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Introduction Context

Genomic selection overview

Objective: select the best animals for reproduction to obtain genetic
improvement of the population on traits of interest

Low- to high-density genotyping
chips (10k-100k SNPs)
→ whole genome sequencing
(10MM SNPs)

Image: F. Mollandin
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Introduction Context

Prediction models for genomic selection

Goal: given a training set of data (Yi ,Xi ,Zi ) for i = 1, . . . , n individuals

Yi = trait

Xi = vector of (usually genome-wide) genotypes

Zi = vector of covariates (age, location, sex, ...)

... predict the unobserved trait Y⋆ of a future individual with
corresponding X⋆ and Z⋆

Introduced by Meuwissen et al. (2001)

Successfully implemented in many plant/animal breeds for traits
related to production, health, climate adaptation, ...

Modest gains in predictions can have large economic impacts
(reduced generation interval, reduced cost and labor for phenotyping)
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Introduction Context

Challenges of genomic prediction models

Non-random association between alleles at neighboring loci (aka LD)

Polygenic nature of complex traits

Many more SNPs (variables) than individuals (observations) ⇒ curse
of dimensionality

Including too many predictors in a model risks over-fitting, poor
generalizability, and problems with model estimation
... but including only a small pre-identified subset of SNPs (e.g.,
significant GWAS hits) usually leads to poor predictions

→ Balance computational/statistical feasibility and biologically realistic
assumptions

Can genomic prediction models be improved by better accounting for
our knowledge about the function of certain regions of the genome?
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Introduction Functional annotations

Context: H2020 GENE-SWitCH project
The regulatory GENomE of Swine & Chicken: functional annotation during development

High-quality richly annotated maps of pig and chicken genomes:

Development: early/late organogenesis, new born/hatched, adult

Sexes: {M,F} × 3 biological replicates

Tissues: liver, skeletal muscle, small intestine, cerebellum, dorsal

epidermis, lung, kidney

Assays: RNA-seq, ATAC-seq, ChIP-seq, smRNA-seq, methylation, Hi-C

But how?
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Introduction Models for genomic prediction

First, back to basics: the linear model

The workhorse of genomic prediction is the multiple linear regression
model:

Y = Zθ+Xβ + ε

Y = n-vector of traits

Z = n ×m matrix of covariates

θ = m-vector of covariate effect parameters

X = n × p matrix of (suitably coded) genotypes

β = p-vector of genetic effect parameters

ε = n-vector of errors representing noise, assumed to be iid and
(usually) normally distributed
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Introduction Models for genomic prediction

Bayesian methods for genomic prediction

Image: 10.1007/s10681-007-9516-1

likelihood × prior

n∏
i=1

N

Yi |

µ+

p∑
j=1

Xijβj

 , σ2

 × p(σ2)

p∏
j=1

p(βj |Ψ)

σ2 often assigned a χ−2 prior distribution

Choice of prior for βj should ideally reflect a trait’s genetic
architecture (and be computationally feasible...)

andrea.rau@inrae.fr Biological priors in genomic prediction models 8 / 22



Introduction Models for genomic prediction

Bayesian methods for genomic prediction

Image: 10.1007/s10681-007-9516-1

likelihood × prior

n∏
i=1

N

Yi |

µ+

p∑
j=1

Xijβj

 , σ2

 × p(σ2)

p∏
j=1

p(βj |Ψ)

σ2 often assigned a χ−2 prior distribution

Choice of prior for βj should ideally reflect a trait’s genetic
architecture (and be computationally feasible...)

andrea.rau@inrae.fr Biological priors in genomic prediction models 8 / 22



Introduction Models for genomic prediction

Which prior to use for βj?

Image: 10.1543/genetics.112.143313

GBLUP: βi ∼ N(0, σ2
β)

BayesA: βi ∼ N(0, σ2
βi
), σ2

βi
∼ Inv χ2(ν, S2)

BayesB: βi ∼ N(0, σ2
βi
), σ2

βi
∼ πδ(0) + (1− π)Inv χ2(ν, S2), π fixed

BayesC: βi ∼ πδ(0) + (1− π)N(0, σ2
β), σ

2
β ∼ Inv χ2(ν,S2) , π fixed

BayesCπ: BayesC with π ∼ Unif(0, 1)
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Introduction Models for genomic prediction

BayesR (Erbe et al., 2012)

π ∼ Dirichlet(α), with α = (1, 1, 1, 1)

Gibbs sampler for estimation
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Introduction Incorporating disjoint annotations

Back to annotations: BayesRC (MacLeod et al., 2016)

SNPs assigned to disjoint “annotations”, model is a factorized
BayesR
πc ∼ Dirichlet(α), with α = (1, 1, 1, 1)
Gibbs sampler for estimation

andrea.rau@inrae.fr Biological priors in genomic prediction models 11 / 22



BayesRCO models Overview

From BayesR to BayesRC ... and beyond
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BayesRCO models Model definition

BayesRCO: BayesRC for Overlapping annotations
Two hypotheses = two models!

1 Multi-annotations represent added confidence→ BayesRC+

2 Multi-annotations represent uncertainty → BayesRCπ
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Simulations Strategy

Simulation strategy
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Simulations Results

Evaluating impact of using annotations on validation data
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Simulations Results

BayesRCπ assigns informative annotations to QTLs

h2 = 0.5, k = 1%, scenario A
PAIP = posterior annotation inclusion probability (BayesRCπ output)
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Simulations Results

BayesRC+ assigns more weight to multi-annotated variants

h2 = 0.5, k = 1%, scenario C
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Real data analysis Description

Application in backcross population of growing pigs

n = 1297 backcross pigs (3/4 Large-White, 1/4 Creole), genetically
related sows sired with 10 boars

Genotyped with Illumina Porcine 60k BeadChip array
Sibling-structured 10-fold cross validation procedure

Traits pre-corrected for age, sex, farm

Focus on average daily weight gain (ADG) and backfat thickness
(BFT) at 23 weeks
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Real data analysis Results

Correlation of predicted traits in pig validation data

Annotations constructed using pigQTLdb for 11 trait sub-hierarchies

Anatomy, behavioral, blood parameters, conformation, fatness, fatty acid

content, feed conversion, growth, immune capacity, litter, reproductive

organs

Nearest up- and downstream neighboring markers also annotated
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Real data analysis Results

Interpreting pigQTLdb annotations with BayesRCπ
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Wrapping up...

Conclusions: incorporating annotations with BayesRCO

BayesRCO:

→ BayesRCπ can assign informative annotations to multi-annotated
SNPs to account for uncertainty in prior knowledge
→ BayesRC+ upweights multi-annotated SNPs and is robust to various
annotation scenarios

Fairly modest improvements in prediction (∼1-2 points) observed
when incorporating biological annotations

Improved predictions and rankings of large QTLs in simulations,
especially for highly informative annotations
Slight improvement in predictions for some traits in real data
Strategies for constructing annotation categories impact results
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Wrapping up...

Take home messages

Can genomic prediction models be improved by better accounting for
our knowledge about the function of certain regions of the genome?

Yes, sometimes.

Models → BayesRCO for overlapping annotation categories,
extensions in progress to handle quantitative annotations

Genotyping data → Capitalizing on annotation maps likely requires
WGS resolution

Validation data → Greater potential gains when prediction is
performed on genetically distant populations

Traits → Heritability, genetic architecture, link with annotations, ...

Annotations → Which molecular assays, in which tissues?
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Thank you!

Mollandin et al. (2022) Accounting for overlapping annotations in genomic

prediction models of complex traits, BMC Bioinformatics, 23:65.

https://github.com/FAANG/BayesRCO

https://github.com/FAANG/BayesRCO
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