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Introduction Context

Genomic selection overview

Objective: select the best animals for reproduction to obtain genetic
improvement of the population on traits of interest
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@ Low- to high-density genotyping
chips (10k-100k SNPs)
— whole genome sequencing
(10MM SNPs)
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Genomic selection overview

Objective: select the best animals for reproduction to obtain genetic
improvement of the population on traits of interest
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Objective: select the best animals for reproduction to obtain genetic
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Introduction Context

Prediction models for genomic selection

Goal: given a training set of data (Y;, Xj, Z;) for i = 1,..., n individuals
e Y; = trait
@ X; = vector of (usually genome-wide) genotypes
@ Z; = vector of covariates (age, location, sex, ...)

... predict the unobserved trait Y, of a future individual with
corresponding X, and Z,
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Introduction Context

Prediction models for genomic selection

Goal: given a training set of data (Y;, Xj, Z;) for i = 1,..., n individuals
e Y; = trait
(] X,'

@ Z; = vector of covariates (age, location, sex, ...)

vector of (usually genome-wide) genotypes

... predict the unobserved trait Y, of a future individual with
corresponding X, and Z,

@ Introduced by Meuwissen et al. (2001)

@ Successfully implemented in many plant/animal breeds for traits
related to production, health, climate adaptation, ...

@ Modest gains in predictions can have large economic impacts
(reduced generation interval, reduced cost and labor for phenotyping)
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Introduction Context

Challenges of genomic prediction models

@ Non-random association between alleles at neighboring loci (aka LD)

@ Polygenic nature of complex traits
@ Many more SNPs (variables) than individuals (observations) = curse
of dimensionality

o Including too many predictors in a model risks over-fitting, poor
generalizability, and problems with model estimation

o ... but including only a small pre-identified subset of SNPs (e.g.,
significant GWAS hits) usually leads to poor predictions

— Balance computational/statistical feasibility and biologically realistic
assumptions
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Introduction Context

Challenges of genomic prediction models

@ Non-random association between alleles at neighboring loci (aka LD)

@ Polygenic nature of complex traits
@ Many more SNPs (variables) than individuals (observations) = curse
of dimensionality

o Including too many predictors in a model risks over-fitting, poor
generalizability, and problems with model estimation

o ... but including only a small pre-identified subset of SNPs (e.g.,
significant GWAS hits) usually leads to poor predictions

— Balance computational/statistical feasibility and biologically realistic
assumptions

Can genomic prediction models be improved by better accounting for
our knowledge about the function of certain regions of the genome?
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Introduction Functional annotations

Context: H2020 GENE-SWitCH project

The regulatory GENomE of Swine & Chicken: functional annotation during development

High-quality richly annotated maps of pig and chicken genomes:
e Development: early/late organogenesis, new born/hatched, adult
e Sexes: {M,F} x 3 biological replicates
@ Tissues: liver, skeletal muscle, small intestine, cerebellum, dorsal
epidermis, lung, kidney
o Assays: RNA-seq, ATAC-seq, ChlP-seq, smRNA-seq, methylation, Hi-C

Chromatin accessible
femer

| gene requioy cloments i -

(ATAC-seq) \ 2 /ﬁ&\
P mw,g;ao»\_)) " # Q Integrate functional information with
%Y Q !’? ‘ phenotypic + genotypic data in
S o j for
S m i /ie greater and

Image: http://www.fragencode.org Image: http://www.gene-switch.eu/project.htm!
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Introduction Functional annotations

Context: H2020 GENE-SWitCH project

The regulatory GENomE of Swine & Chicken: functional annotation during development

High-quality richly annotated maps of pig and chicken genomes:
e Development: early/late organogenesis, new born/hatched, adult
e Sexes: {M,F} x 3 biological replicates
@ Tissues: liver, skeletal muscle, small intestine, cerebellum, dorsal
epidermis, lung, kidney
o Assays: RNA-seq, ATAC-seq, ChlP-seq, smRNA-seq, methylation, Hi-C

e access \i ®
4 Integrate functional information with

phenotypic + genotypic data in
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greater and

But how?
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Introduction Models for genomic prediction

First, back to basics: the linear model

The workhorse of genomic prediction is the multiple linear regression

model:
Y =Z0+X3 +¢

@ Y = n-vector of traits

@ Z = n x m matrix of covariates

@ 0 = m-vector of covariate effect parameters

e X = n X p matrix of (suitably coded) genotypes

@ 3 = p-vector of genetic effect parameters

@ & = n-vector of errors representing noise, assumed to be iid and
(usually) normally distributed

Biological priors in genomic prediction models
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Introduction Models for genomic prediction

Bayesian methods for genomic prediction

Image: 10.1007/s10681-007-9516-1
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Introduction Models for genomic prediction

Bayesian methods for genomic prediction

Image: 10.1007/s10681-007-9516-1

likelihood X prior
n p p
| AR DI Il - Col | FIEHY
i=1 Jj=1 j=1

@ o2 often assigned a x 2 prior distribution
@ Choice of prior for /3; should ideally reflect a trait's genetic
architecture (and be computationally feasible...)
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Introduction Models for genomic prediction

Which prior to use for 3;7

Gaussian kT
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Image: 10.1543/genetics.112.143313
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Introduction Models for genomic prediction

Which prior to use for 3;7

Gaussian kT
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Image: 10.1543/genetics.112.143313

GBLUP: §; ~ N(0,03)
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Introduction Models for genomic prediction

Which prior to use for 3;7?

Image: 10.1543/genetics.112.143313
GBLUP: §; ~ N(0,03)
BayesA: 3; ~ N(O,aéi),aéi ~ Inv x?(v, S?)
BayesB: i ~ N(O,aéi), aéi ~ m5(0) + (1 — 7)Inv x3(v, S?), 7 fixed
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Introduction Models for genomic prediction

Which prior to use for 3;7?

Pointof Mass & Siab

4444444

Image: 10.1543/genetics.112.143313

GBLUP: §; ~ N(0,03)

BayesA: 3; ~ N(O,aéi),aéi ~ Inv x?(v, S?)

BayesB: i ~ N(O,aéi), 0/23/ ~ m5(0) + (1 — 7)Inv x3(v, S?), 7 fixed
BayesC: 8 ~ m0(0) + (1 — m)N(0,03),07 ~ Inv \*(1, 57) , 7 fixed
BayesCr: BayesC with m ~ Unif(0, 1)

Biological priors in genomic prediction models
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Introduction Models for genomic prediction

BayesR (Erbe et al., 2012)

Bi ~ 1 §(0) +72 N(0,0.000107) +73 N(0,0.0010;) 474 N(0,0.0107)
~ S 4 -

v v

—~
null small medium large

o 7 ~ Dirichlet(a), with o = (1,1,1,1)

@ Gibbs sampler for estimation

g
&

SNPj

Répartition des SNPs dans
les classes d’effet
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Introduction Incorporating disjoint annotations

Back to annotations: BayesRC (MacLeod et al., 2016)

4
F(BICi =) = merfel-16k)
k=1

@ SNPs assigned to disjoint “annotations”, model is a factorized
BayesR

o 7. ~ Dirichlet(a), with a = (1,1,1,1)

@ Gibbs sampler for estimation

Annot1l Annot2 Annot3

SNP

Répartition des SNPs dans
les classes d’effet
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BayesRCO models Overview

From BayesR to BayesRC ... and beyond

BayesR

High

Genotype ..000001001201002100200010100001011001011110.. IXHE) i/_[/L( GBv

This project has received funding from the European Union's Horizon 2020
Research ion Programme under 817998
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BayesRCO models Overview

From BayesR to BayesRC ... and beyond

BayesR BayesRC

High ‘

(Single-annotated SNPs)

GWAS hits [ ] [ ] [ ] | | |

Genotype ..000001001201002100200010100001011001011110... IEHp % GBY

This project has received funding from the European Union's Horizon 2020
Research and Innovation Programme under the grant agreement n° 817998
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BayesRCO models Overview

From BayesR to BayesRC ... and beyond

BayesR BayesRC

s ¢

(Single-annotated SNPs)
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Unmethylated oy — — f S L
(piglet liver) R
GWAS hits n n T "

Genotype ..000001001201002100200010100001011001011118.. m o [/L(GBV

This project has received funding from the European Union's Horizon 2020
Research and Innovation Programme under the grant agreement n° 817998
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BayesRCO models Overview

From BayesR to BayesRC ... and beyond

BayesR BayesRC

High

“ ,,,,, ; ,,,,,,,,,

(Single-annotated SNPs) A Multi-annotated SNPA ? -
Accessible chromatin ] ——— T - ‘ % "@

(embryo liver)

Unmethylated oy —

(piglet liver)

GWAS hits | | | [ 1]

II
3
a
b

1
1
|
1

Genotype ...@0000100120100210020901010000}'911001011116... m o WGBV

This project has received funding from the European Union's Horizon 2020
Research and Innovation Programme under the grant agreement n° 817998
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BayesRCO models  Overview

From BayesR to BayesRC ... and beyond

BayesR BayesRC BayesRCO
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(‘ https://github.com/fmollandin/BayesRCO
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Accessible chromatin T "
fembryo Inen) I I _ |

Unmethylated
(piglet liver)

GWAS hits | | | [ 1]

#
&Y 2
i @@ﬂ

1
1 1
1 1
i o
1
Genotype ...@0000100120100210020601010600|1911001011110...

This project has received funding from the European Union's Horizon 2020
Research and Innovation Programme under the grant agreement n° 817998
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BayesRCO models Model definition

BayesRCO: BayesRC for Overlapping annotations

Two hypotheses = two models!

@ Multi-annotations represent added confidence— BayesRC+
@ Multi-annotations represent uncertainty — BayesRCx

¥
4
peoh | eas

0044,,.;1
c>”m.[z
ok%,
.« 0 >0.,.“a
;° 4/1,-.,*

s Y /\
< \)% o 2 AS A
I3 «
Z R g2 Z A P
Method SNP effect prior distribution Annotations
BayesR ~ S 17(;(./\/(0 ka?) No
BayesRC ,3,|a = A(i) ~ ZK 17K,aN (0. ko2 2) Yes, disjointed
Cumulative "
T BayesRC+ pilace A(i) ~ > .- A(,)EK 1 7K,aN(0, ko z) Yes, overlapping
Preferential ___» BayesRCrm  fila € A(i) ~ ZQCA(, pi. QZK 17K,aN(0, ko2 ) Yes, overlapping

assignment
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Simulations  Strategy

Simulation strategy

Phenotypes simulated from real cattle genotypes, 2500 animals:

- ={0.2,0.5}
-5 QTLs representing k = < 2.5%, 5%} of total additive variance o2

- 300 medium QTLs representing 0.1% of o2
- 4500 to| 6500/ /0w effect SNPs representing 0.01% of o2

- 50 datasets generated for each setting

Scenarios

A B C 4 types of annotations possible:
/& @ strongly enriched: 5 QTLs + 300 medium QTLs + 150 low or null SNPs
./ © moderately enriched: 2 QTLs + 100 medium QTLs + 300 low or null
SNPs
7 @ weakly enriched: 20 medium QTLs + 400 low or null SNPs

/. @ unenriched: 450 low or null SNPs

Biological priors in genomic prediction models
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Simulations = Results

Evaluating impact of using annotations on validation data

h?=0.2; k=1% h?=0.5; k=1%

Method

. BayesRC
. BayesRCm
. BayesRC+

(Cor BayesRC*) - (Cor BayesR)

A B c A B c
Annotation scenario

k= per-large QTL % of additive variance

A= 1 strongly enriched + 1 moderately enriched + unannotated;

B= 1 strongly enriched + 1 moderately enriched + 1 weakly enriched + 1 unenriched + unannotated
C= 2 strongly enriched + 2 moderately enriched + 3 weakly enriched + 2 unenriched + unannotated
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Simulations = Results

BayesRCr assigns informative annotations to QTLs

A .
14 ° Annotation D Unannotated D Moderately enriched Highly enriched
0.7 category
. .
. L]

§ H
= (]
3 . 1.54
£ .
©
i [}
2056 H
S
5 =0
> ‘@
< &
2 a)
S
a5 | — 0.5
< [ 1 [ 1 L 1
a

0.0

NIl Small Medium Large 3 5 M 2
True marker effect class Log(posterior variance)

h?> = 0.5, k = 1%, scenario A
PAIP = posterior annotation inclusion probability (BayesRCr output)
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Simulations = Results

BayesRC+ assigns more weight to multi-annotated variants

&

Log(posterior variance)
g

4 5 6 7
Number of annotations

h? = 0.5, k = 1%, scenario C

andrea.rau@inrae.fr Biological priors in genomic prediction models



Real data analysis Description

Application in backcross population of growing pigs

@ n = 1297 backcross pigs (3/4 Large-White, 1/4 Creole), genetically
related sows sired with 10 boars

o Genotyped with Illumina Porcine 60k BeadChip array
o Sibling-structured 10-fold cross validation procedure

@ Traits pre-corrected for age, sex, farm

@ Focus on average daily weight gain (ADG) and backfat thickness
(BFT) at 23 weeks
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Real data analysis Results

Correlation of predicted traits in pig validation data

Annotations constructed using pigQTLdb for 11 trait sub-hierarchies

@ Anatomy, behavioral, blood parameters, conformation, fatness, fatty acid

content, feed conversion, growth, immune capacity, litter, reproductive
organs

@ Nearest up- and downstream neighboring markers also annotated

andrea.rau@inrae.fr
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Real data analysis Results

Correlation of predicted traits in pig validation data

Annotations constructed using pigQTLdb for 11 trait sub-hierarchies

@ Anatomy, behavioral, blood parameters, conformation, fatness, fatty acid

content, feed conversion, growth, immune capacity, litter, reproductive
organs

@ Nearest up- and downstream neighboring markers also annotated

BayesR Bayes
ADG 0.21(+0.08) +1.2 pts +1.7 pts

BFT 0.26 (+0.16) -0.6pts  -1pts

andrea.rau@inrae.fr
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Real data analysis Results

Interpreting pigQTLdb annotations with BayesRCx

Behavorial
Conformation <
Litter traits

Feed conversion 4

Annotation

Blood parameters 4
Fatness 4

Immune capacity 4
Unanotated 4
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Wrapping up...

Conclusions: incorporating annotations with BayesRCO

BayesRCO:

— BayesRCr can assign informative annotations to multi-annotated
SNPs to account for uncertainty in prior knowledge

— BayesRC+ upweights multi-annotated SNPs and is robust to various
annotation scenarios

e Fairly modest improvements in prediction (~1-2 points) observed
when incorporating biological annotations
e Improved predictions and rankings of large QTLs in simulations,
especially for highly informative annotations
o Slight improvement in predictions for some traits in real data
o Strategies for constructing annotation categories impact results
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Wrapping up...

Take home messages

Can genomic prediction models be improved by better accounting for
our knowledge about the function of certain regions of the genome?
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Wrapping up...

Take home messages

Can genomic prediction models be improved by better accounting for
our knowledge about the function of certain regions of the genome?

Yes, sometimes.
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Wrapping up...

Take home messages

Can genomic prediction models be improved by better accounting for
our knowledge about the function of certain regions of the genome?

Yes, sometimes.

@ Models — BayesRCO for overlapping annotation categories,
extensions in progress to handle quantitative annotations

Genotyping data — Capitalizing on annotation maps likely requires
WGS resolution

Validation data — Greater potential gains when prediction is
performed on genetically distant populations

Traits — Heritability, genetic architecture, link with annotations, ...

Annotations — Which molecular assays, in which tissues?
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Thank you!

— * * %

P

A 5 i 2 i
GENE-SWitCH .

Mollandin et al. (2022) Accounting for overlapping annotations in genomic
prediction models of complex traits, BMC Bioinformatics, 23:65.

BayesRCrt
BayesCr BayesRC Y

. BayesR BayesRC+
Y

BayesRCO

=Y

https://github.com/FAANG/BayesRCO
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