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II. BIOAUTOMATICS AND BIOINFORMATICS 
 

CONTRIBUTION OF MODELING FOR A BETTER UNDERSTANDING 
 OF MICROBIAL ECOSYSTEMS 

Jérôme Harmand 
Abstract. This paper aims at presenting how a number of recent modeling approaches can be used for better 
understanding microbial ecosystems dynamics. In first part, an important question – the ability of certain ecosystems to 
exhibit overyielding – is investigated using a model-based approach. It is shown that classical competition theory 
cannot explain such phenomenon, thus invalidating a large class of classical mass-balance-based models, Rapaport et al. 
(2019). In second part, we show how new combinatorial approaches can be used to find the best combination of species 
of a functional ecosystem with limited complexity. More precisely classification approaches inspired from the work by 
Jaillard et al. (2018) are used and illustrated with simulations. Their robustness with respect to a number of 
experimental parameters (investigated in simulation) is studied. For ecosystems with higher richness, we show how 
another probabilistic approach proposed by Jaillard et al. (2014) may be useful. 
Keywords: Modeling, microbial ecosystems, microbial interactions, mathematical ecology, diversity, community 
assemblage.

1. INTRODUCTION 

The capacity of certain ecosystems to exhibit 
better performances than when the species which are 
assembled are cultivated alone is called overyielding. 
Such a phenomenon – very interesting from an applied 
viewpoint - has been studied for a long time in plant 
ecology, cf. for instance Tilman et al. (2006) or Schmid 
et al. (2008). Because they can be easily manipulated, 
microbial ecosystems are now more and more used for 
studying ecological-related questions, Jessup et al. 
(2004). In addition to being easier to manage than 
macro-systems, microbial ecosystems have a practical 
interest, in particular since bioreactors with natural 
ecosystems are widely used in industry. It has been 
shown that we observe such phenomenon with the 
anaerobic digestion. In systems fed with complex 
substrates, complementary and interaction effects are 
usually invoked to explain overyielding, cf. Hamelin 
and Milferstedt, 2015. This paper aims at illustrating 
how the use of mathematical modelling may help to 
investigate important questions for the optimization of 
biological processes such as the transgressive 
overyielding. More specifically, we consider batch 
experiments with inocula containing 1 to N species of a 
regional pool of species each of them being in 
competition for a limiting substrate. First, we recall 
that without mortality terms, the best biogas 
productivity is obtained with the reactor that has 
been inoculated only with the “best” species (there is 
no possibility of overyielding). Second, if other 
processus [here mortality, but another may be used 
cf. Rapaport et al. (2019) or Harmand et al. (2019)] 
are added it is established that overyielding is 
possible. We establish conditions under which 

biodiversity promotes performance overyielding. It is 
important to notice that these results are not 
dependent on the growth rate functions used. 

2. BIODIVERSITY: AN ENGINE FOR 
OVERYIELDING 

A key question in microbial ecology is to 
establish whether the performance of a process is 
dependent on the inoculum used during start-up or 
not (Forster-Carneiro et al., 2008). In particular, if it 
is assumed that we can build the inoculum from a 
combination of species assembled from a regional 
pool, the question we address is to study the 
performance of the associated process with respect 
to the biomass activity (for instance wrt the 
production of biogas in anaerobic systems: it is the 
performance index that will be considered latter in 
the document), Jaillard et al. (2014). 

Transgressive overyielding refers here to the 
following property. Consider two different species A 
and B (here a “species”) is characterized by its 
kinetics parameters, its consumption yield (mass of 
substrate consumed by mass of biomass produced) 
and its conversion yield in biogas (volumetric mass 
of biogas by mass of biomass produced). Assume we 
proceed to three batch experiments. The first two 
refer to batch experiments in which the inoculum 
consists only of A or B with concentrations X(0)=X0 
and S(0)=S0 in both experiments (where X and S are 
the biomass and the substrate concentrations). The 
third experiment consists in mixing both species (it 
is supposed here that there is as much A as B at the 
origin, that is X(0)/2 for each). Let QtA(T), QtB(T) 
and QtAB(T) be the total volume of biogas produced 
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at instant T in each experiment, T being supposed to 
be large enough such that S(T) is negligible with 
respect to S0 in all experiments. Experimental results 
are illustrated in Fig. 1. 

Excluding the cases where the performance of 
the mixture AB would be lower than the lowest 
performance obtained with the single specie A, three 
cases of interest here may arise: either none 
overyielding is observed (i.e. case #1 which the 
produced gas is denoted by QtAB(T)1, the 
performance of AB equals the mean performance 
of A and B alone), or an overyielding is 
observed. In this last case, the overyielding may 
be transgressive (case #3 where the performance of 
AB, denoted as QtAB(T)3, is better than the best 
performance observed for single species) or not (case 
#2 where the performance QtAB(T)2 is better than the 
expected mean value of A and B but is not better than 
the best single batch).  

 
Fig. 1. Performances of pure and mixed cultures of 

microorganisms in batch experiments. 

In the next section, we investigate, via 
modelling, the links between biodiversity and 
overyielding in batch bioreactors. We shall 
mainly focus on transgressive overyielding even 
though we shall not always precise the adjective 
“transgressive”. 

3. PROCESS MODELING 
The most common model used in biotechnology 

to describe the competition of n species for a single 
limiting substrate in written as: 

 

 

(1) 

where Xi and S stand for biomasses and substrate 
concentrations, respectively, Yi is the biomass yield, 
and µi is the specific growth rate of the ith biomass. 

The output gas flow rate is supposed to be a 
linear function of the biomass activity and can thus 
be written as: 

 

 

(2) 

Does this model exhibit overyielding ? Equation 
(1) allows us to establish the following invariant: 

 

 

(3) 

If it is further assumed that T is large enough 
such that S(T) can be neglected with respect to S(0) 
(from now, we will refer to this hypothesis as H1) 
then one has: 

 

 
(4) 

Posing: 
 

 
(5) 

 one has: 
 

 
(6) 

Using these notations, one can rewrite the 
biogas production as: 

 

 

(7) 

Under H1, one can then establish that: 

 
or 

 
where i* is such that . 



Ecological Engineering and Environment Protection, No 2, 2019, 14 -22 

16 

From this calculations, we can claim the 
following (Rapaport et al., 2019 or Harmand et al., 
2019): 

•  Under H1, the maximum of biogas 
produced at instant T is obtained with a pure culture 
of the species i* having its parameters which verify 

. 
•  Regardless of the dependence of µi with 

respect to any state of the system (or even of any 
external input), as long as some growth rates are not 
zero while others remain positive, the previous result 
remains valid. 

4. CONDITIONS FOR OVERYIELDING 

Now, instead of considering the model (1), one 
introduces mortality terms in dynamical equations: 

 

 

(8) 

where mi are mortality terms. 

In this case, it may be shown that under some 
conditions on the model parameters, the ecosystem 
may exhibit overyielding (Rapaport et al., 2019). The 
explanation is as follows. Consider a system with 
dynamics given by (8) with only one biomass. If m1 is 
large enough with respect to growth parameters, it is 
expected that the biomass concentration may converge 
towards zero before – and possibly a long time before - 
the substrate is close to zero. In other words, it may 
happen that some substrate remains in the system. The 

question is to identify if the remaining substrate at a 
given time T is negligible or not (that is Assumption 
H1). Consider now a system with two biomasses. 
Assume one biomass is potentially the best (it has the 
largest kY parameter) but it has a high mortality. The 
other performs less but has a lower mortality. The first 
species (with high mortality) will produce less biogas 
than if it was alone but will leave some substrate 
available to the second species after the first one has 
died because of its high mortality (Fig. 2). The second 
will then use this remaining substrate to produce more 
biogas since it will live longer (Fig. 2 and Fig. 3). 
There exists then situations where the sum of the 
biogas produced by both species will be higher than 
that produced in pure cultures of each species (Fig. 3). 
In the present theoretical example, the overyielding is 
of about 20 %. 

As mentioned in the introduction, other 
phenomena may explain overyielding. In fact any 
process where a species is penalized – at least 
ponstually – while another is not, may lead to 
overyielding. For instance, if species exhibit 
growthrates with threesholds (Harmand et al., 2019).  

These results largely depend on the model used 
and thus on its parameters. In practice, it is rather 
rare to have a model whatever the ecosystem under 
interest. Thus, we need other approaches to study 
complex ecosystems and to be able to predict the 
performances of a given mixture of microorganisms. 
In the next sections, we show how new 
combinatorial approaches may be used to deal with 
such problems for different ecosystems depending 
on their complexity. 

 
   Fig. 2. Pure cultures of two species with mortality 

in batch experiments. 
     Fig. 3. Pure cultures of two species with mortality 

in batch experiments. 
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5. CLASSIFYING SPECIES 

In this section, we show how we can classify 
species in order to be able to predict the performances 
of any assemblage of a limited number of species 
chosen in a strain library. We use an approach 
inspired from that proposed by Jaillard et al. (2018). 
This approach is particularly attracting since it only 
requires a list of experiments each comprising i) the 
composition of the ecosystems (which species of the 
library were used – assuming constant total initial 
substrate and biomass) and ii) a performance index as 
summarized in the following Table 1. 

Here our objectives are: 
• to classify species in specific families with 

respect to their good or bad influence the performance 
index when they are in interaction with other species; 

• to predict the performance of any assemblage 
made of the co-culture of some species chosen in the 
strain library. 

 Notations and definitions 
Let us denote X the number of available species 

and Xi the ith species (in Table 1, Species 1 is then 
denoted by X1, Species 2 by X2, etc.) 

• C is the number of classes in which each 
strain must be assigned (C is the main degree of 
freedom for the user) and Ci the ith class; 

• E is the number of available experiments 
and Ei the ith experiment; 

• Given an assignation, that is such species 
Xi, i=1..X, belongs to such class Cj, j=1..C, one 
can define motifs Mi which allows us to classify 
the experiments. Given C, the number of 
possible motifs is given by 2C-1. 

Example with C=2: 
• Either the experiment i contains only 

species of the same class 1: it will then classified 
in M1; 

• Either the expriment i contains only 
species of the same class 2: it will then be 
classified in M2; 

• Either the experiment i contains species 
of both classes: it will then be classified in M3; 

• To do so, Jaillard et al. (2018) propose a 
general algorithm which may be difficult to 
encode since it uses many tricks, notably at the 
initial steps. If it has been shown on some 
experiments to give very interesting classification 
results, it may not be guaranteed to provide the 
global optimum of the classification since it uses 
a supervised algorithm. It is for sure useful to 
process data when the number of species or of 
classes is important but in the case, as in this 
section, where we consider ecosystems of 
limited complexity, we rather suggest to use a 
brute force algorithm which corresponds to 
testing all possible combinations as explained in 
the following algorithm. 

Table 1: Experiments with X=6 species 
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 Classification with a brute force algorithm 

 The proposed algorithm is as follows: 

 Initialization: Get data and fix C 
 Step #1: Assign each species 𝑋𝑋𝑖𝑖 to a class 𝐶𝐶𝑖𝑖 to 
which they have not yet been assigned in previous 
iterations (for instance 𝑋𝑋1 ∈ 𝐶𝐶1 while X2, 𝑋𝑋3, 𝑋𝑋4, 𝑋𝑋5, 
𝑋𝑋6 ∈ 𝐶𝐶2). 
 Step #2: Given this species assignation, assign 
the experiments to the different motifs as shown in 
Table 2 for the example of assignation given in Step 
#1 with C=2, 𝑋𝑋1 ∈ 𝐶𝐶1 in written in red while X2, 𝑋𝑋3, 
𝑋𝑋4, 𝑋𝑋5, 𝑋𝑋6 ∈ 𝐶𝐶2 are written in green. Each experiment 
is then assigned to one of the three motifs. 

 Step #3: Using the performance indices of all 
experiments assigned in a given motif Mi compute 
the mean value and the dispersion of the 
performance index. 
 Step #4: Iterate on the species assignation until 
all possible combinations have been tested (notice 
that it is simply equivalent to count in the C-basis 
over the number of species). 
 The best species assignation in the C classes is the 
one for which the sum of the dispersions within motifs is 
the smallest over all possible species combinations and 
the mean value of the performance within each motif 
will give us the best prediction of the assemblage 
corresponding to that defined by the motif. 

 
Table 2. Iteration i - assignation of each experiment to a given motif 

 

 
 

Example: classifying species with respect to 
their growth rate 

An example of the effectiveness of this 
algorithm is given hereafter. To test the approach, 
we generated a dataset using combinations of 8 
species. More precisely, we randomly selected 8 of 
the 22 species identified from Landa et al. (2018), 
cheracterized by their maximum specific growth 
rate. Then, the 255 possible combinations of species 
were simulated. The model considered to simulate 
them was the classical competition model in the 
chemostat with the growth rates given by 
µι(S)=µιmaxS where µιmax, i=1.8 are the specific 
growth rates of the species. The hydraulic retention 
was chosen to be large enough to guarantee that no 
washout occures for the smallest growing species. 

The system was simulated over a period T 
corresponding to 5 retention times (a period 
considered in practice to be sufficient for being close 
to the equilibrium). It is important to notice that we 
generated two distinct datasets: one was completely 
free of noise (dataset#1) while the second was noisy 
(dataset#2). For the noisy case, instead of choosing 
equally distributed initial conditions for the species 
present in a given assemblage, the initial ratios of 
each species were chosen randomly while the total 
mass was constant. For both datasets, the initial 
substrate concentration was constant. The eight 
maximum specific growth rates, ordered in the 
increasing order were 0.0001, 0.0205, 0.0237, 
0.0294, 0.0343, 0.0372, 0.0406 and 0.0423. For a 
given experiment with n strains, the performance 
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index was the integral over a given period of time of 
the activity of the ecosystem that is: 

 
On the basis of these data, the idea of the test is to 

see if the algorithm can be used to classify the species 
according to their maximum specific growth rates. 

Results 
First, all data at the final time (t1=0 and t2=T), 

that is the dataset#1 comprising the 255 available 

experiments, were used. The brute force algorithm 
was used first with C=2, and then with C=3. In both 
cases, the 8 strains were perfectly classified with 
restect to their maximum specific growth rates. 
Then, we investigated the robustness of the result 
with respect to time. To do so, we used data with 
the performance indexes taken at different instants: 
earlier the instant, lesser the information. The results 
remain quite good: unless for very small instants 
(two or less retention times) the classification 
remains good (Table 3). 

Table 3. Assignation results for dataset#1 when using all data at different instants -  
t=1, 2, 3, 4 or 5 retention times 

 
 
In addition, the robustness of the approach was 

investigated with respect to the number of available 
experiments. Indeed, in practice, it is the rule rather 
than the exception that only few experiments can be 
performed. In the case of 8 strains, it is probable that 
only a limited number of all combinations will be 
made. Assuming only 50, 25 or 10% of experiments 
(randomly selected) are available, the optimization is 
re-run, the results of which are shown in Table 4. It 
is noticed that results really degrade only when both 
a limited number of experiments realized over a 
small period of time are used. Less than 50% of 
species are badly assigned as long as more than 25% 
of the total possible experimental combinations. The 
algorithm can then be said to be quite robust with 

respect to the fractions of total experimental 
combinations used. 

Finally, we tested the approche using the noisy 
dataset (dataset#2). Results are reported in Table 5. 
From these resultas, it is postulated that the method 
exhibit high robustness with respect to initial 
conditions of the species. In addition, there are less 
species badly assigned when dealing with 
uncertainty on the initial conditions than with 
respect to a limited number of data. 

Thus, it seem that it is better for the the user to 
perform as many different experiments as possible 
instead of repeating many times the same 
experiment.
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Table 4. Assignation results for dataset#1 when using only 50, 25 and 10% of data at instants -  

t=1 and 5 retention times 

 
 

Table 5. Assignation results for dataset#2 when using only 100, 50, 25 and 10% of data at instants -  
t=1 and 5 retention times 

 
 
 
6. A PROBABILISTIC APPROACH 

In the previous section, tyhe approach used 
allowed us to classify species in such a way we can 
predict any assemblage taken in a strain library. 
Such an approach seems quite well adapted for 
ecosystems of limited complexity since it is 
necessary to perform very specific experiments 
mixing together the different species. It may happen 

that we have to deal with library including hundreds 
of species. In such a way, performing enough 
expriments to classify each species become 
untractable. In such a case, otyher approches may be 
used to characterize the ecosystem. Obviously, 
information we can easily get from data will be 
much more qualitative. 
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Assume we can perform experiments allowing 
us to statistically characterize the performance of the 
ecosystem with respect to its diversity. Fig. 4 reports 
what could be such results. 

 

Fig. 4. Volume of biogas produced over a 
given period of time by an anerobic digester as 
a function of the richness of the inoculum. Full 
and dotted lines were obtained with ecosystems 
only containing species interacting positively 
and neutraly, respectively, while the dashed 
line represent performances of an ecosystem 
containing some negative species. 

We can then consider how species interact. 
Classifying the available species in a number of 
classes (for instance in postive, neutral and negative 
groups) and assuming a number of rules when these 
species are together in the ecosystem (for instance, 
the majority rule states that if there is more positive 
species than negative ones, then the effect of the 
assemblage on the performance is positive), it is 
possible for each potential assemblage, to calculate 
the probability of observing a performance which 
will be greater than the expected one. The strength 
of the approach relies in the fact that, depending on 
the different classes and the way they interact, one 
can calculate analytically the above probabilities. 
Examples of the use of such rules are given in 
Jaillard et al. (2014). If it is not possible to go very 
far in the chacarterization of each species, one can 
typically deduce from the approach the ratio of 
positive versus negative species of the library. 

7. CONCLUSIONS 

In this paper, a number of modeling approaches 
were used to investigates the way species interact 
within an ecosystem. We have shown how a model-
based approach coul be used in order to investigate 

overyielding. It was shown that the classical 
competition-model in the chemostat cannot exhibit 
overyielding. Instead it is necessary to include other 
processes such as mortality for the ecosystem to be 
able to exhibit overyielding. To classify species with 
respect to their growth rate from data obtained either 
in continuous or bacth modes, we have used an 
approach based on a combinatorial approach. For 
low complexity ecosystem, such an approach has 
been shown to be quite robust with respect to both 
experimental uncertainty and to the number of data 
available. Finally, a probabilistic approach can be 
used in order to investigate the number of potential 
positive versus negative species within a strain 
library. 
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