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Various factors can influence the concentration of eDNA found in the
environment and blur the link between eDNA results and in situ fish
abundances, biomasses or even occurrences. We studied the influence of one
abiotic factor, the temperature, and one biotic factor, the fish size class, on the
amount of fish eDNA detectable in water. To do so, we conducted two controlled
experiments using tench (Tinca tinca, L) placed into outdoor mesocosms during
1 week. The quantification of fish eDNA abundances was performed using
quantitative PCR after filtrating a large volume of water (30 L). The Bayesian
hierarchical ANOVAs performed on qPCR results did not detect the effect of
size class on eDNA amount, but fish eDNA concentration was shown to increase
significantly when temperature rose by 6°C (no effect detected at 3°C). This
suggests that fish assemblage quantification of two thermally contrasting sites
through eDNA is not directly comparable.
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Introduction

Environmental DNA (eDNA) analysis is increasingly used for aquatic biomonitoring,
either to monitor the presence/absence of a given species or to assess the composition of fish
assemblages. In parallel several methods are used to efficiently quantify species eDNA
concentrations (used as a proxy of fish abundances) such as the quantitative PCR (qPCR; Doi
et al., 2017; Fukaya et al., 2020; Kamoroff and Goldberg, 2018; Takahara et al., 2012) or
digital droplet PCR (Doi et al., 2015a; Doi et al., 2015b; Capo et al., 2019). Recent
developments have combined eDNA metabarcoding method with qPCR quantification
techniques to assess the abundances of different species composing fish assemblages (van
Bleijswijk et al., 2020), by matching the total eDNA quantity per sample and the relative
abundance retrieved from the metabarcoding results (van Bleijswijk et al., 2020; Pont et al.,
2023). Such methods offer the possibility to simultaneously quantify all species from a given
community. Nonetheless, before using such an approach, it is necessary to assess how biotic
and abiotic factors affect this quantification, with a simplified model.

Indeed, several factors can influence the eDNA concentration in the environment and
among them fish biomass is a key biological factor (Doi et al., 2017; Itakura et al., 2020).
Additionally, as eDNA released is linked to metabolism (Lacoursiere-Roussel et al., 2016;
Yates et al., 2021), it could be expected that mass-specific eDNA production is higher for
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small individuals such as juveniles than for larger ones (Maruyama
et al., 2014; Yates et al., 2021). However, Jo et al. (2019) and
Mizumoto et al. (2018) reported contradicting results, whereby
larger individuals were the greatest eDNA releasers. In any case,
the size structure of populations may influence the eDNA signal
(Yates et al., 2019; Yates et al., 2021) and this constitutes a serious
issue when inferring biomass from eDNA quantification.

Such estimation is also challenged by the role played by abiotic
factors such as temperature on eDNA concentration in the water
(Harrison et al., 2019; Yates et al., 2021). Temperature plays a major
role in the activity of ectotherms, which affects the amount of DNA
released by fish in the environment (Strickler et al., 2015). On the
one hand, the increase in temperature during spring is the main
factor for exiting winter dormancy and inducing the reproductive
behaviour in most species (except winter-spawners such as
salmonids) from temperate regions (de Souza et al., 2016; Avlijaš
et al., 2018; Thalinger et al., 2021). In this case, temperature
indirectly influences the amount of eDNA by affecting the level
of activity of the species. On the other hand, it has been
demonstrated that an increase in temperature favours eDNA
decay by spontaneously degrading DNA and by increasing DNA
decomposition through the enhanced activity of microorganisms
(Lance et al., 2017; Harrison et al., 2019). Studies that have
investigated the role of temperature in fish eDNA commonly
used large thermal gaps, greater than 5°C between consecutive
treatments (Jo et al., 2019; Caza-Allard et al., 2022). Furthermore,
all of these experimental studies were conducted under controlled
constant temperatures without considering the natural circadian
fluctuations of temperature. Therefore, the role played by
temperature over restricted thermal gradients and in conditions
closer to natural conditions still needs further investigation.

To test which factor may influence fish community eDNA
quantification, we conducted two controlled experiments focusing
on only one species, as a simplified experimental model. The first
experiment compared the eDNA concentration of the species placed
in three different thermal conditions but with natural circadian
fluctuations of temperature, while the second experiment
investigated the effect of population size structures on the eDNA
quantity released in fish populations with equivalent biomasses.

Materials and methods

Tinca tinca L. was chosen as a model species because this is a
native species that is widely distributed in European lakes;
characterised by a calm temper, this species shows no hostility
towards its congeners, which is relevant for experimental studies
(Caza-Allard et al., 2022).

For the temperature experiment, we chose to test the impact of
temperature on the tolerated range of this species, with low
variations between treatments to submit individuals to a plausible
variation of temperature in a natural environment, rather than
expose them to extreme ranges in temperature as previously
evaluated in several studies (Jo et al., 2019; Caza-Allard et al.,
2022). Moreover, this gradient was non-stressful for this thermo-
tolerant species. Indeed, tench can tolerate temperatures from 0°C to
38°C, with a preference range between 20°C and 26°C (Avlijaš et al.,
2018). Populations of T. tinca were composed of six small

individuals (94.0 mm ± 6.85 mm, 10.9 g ± 3 g), one medium-
sized individual (239.9 mm ± 19.1 mm, 211 g ± 51.0 g) and one
large fish (316 mm ± 33 mm, 452 g ± 94.6 g). They were placed into
12 large outdoor mesocosms (about 775 L) for 6 days, under three
thermal treatments (four replicates per treatment): ambient
temperature (AT), AT plus 3°C (AT3) and AT plus 6°C (AT6).
Each mesocosm was equipped with a thermal regulation system that
set the temperature based on the temperature measured in a control
mesocosm, which defined the AT conditions. This system
maintained a constant (controlled) deviation in temperature
between mesocosms (i.e., AT3, AT6) and maintained the natural
circadian fluctuations within each mesocosm (between 5.5°C and
14°C for AT, 8.5°C and 17°C for AT3 and 11.5°C and 20°C for AT6)
(Supplementary Figure S1).

To test the effect of fish size classes on eDNA signal, three
treatments were choose along a gradient of adult size classes and
thus of fish weight: small (281 mm ± 24.5 mm, 321 g ± 83.8 g),
medium (346.7 mm ± 10.2 mm, 594.3 g ± 52.1 g) and large
(396.4 mm ± 16.1 mm, 877.5 g ± 63.8 g). Within each mesocosm
T. tinca population was composed of fish from one size class but
with comparable biomass (mean = 1714 g, standard deviation =
125 g). The experiment lasted 8 days, using the same facilities
(~725 L mesocosms, 649–764 L) but with similar temperatures
between mesocosms (average difference of 0.125°C,
Supplementary Figure S2) which varied from 6°C to 14.8°C.
During both experiments, from a few days before the start of the
experiment until the last day of the experiment, fish were starved
because nutrition can influence DNA production (Klymus et al.,
2015), and under these temperatures, fasting was not considered
stressful. Even if pH and ultraviolet B radiations are known to
influence eDNA degradation (Strickler et al., 2015), their influence
on the results were supposed to be similar among mesocosms.
Indeed, pH values were comparable among the mesocosms
(maximum deviation value of 0.2 between the lowest and highest
pH values), and the outdoor mesocosms are located in open landed
area of the south of France (43.523°N, 5.511°E) with expected similar
Sun radiations.

All macro-organisms were removed from the water before the
experiments to ensure that potential fish DNA was naturally
degraded in the water for at least 1 week through UV and
microorganism activity (Thomsen et al., 2012). Three to four
pre-treatment eDNA samples were collected before fish were
placed into the mesocosms to verify the fish eDNA concentration
prior fish introduction. At the end of each experiment, in each
mesocosm, 30 L of water was filtered with a VigiDNA 0.45 μm filter
capsule (SPYGEN, France), following the protocol described in
Cantera et al. (2019). At the end of each filtration, the water
inside the capsule was emptied and the capsule was filled with
80 mL of CL1 Conservation buffer (SPYGEN) and stored at room
temperature. The DNA extraction and the amplification with teleo
primers (Valentini et al., 2016) by quantitative PCR was performed
following the protocol described in Pont et al. (2023). Two DNA
extractions followed by a qPCRwere performed to verify the absence
of eDNA contamination. All controls were negative; the two DNA
extraction controls were sequenced in Hervé et al. (2022) and only
human DNA was found. To be comparable, the qPCR results were
expressed in number of DNA copies per Gram of fish, after being
corrected by the volume and the fish biomass of each mesocosm.
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The quantifications were not biased by the previous existence of
eDNA in the mesocosms. Six of the seven pre-treatment samples
were negatives and one displayed an eDNA concentration that was
444-fold lower than what was observed at the end of the
experiments, and then considered negligible (Supplementary
Table S1).

T. tinca were held in captivity under permit number
A1300101 granted by the French authority of the “Direction
départementale de la protection des populations des Bouches-du-
Rhône” under articles R 214-87, R 214-122, and R 215-10 of the
French law. At the end of the experiments, fish were euthanized
using anaesthetic overdose (eugenol) in accordance with the
European Directive 2010/63/EU.

To test the effect of each factor on eDNA amount, we used
Bayesian hierarchical ANOVAs with non-informative priors, to take
into account the variability between mesocosms within the same
treatment. For each mean treatment parameter (μi), we used a
normal non-informative prior for the mean value of each
treatment and of each mesocosm (within-treatment) and inverse
gamma priors for the precision parameters (inverse of variances)
(see Supplementary Material for the codes of the two models). To
compare the mean values of each treatment, we computed the

deviation between mean values of each treatment two by two
(e.g., small vs. medium, small vs. large, and medium vs. large)
and the associated credible interval (CI, 95%) from their posterior
distributions that were obtained from 3 Monte-Carlo Markov
Chains. After an initial burn-in of 10,000 values, one value on
10 was conserved along the 500,000 iterations (to limit the
autocorrelation between estimations). All these computations
were performed using the Bayesian software JAGS and the
statistical software R (v. 4.1.0).

Results

The effect of temperature on fish eDNA concentration was
marked and significant (as revealed by the posterior distribution
of the deviation between mean values) when comparing AT and
AT6 (Figures 1A–C), with a higher number of DNA copies (on
average 1.71 times greater) observed for the highest temperature.
The pattern observed for AT3 showed a high variation of DNA
concentrations between mesocosms (Figures 1A, B), while the
variation between PCR replicates was still low (points from the
same mesocosm are very close on Figures 1A, B; posterior

FIGURE 1
Results of the experiments on temperature (A–C) and fish size class (D–F). The qPCR results are presented as number of copies standardized to fish
biomass quantified for each temperature treatment (A) and each size class treatment (D) (qPCR replicates from eachmesocosm are represented with the
same shape). The posterior distributions (from the Bayesian hierarchical linear model) of the average number of copies per treatment are illustrated for
temperature treatment (B) and size class treatment (E). The differences between the average values of each treatment are compared two by two for
temperature treatment (C) and size class treatment (F). Differences are considered significant if the 95% credible interval (between the grey horizontal
bars) does not include 0.
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distribution of within mesocosm variances in Supplementary
Figure S3).

No effect of size classes on the amount of eDNA was detected
when standardised to the fish biomass within each mesocosm
(Figures 1D–F). Each CIs (95%) derived from the posterior
distribution of the deviation between the average values of two
size classes (e.g., medium vs. small) included zero (Figure 1F).

Discussion

It has been shown that fish eDNA concentration in the water is a
balance between the activity of individuals (DNA released is thought
to increase with the level of fish activity) and eDNA degradation by
microorganisms and free enzymes (Harrison et al., 2019).
AT6 conditions were close to the preferential range of T. tinca
(Avlijaš et al., 2018), suggesting that in these conditions the eDNA
release increased and outweighed the effect of degradation due to
microbial activity. This pattern is consistent with majority of the
previously observed temperature–eDNA relationship (i.e., Caza-
Allard et al., 2022) but is much more marked than what was
observed in previous studies, even when considering a wider
thermal gradient (Jo et al., 2019). Some authors also found no
relationship between temperature and eDNA amount, even in
laboratory conditions, with contrasted thermal conditions
(Rourke et al., 2023).

Regarding the effect of fish size classes on the amount of eDNA
found in the water using universal fish primers, no clear and
significant pattern was detected when standardised to the fish
biomass. The amount of eDNA per Gram was comparable
between larger fish and smaller ones even if they were 2.7 fold
heavier. Most of the previous studies dealing with the link between
fish biomass (or density) and eDNA amount have already
highlighted a positive correlation between them (Rourke et al.,
2022) especially in controlled conditions (Yates et al., 2019).
Once standardised by fish weight, the pattern could be different
with smaller fish shedding more DNA than larger ones (Maruyama
et al., 2014). This was not the pattern observed here, which can be
due to the different life stages used in the two studies; in our study we
chose to explore the effect of a gradient of adult size classes, with less
contrast in fish sizes than in the Maruyama et al. (2014) study were
adults and juvenile were used. It would therefore be interesting to
conduct a similar experiment considering a larger number of size
classes, especially among smaller fish. The absence of significant
response observed in our study could also be partly due to the
quantification method that we used. The great majority of studies
working on one species used specific primers to run the qPCRs,
while we used universal primers designed for the amplification of
teleost fishes and elasmobranchs species (Valentini et al., 2016). We
chose these primers since they are the ones used in the study that
tested the combination of metabarcoding and qPCR to demonstrate
the possibility to quantify the abundance of species at the
community level (van Bleijswijk et al., 2020; Pont et al., 2023).
With the teleo primers, there is a risk to amplify DNA from
organisms other than fish (Bylemans et al., 2018); however, the
verifications we performed prior to fish introduction showed that
such non-target DNA was at extremely low number of copies or

below detection level; additionally the qPCR controls were found to
be negative.

Another possibility is that the between individual variability was
too high (Rourke et al., 2023) to detect an effect of size class or that
the link between biomass and eDNA amount is not linear (Coulter
et al., 2019; Souma et al., 2023). In their study, Coulter et al. (2019)
observed that once a certain size is reached there is no more
variation in the eDNA quantification (the curve reached an
asymptote). Such nonlinear relationship between eDNA and fish
biomass could explain the already weak link (correlation) already
observed in some studies (Capo et al., 2019; Guivas and Brammell,
2020) especially different biomass could lead to quite similar eDNA
concentrations. The lower link observed in situ (Yates et al., 2019)
could also be due to the selectivity of the traditional methods used to
assess fish biomass that serve as a comparison point. For instance,
gillnets are size-selective (Prchalová et al., 2009), with larger fish
with the greatest biomass poorly caught. Our results and previous
observations (Maruyama et al., 2014) suggested that eDNA collected
on the field is mainly due to large individuals as they represent the
biggest proportion of the biomass. Even if juvenile shedding rate is
greater than those of large fish (Maruyama et al., 2014), and even if
they constitute the majority of the captures, they represent only a
small proportion of the total biomass (tench smaller than 20 cm
represent less than 2% of the biomass of the fish caught in French
lacustrine biomonitoring program, OFB unpublished data).
Therefore, the selectivity of traditional methods, with all the
other parameters that affect eDNA in the field, could blur the
potential biomass-eDNA relationship. The relationship between
eDNA and fish biomass needs further investigation (Yates et al.,
2021).

Finally, these results suggest the temperature effect may be an
issue if biomass or abundance estimations from eDNA are
compared, e.g., between two fish assemblages/communities from
different lakes or in different environmental conditions. The effect of
temperature may hinder comparisons because two comparable
communities living in different thermal conditions would lead to
different biomass estimations from eDNA quantifications. An
extreme case could arise if communities with distinct biomasses
would result in a comparable eDNA quantification because of the
counterbalancing effect of temperature. Further investigations
under contrasting environmental conditions, for a larger diversity
of fish species, are needed before using eDNA as a quantifying tool in
routine practice.
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