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Abstract. We introduce a new diagnosis tool that is well suited to analyzing simulation results over
large samples of watersheds. It consists of a modification of the classical Taylor diagram to simultane-
ously visualize several error components (based on bias, standard deviation or squared errors) that are
commonly used in efficiency criteria (such as the Nash–Sutcliffe efficiency (NSE) or the Kling–Gupta
efficiency (KGE)) to evaluate hydrological model performance. We propose a methodological frame-
work that explicitly links the graphical and numerical evaluation approaches, and show how they can
be usefully combined to visually interpret numerical experiments conducted on large datasets. The
approach is illustrated using results obtained by testing two rainfall-runoffmodels on a sample of 2050
watersheds from 8 countries and calibrated with two alternative objective functions (NSE and KGE).
The assessment tool clearly highlights well-documented problems related to the use of the NSE for the
calibration of rainfall-runoffmodels, which arise due to interactions between the ratio of simulated to
observed standard deviations and the correlation coefficient. We also illustrate the negative impacts
of classical mathematical transformations (square root) applied to streamflow when employing NSE
and KGE as metrics for model calibration.
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1. Introduction

Hydrological models are widely used for research, en-
gineering and water resources management. What-
ever the context, modelers often share common in-
terests in quantifying the efficiency, the robustness
and the realism of models structures, improving the
generality and transposability of model structures
across space and time scales, and designing methods
to extract information from hydrological time series
for model parameter identification.

A wide panel of methodologies and numerical
techniques currently exist to meet these objectives.
But advanced model validation remains a key is-
sue for model users, who apply models to make de-
cisions. The balance between the predictive power
and the physical realism of models is still a matter
of debate in validation approaches (see for example
the debate between Konikow and Bredehoeft [1992]
and de Marsily [1994], as summarized by Andréas-
sian [2023], this issue). In the context of growing data
availability [Addor et al., 2020], the efficiency and
generality of models can be better assessed by us-
ing large watershed samples [Gupta et al., 2014], typ-
ically consisting of several hundreds to a few thou-
sands of watersheds [Newman et al., 2015, McMillan
et al., 2016, Lane et al., 2019, Mathevet et al., 2020].
The use of large watershed samples has various bene-
fits, among which are improved understanding based
on rigorous and controlled numerical experiments
allowing comparison and hypothesis testing, and im-
proved robustness of generalization based on statisti-
cal analyses of model performance and reduced sen-
sitivity to site-specific watershed properties.

Among the efficiency criteria commonly used to
quantify the adequacy between simulations and ob-
servations, the Nash–Sutcliffe efficiency [Nash and
Sutcliffe, 1970; NSE] and the Kling–Gupta efficiency
[Gupta et al., 2009; KGE] provide summary statistics
that can be calculated on long periods or sub-periods
[Mathevet et al., 2020]. These metrics are often ap-
plied to model simulations considering as target
variables: (i) streamflow (Q), (ii) various non-linear
transformations of streamflow [square root, inverse,
logarithmic or Box–Cox transformations; see Santos
et al., 2018] and (iii) some hydrological signatures

(hydrological regime, flood distribution, drought dis-
tribution, etc.). Some major drawbacks of the NSE
have long been demonstrated: the use of a poor
benchmark model to assess model performances
[Schaefli and Gupta, 2007], an unbounded formula-
tion inappropriate for statistical analyses [Mathevet
et al., 2006] or an unpredictable trade-off between
mean bias, variability bias and correlation while cal-
ibration [Gupta et al., 2009]. The KGE has been pro-
posed to overcome some of these problems, provid-
ing a more balanced compromise between expected
properties of model simulations (bias on mean flow,
bias on flow variability and correlation between sim-
ulation and observation).

When working with large watershed samples, it
becomes necessary to summarize the sets of effi-
ciency criteria values to enable effective comparison
of performance obtained with different model struc-
tures, time periods or calibration options, etc. Distri-
butions, boxplots and scatterplots are often used to
visually compare numerical experiments. However,
while such analyses are statistically relevant, they can
drastically reduce the information content of a nu-
merical experiment, particularly when some criteria
are partially correlated. Alternatively, one may con-
sider the Taylor diagram [Taylor, 2001], which is com-
monly used to simultaneously visualize several er-
ror components of a model simulation, and which
has been used in climate and hydrological modeling
studies. Taylor diagram is usually used in its classical
formulation to compare few models or few data sets
on a case study, considering correlation, standard de-
viation and root mean square error (RMSE) [Yaseen
et al., 2018, Maroufpoor et al., 2020].

The objective of this paper is to propose a modifi-
cation of Taylor diagram to simultaneously represent
components of the KGE, i.e. mean bias, variability
bias and correlation. We illustrate the application of
this graphical tool using results of a numerical exper-
iment based on the methodology proposed by Math-
evet et al. [2020] and demonstrate its usefulness to
answer the following research questions:

• What are the main performances of mod-
els calibrated using NSE or KGE as objective
function (in terms of mean bias, standard
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deviation bias and correlation and depen-
dency structure between these criteria)?

• Do the performances vary with model struc-
ture or watershed location?

• What are the impacts of non-linear transfor-
mations of streamflow, classically used when
calibrating rainfall-runoffmodels?

Section 2 presents the theoretical background of
Taylor diagram and its modification, Section 3
presents an overview of the experimental design,
and Section 4 details the general results of the study.
Section 5 presents a discussion of the results and our
conclusions are given in Section 6.

2. Theoretical background

2.1. Classical Taylor diagram

This section reviews the basics underlying the con-
struction of a Taylor diagram. Table 1 lists the sym-
bols used throughout this paper.

A Taylor diagram [Taylor, 2001] is intended to si-
multaneously display several metrics on a graph, de-
scribing the discrepancies between a test field or se-
ries (e.g., the simulation) and a reference one (e.g.,
the observation). These metrics consist of the (sam-
ple) Pearson correlation coefficient R, the standard
deviation of the simulation σ̂ (resp. the ratio of sim-
ulated to observed standard deviation σ̂/σ0), and E ′

the root mean squared error on centered patterns
(CRMSE). The CRMSE differs from E , the classical
RMSE, in the removal of the bias component, accord-
ing to the relation:

E 2 = 1

n

n∑
i=1

[
f̂i − fi

]2
(1)

E 2 = 1

n

n∑
i=1

[(
f̂i − µ̂

)− (
fi −µ0

)+ (
µ̂−µ0

)]2
(2)

E 2 = 1

n

n∑
i=1

[(
f̂i − µ̂

)− (
fi −µ0

)]2 + 2

n

(
µ̂−µ0

)
×

[
n∑

i=1

(
f̂i − µ̂

)− n∑
i=1

(
fi −µ0

)]+ (
µ̂−µ0

)2 (3)

with

E ′2 = 1

n

n∑
i=1

[(
f̂i − µ̂

)− (
fi −µ0

)]2
. (4)

By definition of the sample mean, the terms
∑n

i=1( f̂i −
µ̂) and

∑n
i=1( fi −µ0) sum up to zero, so that Equa-

tion (3) can be simplified to:

E 2 = E ′2 + (
µ̂−µ0

)2 = E ′2 +β2. (5)

By further developing E ′2 we get:

E ′2 = 1

n

n∑
i=1

(
f̂i − µ̂

)2 + 1

n

n∑
i=1

(
fi −µ0

)2 −2

∗ 1

n

n∑
i=1

(
f̂i − µ̂

)
( fi −µ0) (6)

E ′2 = σ̂2 +σ2
0 −2∗ σ̂σ0R (7)

or its normalized version:(
E ′

σ0

)2

=
(
σ̂

σ0

)2

+1−2∗ σ̂

σ0
R. (8)

If we define a polar plane such that a given simulation
is represented by the point P : (ρ = σ̂; θ = arccosR),
then according to the law of cosines, the third metric
E ′ is given by the distance between P and the refer-
ence point P0: (ρ =σ0; θ = 0) located on the cartesian
x-axis. The same plot can be drawn using normalized
values, the simulation and reference points being re-
spectively defined by P ′: (ρ = σ̂/σ0; θ = arccos(R))
and P0: (ρ = 1; θ = 0).

2.2. Adapting Taylor diagram to represent bias,
NSE, total RMSE, or any monotonic function
of sum of squared errors (SSE)

One limitation of the previous diagram is that it does
not allow for visualizing the absolute bias along with
the CRMSE, and not the bias component β = µ0 − µ̂
(resp. βn = (µ0 − µ̂)/σ0). Though it is rarely used in
the literature, Taylor proposed a method to display
bias on the same frame. It consists of attaching a seg-
ment to the point, which length is equal to |β| (resp.
|βn | in the normalized version), as shown in Figure 1.

If the segment is oriented perpendicular to the
direction (P0P ), then the squared hypotenuse P0P ′2

of the right triangle created in this way satisfies the
condition:

P0P ′2 = P0P 2 +PP ′2 (9)

P0P ′2 = E ′2 +β2 (10)

P0P ′2 = E 2. (11)

If we chose to normalize errors with the standard
deviation σ0 of the observed streamflow series, the
squared hypotenuse P0P ′2 now quantifies the total
normalized squared error and Equations (10) and
(11) become respectively Equations (12) and (13):

P0P ′2 =
(

E ′

σ0

)2

+β2
n (12)

P0P ′2 =
(

E

σ0

)2

(13)



4 Thibault Mathevet et al.

Table 1. List of symbols used

Symbol Meaning Mathematical definition

µ0 Mean of observed streamflow

µ̂ Mean of simulated streamflow

σ0 Standard deviation of observed streamflow

σ̂ Standard deviation of simulated streamflow

β Absolute mean bias β=µ0 − µ̂
βn Normalized mean bias βn = µ0 − µ̂

σ0

βr Relative mean bias βr = µ̂

µ0

α Relative variability bias α= σ̂

σ0

E Root mean square error (RMSE)

E ′ RMSE on centered patterns (CRMSE) E ′2 = E 2 −β2

ρ Radius (distance to origin) in the polar plane

θ Azimut (counter-clockwise from x-axis)

R Pearson correlation coefficient

fi Observations of a given variable (streamflow in our case)

f̂i Estimations of a given variable

which means that with P ′ we now have a reading of
both bias (|β|, leg PP ′ of the right triangle) and total
RMSE (E , hypotenuse P0P ′). Since the segment rep-
resenting bias only has to be at a right angle with the
segment reaching the reference, then we can for ex-
ample choose a clockwise rotation for negative bias
(i.e., an arrow pointing towards −P ′, the origin of
the polar plane) and counterclockwise for positive
bias (i.e., an arrow pointing towards P ′, the outer
boundary).

Recognizing that NSE, MSE, RMSE are all mono-
tonic functions of the total sum of squared errors, it
is then easy to modify the diagram in order to display
curves that are, for example, contour lines of NSE ef-
ficiency or its bounded version [Mathevet et al., 2006]
rather than contour lines of (C)RMSE. In this sec-
tion, we show that any monotonic function of SSE
can be drawn on the normalized version of the Tay-
lor diagram. This provides an interesting outlook of a
hydrological simulation through the visualization of
five assessment criteria for all the watersheds: cor-
relation R, ratio of simulated to observed standard
deviation, normalized bias βn , NSE on centered pat-
terns (CNSE) and classical NSE.

2.3. Prone-like regions in the modified Taylor di-
agram depending on the objective function

We now wish to determine in which region of the
Taylor diagram a simulation result should fall,
when the hydrological model is calibrated with
an ordinary-least-squares (OLS) criterion such as the
Nash–Sutcliffe efficiency.

For this, we use the decomposition of NSE pro-
posed by Gupta et al. [2009], which reads:

NSE = 1−
(

E

σ0

)2

(14)

NSE = 1−
(

E ′

σ0

)2

+βn
2 (15)

NSE = 2

(
σ̂

σ0

)
R −

(
σ̂

σ0

)2

−βn
2 (16)

NSE = 2αR −α2 −βn
2. (17)

Equations (14)–(17) show that OLS-like criteria tend
to fit the first (β=βn = 0 or in other words E = E ′) and
second (α = 1) moments of the distribution of the
observations in a rather straightforward way. Con-
versely, the role of the correlation term R that repre-
sents the ability of the model to reproduce timing and
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Figure 1. Convention for representing bias and
total RMSE. Green circles centered on the ref-
erence are contours of CRMSE if used with the
dot P , or RMSE if used with the end tip of the
green arrow (P ′). In this case where σ0 = 1 for
the sake of simplicity, estimated standard devi-
ation is σ̂ = 1.41, correlation R = 0.86, CRMSE
E ′ = 0.75, bias β=±0.45 and RMSE E = 0.87.

shape is mixed up with the value of α. This appears
clearer when deriving Equation (15) with respect to
α by considering R and βn fixed, as shown by Gupta
et al. [2009]:

∂NSE

∂α
= 2(R −α) = 0. (18)

Hence, any OLS calibration will tend to equate α, the
ratio of simulated to observed standard deviation,
with the correlation coefficient R: these two metrics
are entangled. This also poses a problem since R is
necessarily lesser than unity, OLS calibration will lead
to α less than unity, i.e. a systematic underestima-
tion of the variance of streamflow. We will show how
this dependency should translate in the Taylor dia-
gram.

Let us consider the normalized version of the Tay-
lor diagram, and let εOLS be the locus of the points
satisfying the condition α = R i.e. θ = arccos(R) =
arccos(α). The cartesian coordinates of those points

hence verify:

x =α ·cos(θ) =α ·cos(arccos(α)) =α2 (19)

y =α · sin(θ) =α · sin(arccos(α)). (20)

It is then easy to see that εOLS is the semi-circle cen-
tered at (x = 1/2; y = 0), with radius 1/2. Indeed, for
any point in εOLS we have:(

x − 1
2

)2 + y2 = x2 −x + 1
4 + y2 (21)(

x − 1
2

)2 + y2 =α4 −α2 + 1
4 +α2 sin2(arccos(α))

(22)(
x − 1

2

)2 + y2 =α2(α2 −1)

+ 1
4 +α2(1−cos2(arccos(α))) = 1

4 .

(23)

This result is illustrated in Figure 2. For every point
of this circle (red dots), the radial through this point
(red dashed line) is tangent to the NSE (or RMSE, or
SSE, etc.) contour passing through this same point
(green dash circle). We can call this curve the “least-
squares attractor in the absence of bias” and in the
following sections we will show that indeed models
calibrated with a monotonic function of the sum of
squared errors tend to align along this semi-circle
in the polar plane. Since the red curve is system-
atically under the ideal fit of normalized standard
deviation (α = (σ̂/σ0) = 1), this illustrates the in-
herent problems of underestimation of the variance
of OLS schemes. As a consequence of the normal-
ization of the axes of standard deviation, the green
dashed lines now represent isolines of NSE, instead
of the isolines of RMSE in Figure 1. Figure 2 shows
clearly the unfair trade-off occurring during an OLS
scheme between R and the ratio of standard devia-
tion since the least-squares attractor tends to favor
a higher correlation at the expense of a systematic
underestimation of α. In its present form, note that
the proposed modified Taylor diagram does not al-
low the representation of negative NSE. This was also
a problem with the classical Taylor diagram that does
not allow the representation of a negative correlation
coefficient.

3. Experimental design

Here we use the same numerical experiment as in
Mathevet et al. [2020], which is briefly summarized
in this section.
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Figure 2. Construction of the locus of the
points satisfying ∂NSE/∂α = 0 or, synony-
mously, α= R in red. The green circles are con-
tours of NSE.

3.1. Watershed sample

A large sample of 2050 watersheds spanning over
eight countries is used in this paper. This sample is
mainly (80%) represented by watersheds in France,
USA and Australia. Other watersheds are situated in
Italy, Laos, Sweden, Switzerland and UK. This sam-
ple covers a variety of climatological, physical and
hydrological characteristics (see Table 2). Time se-
ries consisted of mean daily rainfall, air temperature
and streamflow. Climatic data are averages at the wa-
tershed scale, but the way these averages were com-
puted is variable between the national sub-samples
of watersheds. Potential evapotranspiration (PE) was
computed using the temperature-based formula pro-
posed by Oudin et al. [2005].

3.2. Hydrological models

Two conceptual rainfall-runoff models are used in
this study: the GRX model [slightly modified from
GR4J model, Le Moine, 2008 and Pushpalatha et al.,
2011] and the MRX model [modified from MOR-
DOR model, Garçon, 1996 and Garavaglia et al.,

2017]. These two models have already been inten-
sively tested, both for research and operational ap-
plications, in France and worldwide [Mathevet et al.,
2020]. A number of studies have shown that their
structures can be efficient, with comparable per-
formance in simulation, forecast and extrapolation
modes. A snow accumulation and melt routine [from
Garavaglia et al., 2017] is also used in this study
to represent snow processes of mountainous water-
sheds. Note that these two models differ in their level
of complexity with 9 free parameters for GRX and 22
free parameters for MRX.

3.3. Calibration and evaluation metrics

Two classical metrics were used:

• Nash–Sutcliffe efficiency (Equation (14));
• Kling–Gupta efficiency (Equation (24));

KGE = 1−
√

(βr −1)2 + (α−1)2 + (R −1)2, (24)

where βr and α assess the mean and variability bias
of the long-term water balance, while R assesses the
temporal dynamics of model simulations.

NSE and KGE metrics were used for model cali-
bration. NSE, KGE, βr , α and R were used for model
evaluation. On a limited sub-sample of 635 water-
sheds (30% of the whole sample, to reduce comput-
ing time), a square root transformation of streamflow
time-series was used to compute NSE and KGE met-
rics for model calibration.

3.4. Testing procedure

A classical split sample test (SST) procedure was
implemented [Klemeš, 1986]. For each watershed,
the available time period was divided into two in-
dependent sub-periods of equivalent length. After a
one-year warm-up period to minimize state initial-
ization errors, calibration was performed on each
sub-period (first half, then second half), followed
by evaluation on the other sub-period (second half,
then first half). On the 2050 watershed sample, the
mean temporal length of calibration and evalua-
tion periods is 14 years. This testing procedure pro-
vided 4100 calibration and evaluation periods to
assess model performance. Parameter optimization
was conducted by use of a genetic algorithm [Math-
evet, 2005].



Thibault Mathevet et al. 7

Table 2. Distributions of characteristics of the 2050-watershed sample

Distribution percentiles

Characteristics 0.05 0.25 0.50 0.75 0.95

Watershed area (km2) 31 102 255 734 2785

Mean annual total precipitation (P) (mm/yr) 626 800 950 1175 1627

Part of precipitation falling as snow (-) 0 0 0.03 0.09 0.29

Mean annual air temperature (°C) 4.9 9.2 10.5 12.1 16.2

Mean annual potential evapotranspiration (PE) (mm/yr) 471 633 686 773 998

Mean annual runoff (Q) (mm/yr) 53 207 344 541 1111

Aridity index (P/PE) (-) 0.80 1.12 1.35 1.74 2.82

Runoff coefficient (Q/P) (-) 0.08 0.24 0.36 0.48 0.79

Available time series length (yr) 11 18 33 36 55

4. Results

4.1. Mono-objective performance assessment us-
ing distribution or boxplot analyses

When using a large sample of watersheds, it is
difficult to focus on local performance of a given
model on a particular watershed, but much eas-
ier to draw general conclusions regarding com-
parative model performance under the hypothe-
ses of the numeric experiments studied. Classically,
samples of performance metrics are analyzed us-
ing empirical cumulative distributions (Figure 3)
and distributions are summarized by boxplots (Fig-
ure 4).

Figure 3 shows the full distribution for the
KGE(Q) performance metric only (for sake of
brevity), while models are calibrated with NSE(Q)
(Figure 3a) and KGE(Q) (Figure 3b). This figure
shows that models have a similar distribution of
KGE(Q) (particularly above median value) in cal-
ibration and evaluation, that models have a sim-
ilar reduction of performance from calibration to
evaluation and obviously that models calibrated
with KGE(Q) have better performances than mod-
els calibrated with NSE(Q), while evaluated with
KGE(Q).

Figure 4 shows the sample distributions of per-
formance metrics (βr , α, R, KGE and NSE) for the
calibration and evaluation periods (i.e. 4100 values
per period), for each of the two models calibrated
either with NSE(Q) or KGE(Q) as objective function

(a detailed analysis of this numerical experiment is
presented in Mathevet et al. [2020]).

When using NSE(Q) as objective function, Fig-
ure 4a shows that models are not biased in terms of
mean calibration. During evaluation, models could
be biased in mean but they remain not biased on
average (instead the spread of the distribution in-
creases). In terms of variability bias, Figure 4a shows
that models are biased on average (mean underesti-
mation of variability by 10%) and that the spread of
the variability bias distribution increases from cali-
bration to evaluation [Gupta et al., 2009].

When using KGE(Q) as objective function, Fig-
ure 4b shows that models are not biased in terms of
mean and variability during calibration. During eval-
uation, models could be biased in mean and variabil-
ity, but they remain not biased on average (the spread
of the distribution increases).

Figure 4 also shows that both models have a me-
dian correlation around 0.9 and that distributions are
pretty similar for the two models and from calibra-
tion to evaluation. This means that the watershed dy-
namics are rather equally well represented by both
models, whatever the objective function used for op-
timization.

KGE(Q) and NSE(Q) distributions partially filter
out some important features of individual mean and
variability bias distributions and correlation distribu-
tion. While calibrated with KGE(Q), the KGE(Q) dis-
tribution is very similar to the correlation distribu-
tion since models are not biased in terms of mean
and variability. From calibration to evaluation, both
KGE(Q) and NSE(Q) distributions show a general
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Figure 3. Comparison of GRX and MRX KGE performance in calibration and evaluation using (a) NSE(Q)
or (b) KGE(Q) as objective function to optimize model parameters.

decrease due to the average decline of performance
concerning the representation of streamflow mean
and variability.

4.2. Multi-objective performance assessment us-
ing Taylor diagram

In the following part of the paper, only GRX results
will be presented, since the MRX results have similar
patterns and lead to similar conclusions. MRX results
are presented in Appendix A.

Distributions or boxplots are useful graphical
tools for the statistical analysis of model perfor-
mance for a given metric. However as stated earlier
(Section 2), some performance metrics might be cor-
related while calibrated with a given objective func-
tion (NSE(Q) as an example, or any OLS criterion).

Figure 5a shows the GRX model results when cali-
brated with NSE(Q) as objective function. This figure
confirms that the theoretical behavior described ear-
lier by Gupta et al. [2009] actually occurs when cal-
ibrating the model with the NSE(Q) criterion. In the
calibration phase, hydrological models manage to get
a quite small mean bias, since red arrows are barely
distinguished in the left-hand side diagram of Fig-
ure 5a, given that they are very short. Mean bias in
calibration is becoming greater for watersheds where

models obviously fail to correctly simulate stream-
flow. It is generally the case of very arid watersheds,
where models are less robust, with lower correla-
tion and higher standard deviation bias [Mathevet
et al., 2020]. RMSE and CRMSE being very close for
most of the watersheds, the colored dots characteriz-
ing the centered patterns clearly align along the blue
semi-circle in the (R, α) space, where the condition
α = σ̂/σ0 = R is satisfied. Two-dimensional contour
plots show that 90% of the population lies between
R ∈ [0.6,0.98] and α ∈ [0.5,1.02].

In the evaluation period (right-hand-side diagram
of Figure 5a), the underestimation of flow variance
obviously persists since colored points are still cen-
tered around the red semi-circle, though with much
more scatter, and bias substantially increases. Two-
dimensional contour plots show that 90% of the pop-
ulation lies between R ∈ [0.55,0.97] and α ∈ [0.4,1.2].

Figure 5b shows the results of GRX model cali-
brated with KGE(Q) as objective function. In the cali-
bration period (left-hand-side diagram of Figure 5b),
GRX manages to get a small mean bias (red arrows
are barely distinguished in the left-hand side dia-
gram of Figure 5b, since they are very short), apart
for some particular watersheds (again very arid wa-
tersheds). While calibrated with KGE(Q), the cen-
tered pattern clearly aligns with the unbiased nor-
malized standard deviation semi-circle (in red) with
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Figure 4. Comparison of GRX and MRX multiobjective performance (mean bias, variability bias, corre-
lation, KGE and NSE) in calibration and evaluation using (a) NSE(Q) or (b) KGE(Q) as objective function
to optimize model parameters. Boxplots represent the 5, 10, 25, 50, 75, 90 and 95 quantiles.

a very limited 2D scatter (90% of the population lies
between R ∈ [0.6,0.98] and α ∈ [0.95,1.05]. In the
evaluation period (right-hand-side diagram of Fig-
ure 5b), GRX has a limited normalized standard de-
viation bias since colored points are still centered
around the red semi-circle in the (R,α) space, though
with much more scatter and bias substantially in-
creases. Two-dimensional contour plots show that

90% of the population lies between R ∈ [0.6,0.98] and
α ∈ [0.5,1.5].

Figures 6 and 7 present results for NSE(Q) and
KGE(Q) as objective functions, for the GRX model
and three climate clusters as defined in Mathevet
et al. [2020]: (a) arid with desert and steppe (A),
(b) temperate with warm summer (T+WS), and (c)
temperate without dry season and warm summer
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Figure 5. Taylor diagram representing variability bias and correlation (points), and mean bias (arrows in
red) for (a) GRX model in calibration (left) and evaluation (right) while calibrated with NSE(Q) as objective
function, and (b) GRX model in calibration (left) and evaluation (right), when calibrated with KGE(Q) as
objective function. Contour plot illustrate the two-dimensional density of points (from 10% to 90% of the
sample).

(T−DS+WS). These figures show that the conclu-
sions obtained with the full 2050 watershed sam-
ple are still valid with limited climate clusters (from
100 to 800 watersheds) and patterns of results in the
modified Taylor diagram are mostly the same. The
large variability of model performance of arid water-
sheds is illustrated in Figures 6a and 7a, while the
homogeneity of model performance for temperate
without dry season watersheds is illustrated on Fig-
ures 6c and 7c.

As previously shown in Figures 3 and 4, while cal-
ibrated with NSE(Q) or KGE(Q), both models have a
very similar behavior and level of performances in
calibration and evaluation. This is shown by the sim-
ilar pattern of the 2D density contour plot on Fig-
ure 5 (resp. Appendix A, Figure A1), independently
from climate clusters as shown on Figures 6 and 7
(resp. Appendix A, Figures A2, A3). The comparison
of model behavior clearly shows the significant im-
pact of the choice of the objective function (NSE(Q)
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Figure 6. Taylor diagram representing variability bias and correlation (points) and mean bias (red arrows)
for GRX model in calibration (left) and evaluation (right) for (a) arid with desert and steppe cluster (586
watersheds), (b) temperate with warm summer cluster (785 watersheds), and (c) temperate without dry
season and warm summer (125 watersheds), when calibrated with NSE(Q) as objective function. Contour
plots illustrate the two-dimensional density of points (from 10% to 90% of the sample).
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Figure 7. Taylor diagram representing variability bias and correlation (points) and mean bias (red arrows)
for GRX model in calibration (left) and evaluation (right) for (a) arid with desert and steppe cluster (586
watersheds), (b) temperate with warm summer cluster (785 watersheds) and (c) temperate without dry
season and warm summer (125 watersheds), when calibrated with KGE(Q) as objective function. Contour
plots illustrate the two-dimensional density of points (from 10% to 90% of the sample).
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or KGE(Q)), whatever the hydrological model (GRX
or MRX, with very different level of complexity) and
whatever watershed properties (large sample of 2050
watersheds worldwide). As stated previously [Gupta
et al., 2009, Mathevet et al., 2020, among others],
KGE(Q) leads to much more reliable performance
than NSE(Q).

Furthermore, the Taylor diagram represents a
complementary tool to distributions (Figure 3) or
boxplots (Figure 4), allowing a multi-objective rep-
resentation of model performance behavior on a
large sample of watersheds (which is always difficult
to summarize) or climate clusters. Taylor diagram
(Figures 5–7) allow to display dependency struc-
ture between correlation and viariability bias while
calibrated with NSE(Q).

A complementary use of Taylor diagram is to ex-
plore the sub-period variability of performances of
a model on a given case study, in comparison to
performances estimated over the whole period. As
previously explored by Mathevet et al. [2020], sub-
period variability of performances could be high,
with unbiased simulation in mean and variability at
the full period scale, but with a totally different be-
havior at a sub-period scale. Figure 8 show the full
period and sub-period (annual basis) performances
for GRX model calibrated with KGE(Q) as objective
function for Hérault (Y2102010), Glueyre (V4145210)
and Blavet (J5202110) watersheds, during calibra-
tion and evaluation. These three watersheds come
from the French sample (Banque Hydro stations) and
were selected because they represent different types
of climate (Hérault: mediterranean climate with fa-
mous “Cévenols” events, Glueyre: mountainous cli-
mate, Blavet: oceanic climate) and geological context
(Hérault: limestones, Glueyre: granites, metamor-
phic, volcanic rocks and Blavet: sandstones, meta-
morphic rocks). Hence, these three watersheds ex-
hibit two different behavior, with a significant sub-
period scatter of mean and variability bias for Hérault
and Glueyre, while Blavet keep a rather limited and
homogeneous mean and variability bias all along
time. From calibration to evaluation, sub-period per-
formance patterns exhibited on Taylor diagrams re-
main mostly the same, with a slight increase of the
spread. Taylor diagrams clearly illustrate that even if
the overall bias in the calibration or evaluation peri-
ods can be quite small, the bias on sub-period inter-
vals can be significant (up to divided/multiplied by 2,

on Hérault and Glueyre). These results shows that
the use of full-period aggregate performance metrics
may not provide sufficient discrimination to prop-
erly assess model behavior on sub-periods [Mathevet
et al., 2020]. Similar results for MRX are shown in
Appendix A, Figure A4.

4.3. Impact of square root transformation on
multi-objective assessment of model perfor-
mances

We now present a numerical experiment performed
on a limited sample of 635 watersheds (randomly se-
lected). GRX and MRX models were calibrated using
a classical mathematical transformation, i.e. square
root (RQ) applied to streamflow, using NSE(Q & RQ)
and KGE(Q & RQ) as objective functions. This trans-
formation is classically used to better represent a
larger range of streamflows (i.e. low-flows) and re-
duce the weight of high-flows during calibration
[Pushpalatha et al., 2012]. Another transformation
has been tested (log transformation), but results are
not shown due to documented numerical issues of
this transformation [Santos et al., 2018].

Figure 9 presents Taylor diagrams with GRX
model performance in calibration and evaluation
for NSE(Q) (a) and NSE(RQ) (b). Figure 10 presents
Taylor diagrams with GRX model performance in cal-
ibration and evaluation for KGE(Q) (a) and KGE(RQ)
(b). Similar results for MRX are shown in Appendix A,
Figures A5 and A6.

When using the NSE metric as objective func-
tion for parameter optimization, in calibration, Fig-
ure 9b left (square root transformation) compared
to Figure 9a left (natural streamflow) shows that this
classical numerical transformation of streamflow in-
creases the normalized standard deviation bias, with
a majority of points located slightly to significantly
under the blue semi-circle line with an increasing
spread, for square root transformation of stream-
flow. Two-dimension contour plots surface of 90% of
the population increase from NSE(Q) to NSE(RQ). In
evaluation, Figure 9b right (square root transforma-
tion), compared to Figure 9a right (natural stream-
flow) shows that the pattern found in calibration re-
main the same concerning the normalized standard
deviation bias, with an increase of the spread of the
results (as shown by the two-dimensional contour
plots surface of 90% of the population).
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Figure 8. Taylor diagram representing variability bias and correlation (points) and mean bias (red arrows)
for GRX model in calibration (left) and evaluation (right) for (a) Hérault watershed, (b) Glueyre watershed
and (c) Blavet watershed, when calibrated with KGE(Q) as objective function. Points either represent
performances on individual years (color) or on the full periods (green color). These three watersheds
had been selected because generations of Ghislain de Marsily and Pierre Hubert students (DEA National
d’Hydrologie) swan, practiced kayak or celebrate New socio-hydrological years (NASH) in their beautiful
waters.
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Figure 9. Taylor diagram representing variability bias and correlation (points) and mean bias (red ar-
rows) for GRX model in calibration (left) and evaluation (right), when calibrated with (a) NSE(Q) and
(b) NSE(RQ) as objective function. The contour plot illustrates the two-dimensional density of points
(from 10% to 90% of the sample).

When using the KGE metric as objective func-
tion for parameter optimization, in calibration, Fig-
ure 10b left (square root transformation) compared
to Figure 10a left (natural streamflow) shows that this
classical numerical transformation of streamflow in-
creases the normalized standard deviation bias, with
a majority of points located between the red semi-
circle line and the blue semi-circle line for square
root transformation. The spread of the results in-
creases slightly for square root transformation. Two-
dimension contour plots surface of 90% of the pop-
ulation increases from KGE(Q) to KGE(RQ). In evalu-
ation, Figure 10b right (square root transformation)
compared to Figure 10a right (natural streamflow)

shows that the pattern found in calibration remain
the same concerning the normalized standard devia-
tion bias, with an increase of the spread of the results
(as shown by the two-dimensional contour plots sur-
face of 90% of the population).

Comparison of Figure 9a (calibration with
NSE(Q)), Figure 10a (calibration on KGE(Q)) and
Figure 10b (calibration on KGE(RQ)) allows to com-
pare patterns of results (in calibration and evalu-
ation) for different objective functions. Concern-
ing the variability bias, this comparison shows
that pattern of calibration with KGE(RQ) lies
in-between patterns of KGE(Q) (no bias) and NSE(Q)
(α= R).
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Figure 10. Taylor diagram representing variability bias and correlation (points) and mean bias (red
arrows) for GRX model in calibration (left) and evaluation (right), while calibrated with (a) KGE(Q) and
(b) KGE(RQ) as objective function. The contour plot illustrates the two-dimensional density of points
(from 10% to 90% of the sample).

5. Discussion

Based on a worldwide sample of 2050 watersheds,
two conceptual rainfall-runoff models (GRX and
MRX), two metrics classically used in hydrology
(Nash–Sutcliffe efficiency and Kling–Gupta effi-
ciency) and a split sample test, this paper investi-
gated the usefulness of a modified Taylor diagram to
analyze the results of large sample experiments.

We first proposed a modified Taylor diagram to
make clear the theoretical reasons why OLS schemes
tend to bias model simulations towards an underes-
timated standard deviation of streamflows. Empirical

evidence of this behavior was provided in an inten-
sive numerical experiment over a large watershed
sample. NSE(Q) is still largely used by hydrologi-
cal modelers and we encourage the use of KGE(Q)
instead of NSE(Q). The clear advantage of KGE(Q)
instead of NSE(Q) is that it deals with the opti-
mization process involving several objective func-
tions (correlation, ratio of means, and ratio of stan-
dard deviations) independently while NSE(Q) im-
plicitly involved a prescribed trade-off between cor-
relation and ratio of standard deviation. As a con-
sequence, we showed that calibrating hydrological
models with NSE(Q) led to significant variability
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biases on watersheds where models have difficul-
ties representing the temporal behavior of the wa-
tershed. KGE(Q) tended to reduce long-term mean
and variability bias, independently from the mod-
els’ level of correlation. These problems related to
NSE (and more generally to OLS schemes) were al-
ready reported in previous studies [see e.g. Gupta
et al., 2009] but the illustration provided by the mod-
ified Taylor diagram is a valuable add-on to these
studies. Besides these numerical problems, NSE does
put more weight on high flows, in the sense that
high flow days have a major contribution to the
total squared error. As with all least-squares-based
schemes, using NSE implicitly considers uncorre-
lated error time series and homoscedastic errors [see
e.g. Kavetski et al., 2003] and thus does not use the
whole information concerning the temporal struc-
ture of the observed discharge time series. KGE al-
lows to partially cope with this problem by including
more explicitly the errors in variance. Other smarter
error models (e.g. weighted least square accounting
for heteroscedasticity or correlation in the residuals)
may be considered and visualizing their optimiza-
tion results under the proposed Taylor diagram may
help to understand how the trade-off between cor-
relation, the ratio of means, and the ratio of stan-
dard deviation are modified compared to NSE(Q) or
KGE(Q).

Interestingly, we showed that the biased optimiza-
tion of OLS schemes towards reduced streamflow
variability was independent on the model used and
the environmental settings of the watersheds. When
modeling a single watershed, modified Taylor dia-
grams can be represented for all hydrological years
individually since the use of full-period aggregate
performance metrics may not provide sufficient dis-
crimination to properly assess model behavior on
sub-periods. Figure 8 showed that the optimization
process may be different according to the studied wa-
tershed in the way it deals with annual biases and
compensation along the calibration period. Thus,
we believe that the modified Taylor diagram can be
an interesting tool to investigate the ability of the
model to reproduce individual years, in complement
to other existing graphical tools [see e.g. Coron et al.,
2015]. This diagnosis allows the modelers to figure
out the ability of the model for extrapolation.

Last, we showed that calibrating hydrological
models with NSE metric applied to square root of

streamflows increases the initial pitfalls of using the
NSE metric on natural streamflow. This transforma-
tion increases the normalized standard deviation
bias of simulations while increasing the spread of
the results in the (R, α) space. It is also shown that
calibrating hydrological models with KGE metric
applied to the square root of streamflow reduces
the benefits of using the KGE metric on streamflow.
Again, this transformation increases the normalized
standard deviation bias of simulations, while in-
creasing the spread of the results in the (R, α) space.
As stated before [Santos et al., 2018], we consider
that using KGE metric on square root has signifi-
cant drawbacks and should be avoided since the
main drawbacks of the NSE metric are introduced
again.

6. Conclusion

We proposed in this paper a novel diagnostic tool
for hydrological model simulations. The proposed
graphical tool is based on the Taylor diagram and
we adapted this diagram to visualize commonly used
assessment criteria in hydrological modeling.

The adapted Taylor diagram illustrates some well-
known drawbacks of OLS schemes widely used in the
scientific community and particularly the fact that
the standard deviation of the simulated streamflow
is systematically underestimated. While the use of
alternative objective functions such as the KGE(Q)
overcomes these problems, future works may in-
vestigate the outputs of hydrological models opti-
mized with other objective functions that consider
heteroscedasticity and/or based on flow signatures.
Representing the outputs of these more complex
objective functions into the modified Taylor dia-
gram may help to understand how the calibration
process deals with the trade-off between correla-
tion, the ratio of standard deviation, and the ratio
of means.
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KGE(Q) as objective function. Contour plots illustrate the two-dimensional density of points (from 10%
to 90% of the sample).
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Figure A2. Taylor diagram representing variability bias and correlation (points) and mean bias (red
arrows) for MRX model in calibration (left) and evaluation (right) for (a) arid with desert and steppe
cluster (586 watersheds), (b) temperate with warm summer cluster (785 watersheds) and (c) temperate
without dry season and warm summer (125 watersheds), when calibrated with NSE(Q) as objective
function. Contour plots illustrate the two-dimensional density of points (from 10% to 90% of the sample).
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Figure A3. Taylor diagram representing variability bias and correlation (points) and mean bias (red
arrows) for MRX model in calibration (left) and evaluation (right) for (a) arid with desert and steppe
cluster (586 watersheds), (b) temperate with warm summer cluster (785 watersheds) and (c) temperate
without dry season and warm summer (125 watersheds), when calibrated with KGE(Q) as objective
function. Contour plots illustrate the two-dimensional density of points (from 10% to 90% of the sample).
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Figure A4. Taylor diagram representing mean bias, variability bias and correlation for MRX model in
calibration (left) and evaluation (right) for (a) Hérault watershed, (b) Glueyre watershed and (c) Blavet
watershed, while calibrated with KGE(Q) as objective function. Points either represent performances on
individual years (color) or on the full periods (green color). These three watersheds had been selected
because generations of Ghislain de Marsily and Pierre Hubert students (DEA National d’Hydrologie)
swan, practiced kayak or celebrate New socio-hydrological years (NASH) in their beautiful waters.
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Figure A5. Taylor diagram representing variability bias and correlation (points) and mean bias (red
arrows) for MRX model in calibration (left) and evaluation (right), when calibrated with (a) NSE(Q) and
(b) NSE(RQ) as objective function. The contour plot illustrates the two-dimensional density of points
(from 10% to 90% of the sample).

• Figure A1 (corresponding to Figure 11 for
GRX): Taylor diagram for calibration with
NSE(Q) and MSE(Q);

• Figure A2 (corresponding to Figure 12 for
GRX): Taylor diagram for calibration with
NSE(Q) for 3 different climate clusters;

• Figure A3 (corresponding to Figure 13 for
GRX): Taylor diagram for calibration with
KGE(Q) for 3 different climate clusters;

• Figure A4 (corresponding to Figure 14 for
GRX): Taylor diagram for calibration with
KGE(Q) for 3 different watersheds in France
(Hérault, Glueyre and Blavet);

• Figure A5 (corresponding to Figure 15 for
GRX): Taylor diagram for calibration with
NSE(Q) and NSE(RQ);

• Figure A6 (corresponding to Figure 16 for
GRX): Taylor diagram for calibration with
KGE(Q) and KGE(RQ).

These figures show that numerical experiments with
MRX model lead to similar results and conclusions
to those obtained with GRX model (patterns on Tay-
lor diagrams are very similar). These analyses with
GRX and MRX models confirm the generality of our
results, independent from the rainfall-runoff model
structure.
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Figure A6. Taylor diagram representing variability bias and correlation (points) and mean bias (red
arrows) for MRX model in calibration (left) and evaluation (right), when calibrated with (a) KGE(Q) and
(b) KGE(RQ) as objective function. The contour plot illustrates the two-dimensional density of points
(from 10% to 90% of the sample).
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