzas, F. Martin-Laurent, The dissipation and 632 
microbial ecotoxicity of tebuconazole and its transformation products in soil under standard laboratory 633 
and simulated winter conditions, Science of The Total Environment, 637-638 (2018) 892-906. 634 

[26] V. Storck, L. Lucini, L. Mamy, F. Ferrari, E.S. Papadopoulou, S. Nikolaki, P.A. Karas, R. Servien, D.G. 635 
Karpouzas, M. Trevisan, P. Benoit, F. Martin-Laurent, Identification and characterization of 636 
tebuconazole transformation products in soil by combining suspect screening and molecular typology, 637 
Environmental Pollution, 208 (2016) 537-545. 638 

[27] R.M. de Souza, D. Seibert, H.B. Quesada, F. de Jesus Bassetti, M.R. Fagundes-Klen, R. Bergamasco, 639 
Occurrence, impacts and general aspects of pesticides in surface water: A review, Process Safety and 640 
Environmental Protection, 135 (2020) 22-37. 641 

[28] D. Kang, K. Doudrick, N. Park, Y. Choi, K. Kim, J. Jeon, Identification of transformation products to 642 
characterize the ability of a natural wetland to degrade synthetic organic pollutants, Water Research, 643 
187 (2020) 116425. 644 



 
 

[29] E. Bride, S. Heinisch, B. Bonnefille, C. Guillemain, C. Margoum, Suspect screening of environmental 645 
contaminants by UHPLC-HRMS and transposable Quantitative Structure-Retention Relationship 646 
modelling, Journal of Hazardous Materials, 409 (2021) 124652. 647 

[30] C. Tebes-Stevens, J.M. Patel, W.J. Jones, E.J. Weber, Prediction of Hydrolysis Products of Organic 648 
Chemicals under Environmental pH Conditions, Environmental Science & Technology, 51 (2017) 5008-649 
5016. 650 

[31] J. Gao, L.B.M. Ellis, L.P. Wackett, The University of Minnesota Pathway Prediction System: multi-651 
level prediction and visualization, Nucleic Acids Research, 39 (2011) W406-W411. 652 

[32] Y. Moriya, D. Shigemizu, M. Hattori, T. Tokimatsu, M. Kotera, S. Goto, M. Kanehisa, PathPred: an 653 
enzyme-catalyzed metabolic pathway prediction server, Nucleic Acids Research, 38 (2010) W138-654 
W143. 655 

[33] C.A. Marchant, K.A. Briggs, A. Long, In Silico Tools for Sharing Data and Knowledge on Toxicity and 656 
Metabolism: Derek for Windows, Meteor, and Vitic, Toxicology Mechanisms and Methods, 18 (2008) 657 
177-187. 658 

[34] A.D.C. Parenty, W.G. Button, M.A. Ott, An Expert System To Predict the Forced Degradation of 659 
Organic Molecules, Molecular Pharmaceutics, 10 (2013) 2962-2974. 660 

[35] P. Bonini, T. Kind, H. Tsugawa, D.K. Barupal, O. Fiehn, Retip: Retention Time Prediction for 661 
Compound Annotation in Untargeted Metabolomics, Analytical Chemistry, 92 (2020) 7515-7522. 662 

[36] F. Wang, J. Liigand, S. Tian, D. Arndt, R. Greiner, D.S. Wishart, CFM-ID 4.0: More Accurate ESI-663 
MS/MS Spectral Prediction and Compound Identification, Analytical Chemistry, 93 (2021) 11692-664 
11700. 665 

[37] S. Kern, K. Fenner, H.P. Singer, R.P. Schwarzenbach, J. Hollender, Identification of Transformation 666 
Products of Organic Contaminants in Natural Waters by Computer-Aided Prediction and High-667 
Resolution Mass Spectrometry, Environmental Science & Technology, 43 (2009) 7039-7046. 668 

[38] EFSA, Conclusion on the peer review of the pesticide risk assessment of the active substance 669 
tebuconazole, EFSA Journal, 12 (2014) 3485. 670 

[39] R. Bouwmeester, L. Martens, S. Degroeve, Comprehensive and Empirical Evaluation of Machine 671 
Learning Algorithms for Small Molecule LC Retention Time Prediction, Analytical Chemistry, 91 (2019) 672 
3694-3703. 673 

[40] C. Feng, Q. Xu, X. Qiu, Y.e. Jin, J. Ji, Y. Lin, S. Le, J. She, D. Lu, G. Wang, Evaluation and application 674 
of machine learning-based retention time prediction for suspect screening of pesticides and pesticide 675 
transformation products in LC-HRMS, Chemosphere, 271 (2021) 129447. 676 

[41] R. Bade, L. Bijlsma, T.H. Miller, L.P. Barron, J.V. Sancho, F. Hernández, Suspect screening of large 677 
numbers of emerging contaminants in environmental waters using artificial neural networks for 678 
chromatographic retention time prediction and high resolution mass spectrometry data analysis, 679 
Science of The Total Environment, 538 (2015) 934-941. 680 

[42] R. Bade, L. Bijlsma, J.V. Sancho, F. Hernández, Critical evaluation of a simple retention time 681 
predictor based on LogKow as a complementary tool in the identification of emerging contaminants in 682 
water, Talanta, 139 (2015) 143-149. 683 

[43] M.-C. Nika, A.A. Bletsou, E. Koumaki, C. Noutsopoulos, D. Mamais, A.S. Stasinakis, N.S. Thomaidis, 684 
Chlorination of benzothiazoles and benzotriazoles and transformation products identification by LC-685 
HR-MS/MS, Journal of Hazardous Materials, 323 (2017) 400-413. 686 



 
 

[44] A.D. McEachran, K. Mansouri, S.R. Newton, B.E.J. Beverly, J.R. Sobus, A.J. Williams, A comparison 687 
of three liquid chromatography (LC) retention time prediction models, Talanta, 182 (2018) 371-379. 688 

[45] M. Ibáñez, V. Borova, C. Boix, R. Aalizadeh, R. Bade, N.S. Thomaidis, F. Hernández, UHPLC-QTOF 689 
MS screening of pharmaceuticals and their metabolites in treated wastewater samples from Athens, 690 
Journal of Hazardous Materials, 323 (2017) 26-35. 691 

[46] R.W. Becker, D.S. Araújo, C. Sirtori, N.P. Toyama, D.A. Tavares, G.A. Cordeiro, S.F. Benassi, A.C. 692 
Gossen, B. do Amaral, Pesticides in surface water from Brazil and Paraguay cross-border region: 693 
Screening using LC-QTOF MS and correlation with land use and occupation through multivariate 694 
analysis, Microchemical Journal, 168 (2021) 106502. 695 

[47] B. Mathon, A. Dabrin, I. Allan, S. Lardy-Fontan, A. Togola, J.-P. Ghestem, C. Tixier, J.-L. Gonzalez, 696 
M. Ferreol, L. Dherret, A. Yari, L. Richard, A. Moreira, M. Eon, B. Delest, E. Noel-Chery, M. El Mossaoui, 697 
E. Alasonati, P.-F. Staub, N. Mazzella, C. Miège, Surveillance prospective – évaluation de la pertinence 698 
des échantillonneurs intégratifs passifs (EIP) pour la surveillance réglementaire des milieux aquatiques, 699 
Rapport AQUAREF 2020, (2020) 172. 700 

[48] J. Zhou, D. Wang, F. Ju, W. Hu, J. Liang, Y. Bai, H. Liu, J. Qu, Profiling microbial removal of 701 
micropollutants in sand filters: Biotransformation pathways and associated bacteria, Journal of 702 
Hazardous Materials, 423 (2022) 127167. 703 


	1.  Introduction
	2.  Materials and methods
	2.1.  Experimental
	2.1.1  Pesticide selection
	2.1.2. Instrumentation
	2.2. Database creation for pesticide transformation products
	2.2.1. Step 1: Prediction of tebuconazole transformation products using transformation predictors
	2.2.2. Step 2: Chromatographic retention time prediction by QSRR models
	2.2.3. Step 3: Tandem-mass spectra prediction by a fragmentation predictor
	2.3. Statistical analysis
	3.  Results and discussion
	3.1. Comparison of in silico and in biblio predictions for transformation products
	3.2. Chromatographic retention time prediction by QSRR models
	3.3. Tandem-mass spectra prediction by the fragmentation predictor
	3.4. Application of the workflow to environmental samples
	4.  Conclusions
	Acknowledgments
	References

