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Abstract
Recently, there has been a substantial increase in high-throughput technologies that

generate highly complex large datasets for use in the sciences. Plant breeding and

genetics have benefited from this data explosion where many public and private

institutions now implement genomic and phenomic data to predict performance

thus informing germplasm selection. However, the multitude of methodologies and

data generates a situation of strategic uncertainty. We set out to compare different

methods of genomic and phenomic selection in the Capsicum core collection, devel-

oped through the G2P-SOL project, producing a combination of unique and similar

selected genotypes for heat tolerance. Combined, the methods tested identified a total

of 33 genotypes that show tremendous promise for use as parents in heat tolerance

breeding: with 13 of these being present in more than 1 selection method. Combin-

ing classical and multispectral phenotyping methods produced better selection results
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than either method alone. When each method was conducted without being informed

by the other, similar results were obtained. Our weighted rank-sum selection index

identified 10 entries across environments that show heat tolerance, 8 of which are

also selected within heat environments. This suggests that different breeding pro-

grams can reach similar results despite having different logistical constraints. Our

case study within pepper germplasm using phenomic and genomic data exhibits the

potential to compensate for the dearth of germplasm knowledge with high-throughput

data as well as the converse, to compensate for logistical or financial constraint to new

technologies with breeder knowledge.

1 INTRODUCTION

Global food systems are under increasing pressure with

concentrating human populations, an increasingly stochastic

climate, and future projections predicting declines in food pro-

duction for major production regions (Godfray et al., 2010;

Myers et al., 2017; Ray et al., 2019). Further, future geo-

graphic regions for many major staples are expected to shift,

potentially leading to the abandonment of current produc-

tion locales (Estoque et al., 2019; Pironon et al., 2019).

Understanding the change in major abiotic stress factors and

beginning the process of breeding for adaptation to these

changes is essential to meeting future food security needs.

Plant breeding is based on efficiently selecting for traits that

are desirable to humans (Bernardo, 2014). Selection indices,

the combination of multiple traits into a single metric, have

been a part of breeding for decades (Hazel, 1943; Hender-

son, 1950; Lush, 1935; Lush, 1948; Smith, 1936). Indices

are often normalized and corrected for nongenic effects;

occasionally having additional weights associated with trait

importance or even economic relevance (e.g., Smith–Hazel

Index). Recently, indices and genomic selection (GS) have

been extended to high-throughput phenotypes through com-

plex predictive modeling. For example, Rutkowski et al.

(2016) used multivariate linear regression to incorporate sec-

ondary traits from aerial high throughput phenotyping (HTP)

platforms and realized improved genomic prediction accura-

cies, and Montesinos-Lopez et al. (2021) found that when

genotype-by-environment interaction is present, genomic best

linear unbiased prediction (G-BLUP) possesses better pre-

dictive accuracy across multiple species than alternative

deep-learning algorithms. These studies show that although

more complex models have been examined, predictive mod-

els that leverage the power and simplicity of linear regression

to understand secondary traits within complex genotype-by-

environment interaction are comparable and easier to interpret

(Montesinos-López et al., 2021; Rutkoski et al., 2016). The

goal of a selection index is to generate simultaneous gains in

multiple traits whilst accounting for trait covariation and inter-

action, ideally leading to rapid market introduction of novel

varieties. For an index to be broadly applicable, it should be

interpretable and easy to calculate.

HTP has introduced new and more kinds of phenotypes for

breeding (Araus & Cairns, 2014). These phenotypes include

image data, growth data, abiotic stress data, and yield-related

components accompanied by recent work exploring the rela-

tionship of these new data with traditional phenotypes to

leverage their use in genetics and breeding (Montesinos-

Lopez et al., 2017; Sun et al., 2017; Ziyomo & Bernardo,

2013). The dimensionality of HTP often makes interpreta-

tion difficult, although machine learning techniques reduce

the complexity of the data and enable decision-making. There

are many machine learning algorithms (e.g., classify k-means,

support vector machines, and random forests), which have

been used to help understand abiotic stress in plants (Ghosal

et al., 2018; Singh et al., 2016, 2018).

Toward the goal of leveraging the positive aspects of

the many different selection methods in pepper (Capsicum
annuum L.), we apply and compare three techniques. First, we

use an anomaly analysis through k-means clustering, where

we explore individuals that show normal behavior under both

heat (therefore anomalous) and normal conditions using all

the phenotypic data. We then used this to train a random forest

model that can classify heat-resistant types with only access

to trials under optimal conditions and found that this model

can detect germplasm near perfect accuracy. Following this

phenomic-based analysis, we conduct genomic-based predic-

tion to predict component traits and form a weighted rank-sum

selection index (WRSSI) to identify genomic-based heat-

tolerant lines. Lastly, we move with comparisons of selected

lines from three selection methodologies: (1) breeder’s intu-

ition; (2) phenomics-based through anomaly analysis; and (3)

genomics-based through predictive modeling and selection

index.
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2 MATERIALS AND METHODS

2.1 Germplasm and trial design

Three-hundred Capsicum entries were selected as a repre-

sentative sample of the global pepper core collection. Only

members of C. annuum were selected for this experiment to

increase uniformity in germination rate and growth, essential

for high-throughput automated phenotyping. These entries

were chosen as they represent 84.1% of all C. annuum
diversity (Tripodi et al., 2021). Trials were designed as a

randomized complete block with three replications, each of

them with four plants at a spacing of 0.45 by 0.45 m between

plants with 0.7 m between plots and 1.5 m between rows.

For the experiment, the entries were evaluated during three

seasons. We classify two seasons as heat stress seasons and

one as cool season, serving as the control. For the two heat

stress seasons, sowing and transplanting were on March 20

and April 29, 2020 and March 4 and April 7, 2021, respec-

tively. Sowing and transplanting dates for the control season

were September 7 and October 19, 2020. The 2020 heat-

stress season was characterized by long periods of stable, but

high temperatures, and exposed the entries to moderate heat

stress. The 2021 heat-stress season had a period of extreme

heat that corresponded with flowering for most of the entries,

exposing the entries to severe heat stress (Figure 1). All three

experiments were conducted at the World Vegetable Cen-

ter in Shanhua, Tainan, Taiwan (lat. 23.1˚N, long. 120.3˚E,

elevation 12 m.a.s.l.). Phenotypic information was gathered

through a combination of both manual and automated data

collection. The manual data (classical phenotypes) included

days to flowering, fruit maturity, yield components of fruit

length, width, weight, and yield, as described by Barchenger

et al. (2018, 2020) as well as pollen concentration and activity

using impedance flow cytometry following the protocol of Lin

et al. (2022). In addition, we manually collected leaf tempera-

ture, which was recorded between 12:45 and 13:45 p.m. using

handheld infrared thermometers held ∼5 cm above the leaf.

The automated data were collected using the PlantEye 3D-

Spectral Scan F500 (Phenospex, Heerlen, the Netherlands).

The 3D plant multispectral data in the near-infrared range

(NIR: 720–750 nm) and at three color bands (RED: 620–

645 nm, GREEN: 530–540 nm, and BLUE: 460–585 nm)

were automatically collected using the PHENA analytics

platform (Phenospex) and visualized and analyzed by Hort-

Control 3.0 (Phenospex). In total, 75 phenotypic observations,

including plant morphology, color, leaf temperature, pollen

quality, and yield component data, were recorded.

2.2 Selection methodologies

To compare multiple different types of selection, we created a

flowchart to arrive at different sets of cultivars using different

Core Ideas
∙ Combining classical phenotyping and multispec-

tral phenotyping performed better than either

method alone.

∙ Selection Indices combining genomic and phe-

nomic data provided increased prediction accuracy

in stress environments.

∙ There was overlap between selection methods,

indicating progress can be made by using new

technologies.

selection methodologies (Figure 2). These selection method-

ologies include a selection of lines based upon three method-

ologies with varying complexities: (1) breeder’s intuition; (2)

phenomics-based selection through anomaly analysis in k-

means clustering; and (3) genomics-based through predictive

modeling and selection index formation. Breeder’s intuition

leverages observation for informed selection. Phenomics-

based selection utilizes classically and multispectral collected

phenotypes to select lines as anomalies within specified k-

means clusters. Genomics-based selection combines all data

(e.g., classic and multispectral phenotypes, genomic marker

data) to identify the most accurate model and utilize normal-

ized best linear unbiased predictions (BLUPs) for each trait

weighted by univariate model accuracies to form a WRSSI.

2.2.1 Breeder’s intuition selection

To set a baseline of selection, our on-site lead breeder makes

selection based upon intuition. This is the art of breeding

where the knowledge of germplasm and consistent field per-

formance observations serve as the basis of selection. These

selections are made based upon just that, field observations

of line performance across a gradient of temperature through

three separate field trials as well as summary statistics for

different component traits.

2.2.2 Phenomics-based selection

Our second selection scheme is based upon all phenotypic

data and its subsets: classical and multispectral combined,

classical alone, and multispectral alone. We leverage k-means

clustering (Hartigan, 1975; Hartigan & Wong, 1979) to spec-

ify two clusters (K = 2) to represent groupings of (1) normal

phenotypic values and (2) stress phenotypic values. These

clusters are formed by the aggregation of all 75 phenotypic

observations (N dimensions) from all three trials for every
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F I G U R E 1 Temperature measured during the experiment over the course of three different field seasons, representing moderate heat stress, the

control, and extreme heat stress.

genotype (M points). The algorithm, therefore, is iteratively

searching for a K-partition with local optima by moving

points between clusters to minimize the within-cluster sum of

squares. Succinctly, the phenomics data is the input matrix of

M genotypes (rows) and N phenotypes (columns) where every

observation i is shifted between K clusters until within-cluster

sums of squares are minimized. Optimal clusters designated

from “fvis_nbclust()” in package “factoextra” at two clusters

(K = 2) using methods (1) within-cluster sums of squares

(“wss”) and (2) average silhouette (“silhouette”); as well as

trying to define expected phenomic values of normal ver-

sus temperature stressed. k-Means analysis performed with

a maximum number of iterations at 1000 with a nstart, or

random sets chosen, of 25.

Input data is from three trials: control, increased tempera-

ture stress, and severe temperature stress. All trials used the

same 300 genotypes, each with 3 replications for a total of

9 phenotypic observations per trait per genotype. Selection

of genotypes can be made upon this method by (1) identify-

ing the cluster primarily formed by observations of genotype

by control trial interaction, and (2) scanning observations of

genotype by stress trials interaction that cluster with the geno-

type by control trial interaction observations. In effect, this is

a phenomics selection tool to identify stress plastic genotypes,

the phenotypes of which are affected less than the difference

between the clusters. Moreover, these stress plastic genotypes

have a phenomics evaluation under the within the sum of

squares for the control cluster.

We perform cluster prediction using random forest machine

learning and used predicted clusters of a given genotype

by trial interaction to understand variance components and

component trait contribution in cluster formation and assign-

ment. Therefore, the random forest model followed the form

of cluster assignment as the response, building predictive

trees through all phenotypes observed at the genotype-by-

environment level (nine observations per genotype: three

replicates in each of the three environments).

To improve the understanding of phenomics applications

in breeding, we applied the above techniques to subset pheno-

typic data as two groups: (1) classically collected phenotypes

and (2) multispectral phenotypes (Table S1). This separa-

tion permits a comparison of the applicability of phenotyping

techniques in abiotic stress breeding of peppers and aims

to answer the question: Is more data really useful? Group

1 (classically collected phenotypes; 12 phenotypes) are pri-

marily yield-related traits such as fruit size, width, weight,

and pollen attributes, whereas Group 2 (technology collected;

63 phenotypes) is data collected from multispectral cam-

era vision. Selections from these three groups (full data,

classic phenotypes, multispectral phenotypes) were made by

the identification of anomalies. These anomalies, as stated

earlier, are those observations from genotype by stress envi-

ronment interaction that cluster with the genotype by control

environment cluster. Therefore, the anomalies are genotype

performance in stress conditions that perform within the sum

of squares difference of the control observations.

2.2.3 Phenomics and genomics indices

Our next selection scheme is the implementation of GS, using

phenomics and genomics data. Genotype processing is the
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F I G U R E 2 Flowchart showing the experimental methods used to make selections.

first step in this process. Marker information for 431 pep-

per genotypes from the World Vegetable Center were input as

.vcf files and filtered for missing data (Tripodi et al., 2021).

The genotype matrix was filtered for three criteria: removal

of markers with greater than 50% missing data, removal of

individuals with greater than 50% missing marker data, and

removal of markers with extreme minor allele frequencies

(MAF < 0.05). Filtering reduced the number of markers from

23,462 to 5840 markers, which were well distributed across

the genome. Individuals with genotype information but no

phenotype data (131 genotypes) were removed from the geno-

type matrix, whereas genotypes with phenotypic information

(300 genotypes) are used in model training and identifica-

tion. Any additional missing data in the genotype matrix was

imputed using Markov chain implementation as provided by

the R package “NAM” (Xavier et al., 2015).

Once genotype was filtered and imputed, we moved to test

different GS models for the predictive ability of our many

component traits. Trait BLUPs were used as the response

in univariate GS mixed models following linear parametric

(ridge-regression BLUP [RR-BLUP] and G-BLUP) and non-

linear parametric (Bayes-LASSO and Bayes-C) methods of

genomic prediction to account for their different assumptions

(Jannink et al., 2010; Voss-Fels et al., 2019; Meuwissen et al.,

2001; Bernardo, 2020; Habier et al., 2007). Nonlinear para-

metric methods of Bayes-LASSO and Bayes-C were used to

try to increase the prediction accuracy of the models (Park &

Casella, 2008; de los Campos et al., 2009; Heslot et al., 2012).

These models were fit using R packages “rrBLUP” (Endel-

man, 2011) and “BGLR” (Perez & de los Campos, 2014). This

cumbersome process was undertaken to find the model within

each group (linear parametric and non-linear parametric) with

the highest mean predictive ability (average across all 75 traits

and 3 environments).

The predictive abilities of each model by every trait

within each environment were recorded (Tables S2–S4).

The average model accuracy (e.g., an average of G-BLUP

performance for each trait across environments) was used to

compare against the other model used in each model type

(e.g., G-BLUP or RR-BLUP in linear parametric). However,

the accuracies of these models are likely overestimated

because of model overfitting, an expected outcome, but

useful in this model selection process. To account for the

inevitable overfitting in our full data models, we introduced

techniques of leave-one-out cross-validation (LOOCV) to

the best model in linear parametric (G-BLUP) and nonlinear

parametric (Bayes-C) methods to obtain more practical

univariate BLUPs within each environment and inform

confidence in the predictive ability of a given trait. Con-

sidering the relative similarity of predictive ability between

G-BLUP-LOOCV and Bayes-C-LOOCV, we move forward

with G-BLUP-KCV (K-fold cross-validation) predictions
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for selection index formation given its computational

efficiency.

We employed the technique of rank-sum index to form a

model accuracy–adjusted (i.e., weighted) rank-sum selection

index. Predicted phenotypic values (BLUP) from the most

accurate univariate models, G-BLUP-KCV, were used to rank

genotypes within each trait for BLUP of phenotypic perfor-

mance. Each trait BLUP was normalized (0,1) to adjust values

to the same order of magnitude. Moreover, because predic-

tive abilities of each univariate model varied for each trait, we

adjust the weighting of the ranking by 1 − rj (model accu-

racy r for trait j), entrusting more weight to those traits with

high predictive ability and deflating the importance of those

with low predictive ability. This method was iterated for every

trait within each environment (control, increased temperature,

severe temperature). Selections from each group were made

via truncation selection.

2.3 Genotype-by-environment prediction

The univariate model accuracies through cross-validation

show substantial decrease in the mean predictive ability as

compared to full data models. We then applied these methods

of KCV for multivariate GS by environment interactions. We

applied a genotype-by-environment model to make the best

prediction for selection considering changing environmental

stress by the specification of variance–covariance structure

in genotype by environment, using compound symmetry. In

short, compound symmetry is a variance–covariance struc-

ture specified through (1) a genetic correlation structure with

equal genotypic variance and equal correlation among pairs

of environments as well as (2) residual variance assumed

the same across environments (Covarrubias-Pazaran, 2016).

These predictions were performed primarily to identify com-

ponent traits with large genotype-by-environment variation

and used for internal purposes of phenotyping priority, similar

to the random forest models to understand trait contribution to

cluster assignment.

3 RESULTS AND DISCUSSION

3.1 Phenomics-based selection

Different clusters emerged for the control (normal

temperature—cluster 2) and the treatment (cluster 1—

temperature stressed). Some genotypes from the temperature

stress condition trials grouped with control (normal condition

phenotypes); this implies that these entries perform in the

increased temperature conditions like that of most entries

in the control condition, which form the bulk of the cluster

(Figure 3a). Individuals that were stressed but grouped with

controls did not show clear phenotypic symptoms of heat

stress (Table 1). This clustering was repeated using only the

classic phenotypes again showing clear clustering that differ-

entiated the control (normal temperature—cluster 2) and the

treatments (cluster 1—temperature stressed). Again, there

was a small subset of entries that grouped with the control

despite being in the stress treatment (Table 1; Figure 3b).

Clustering was then performed with only multispectral

phenotypes, again individual genotypes under temperature

stress clustered with the control (Table 1; Figure 3c). Two

key insights from this were that combining classical and

multispectral phenotypes provided more clear differentiation

of clusters than either type of phenotyping alone, indicating

that more data provides better information. When used

independently of one another, classical phenotyping and

multispectral phenotypes return the same best genotypes,

indicating that breeders can remain within different program

constraints to reach similar results.

Random forest regression was then applied to each geno-

type to assess if it was possible to accurately predict the

group (e.g., control or stress cluster) assignment based solely

on using the phenotypic data from the experimental tri-

als and to understand component trait contributions and to

identify the most important chromosomes in heat response

(Figures S1 and S2). This additional information allowed

for the exploration of common mechanisms from the same

genomic regions; we found that there were several signals

of stress tolerance across the entire genome, with different

genotypes having beneficial alleles from different genomic

regions (Figures S1 and S2). Again, having more phenotypes

provided an increased benefit, despite correlations between

traits (Figure S3). In our case, this came in the form of an

increased correlation between model accuracy in predicting

cluster assignment and a number of phenotypes used in the

model (R2 = 0.426). Variables with the highest contribution

include leaf area, biomass, and mean normalized difference

vegetation index in the full and multispectral models with

yield and days to anthesis in the classical phenotype-based

model.

3.2 Genomic selection

In addition to being phenotyped, every entry was also geno-

typed (see Tripodi et al., 2021). Both genetic and phenotypic

information was used to calculate BLUPs, which then form

the training and validation sets used to compare multi-

ple techniques of assessing breeding value. We included

genotype-by-environment interactions to select genotypes

with the highest multivariate performance for classically col-

lected phenotypes, multispectral collected phenotypes, and all

phenotypes combined.
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FUMIA ET AL. 7 of 12

F I G U R E 3 k-Means clustering of pepper accessions under control and heat stress environments on the principal components of (a) both classic

and multispectral phenotyping; (b) classic phenotyping; (c) multispectral phenotyping. In each case, it is possible to see clustering based on the

control and stress phenotypes, with some overlap between the two. Red indicates the treated environment, and blue indicates the control environment.

The overlap suggests that some genotypes perform stably in stress and control environments.

T A B L E 1 Individual genotypes which are clustered with controls when exposed to stress.

k-Means clustering with all phenotypes
k-Means clustering with classical
phenotypes

k-Means clustering with multispectral
phenotypes

GPC063760, GPC078540, GPC084560,

GPC093310, GPC097130, GPC107030,

GPC107960, GPC112760, GPC112830,

GPC113230, GPC115410, GPC116220,

GPC116260, GPC121020, GPC124980,

GPC128790

GPC003240, GPC003310, GPC003370,

GPC020570, GPC028750

GPC003240, GPC003310, GPC003370,

GPC020570, GPC028750

Note: Interestingly, entries from classical phenotyping and multispectral phenotyping resulted in the same entries performing the same.

3.2.1 Model comparisons

BLUPs were calculated for each trait separately using mixed

model regression. There were strong correlations among

the BLUP-predicted values between different groups of

traits (Figure S3). To predict univariate trait performance

per individual within each environment (control, increased

temperature, severe temperature), phenotypic information

was separated by environment and then informed with

genotype information using RR-BLUP (rrBLUP), G-BLUP

(rrBLUP), Bayes-LASSO (BGLR), and Bayes-C (BGLR)

(Tables S2–S4).

In RR-BLUP, across environments, the mean univariate

model accuracy was 0.899 in the control, 0.903 in increased

temperature, and 0.887 in severe temperature (Tables S2–S4).

The minimum accuracies for univariate traits were for the

multispectral imaging traits leaf inclination in control (0.707),

leaf inclination in increased temperature (0.588), and plant

senescence reflectance index mean in severe temperature

(0.723). The opposite is true for maximum accuracies found

within each environment, typically being those classically col-

lected, such as fruit length in control (0.989), fruit length

in moderate stress (0.994), and fruit number under severe

stress (0.998). We observed a clear relationship between

environments (Figure 3).

G-BLUP identified no differences in environment-specific

univariate trait prediction accuracies. However, the intro-

duction of priors with Bayesian inference following double-

exponential (Bayes-LASSO) and two-component mixtures

prior with a point of mass at zero and a Gaussian slab

(Bayes-C) show a slight shift in prediction accuracy. Bayes-

LASSO had a mean univariate model prediction accuracy of

0.894 in control, 0.901 in increased temperature, and 0.878 in

severe temperature. Bayes-C finds a mean univariate model

prediction accuracy of 0.894 in control, 0.902 in increased

temperature, and 0.890 in severe temperature.

3.2.2 Finding the optimal model

To account for potential overfitting, cross-validation analysis

was employed using LOOCV on the linear model (G-BLUP)

and non-linear model (Bayes-C) with the best average predic-

tive abilities. G-BLUP-LOOCV had a mean univariate model

prediction accuracy of 0.487 in control, 0.486 in increased

temperature, and 0.429 in severe temperature (Tables S2–S4).
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In the control, univariate prediction accuracies were gener-

ally lower for multispectral traits than classical traits (Table

S2). Under increased temperature, multispectral traits still had

low accuracy but there were slight increases for classical traits

(Table S3). Further increases in temperature further decreased

the predictive accuracy of multispectral traits but did not

impact classical traits (Table S4). Bayes-C-LOOCV finds a

mean univariate model prediction accuracy (average correla-

tion between experimental BLUPS and Bayes-C-LOOCV) of

0.466 in control, 0.470 in increased temperature, and 0.453 in

severe temperature. Again, using this model we see lower pre-

diction accuracies for multispectral traits than classical traits.

The shift to increased temperature maintains the low predic-

tive ability of multispectral traits with classically collected

traits maintaining high accuracies (e.g., fruit width—0.846

and yield—0.516). Further increases in temperature decrease

the predictive accuracy of multispectral traits with classically

collected traits maintaining high accuracies (e.g., fruit width

at 0.75, yield at 0.53). Unexpectedly, pollen activity accuracy

increases with temperature; this may be due to having a better

understanding of when pollen will not be viable.

The performance of LOOCV methods highlights the over-

fitting of univariate models by almost 50% (r = 0.892 in

Bayes-C control vs. r = 0.466 in Bayes-C-LOOCV control).

However, the computational demand of this method was sig-

nificant, and thus, we move forward with KCV (k = 10) for

index formation inputs. G-BLUP-KCV resulted in a mean uni-

variate model predictive ability (average correlation between

experimental BLUPS and G-BLUP-KCV) of 0.473 in con-

trol, 0.477 in increased temperature, and 0.439 in severe

temperature. The similar accuracies of G-BLUP-KCV and

Bayes-C-LOOCV, along with improved computational effi-

ciency, highlight the potential use of G-BLUP-KCV for the

univariate prediction of the testing population of genotypes

(n = 130).

3.3 Selection indices

We then formed a WRSSI, which is the summation of

genotypic ranking by trait within each environment (control,

temperature stress, severe temperature stress) and then

weighted by model predictive ability, to compare overall

genotype performance in all environments as well as per-

formance in stress environments. We performed truncation

selection based on these indices and found some disparities

between selected genotypes among indices and intuitive

methods. Genotype-by-environment modeling illustrated that

the component traits show phenotypic variation (Figure 4a)

and those show little phenotypic variation (Figure 4b) through

changing environmental conditions. These same phenotyp-

ically variable traits exhibit increased correlation with the

WRSSI as environments increase in heat (Figure 4c),

whereas those narrowly variables show a reduction

(Figure 4d).

Different entries performed best when coinciding with all

environments or stress environments (Table 2; Figure 5). A

large portion of the best performing lines under the control

were also the best performing lines under moderate heat, but

fewer lines remained the best performers when exposed to

severe heat (Figure 5). There is a consistent group of low

performing lines across all three treatments, which will not

do well in any growing environment. The intermediate lines

have complex patterning of rank changes, highlighting the

complexity of heat tolerance. We observe a trend for many

intermediate-ranked entries under moderate heat to become

the best performing entries under severe heat, which may

indicate that the best performers under severe heat would

be moderate performers anywhere else. This observation

matches previous work in pepper breeding where lines with

more consistent performance were typically moderate and

those with extreme performance excel in a single environment

(Barchenger et al., 2020). Filtration on the mean stress envi-

ronments caused the selection of individual genotypes with

phenotypically plastic trait performances (i.e., being able to

produce well in both control and stress environments), intro-

ducing different selections from the total mean (GPC020720,

GPC033360) as well as shifting the ranking of genotypes for

performance in temperature stress. The selection indices were

able to find clear evidence that some traits were more use-

ful than others when trying to identify the best individual

genotypes under stress (Figure 3; Figure S4).

3.4 Breeders’ intuition and
recommendations

By exploring conventional and multispectral phenotypes,

individually and together it was possible to begin to under-

stand what can be gained from different types of information

provided when selecting. It was also possible to compare

these to the breeders’ intuition, which is based on a combina-

tion of data and insight from observing the plants. We found

that classic phenotypes performed as well as multispectral

phenotypes when explored individually, but when combined

they performed better than either set of phenotypes by them-

selves. This was true when genomic information was included

resulting in the ability to identify promising entries increas-

ing again. Although not unexpected, the ability to include an

increasing amount of data and combine methods led to better

selection outcomes for complex traits.

When exploring genomic and phenomic selection in the

core collection of pepper, each method produced a clear list

of entries that showed promise (Table 2). We have identified

a total of 33 genotypes that show high promise for being used

as parents in heat tolerance breeding for pepper, 13 of these
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F I G U R E 4 Relationships of key parameters of pepper accessions between best linear unbiased prediction (BLUP) in the different

environments: (a) relationship between Yield BLUP and GxE Predicted Yield; (b) relationship between mean normalize difference vegetation index

(NDVI) BLUP and GxE Predicted NDVI; (c) correlation between the weighted rank-sum index and yield where a low rank sum is best; (d)

correlation between mean NDVI and the weighted rank-sum index.

T A B L E 2 Individual genotypes that performed best using the weighted rank-sum selection index for each environment.

Stress environments Across environments
Stress environments (with
untested genotypes)

Across environments (with untested
genotypes)

GPC014400, GPC014630,

GPC023040, GPC022320,

GPC000300, GPC020470,

GPC040670, GPC036000,

GPC022310, GPC071220

GPC020470, GPC040670,

GPC014630, GPC014400,

GPC022310, GPC023040,

GPC071220, GPC008400,

GPC000300, GPC001490

GPC018160, GPC028460,

GPC057060, GPC035430,

GPC049320, GPC028850,

GPC042150, GPC037070,

GPC123700, GPC003410

GPC028460, GPC018160,

GPC042150, GPC057060,

GPC049320, GPC028850,

GPC035430, GPC003410,

GPC008380, GPC007080

genotypes being present in more than one selection method.

Although there is tremendous utility in using genomic and

phenotypic technology (e.g., increased prediction accuracy),

there was a large amount of overlap when using only classi-

cally measured phenotypes. For example, the WRSSI has a

correlation of 0.30 (p < 0.001) with the cluster assignment

using phenomics-based k-means analysis. This modest accu-

racy of predicted assignment in the relatively simple analysis

technique of k-means with the complex GS WRSSI supports

the idea that breeding programs can work within their con-

straints to achieve similar results in heat tolerance breeding.

As breeding programs continue to invest in new technologies,

there is clear evidence that knowing the germplasm breed-

ers are working with can compensate for not having access

to all the newest technologies, but the converse is also true,

where having access to all the latest technologies can help a

new breeder overcome a lack of understanding of their new

germplasm.

When selecting for heat tolerance based on visual obser-

vation (not data collection, but intuition), the plant breeder

selects for adaptability. Heat tolerance is a complex trait,

which involves complex component traits, each of which has

interactions with each other and the environment and are

almost certainly quantitatively controlled. Visual selection

considers many traits at once but also ignores many traits

that cannot be easily observed, such as pollen concentration
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F I G U R E 5 Rank change of weighted rank-sum selection index

with increasing temperature stress for pepper entries. Majority of

germplasm changes are between deciles of ranks in this study. We see

those in the best (bottom) ranks (1%–10%) being relatively stable

across treatments; however, in the other deciles, there was a large

amount of rank change. The higher proportion of good ranks shifting to

bad ranks in transition from moderate to severe stress than from control

to moderate stress indicates that much of the germplasm has tolerance

to some heat but not to severe heat.

and many multispectral traits. Among the intuitively selected

entries, based purely on visual observation (Table S5), six

were also identified as clustering similarly between stress and

control environments (Table 1) or performed best using the

WRSSI for the stress environment (Table 2). This overlap of

selection based on the breeders’ eye, classically or manually

collected data and multispectral data supports the use of mod-

ern technologies to identify heat-tolerant entries. However,

the question also arises: Is the use of advanced technology to

phenotype for heat stress tolerance beneficial enough to war-

rant the investment? Given that an experienced plant breeder

can generally select the best entries, it may not be worthwhile

to utilize this type of technology for selection, depending upon

breeding and research program constraints. However, the use

of multispectral and HTP has the benefit to allow for genome-

wide association studies for individual component traits that

contribute to heat stress tolerance. The use of genome-wide

association studies allows us to develop molecular markers

to select for unseen traits, limiting the required investment in

more manual and human observational selections. The combi-

nation of all techniques most certainly improves selection and

could result in larger gains, but consideration must be given

to the complexity of heat tolerance breeding where genetic

variation in your population is the foundation of maintaining

a sustainable breeding program under increasingly stochastic

climate.

4 CONCLUSIONS

We explore a combination of genomic-based selection,

phenomic-based selection, and breeder intuition. Although

these different methods are often placed in opposition

to each other, we see clear evidence of complementar-

ity. Using all the data provided better overall informa-

tion, whereas using individual datasets provided comparable

results. This highlights that despite constraints, breeding

programs can leverage many different methods to make

progress in sustainable cultivar development from stochastic

climate.
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