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An adaptive observer for time-varying nonlinear systems -
application to a crop irrigation model

M.G. Dadjo, D. Efimov, J. Harmand, A. Rapaport, R. Ushirobira

Abstract— We propose an adaptive observer for a
class of nonlinear time-varying systems, for which
the regressor depends not only on the known input-
output signals but also on all the unmeasured states.
There are state disturbances, and measurements are
corrupted by noise. The Lyapunov function method
is used to prove that the coupled system-observer
dynamics admits a state-independent input-to-output
stability property in estimation errors from un-
known inputs. Numerical simulations illustrate the
presented approach on a three-dimensional crop ir-
rigation model.

I. Introduction
Observer theory has been a powerful tool for several

decades to estimate the state and the parameters of
an uncertain dynamical system in real time, and many
researchers have worked in this field; see, for instance,
[11]. Nevertheless, there is no general method to design
observers for nonlinear systems in the current literature,
and usually, certain canonical model representations are
considered. This is also related to the lack of a standard
selection approach for Lyapunov functions, which are
needed in the stability analysis.

We consider in this note the problem of simultane-
ously reconstructing the unmeasured state variables and
the constant unknown parameters in the presence of
disturbances and measurement perturbations. For this
purpose, adaptive observers have been proposed in the
literature in the linear and the nonlinear contexts, start-
ing from earlier works [6], [15], [2], [16], where two main
ways for adaptive observer design were recognized: when
the unknown parameters appear in the derivative of the
output, or when they appear for the first time in higher
order derivatives, and additional filters are needed to
compensate the high relative degree obstruction. Signifi-
cant results have been formulated at the beginning of this
century, e.g., [3], [22], where canonical forms of systems
admitting nonlinear adaptive observers were defined, and
the canonical structure of the auxiliary filters was given.
It is worth highlighting that an important restriction for
a majority of the results is the requirement of dependence
of regressor (the gain function that multiplies the vector
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of unknown parameters) on measured input and output
signals only, which was resolved in [10] for the cases of
linear and nonlinear parameterization. Another common
drawback is the lack of analysis in the presence of state
disturbances and measurement noises, where only special
cases were studied [18], [8].

This work has been motivated by a concrete problem
of crop irrigation. Usually, soil humidity and biomass
can be measured or estimated [1], but the estimation of
nitrogen content is often described as challenging, while
it is crucial for growth prediction [19]. These variables’
dynamics are nonlinear, time-varying, and rely on several
parameters that need to be estimated for each soil-
crop system [4], [7]. Moreover, the measurements are
noisy, and the state dynamics contains uncertain external
inputs. So, we aim to propose a new approach for the
adaptive estimation of this model, which due to its
special characteristics, does not fall within the scope of
previous works on observers.

In this paper, we propose an adaptive observer for
a class of non-autonomous nonlinear dynamics with
unknown inputs, for which the regressor depends not
only on the known input-output signals but also on the
unmeasured state, and the measurements are noisy. The
analysis is based on utilization of the theory of input-
to-state stability (ISS) and other related properties. A
Lyapunov function candidate is defined to prove that
the system is state independent input-to-output stable
from unknown inputs to the estimation errors, relying
on a condition of persistently excitation of the control
variables.

The paper is organized as follows. In Section II the
used results from ISS theory are reviewed. In Section III,
we give assumptions, present our observer and prove our
main result. In Section IV, we introduce the irrigation
problem and show how apply there our main result.
Finally, Section V presents numerical simulations and
compare the performances of the adaptive observer with
a high-gain observer.

Notations

• R+, R∗
+ denote the sets of non-negative real numbers

and positive real numbers, respectively.
• Rp and Rn×m denote the real vector space of dimen-

sion p, and the set of matrices with real coefficients
of dimension n×m, respectively.

• In denotes the identity matrix of dimension n×n.



• ∥ ·∥ denotes the Euclidean norm for vectors and the
induced norm for matrices.

• For a Lebesgue measurable function u : R+ → Rm,
define the norm ∥u∥[t1,t2) = esssupt∈[t1,t2)∥u(t)∥ for
t1, t2 ∈ R+. We denote by Lm

∞ the set of functions
u with ∥u∥∞ :=∥u∥[0,∞) < +∞.

• A continuous function σ : R+ → R+ belongs to class
K if it is strictly increasing and σ(0) = 0; it belongs
to class K∞ if it is also radially unbounded. A
continuous function β : R+ ×R+ → R+ belongs to
class KL if β(·, r) ∈ K and β(r, ·) is a decreasing
function going to zero for any fixed r ∈ R+.

• A⊤ (resp. ξ⊤) denotes the transpose of the matrix
A (resp. the vector ξ).

• For a matrix M of Rn×n, M ⪯ 0 (resp. M ≺ 0)
means ξ⊤Mξ ≤ 0 (resp. ξ⊤Mξ < 0) for all ξ ∈ Rn.

II. Preliminaries
Following [20] consider a class of nonlinear systems:

ẋ(t) = f(x(t),d(t)), t ≥ 0,

y(t) = h(x(t)),
(1)

where x(t) ∈ Rn is the state vector, d(t) ∈ Rm is the
external perturbation, with d ∈ Lm

∞, and y(t) ∈ Rp is the
output vector. Moreover, f : Rn ×Rm → Rn is a locally
Lipschitz continuous function, f(0,0) = 0, and h : Rn →
Rp is a continuously differentiable function. For an initial
state x0 ∈ Rn and d ∈ Lm

∞, we denote the corresponding
solution of the system (1) by x(t,x0,d) for the values of
t ≥ 0 the solution exists, so the corresponding output is
y(t,x0,d) = h(x(t,x0,d)).

The system (1) is called forward complete if for all x0 ∈
Rn and d ∈Lm

∞, the solution x(t,x0,d) is uniquely defined
for all t ≥ 0.

Definition 1: A forward complete system (1) is said to
be:

1) practical input-to-output stable (pIOS) if there exist
β ∈ KL, γ ∈ K and c ∈ R+ such that

∥y(t,x0,d)∥ ≤ β (∥x0∥, t)+γ(∥d∥∞)+ c, ∀t ≥ 0

for any x0 ∈ Rn and d ∈ Lm
∞. The system is called

input-to-output stable (IOS) if c = 0. In the special
case when y = x, the IOS property is called ISS.

2) state-independent input-to-output stable (SIIOS) if
there exist β ∈ KL and γ ∈ K such that

∥y(t,x0,d)∥ ≤ β(∥h(x0)∥, t)+γ(∥d∥∞), ∀t ≥ 0

for any x0 ∈ Rn and d ∈ Lm
∞.

As we can deduce from this definition, SIIOS is a
direct extension of the ISS property to the systems
demonstrating convergence only with respect to a part
of the variables.

Definition 2: A forward complete system (1) is
said to be uniformly bounded-input-bounded-state stable
(UBIBS) if there exists σ ∈ K such that

∥x(t,x0,d)∥ ≤ max{σ(∥x0∥),σ(∥d∥∞)}, ∀t ≥ 0

for all x0 ∈ Rn and d ∈ Lm
∞.

Definition 3: For the system (1), a smooth function
V : Rn → R+ is:

1) an IOS-Lyapunov function if there exist α1,α2 ∈
K∞, χ ∈ K, and α3 ∈ KL such that

α1(∥h(x)∥) ≤ V (x) ≤ α2(∥x∥), (2)
V (x) ≥ χ(∥d∥) ⇒ ∇V (x)f(x,d) ≤ −α3(V (x),∥x∥)

for all x ∈ Rn and d ∈ Rm.
2) a SIIOS-Lyapunov function if there exist α1,α2 ∈

K∞ and χ, α3 ∈ K such that

α1(∥h(x)∥) ≤ V (x) ≤ α2(∥h(x)∥),
V (x) ≥ χ(∥d∥) ⇒ ∇V (x)f(x,d) ≤ −α3(V (x))

for all x ∈ Rn and d ∈ Rm.
Theorem 1 ([21]): A UBIBS (forward complete) sys-

tem (1) is IOS (SIIOS) if and only if it admits an IOS
(SIIOS)-Lyapunov function.
Despite that all definitions and results above are given for
an autonomous system (1), the same formulations hold
for time-varying counterparts, and the sufficient part of
Theorem 1 is valid.

III. Main result

Consider a dynamical system of the form:

ẋ(t) = A(t)x(t)+φ(y(t),u(t))
+G(y(t),u(t),x(t))θ +d(t), (3)

y(t) = Cx(t)+v(t),

where x(t) ∈ Rn is the state, y(t) ∈ Rp is the output
measurement vector, θ ∈ Rm is the vector of unknown
parameters, u(t) ∈ Rd is the known input vector, v(t) ∈
Rp is a measurement noise, d(t) ∈ Rn is a disturbance,
the functions G :Rn+p+d →Rn×m and φ :Rp+d →Rn are
assumed to be continuous and guaranteeing existence of
the solutions in forward time.

We require the following hypotheses.

Assumption 1: Let d ∈ Ln
∞, v ∈ L

p
∞, and ∥θ∥ ≤ θmax

with a known bound θmax > 0.

Hence, the unknown inputs are bounded without a
known upper limit, but the set of admissible values for
the vector of unknown parameters is given. The latter is
not a hard restriction since the parameters usually must
respect physical constraints.

Assumption 2: There exists λ > 0 such that
∥G(y,u,x)− G(y,u, x̂)∥ ≤ λ∥x − x̂∥ for all y ∈ Rp,
u ∈ Rd and x, x̂ ∈ Rn.

Assumption 3: There is Gmax > 0 such that
∥G(y,u,x)∥ ≤ Gmax for all y ∈ Rp, u ∈ Rd and x ∈ Rn.

These restrictions imply that G is uniformly Lipschitz
continuous in the third argument and globally bounded.



Following [22], we propose an observer in the form:

˙̂x(t) = A(t)x̂(t)+φ(y(t),u(t))+G(y(t),u(t), x̂(t))θ̂(t)
+L(t)(y(t)−Cx̂(t))+Ω(t) ˙̂

θ(t),
Ω̇(t) = (A(t)−L(t)C)Ω(t)+G(y(t),u(t), x̂(t)),
˙̂
θ(t) = γΩ⊤(t)C⊤(y(t)−Cx̂(t)), (4)

where x̂(t) ∈ Rn is the estimate vector for x(t), L(t) ∈
Rn×p is the observer gain providing the desired stability
property for the matrix A(t)−L(t)C, Ω(t) ∈ Rn×m is an
intermediate filter state variable, and γ > 0 is the adap-
tation gain. We detail other conditions below (further, if
the dependence on time of a variable is evident, it may
be omitted for brevity of presentation).

Next, by introducing an auxiliary estimation error and
a parameter estimation error

δ = x− x̂−Ω(θ − θ̂),
θ̃ = θ − θ̂,

after straightforward computations, we obtain the follow-
ing dynamics:

δ̇ = (A−LC)δ +(G− Ĝ)θ −Lv +d,
˙̃θ = −γΩ⊤C⊤(Cδ +CΩθ̃),

where, with a slight abuse of notation, we use the short-
hand notations G = G(y,u,x) and Ĝ = G(y,u, x̂).

We now set e := x− x̂ as the state estimation error. We
aim to prove that e and θ̃ converge to 0 in the absence
of the disturbances d and v and demonstrate a SIIOS
property for bounded perturbations.

Theorem 2: Let assumptions 1, 2 and 3 hold. Assume
there are symmetric matrix functions P1 : R+ → Rn×n,
P2 : R+ → Rm×m satisfying the following conditions for
all t ≥ 0:
(i) 0 ≺ aIn ≺ P1(t) ≺ aIn, 0 ≺ aIm ≺ P2(t) ≺ aIm, for

some a, a ∈ R+;
(ii) Ṗ1(t) + P1(t)(A(t) − L(t)C) + (A(t) − L(t)C)⊤P1(t)

≺ −Q1, for some Q⊤
1 = Q1 ⪰ 0;

(iii) for some Q⊤
2 = Q2 ⪰ 0,

Ṗ2(t)−γP2(t)Ω⊤(t)C⊤CΩ(t)−γΩ⊤(t)C⊤CΩ(t)P2(t)
⪯ −Q2;

(iv) there exist β1, β2, γ1, γ2 > 0 such that

Γ =


Γ11 Γ⊤

21 P1 −P1L P1
Γ21 Γ22 0 Γ24 0
P1 0 −γ1In 0 0

−L⊤P1 Γ⊤
24 0 −γ2Ip 0

P1 0 0 0 −In

 ≺ 0

with Γ11 = −Q1 + (β1 + 2λ2θ2
max)In, Γ22 = −Q2 +

(β2 + 2λ2θ2
max∥Ω∥2)Im, Γ21 = Γ24C, and Γ24 =

−γP2Ω⊤C⊤.
Then the system (3)-(4) is SIIOS in errors x− x̂ and θ− θ̂
from the inputs d and v, and the variable Ω is bounded.

In this theorem, it is assumed that the gain function
L(t) is chosen in a way to ensure the stability of the
time-varying matrix A(t)−L(t)C, which is equivalent to
the existence of a positive definite matrix P1(t). It is
also assumed that the control u and the perturbations
d, v are persistently exciting, providing the stability of
a symmetric time-varying matrix Ω⊤(t)C⊤CΩ(t). Then
the existence of a positive definite matrix P2(t) follows.
The remaining restrictions are needed to prove robust
stability and convergence in the closed-loop system and
are used in the proof below.

Proof: We will consider a SIIOS-Lyapunov function
candidate defined by:

V = δ⊤P1δ + θ̃⊤P2θ̃

where the matrices P1 and P2 are introduced in the
formulation of the theorem. We have:

V̇ =δ⊤
(

Ṗ1 +P1(A−LC)+(A−LC)⊤P1
)

δ + δ⊤P1d

+ θ̃⊤
(

Ṗ2 −γP2Ω⊤C⊤CΩ−γΩ⊤C⊤CΩP2
)

θ̃+

θ⊤
(

G− Ĝ
)⊤

P1δ + δ⊤P1
(

G− Ĝ
)

θ +d⊤δP1−

v⊤L⊤P1δ − δ⊤P1Lv −
(

γΩ⊤C⊤Cδ
)⊤

P2θ̃−

γθ̃⊤P2Ω⊤C⊤Cδ −γθ̃⊤P2Ω⊤C⊤v −
(

γΩ⊤C⊤v
)⊤

P2θ̃

≤ −δ⊤Q1δ − θ̃⊤Q2θ̃ +
((

G− Ĝ
)

θ
)⊤

P1δ+

δ⊤P1
(

G− Ĝ
)

θ +d⊤δP1 + δ⊤P1d−

v⊤L⊤P1δ − δ⊤P1Lv −
(

γΩ⊤C⊤Cδ
)⊤

P2θ̃−

γθ̃⊤P2Ω⊤C⊤Cδ −γθ̃⊤P2Ω⊤C⊤v −
(

γΩ⊤C⊤v
)⊤

P2θ̃

≤ X⊤MX −β1∥δ∥2 −β2∥θ̃∥2 +γ1∥d∥2 +γ2∥v∥2+((
G− Ĝ

)
θ
)⊤ (

G− Ĝ
)

θ

≤ X⊤MX −β1∥δ∥2 −β2∥θ̃∥2 +γ1∥d∥2 +γ2∥v∥2+
2λ2∥θmax∥2 (

∥δ∥2 +∥Ω∥2∥θ̃∥2)
≤ X⊤ΓX −β1∥δ∥2 −β2∥θ̃∥2 +γ1∥d∥2 +γ2∥v∥2

where X =
(

δ⊤ θ̃⊤ d⊤ v⊤
((

G− Ĝ
)

θ
)⊤

)⊤
,

M =

 −Q1 + β1In −γC⊤CΩP2 P1 −P1L P1
−γP2Ω⊤C⊤C −Q2 + β2Im 0 −γP2Ω⊤C⊤ 0

P1 0 −γ1In 0 0
−L⊤P1 −γ2CΩP2 0 −γ2Ip 0

P1 0 0 0 −In


and we used Assumption 2 to bound G− Ĝ:((

G− Ĝ
)

θ
)⊤ (

G− Ĝ
)

θ ≤ θ2
max∥G− Ĝ∥2

≤ λ2θ2
max∥e∥2 ≤ λ2θ2

max∥δ +Ωθ̃∥2.

Since Γ ≺ 0 by the conditions of the theorem, then V is
a SIIOS-Lyapunov function by Theorem 1.



Using Assumption 3 and Lyapunov function W =
Ω⊤P1Ω, by repeating the same calculations for W , it is
possible to show the boundedness of Ω.

Note that the matrix Γ used in the formulation of this
theorem is time-dependent. So, to get a linear matrix
inequality, additional constraints can be imposed:

Corollary 1: Let all conditions of Theorem 2 be satis-
fied, and consider the matrix

∆ =


∆11 0 Γ13 Γ14 Γ15

0 ∆22 0 0 0
Γ31 0 Γ33 0 0
Γ41 0 0 ∆44 0
Γ51 0 0 0 Γ55


where ∆11 = −Q1 +

(
β1 + ∥Γ21∥2

ϵ
+2λ2θ2

max

)
In,

∆22 = −Q2 +
(
β2 + ϵ+ ϵ′ +2λ2θ2

maxΩ2
max

)
Im,

∆44 =
(

∥Γ42∥2

ϵ′ −γ2

)
Ip and ∥Ω∥ ≤ Ωmax < ∞ (such

a bound Ωmax exists in the conditions of Theorem 2),
with some ϵ, ϵ′ > 0. If ∆ ⪯ 0, then (4) is SIIOS in the
errors x − x̂ and θ − θ̂ for the inputs d and v, and the
variable Ω stays bounded.

Proof: It is straightforward to verify that:

2
(

δ⊤Γ12
)

θ̃ ≤ ∥Γ12∥2

ϵ
∥δ∥2 + ϵ∥θ̃∥2,

2
(

v⊤Γ42
)

θ̃ ≤ ∥Γ42∥2

ϵ′ ∥v∥2 + ϵ′∥θ̃∥2.

It is easy to check that the following inequality holds:
X⊤ΓX ≤ X⊤∆X.

IV. Application to a Crop Irrigation Model

A fundamental concern in agriculture is related with
the state of the soil ensuring the good conditions for crop
growth (such as tomatoes, lettuce, etc.), especially under
climate change and drought events. Having visibility
on the water and nutrient needs of crops is crucial for
reliable predictions and stimulation of the production.
Humidity is a crucial state variable in most of the crop
models, and therefore humidity sensors are widely used
to evaluate the behavior of this quantity. However other
crucial information, necessary to obtain an accurate
prediction, is contained in the parameters as a well as in
other state variables such as the nitrogen concentration
[14], [9]. Most of the time, sensors of chemical composi-
tion are not available on the field, or not accurate, or too
costly, etc. This is where the software sensors enter into
the picture as an expected cheap alternative.

We consider here a simplified crop irrigation model,
inspired from [17], [5], where we explicitly include the

dynamics of nitrogen, in addition to humidity one.

Ṡ = k1 (−φ(t)KS(S)− (1−φ(t))KR(S)+k2u(t))

Ḃ = φ(t)KS(S)f(N

S
)

Ṅ = −k3φ(t)KS(S)f(N

S
)+k4Cin

N u(t)

where S denotes the soil humidity level (between 0 and
1) and B,N ∈ R+ are biomass and nitrogen content per
unit of soil surface. As often met in crop modelling, terms
φ(t)KS(S), (1−φ(t))KR(S) represent crop transpiration
and soil evaporation. Functions KS , KR are usually
piecewise linear non-decreasing from [0,1] to [0,1]. The
time function φ is the crop radiation interception effi-
ciency, which is usually C1 and increasing, while f is
a piecewise C1 non-decreasing function, which regulates
the growth depending on the nitrogen concentration. The
input variable u is the irrigation flow rate, and Cin

N the
nitrogen concentration of the irrigation water. Typical,
instances of the functions KS , KR, f are:

KS(S) =


0 if S ∈ [0,Sw]
S −Sw

S∗ −Sw
if S ∈ (Sw,S∗],

1 if S > S∗

0 < Sw < S∗,

KR(S) =

0 if S ∈ [0,Sh]
S −Sh

1−Sh
if S > Sh

Sh > 0,

f

(
N

S

)
=


N

ηcS
if N

S
∈ [0,ηc)

1 if N

S
∈ [ηc,1]

ηc > 0,

where S⋆ is the water stress threshold, Sw is the hu-
midity threshold above which the plant wilts, Sh is the
hydroscopic point, and ηc is the nitrgoen saturation
coefficient. The online measurements are the humidity
and the biomass

y1 = S +v1(t), y2 = B +v2(t),

where v1, v2 are unknown measurement noises. We shall
consider the beginning of the season (t = 0) for which
the initial humidity level S(0) can be assumed to be high,
i.e., larger than the threshold S⋆ and the unknown initial
nitrogen N(0) can be small, i.e., such that N(0)/S(0) <
ηc. We then look for two estimation problems on a time
window for which S stays above S⋆ and N/S below ηc. In
this sub-domain of the state space, the dynamics can be
written, using the expressions of KS , KR, f given above,
as follows:

Ṡ = k1 (−φ(t)− (1−φ(t))KR(S)+k2u(t)) (5)

Ḃ = φ(t) N

ηcS
(6)

Ṅ = −k3φ(t) N

ηcS
+k4Cin

N u(t) (7)



One can notice that the system has a cascade structure,
i.e., the dynamics of the first variable S is independent
of B and N . We consider two estimation problems:

A. reconstruct parameters k1, k2, Sh related to soil
characteristics and the humidity dynamics (5) with
the single measurement y1, assuming that the func-
tions φ and u are known;

B. reconstruct the nitrogen variable N and parameter
k3 (related to soil-crop system) with both measure-
ments y1, y2, assuming that parameters ηc, k4Cin

N
and functions φ and u are known.

A. Estimation of k1, k2 and Sh

Equation (5) can be written as

Ṡ = k1

(
−1− 1

1−Sh
(1−φ(t))(S −1)+k2u(t)

)
= η(t)⊤θ

where we posit

η(t) =

 −1
−(1−φ(t))(S(t)−1)

u(t)

 , θ =

 k1
k1

1−Sh

k1k2

 .

Then, one can consider the sub-system

Ṡ = η(t)⊤θ (8)
y1 = S +v1 (9)

where the parameter vector θ is unknown, i.e., here we
consider that k1, k2 and Sh are unknown. It is then
possible to reconstruct these parameters with a classical
adaptive observer with the single measurement y1:

Proposition 1: Consider the system
˙̂
ξ = ω(t)⊤θ̂ +L

(
y − ξ̂

)
˙̂
θ = Γω(t)

(
y − ξ̂

)
where ω(t) = [−1 −(1−φ(t))(y1(t)−1) u(t)]⊤ and L > 0,
Γ > 0. If ω is persistently exciting, then θ̂ is an asymptotic
estimator of θ for system (8) when v1 = 0.

Proof: Denote e := S − ξ̂ and θ̃ = θ − θ̂. One has

ė = ω(t)⊤θ̃ −Le

˙̃θ = −Γω(t)e

and the conclusion follows by using Theorem 3 (see
Appendix), when ω has a persistent excitation.

Robustness to noise can be established similarly to
Theorem 2, see [8].

B. Estimation of N , k1 and k3

We write dynamics of the system(5)-(6)-(7) as follows

Ṡ = k1 (−φ(t)− (1−φ(t))KR(S)+k2u(t))) ,

Ḃ = φ(t)
ηcS

N

Ṅ = −κ
φ(t)
ηcS

N +(κ−k3)φN

ηcS
+k4Cin

N u(t)

where κ is any positive number. In the noise-free case it
takes the form of (3) with

x =

 S
B
N

 , A(t) =


0 0 0

0 0 φ(t)
ηcy1(t)

0 0 −κ
φ(t)

ηcy1(t)

 ,

θ =

 k1

κ−k3

 , G(t,x,y,u) =


G1(t,x,u) 0

0 0

0 φ(t)N
ηcy1



ϕ(u) =

 0
0

k4Cin
N u

 , C =
[

1 0 0
0 1 0

]

with G1(t,x,u) = −φ(t) − (1 − φ(t))KR(S) + k2u. In the
presence of the noise v the discrepancy can be hidden in
the disturbance term d. We then consider an observer of
the form:

˙̂x = A(t)x̂+G(t, x̂,y,u(t))θ̂ +L(t)(y −Cx̂)+Ω ˙̂
θ +ϕ(u(t))

Ω̇ = (A(t)−L(t)C)Ω+G(t, x̂,y,u(t))
˙̂
θ = γΩ⊤C⊤ (y −Cx̂)

where

Ω =

 Ω1 Ω2
Ω3 Ω4
Ω5 Ω6

 , L(t) =

 L1(t) 0
0 L2(t)
0 L3(t)



Note that A writes

A(t) = φ(t)
y1(t)


0 0 0
0 0 1

ηc

0 0 − κ

ηc


︸ ︷︷ ︸

Ã

,

We can choose L(t) = φ(t)
y1(t) L̃, where the constant matrix

L̃ is such that Ã− L̃C is Hurwitz. Finally, the equations



of the observer (4) are
˙̂
S = k̂1

(
−φ(t)− (1−φ(t))KR(Ŝ)+k2u(t)

)
+ φ(t)

y1(t) L̃1(y1(t)− Ŝ)+Ω1
˙̂
k1 −Ω2

˙̂
k3

˙̂
B = φ(t)

ηcy1(t)N̂ + φ(t)
y1(t) L̃2

(
y2(t)− B̂

)
+Ω3

˙̂
k1 −Ω4

˙̂
k3

˙̂
N = −k̂3

φ(t)
ηcy1

N̂ + φ(t)
y1(t) L̃3

(
y2(t)− B̂

)
+Ω5

˙̂
k1 −Ω6

˙̂
k3

Ω̇1 = − φ(t)
y1(t) L̃1Ω1 −φ(t)− (1−φ(t))KR(Ŝ)+k2u(t)

Ω̇2 = − φ(t)
y1(t) L̃1Ω2

Ω̇3 = φ(t)
y1(t)

(
−L̃2Ω3 + Ω5

ηc

)
Ω̇4 = φ(t)

y1(t)

(
−L̃2Ω4 + Ω6

ηc

]
Ω̇5 = φ(t)

y1(t)

(
−L̃3Ω3 − κΩ5

ηc

)
Ω̇6 = φ(t)

y1(t)

(
−L̃3Ω4 − κΩ6

ηc

)
+ φ(t)

ηcy1(t)N̂

˙̂
k1 = γ

(
Ω1(y1(t)− Ŝ)+Ω3(y2(t)− B̂)

)
˙̂
k3 = −γ

(
Ω2(y1(t)− Ŝ)+Ω4(y2(t)− B̂)

)

Let us underline that this observer allows to reconstruct
the parameter k1 as well, without the need of the former
observer.

V. Numerical simulations
For the simulations, we have considered the following

set of parameters

k1 k2 k3 k4 Γ S∗ Sw Sh L S0
1.2 5.5 2.5 1.7 3.105 0.5 0.2 0.1 1.2 1

with the function

φ(t) = 2t

2t+3
and the control

u(t) = max
(

0,
t

t2 +1 + cos(t/2)+sin(πt)
2 + cos(3et)

4

)
A. Estimation of k1, k2 and Sh

Figure 1 illustrates the adaptive observer given by
Proposition 1, with noise.

B. Estimation of N , k1 and k3

For the adaptive observer (4), the following tuning has
been chosen

Cin
N γ ηc L̃1 L̃2 L̃3 Ω0

1.5 150 0.8 L1 0.5L̃1 0.5L̃2 03×2

Fig. 1. Adaptive observer for problem A with a 5% noise

Ŝ0 B̂0 N̂0
0.5S0 0.5B0 0.5N0

Figures 2, 3 show the adaptive observer (4) without and
with noise.

Fig. 2. Adaptive observer for problem B without noise

Fig. 3. Adaptive observer for problem B with 5% noise



C. Comparison with other approaches
Problem A is a pure identification problem. One can

then use a (recursive) least square method to estimate
parameters parameters k1, k2 and Sh from the measure-
ment y1. We have use the lsqrsolve function of scilab
based on the Levenberg-Marquardt algorithm. Figures 4,
5 shows that this method works well without noise but
is not robust with measurement noise.

Fig. 4. Least-square estimatuion for problem B without noise

Fig. 5. Least-square estimation for problem B with 5% noise

For Problem B, let us show how to use a classical high-
gains observer, assuming that the unknown parameter
k3 belongs to a given interval [kmin

3 ,kmax
3 ]. We first note

from equation (7) that N cannot reach 0 in finite time.
One can then define the variable Z = −k3N , and write
the dynamics of the system (B,N,Z) as follows

Ḃ = f(t)N
Ṅ = f(t)Z +k4Cin

N u(t)

Ż = f(t)
(

Z

N

)
Z −

(
Z

N

)
k4Cin

N u(t)

where we posit f(t) = φ(t)ηC
KS(y1(t))y1(t) . Note that this last

function is zero only at t = 0. Then, for any control u(·),
we can define ũ(·) such that k4Cin

N u(t) = f(t)ũ(t) for
almost all t ≥ 0. Note also that along any trajectory one
can replace Z

N by a globally bounded function on R2:

ρ(N,Z) = −max
(

kmin
3 ,min

(
Z

max(N,ε) ,kmax
3

))
where ε > 0 is an arbitrary small number to ensure N > ε
on the time window. Then, the system takes the form Ḃ

Ṅ
Ż

 = f(t)

 N
Z

ρ(N,Z)Z

+f(t)ũ(t)

 0
1

ρ(N,Z)


which is exactly in the nonlinear canonical form in time
τ =

∫ t
0 f(s)ds (see [13]). Therefore, the observer

˙̂
B = f(t)N̂ −2χf(t)(y2(t)− B̂)
˙̂

N = f(t)Ẑ −k4Cin
N u(t)−3χ2f(t)G2(y2(t)− B̂)

Ż = ρ(N̂ , Ẑ)
(

f(t)Ẑ −k4Cin
N u(t)

)
−3χ3f(t)G3(y2(t)− B̂)

k̂3 = −ρ(N̂ , Ẑ)

ensures an exponential convergence provided that the
tuning coefficient χ > 0 is sufficiently large. Figure 6
shows good performance of this observer, comparable to
the adaptive observer for χ = 3, but unfortunately it is
poorly robust with respect to noise (Figure 7), which
makes it unreliable in practice. For both problems, we

Fig. 6. High gains observer for problem B without noise

conclude about the superiority of the adaptive observers.

VI. Conclusion
In this paper, an adaptive observer has been proposed

for a class of nonlinear time-varying systems with dis-
turbances and measurement noises. This one extends
the existing results by considering a generic and the
most complex scenario. The analysis of convergence and
robustness of this type of adaptive observer is specially
based on a SIIOS-Lyapunov function method. A crop



Fig. 7. High gains observer for problem B with 5% noise

irrigation model from the agronomy has been used for il-
lustration of the efficiency of the observer by a numerical
simulation.

Appendix
We recall classical results of the literature about sta-

bility of non-autonomous linear systems.

Definition 4 (Persistent excitation): Let ϕ : R+ →
Rm×n be a continuous bounded function. We say that
ϕ is persistently exciting if there exists α > α > 0, T ∗ > 0
such that

αIm ≥
∫ t+T ∗

t
ϕ(s)ϕ(s)⊤ds ≥ αIm, ∀t ≥ 0.

Theorem 3 ([12]): If ϕ is a persistently exciting func-
tion, A(t) ∈ Rn×n is a bounded piece-wise continuous
matrix, and P (t) = P ⊤(t) ≻ 0 a bounded continuous-time
matrix in Rn×n such that

Ṗ +PA+A⊤P ≺ 0,

for all t ≥ 0, then the non-autonomous linear system(
ẋ

θ̇

)
=

(
A −ϕ⊤

ϕP 0

)(
x
θ

)
is exponentially stable.
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