

Microscopic investigation of fouling mechanisms in dairy protein mixes under shear

Margot Grostete, Msibi Zanélé Paméla, Françoise Boissel, Maude Jimenez, Romain Jeantet, Jehyun Lee, Jeehyun Lee, Luca Lanotte

▶ To cite this version:

Margot Grostete, Msibi Zanélé Paméla, Françoise Boissel, Maude Jimenez, Romain Jeantet, et al.. Microscopic investigation of fouling mechanisms in dairy protein mixes under shear. XVIIIth Congress on Rheology ICR, https://www.erasmus.gr/microsites/1221/committees, Jul 2023, Athènes, Greece. hal-04180057

HAL Id: hal-04180057 https://hal.inrae.fr/hal-04180057

Submitted on 11 Aug2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

centrale**lille**

Microscopic investigation of fouling mechanisms in dairy protein mixes under shear

Margot Grostete, Romain Jeantet, Jeehyun Lee, Maude Jimenez, Luca Lanotte

lts

Reference	Туре	Geometry	Shear rate / rotation speed
Taylor, freyer, 1994	Rheology	Cone/plan	0 - 40 s ⁻¹
Simmons et al., 2007		Couette	111 - 625 s ⁻¹
Samy Gaaloul et al., 2009		Brookfield, cylinder	28 s ⁻¹
Erabit et al., 2014		Couette	0 - 400 s ⁻¹
Mediwathe et al., 2018		Bob/cup	0 - 1000 s ⁻¹
Quevado et al., 2020-2021		Close cavity CCR	0.06 - 50 s ⁻¹
Bogathawa et al., 2020		Cylinder	1000 s ⁻¹
Bogathawa et al., 2021		Bob/cup	1000 s ⁻¹
Wolz et al., 2016		Mooney/Erwart	100 - 1452 s ⁻¹
Moakes et al., 2015		Cylinder	200 - 800 s ⁻¹
Byrne et al., 2002	Heat exchanger condition	Stirrer	100 - 1639 s ⁻¹
Santos et al.,2006		Flow cell	135 ; 205 and 157 ; 238 s $^{-1}$
Kerche et al., 2016		Tubular exchanger	/
Zhang et al., 2019		Spinning disc apparatus	/
Clarkson et al., 1999		Bubble column apparatus	/
Walkenstrom et al., 1999		Spinning disc apparatus	100, 500, 900 or 1300 RPM
		Ultraturax	17500 min ⁻¹
Koh et al., 2014		Stainless tubular container	1000 min ⁻¹
Vilotte et al., 2021	Microfluidics	Continuous small scale millifluidics	32 - 2666 s ⁻¹

Current literature

- Focus only on the solution
- Heat exchangers : conditions are different in evaporators
- High temperature (> 80°C) predominant effect ?
- Various methodologies and shear ranges

40

30

Few articles hypothesize on the shearing effect:

- Increase aggregates at [C_{protein}] < 10 wt %
- Decrease aggregates at [C_{protein}] > 10 wt %

CSI 1- 2023

Outlo

Microscopy General observation (G*500) - SURFACE

ICR 19th - 01/08/23

and

Aggregates analysis by Keyence software- SURFACE

Standard deviation

- Shear gradient of each region?

```
Shear \Leftrightarrow Deposit
```


Microscopy of 15 wt % and 20 wt % WPI solution 2min 5 min 10min $[C_{WPI}] = 15 \text{ wt }\%$ $[C_{WPI}] = 20 \text{ wt }\%$

effect of shear rate (compare without shear and range of shear)

Flow sweep viscosity : compare a range of

concentrations Frequency sweep : Behaviour of high concentration

CSI 1-2023

DI

Ma

PT

Dipartimento Ingegneria Chimica ei Materiali e della

Produzione Industria Università degli Stud

di Napoli Federico II

Outlook

Microfluidic

Merci de votre attention

Acknowledgements : Florence Rousseau, Pascaline Hamon, Marie-Hélène Famelart, Ghazi Ben Messaoud

<u>M. Grostete¹</u>, Z. Msibi¹, F. Boissel¹, M. Jimenez^{2,3}, R. Jeantet¹, J. Lee¹, L. Lanotte¹

¹ INRAE, L'Institut Agro, STLO, 35042 Rennes France

² Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, 59000 Lille, France

³Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris

: Contact <u>margot.grostete@agrocampus-ouest.fr</u>

Université de Lille

INRA