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REVIEW ARTICLE

Phylodynamic approaches to studying avian influenza virus
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ABSTRACT
Avian influenza viruses can cause severe disease in domestic and wild birds and are a
pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and
immunological processes can interact to shape viral phylogenies. This review summarizes
how phylodynamic methods have and could contribute to the study of avian influenza
viruses. Specifically, we assess how phylodynamics can be used to examine viral spread
within and between wild or domestic bird populations at various geographical scales,
identify factors associated with virus dispersal, and determine the order and timing of
virus lineage movement between geographic regions or poultry production systems. We
discuss factors that can complicate the interpretation of phylodynamic results and
identify how future methodological developments could contribute to improved control
of the virus.
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Background

Avian influenza viruses (AIVs) pose a considerable
risk to human and animal health (Mostafa et al.,
2018; Lycett et al., 2019; Rimi et al., 2019). These
viruses belong to the species Alphainfluenzavirus
influenzae (previously known as Influenza A virus
(IAV)) (Lefkowitz et al., 2018; ICTV, 2022), and
have single-stranded, negative-sense, and eight-seg-
mented RNA genomes (Seiler et al., 2018; Rimi
et al., 2019; Wille & Holmes, 2020). AIVs are sub-
typed into “HxNy” based on the antigenicity and gen-
etic diversity of the two surface glycoproteins:
haemagglutinin (H1 – H16 in birds) and neuramini-
dase (N1 – N9 in birds) (Yoon et al., 2014; Blaurock
et al., 2020; Verhagen, Eriksson, et al., 2021). Wild
aquatic birds, particularly Anseriformes (e.g. geese,
ducks) and Charadriiformes (e.g. gulls, shorebirds),
are the primary reservoirs of AIVs (Olsen et al.,
2006). However, AIVs can spill over to cause spora-
dic infection or sustained transmission within dom-
estic avian hosts (Mostafa et al., 2018; Lycett et al.,
2019). We can categorize viruses as low pathogenic
avian influenza viruses (LPAIVs) and highly patho-
genic avian influenza viruses (HPAIVs) based on
their pathogenicity in chickens and the presence of
insertions in the HA cleavage site (More et al.,
2017). LPAIVs cause asymptomatic infection or
mild disease in domestic birds, thereby harming the
poultry industry via decreased egg or meat pro-
duction, higher vaccination expenses, and trade

restrictions (Busani et al., 2007; Gonzales et al.,
2021; Ripa et al., 2021). Only LPAIVs of H5 and
H7 subtypes are known to evolve into HPAIVs, a
process that involves the insertion of multiple basic
amino acids in the HA cleavage site (Rott, 1992; Alex-
ander, 2007). HPAIVs cause severe disease and fatal-
ities in both domestic birds (Verhagen et al., 2014;
Nuñez & Ross, 2019) and wild birds, respectively
harming the economy and conservation efforts
(Kleyheeg et al., 2017; Banyard et al., 2022; Lean
et al., 2022). Several AIV strains can also infect
humans and other mammalian species (e.g. swine,
seals) and, thus, pose a potential pandemic threat
(Ren et al., 2016; Nuñez & Ross, 2019; Blagodatski
et al., 2021; Agüero et al., 2023; Puryear et al.,
2023; Vreman et al., 2023).

Phylodynamics studies how epidemiological,
immunological, and evolutionary processes shape
viral genetic diversity. Approaches developed within
this framework can help recover viral dispersal pat-
terns and evolutionary processes, even when virus
genomic data is sampled relatively sparsely from an
infected population (Grenfell et al., 2004; Volz
et al., 2013; Rife et al., 2017). Time-scaled phyloge-
nies can be inferred using molecular clock models,
which quantify the rate of genetic change over time
and therefore enable phylogenetic branch lengths to
be expressed as units of time rather than as nucleo-
tide substitutions per site (Drummond et al., 2006;
Pybus & Rambaut, 2009) (Box 1). RNA viruses,
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including AIVs, typically have exceptionally short
generation times, high evolutionary rates, and large
population sizes (Duffy, 2018; Wille & Holmes,
2020). Consequently, genetic substitutions in viral
genomes often occur on similar time scales as trans-
mission events between hosts. Hence, it is possible to
reconstruct outbreak dynamics from time-scaled
phylogenies, as they contain a “molecular footprint”
of viral spread (Grenfell et al., 2004; Lemey et al.,
2009; Pybus & Rambaut, 2009). When genome
sampling location is available, we can use phylody-
namic techniques to reconstruct the geographical
distribution of viral lineages (“phylogeography”),
thereby revealing valuable information about viral
spread and factors associated with faster or more fre-
quent viral lineage movement events (Lemey et al.,
2010; Faria et al., 2011; Gill et al., 2016).

The most common tools for phylodynamic analyses
employ a Bayesian Markov Chain Monte Carlo
(MCMC) framework to efficiently explore highly com-
plex models involving many different parameters
(Drummond & Rambaut, 2007; Bouckaert et al.,
2014). A Bayesian framework has several advantages
compared to the maximum likelihood or parsimony-
based approaches. Firstly, Bayesian approaches allow
for the incorporation of multiple sources of data or
prior knowledge (e.g. divergence times, substitution
rates) (Alfaro & Holder, 2006; Baele et al., 2017; Chak-
raborty et al., 2021). Perhaps more importantly, such
approaches generate posterior distributions of phyloge-
netic trees, thus allowing uncertainty in parameter esti-
mates to be captured (this has been reviewed extensively
elsewhere, (e.g. Faria et al., 2011; Volz et al., 2013; Gill
et al., 2016; Rasmussen & Grünwald, 2020; Dellicour
et al., 2021). Maximum likelihood (ML)-based methods
are more limited in scope of possible analyses, but are
often less computationally intensive than the more pop-
ular Bayesian approaches (Baele et al., 2018; Sagulenko
et al., 2018; Ishikawa et al., 2019). This can be beneficial
when dealing with large datasets, limited computed
resources, or when faster but lower complexity models
are appropriate to inform emergency responses. Such
ML phylodynamic methods typically use a single ML
tree, enabling faster time-to-answer compared to Baye-
sian phylodynamic inference.

Recent trending decreases in the cost and time
required to generate and analyse virus genetic data
have led to rapid innovation within the field of phylo-
dynamics and a subsequent increase in popularity
(Gill et al., 2016; Rife et al., 2017; Grubaugh et al.,
2019; Cardona-Ospina et al., 2021). This review high-
lights how phylodynamic methods have and may con-
tinue to aid the study of AIV spatiotemporal dispersal.
We first explore recent studies that use phylodynamics
to infer AIV dispersal dynamics within or between
wild birds and domestic poultry populations at various
geographical scales and discuss factors that can

complicate the generation of reliable conclusions.
Specifically, we discuss the inference of factors associ-
ated with AIV transmission, the order and timing of
transmission and lineage dispersal events during an
outbreak, and how viral lineages can move between
different regions and sectors of poultry production
systems. We then consider future challenges and
opportunities for using phylodynamic approaches
within AIV research.

Wild bird populations

Tracing viral incursions

Phylodynamics has helped identify global movements
of AIV lineages in wild bird populations (Baele et al.,
2018; Zhang et al., 2023). Many studies have used
time-calibrated phylogenies (Box 1) to estimate the
sampling time and location of unobserved viral ances-
tors, and hence reconstruct the timings and origins of
viral (particularly HPAIV) incursions into different
wild bird populations (e.g. Lee et al., 2018; Hill
et al., 2019; Zhang, Fan et al., 2020; Beerens et al.,
2021; Liang, Krog, et al., 2021; Xie et al., 2022). For
instance, one study showed that HPAIV H5N8 infec-
tions in wild birds present in the Netherlands in late
2020 were likely introductions from wild birds in
Egypt and not elsewhere in Europe, as was anticipated
based on proximity (Beerens et al., 2021). This finding
demonstrates how phylogenetic approaches can pro-
vide information on AIV spread that might not be
detectable using standard epidemiological analyses
based on reported cases.

Complications in interpreting where virus lineages
originate can arise in instances where gene segments
from multiple genetically diverse AIVs reassort
during co-infection (Araujo et al., 2018; Wille &
Holmes, 2020; Verhagen, Fouchier et al., 2021).
Gene segments acquired from each different parent
virus typically require analysis using separate phylo-
genies to capture the different evolutionary histories
of each parent lineage (Lu et al., 2014). Accordingly,
reassortant sequences are sometimes represented
using a phylogenetic network instead of a single tree
(Frost et al., 2015; Stolz et al., 2022) or, more com-
monly, removed, with only one gene segment (usually
haemagglutinin (HA) (Heaton et al., 2013)) selected
for analyses. The latter approach limits our under-
standing of AIV diffusion (Lu et al., 2014; Parvin
et al., 2014; Frost et al., 2015; Venkatesh et al.,
2018). Although reassortant sequences could perhaps
be better accommodated in AIV phylodynamic ana-
lyses using a similar approach to that detailed in Mül-
ler et al., (2020), which was used to explicitly infer
reassortment rates in different human influenza
virus lineages, the complexity of this method likely
prevents it being used widely (Müller et al., 2020).
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Geographic structuring of genetic diversity

Phylodynamic methods have been used to investigate
whether AIV lineages found in wild birds are struc-
tured according to avian flyways and host ecology
(Hurt et al., 2014; Araujo et al., 2018; Mine et al.,
2019; Sharshov et al., 2019; Verhagen et al., 2020;
Zhang et al., 2023). Several studies indicate that
avian hosts within geographically isolated regions
sometimes harbour AIV segment lineages that are see-
mingly relatively distinct from other sampled lineages
circulating globally (Hansbro et al., 2010; Hurt et al.,
2014; Araujo et al., 2018; Wille et al., 2022). For
instance, one study detected an H11N2 lineage in Adé-
lie penguins (Pygoscelis adeliae) in Antarctica in 2013
that likely diverged approximately between the 1960s-

1980s from the most closely related AIV sequences
worldwide (Hurt et al., 2014). However, it is difficult
to determine whether these findings represent true
lineage geographic isolation or if lineages only appear
geographically structured due to a scarcity of samples
from nearby locations that may nevertheless be epide-
miologically linked (e.g. southern Chile, Argentina).
Other analyses reveal that AIV lineages can be shared
between distant regions (Bahl et al., 2009; zu Dohna
et al., 2009; Mine et al., 2019; Sharshov et al., 2019;
Verhagen et al., 2020; Caliendo et al., 2022). For
instance, recent discrete phylogeographic analyses
(Box 1) based on the neuraminidase (NA) indicated
likely intercontinental AIV dispersal between North
America and Eurasia (Mine et al., 2019).

Box 1.

Viral phylogeography is the reconstruction of viral movement between geographic locations using virus genetic sequences. Phylogeographic
approaches can be categorized based on whether the modelled locations are discrete (e.g. country, administrative district) or continuous (geographic
coordinates) (Lemey et al., 2009; Faria et al., 2011).

Discrete trait analyses are sometimes used out of necessity, for instance, when precise geographic sampling coordinates are unavailable (De
Maio et al., 2015; Hill et al., 2015; Lycett et al., 2019). However, these approaches are usefully applied when sequences cluster naturally by
geographic location because viral movement is affected by geographical (e.g. oceans, mountains) and/or political (e.g. borders) barriers (Alkhamis
et al., 2015; De Maio et al., 2015; Zhang, Chen et al., 2020). Several software packages (e.g. TreeTime (Sagulenko et al., 2018), PastML (Ishikawa et al.,
2019)) have been developed that enable reconstruction of ancestral characters within a maximum-likelihood framework. The most commonly used
software packages for phylodynamic inference, BEAST (Drummond & Rambaut, 2007) and BEAST2 (Bouckaert et al., 2014), rely on a Bayesian
inference framework and offer several different approaches for phylogeography using discrete traits. We summarize different maximum likelihood
and Bayesian approaches below.

Maximum likelihood ancestral character reconstruction:Maximum likelihood approaches can also be used to estimate the most likely states of
discrete traits (e.g. which country or host species) at internal nodes of phylogenies (Cunningham et al., 1998; Schmidt & von Haeseler, 2009; Hadfield
et al., 2018; Sagulenko et al., 2018; Ishikawa et al., 2019). These approaches focus on first estimating the most likely phylogeny given the data (i.e. the
maximum likelihood tree), and then estimating the most likely history of discrete states at each node (Cunningham et al., 1998; Schmidt & von
Haeseler, 2009; Sagulenko et al., 2018; Ishikawa et al., 2019). Branch length or evolutionary time is accounted for, such that geographic movements are
more likely to occur on longer branches. This is in contrast to Bayesian approaches implemented in BEAST and BEAST2, which estimate the history of
discrete traits for each tree in the posterior tree distribution and hence can more fully account for phylogenetic uncertainty but as a result can be
significantly slower (Faria et al., 2011; Volz et al., 2013; Gill et al., 2016; Dellicour et al., 2021).

Discrete trait analysis: In one common approach (often known as “discrete trait analysis”, whilst being only one of several approaches for
phylogeographic inference using discrete traits), phylogenetic branch locations are estimated using continuous-time Markov chains, i.e. modelled as
moving instantaneously at specific rates between a fixed number of discrete locations (Lemey et al., 2009; Faria et al., 2011). (Figure 1A). A frequently
applied extension of this model known as Bayesian stochastic search variable selection (BSSVS) attempts to limit the number of possible
recovered transitions between pairs of locations to those that adequately explain the phylogenetic diffusion process (Lemey et al., 2009). Biased
sampling can affect the statistical inference of discrete trait analyses as the relative sampling intensities of different discrete locations or traits affect
the estimates of viral movements (De Maio et al., 2015; Layan et al., 2023).

Structured coalescent approaches: Structured coalescent approaches, including those implemented in MASCOT (Müller et al., 2018) and BASTA
(De Maio et al., 2015) within BEAST 2, explicitly model ancestry within and movement between discrete subpopulations, known as “demes” (Figure 1A)
(Vaughan et al., 2014; De Maio et al., 2015; Müller et al., 2018). These methods can be less susceptible to sampling bias than classical coalescent models
in certain instances (De Maio et al., 2015; Müller et al., 2018; Layan et al., 2023). However, structured coalescent phylogeographic models are typically
more computationally demanding than discrete trait phylogeographic models, and thus are mostly applied to small numbers of demes (De Maio et al.,
2015; Müller et al., 2018; Layan et al., 2023). Additionally, although population size can vary between demes, structured coalescent models assume that
virus population size in each deme remains constant, which may be less appropriate for investigating AIV lineage expansions in naïve host populations
or AIVs with strong seasonality in transmission (De Maio et al., 2015; Layan et al., 2023). Both discrete trait analyses and structured coalescent
approaches can be used to model virus movement between other discrete traits (Faria et al., 2011; De Maio et al., 2015), such as host species (Figure
1B) (Ren et al., 2016; Hicks et al., 2020). Furthermore, generalized linear model (GLM) extensions of these methods (Lemey et al., 2012, 2014; Faria et al.,
2013; Müller et al., 2019) can be used to evaluate covariates of virus movement, such as avian host density at each location or geographic distance
between pairs of locations.

Multitype birth–death models: Like structured coalescent approaches,multitype birth–death (MTBD) models (e.g. as implemented in the BEAST
2 package bdmm (Kühnert et al., 2016)) are able to explicitly model transmission within structured populations, and represent an extension of the
birth–death models described in Box 2. MTBD models involve the estimation of time-varying “birth” rates (transmission rate), “death” rates (rate of
becoming non-infectious or death) for each of several discrete subpopulations, and “per-lineage migration rate” (changes in the subpopulation of an
individual due to migration) (FitzJohn, 2012; Stadler & Bonhoeffer, 2013; Kühnert et al., 2016; Barido-Sottani et al., 2020). Unlike the structured
coalescent approaches, which assume a constant population size within demes, the MTBD allows for population size to change through time (Stadler
et al., 2015; Seidel et al., 2020).

Continuous phylogeography: In the continuous phylogeographic model, virus lineage movement is modelled between geographical
coordinates (e.g. latitude and longitude) (Figure 1C & D) (Lemey et al., 2009, 2010). Virus lineage movement is most commonly modelled using a
relaxed random walk model (Lemey et al., 2010), which allows the rate of viral dispersal to vary across the phylogeny. To evaluate spatiotemporal
covariates associated with virus dispersal route or velocity, we can conduct post-hoc analysis using the R package “seraphim” (Dellicour et al., 2016).

AVIAN PATHOLOGY 3



Sampling biases (i.e. disproportionate sampling of
virus genomes compared to true infection prevalence)
can strongly impact phylogeographic analyses, with
under-sampled locations more likely to be inferred

as sinks when using discrete trait approaches (De
Maio et al., 2015; Kalkauskas et al., 2021; Layan
et al., 2023). The international spread of AIV has
been predominately inferred from virus genetic data

Figure 1. Conceptual representation of common phylogeographic methods. A: Time-calibrated phylogeny estimated with a
phylogeographic model with discrete traits. The inferred locations of the ancestral internal nodes (squares) are estimated
from the set of discrete locations predefined at the tips (i.e. locations of sampled sequences; circles). B: Discrete trait (e.g.
location or host species) analysis. Here, arrows indicate statistically significant virus lineage transitions between bird
types. Arrow thickness corresponds to the inferred viral flow rate. C: Time-calibrated phylogeny estimated with continuous
phylogeographic inference. The inferred geographic coordinates of the internal nodes (i.e. unsampled virus ancestor) can
differ from the geographical sampling coordinates of the sequences at the tips. Both internal nodes and tips are coloured
by location. D: Continuous phylogeographic reconstruction using information contained in estimated phylogenies such as
C, in which the dots represent the internal and external nodes of the time-scaled phylogeny, coloured according to time.
The curvature direction of the lines between dots indicates the inferred direction of viral movement. Coloured polygons rep-
resent the statistical uncertainty of the inferred internal node locations, which is derived from a posterior tree distribution.
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collected in North America and northern Europe (Hill
et al., 2022). Wild bird sampling remains relatively
limited in several areas of Central and South America,
Africa, the Middle East, and polar regions, which may
result in these regions being overestimated as sink
locations for virus lineages (Hurt et al., 2014; Araujo
et al., 2018; Fusaro et al., 2019; Naguib et al., 2019;
Kalonda et al., 2020; Hill et al., 2021; Lo et al.,
2022). Accordingly, phylodynamic investigations of
the global spread of AIV would benefit from increased
AIV genomic surveillance in undersampled locations
and host species.

Migratory flyways and mixing zones

Over 50 billion birds are estimated to migrate
annually, with most flyways linking breeding
grounds at high latitudes and over-wintering sites
at low latitudes (Boere et al., 2006; Bahl et al.,
2013). Several different phylodynamic studies using
discrete trait analyses (Box 1) report that AIV line-
age movement rates are greater within flyways than
between flyways in Asia (Central Asian, East
Asian) (Tian, Zhou, et al., 2015) and in North Amer-
ica (Central, Mississippi, Atlantic) (Scotch et al.,
2014; Fries et al., 2015; Li et al., 2018). Continuous
phylogeographic analyses (Box 1), in which virus
lineage movement is modelled as a diffusion process
between geographical coordinates (Lemey et al.,
2009, 2010), demonstrated that H5N1 movement
throughout Asia and Russia (1996–2011) correlates
with the geographical extent of known flyways (Tro-
vão et al., 2015). While a crude simplification to cap-
ture avian movement trends, “flyways” appear a
crucial facilitator of long-distance AIV spread in
wild birds.

Several studies indicate that AIV transmission
between birds during congregation at breeding
grounds or staging areas where multiple flyways
overlap (“mixing zones”) may shape the subsequent
global dissemination of AIV lineages (Ramey et al.,
2010; Gerloff et al., 2013; Huang et al., 2014; Lee
et al., 2015; Venkatesh et al., 2018; Mine et al.,
2019; Gass et al., 2023). For example, Mine et al.
(2019) determined that AIVs sampled in mixing
zones in Mongolia and Siberia from wild birds that
use different flyways were often phylogenetically
intermixed. The study used the Bayesian tip-associ-
ation significance testing (BaTS) software, which
implements post-hoc statistical tests on time-cali-
brated trees to determine if sequences significantly
cluster by a trait, such as sampling location. This
approach enables rapid assessment of whether viral
genetic diversity at tree tips is geographically struc-
tured, but, unlike discrete or continuous phylogeo-
graphic approaches, cannot be used to estimate full
histories of virus lineage movement. The above-

mentioned phylogenetic clustering patterns reported
in Mine et al. (2019) are consistent with birds sharing
AIVs in mixing zones before dissemination along
different flyways, hence enabling long-distance diffu-
sion of viral lineages between multiple continents or
regions (Mine et al., 2019). Consequently, the
authors hypothesized that cross-flyway viral diffusion
may have contributed to the simultaneous outbreaks
of H5N6 HPAIVs in East Asia and Europe in 2017–
2018 (Mine et al., 2019). Similar findings have been
observed in mixing zones in the Nile Delta and the
Republic of Georgia (Gerloff et al., 2013; Venkatesh
et al., 2018).

Several phylodynamic studies have shown high
AIV genetic diversity in some mixing zones (Ramey
et al., 2010; Gerloff et al., 2013; Venkatesh et al.,
2018, 2020; Mine et al., 2019). High-density congre-
gation of wild birds associated with different
flyways at mixing zones may provide ideal conditions
for AIV reassortment by increasing the probability of
co-infections with diverse genotypes and subtypes
(Venkatesh et al., 2018; Mine et al., 2019). However,
further research is required to robustly determine if
reassortant AIV genotypes exist at higher frequencies
in mixing zones than in non-mixing zones. While
phylodynamic approaches have been valuable in
demonstrating the role of flyways and mixing zones
in structuring AIV dispersal and reassortment pat-
terns, several challenges remain. The scarcity of
both wild bird migration data and wild bird sampling
in some regions (particularly low- and middle-
income countries) limits our ability to fully charac-
terize how migratory flyways impact AIV dispersal
patterns globally (Takekawa et al., 2010; Palm et al.,
2015; Tian, Zhou, et al., 2015; Fusaro et al., 2019;
Mine et al., 2019; Yong et al., 2021; Zhang et al.,
2023). Secondly, using environmental and flyway
data averaged over months or years limits our ability
to understand the impacts of changes in weather or
environmental conditions on wild bird-mediated
AIV dispersal patterns (Kirby et al., 2008; Vandegrift
et al., 2010; Iwamura et al., 2013; Bahl et al., 2016;
Sullivan et al., 2018).

Roles of different host taxa

Several studies employing phylodynamic methods
demonstrate how movement variation between
wild birds from different taxonomic orders might
impact AIV dispersal patterns (Ramey et al., 2010;
Miller et al., 2011; Wille et al., 2011; Hall et al.,
2013; Hill et al., 2022; Gass et al., 2023). In the bor-
eal and temperate territories of the Northern Hemi-
sphere, migratory Charadriiformes (e.g. shorebirds,
gulls) are more abundant and undertake long-dis-
tance migrations across oceans more frequently
than migratory Anseriformes (e.g. ducks, geese)
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(Ramey et al., 2010; Miller et al., 2011; Wille et al.,
2011; Hall et al., 2013; Hill et al., 2022; Gass et al.,
2023). Consequently, it has been suggested that
Charadriiformes may facilitate intercontinental
AIV transmission in these areas more than Anseri-
formes (Cappelle et al., 2012; Gaidet et al., 2012;
Gaidet, 2016; Rimondi et al., 2018; Hoye et al.,
2021; Wille et al., 2023). Phylodynamic support for
this hypothesis exists in the seemingly more fre-
quent detection of inter-hemispheric reassortment
events between American and Eurasian lineages
associated with Charadriiformes compared to
Anseriformes (Bahl et al., 2009; Ramey et al., 2010;
Wille et al., 2011; Van Borm et al., 2012; Hall
et al., 2013; Lang et al., 2016). Conversely, in areas
such as the tropical regions of West Africa, there is
a high abundance of long-distance migratory Anser-
iformes but a low abundance of Charadriiformes
migrants. There, Anseriformes are instead thought
to be the primary drivers of virus movement
between regions and continents (Cappelle et al.,
2012; Gaidet, 2016).

Discrete trait analyses (Box 1) have been used to
explore how wild bird species with contrasting
migration behaviours may differently influence AIV
spread (Hill et al., 2020, 2022). For instance, one
study suggested that in Egypt and adjacent Black
Sea-Mediterranean countries, local migrant species
(common shelduck (Tadorna tadorna)) generally
contributed to local AIV amplification, while longer
distance migrants (northern shoveler (Spatula cly-
peata) and northern pintail (Anas acuta)) carried
AIV lineages over longer distances (Hill et al.,
2020). Careful analyses and interpretation of results
regarding the contribution of different species to
AIV dispersal is critical because virus genome
sequences are often biased towards hunted species
(e.g. game birds) or those that are easily detected
when they die (e.g. larger inland birds such as mute
swans (Cygnus olor)) (Runstadler et al., 2013; Lebar-
benchon et al., 2015; Bahl et al., 2016; Beerens et al.,
2021; McBride et al., 2021; Hill et al., 2022). The
existence of within-species variation in movement
ecology, both between juveniles and adults (van
Dijk et al., 2014) and between resident and migratory
populations from the same species (Lisovski et al.,
2018), further complicates generalization of host
species traits associated with long-distance AIV
spread.

Between wild and domestic birds

Frequency and timing of movement

AIVs are regularly transmitted between wild and dom-
estic birds (Fusaro et al., 2011; Lebarbenchon & Stall-
knecht, 2011; Bahl et al., 2016; Nuñez & Ross, 2019).

The relative frequency of viral cross-species trans-
mission events can be estimated using phylodynamic
tools such as Markov jumps counting in combination
with discrete trait phylogeography (Minin & Suchard,
2008a, b; Faria et al., 2011) (Box 1). Markov jump
counting approaches enable the counting of the
expected number of transitions between modelled dis-
crete traits, such as country or host species, along phy-
logenetic branches (Minin & Suchard, 2008a, b; Faria
et al., 2011). For example, Markov jumps counting
analyses were used to infer that North America, east
and southeast Asia are hotspots for cross-species
transmission between wild and domestic birds (Ren
et al., 2016). Likewise, one large study of a globally
sampled H9 AIV dataset used both discrete trait ana-
lyses and Markov jump counting to identify spatial
asymmetry in the geographical areas where wild-to-
domestic and/or domestic-to-wild viral transmission
most often occurred (Bahl et al., 2016). These methods
must be used cautiously because Markov jumps ana-
lyses are very sensitive to disproportionate sampling
from each group relative to true virus prevalence
(Layan et al., 2023). This is particularly problematic
for AIV, where genome sequences are almost always
more frequently available from poultry relative to
wild birds (Bahl et al., 2016; Ren et al., 2016; Yang,
Xie et al., 2019).

The relative rates of transmission between domestic
and wild bird populations can also be investigated
using structured coalescent approaches and multitype
birth–death models, which may be less sensitive biased
sampling (Box 1) (De Maio et al., 2015; Grear et al.,
2017; Yang, Müller, et al., 2019; Guinat et al., 2022).
Such methods can allow the transition rates between
populations or demes to vary depending on the direc-
tion or estimate a single rate regardless of the direc-
tionality (De Maio et al., 2015; Kühnert et al., 2016;
Müller et al., 2018; Barido-Sottani et al., 2020). One
study of a 2014 HPAIV outbreak in North American
domestic poultry, caused by wild bird lineage spill-
over, inferred that minimal viral movement had
occurred between wild and domestic birds over the
subsequent course of the domestic outbreak (Grear
et al., 2017). Furthermore, estimates of basic repro-
ductive number (R0; the expected number of suscep-
tible individuals in a naïve population infected by
one infected host – see Box 2) indicated that the poul-
try outbreak size was stable (R0 ≈ 1) (Grear et al.,
2017). Taken together, these findings suggested that
the poultry outbreak was largely self-sustaining
(Grear et al., 2017).

Several studies indicate that AIV transmission
between wild and domestic birds can vary season-
ally (Alarcon et al., 2018; Ferenczi et al., 2021;
Gonzales et al., 2021; Zhang et al., 2021; Liang,
Nissen, et al., 2021). Recurrent temporal peaks in
cross-species transmission events can be
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investigated using phylodynamic tools that infer
population demographic history (Frost & Volz,
2010; Karcher et al., 2020) (Box 2). For example,
one study observed that the effective population
size of clade 2.3.4.4b H5N8 viruses in Chinese
poultry, as estimated by a skyride coalescent
model (Gill et al., 2013) (Box 2), increased during
winter 2020/21, as previously observed for H5

lineages/clades during winter 2013/14 and 2016/
17 (Zhang et al., 2021). Seasonal increases in
viral effective population size and other phyloge-
netic evidence, such as estimated dates of incur-
sion of new lineages, were interpreted as
consistent with immigrating wild birds recurrently
introducing new H5 viruses into domestic poultry
(Zhang et al., 2021).

Box 2.

Past population dynamics can be estimated through phylodynamic inference by analysing how virus effective population size (Ne) changes over
time. Briefly, the effective population size represents the size of an idealized viral outbreak (i.e. one without selection or population structure) that
experiences the same level of genetic drift as the studied population (Magiorkinis et al., 2013). Ne estimates are affected by transmission rates and
therefore almost always cannot be scaled directly to the number of infected individuals (Frost & Volz, 2010). Furthermore, uneven sampling strategies
such as focused sampling during transmission peaks can bias the estimation of effective population size (Karcher et al., 2020; Parag et al., 2020;
Cappello & Palacios, 2022). Nevertheless, estimates of Ne can provide important information about the viral outbreak dynamics, including capturing
seasonality or the possible efficacy of interventions in reducing subsequent outbreak size (Frost & Volz, 2010; Rife et al., 2017; Drummond et al., 2005)
(Figure 2A).

Methods that are commonly employed to estimate population size trajectories over an epidemic include the Bayesian skyline (Drummond
et al., 2005), the skyride (Minin et al., 2008), the birth–death skyline (Stadler et al., 2013), and the skygrid (Gill et al., 2013).

Several approaches estimate population size history alongside other tree parameters based on the principle that when the population size is small,
sampled viruses are more likely to share a common ancestor in the very recent past, and therefore lineages coalesce (join) faster (Drummond et al.,
2005). Therefore, a faster rate of branch coalescence suggests a comparatively smaller population at that time point (Drummond et al., 2005). The
Bayesian skyline model requires pre-determination of the number of points at which effective population size can change, generating estimates that
are summaries of multiple step-wise changes (Drummond et al., 2005). The skyride model does not require predefined points, and introduces a
method of temporal smoothing based on the assumption that Ne is correlated across successive coalescent intervals (Minin et al., 2008). The skygrid
model modifies and extends the skyride model by allowing the Ne trajectory to change at specific time-points pre-specified by the user (Gill et al.,
2013). A further extension of the skygrid model implements a generalized linear model (GLM) to test how time-varying covariates, such as monthly
temperature, are associated with temporal changes in Ne in a method known as “skygrid-GLM” (Gill et al., 2016).

Figure 2. Exemplar outputs of phylodynamic methods used to infer past demographic parameters. A: Effective population
size (Ne) over time: the solid line is the posterior median estimate for Ne, and the surrounding ribbon indicates the 95% Baye-
sian credibility interval. The bold vertical dashed line represents the median estimate of the time of the root. Thinner vertical
lines indicate the lower (left) and highest (right) values of the 95% highest posterior density interval for the root age. B: Effec-
tive reproduction number (Re) over time: the solid line is the posterior median estimate for Re, and the surrounding ribbon
indicates the 95% Bayesian highest posterior density interval. The horizontal dashed line indicates Re of 1.
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The birth–death skyline (Figure 2) provides an alternative method to these coalescent-based approaches (e.g. Bayesian skyline, skyride, and
skygrid) (Stadler et al., 2013). While in the Bayesian skyline approach only the effective population size changes over time, the birth–death skyline
model infers temporal changes in transmission, death/recovery, and sampling rates at discrete intervals alongside variation in population size (Stadler
et al., 2013). Birth–death models infer a forward-in-time process, starting with the common ancestor of all sampled infections, followed by bifurcating
new lineages representing observed and unobserved transmission events, thus generating a tree (Stadler et al., 2013). In contrast, the coalescent is
modelled backwards-in-time starting from the sampled sequences in the present time until the most recent common ancestor of the sample in the
past, with the internal nodes representing the merging or coalescing of two lineages into their most recent common ancestor (i.e. coalescent event)
(Drummond et al., 2005; Frost & Volz, 2010).

Compared to coalescent approaches, birth–death skyline models can more easily explicitly infer the number of expected secondary infections
caused by an infected individual (Figure 2B), either as a time-varying average (Re: effective reproduction number), or at the start of an outbreak
when all individuals are considered as a completely susceptible population (R0: basic reproduction number) (Stadler et al., 2012, 2013; Volz et al.,
2013). Changes in effective reproduction number can reflect depletion of the susceptible population as well as control interventions, with Re > 1
indicating a growing epidemic, Re < 1 a declining epidemic, and Re ≈ 1 that the outbreak is stable (Stadler et al., 2013; Domingo, 2020; Gostic et al.,
2021).

Factors and settings associated with viral
movement

To identify factors associated with higher rates of
cross-species AIV transmission or lineage dispersal,
phylodynamic analyses previously relied primarily
on post-hoc literature searches for relevant events
that occurred concurrently with reconstructed viral
movements (Vijaykrishna et al., 2013). For example,
one study suggested that higher rainfall might increase
H10 subtype AIV spillover from wild aquatic birds to
poultry in Australia because inferred spill-over events
occurred more frequently during periods of increased
rainfall in the region (Vijaykrishna et al., 2013). More
recently, the incorporation of GLMs into discrete trait
analyses (frequently referred to as “DTA-GLMs”) (Box
1) (Lemey et al., 2012, 2014; Gill et al., 2016) has
enabled hypotheses to be formally tested during the
phylogenetic estimation process (Beard et al., 2014).
For instance, a DTA-GLM showed that H5N1 spill-
over from wild birds to poultry in Egypt tended to
occur in locations with a higher density of birds and
humans, higher elevation, and several meteorological
variables (Magee et al., 2015).

To implement effective infection control, it is
necessary to understand the settings in which AIVs
move between wild and domestic birds. AIV out-
breaks frequently occur in Asian wetlands or rice
fields where free-grazing ducks are reared at high den-
sity and in close contact with wild birds, suggesting
that these areas may support transmission between
wild and domestic birds (Hulse-Post et al., 2005; Mar-
tin et al., 2011; Cappelle et al., 2014; Prosser et al.,
2016; Sullivan et al., 2018). Several phylodynamic ana-
lyses have supported this epidemiological finding, for
example, indicating that the spread and maintenance
of H5N8 lineages in the Republic of Korea were posi-
tively associated with regions of high wild waterfowl
immigration and domestic duck density (Hill et al.,
2015). Low precision of metadata on sampled
locations of virus sequences often limits analyses to
considering predictors at district-level scales, making
it harder to account for local heterogeneity in ecologi-
cal suitability for wild birds or farming intensity (Hill
et al., 2015; Bahl et al., 2016; Hill et al., 2020).

Furthermore, these methods have not been frequently
applied in regions such as Africa and the Middle East
where AIV genomic surveillance is limited (Naguib
et al., 2019; Ayala et al., 2020; Kalonda et al., 2020).

Between avian and mammalian species

HPAIVs and LPAIVs can occasionally infect humans
and therefore are a public health threat (Webster
et al., 1992; Li et al., 2019; Lycett et al., 2019). Epide-
miological studies suggest that most infected patients
had recent exposure to live poultry or had visited
live-bird markets, rather than exposure to wild birds
or non-avian species (Zhou et al., 2013; Yu et al.,
2014; Yang et al., 2017; Li et al., 2019; Oliver et al.,
2022). Phylogenetic analyses of virus genomes from
humans and birds have been frequently used to sup-
port that poultry were the likely origin (Liu et al.,
2013; Joseph et al., 2017; Yang et al., 2017; Zhang
et al., 2021). Sporadic AIV transmission from birds
to mammals can, in theory, select for variants that
have increased transmissibility in mammals (Balzli
et al., 2016; Bourret, 2018; Nuñez & Ross, 2019;
Zhao et al., 2019) and therefore potentially increase
pandemic risk (Nelson et al., 2012; Bourret, 2018;
Bravo-Vasquez et al., 2020). Phylogenetic analyses
have identified multiple AIV lineages associated with
cross-species transmission from birds to swine or
other mammals (Bodewes et al., 2016; Ramey et al.,
2017; Zhao et al., 2019; Chauhan & Gordon, 2021;
Rijks et al., 2021). These transmission events some-
times result in sustained transmission, particularly
within swine populations (Nelson et al., 2015; Bourret,
2018). For example, a phylodynamic study used time-
calibrated phylogenies to determine that H10N7
viruses that caused significant mortality in harbour
seals (Phoca vitulina) in 2014 in Europe were closely
related to various avian-origin H10N7 viruses detected
in wild birds in the Netherlands (Bodewes et al., 2015,
2016). More recently, H5Nx clade 2.3.4.4b viruses in
red foxes and wild birds in Europe (the Netherlands)
were found to be closely genetically related (Rijks
et al., 2021). Our understanding of the frequency of
spill-over to, and dissemination within, mammalian
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species is limited by the sparseness of virus genomic
surveillance in these taxa (Runstadler et al., 2013; Bod-
ewes et al., 2016; Ren et al., 2016).

Domestic poultry populations

HPAIV origins and diversification

HPAIVs pose a severe problem for the poultry indus-
try, and understanding their origins could help predict
and prevent future outbreaks (Nuñez & Ross, 2019;
Beerens et al., 2021). Time-calibrated phylogenies of
HA show that multiple H5 and H7 HPAIV genotypes
have independently evolved from ancestral LPAIV
viruses, potentially facilitated by high poultry density
and contact rates within intensive farming systems
(Monne et al., 2014; Dhingra et al., 2018; Seekings
et al., 2018; Escalera-Zamudio et al., 2020). Phylogeo-
graphic investigations have tracked the geographic
origins of multiple HPAIV genotypes, and in rare
cases, even suggested a possible source farm (Monne
et al., 2014; Dhingra et al., 2018; Seekings et al., 2018).

Geographic spread within poultry populations

Discrete trait analyses (Box 1) have frequently been
employed to reconstruct AIV spatial spread within
domestic poultry populations (Jin et al., 2014; Bahl
et al., 2016; Zhang et al., 2020; Harvey et al., 2021).
For example, southern China was shown to be an epi-
centre for the national spread of H5N6 HPAIV in
poultry from 2013 to 2017 (Zhang et al., 2020) and
was identified as a potential source of a national
wave of H9N2 infections in domestic birds (Jin
et al., 2014).

Some studies have employed structured coalescent
models (Box 1) to reconstruct AIV spatial spread in
domestic poultry (Yang et al., 2019; Hicks et al.,
2020). Such analyses have shown that viral diffusion
tended to occur within, rather than between, North
American states during an H5N2 outbreak (Hicks
et al., 2020). However, as previously described,
sampling bias or the presence of unsampled locations
(Box 1) can be problematic for discrete trait phylogeo-
graphic models, and results must be interpreted with
caution given regional differences in AIV genomic
surveillance capacity (De Maio et al., 2015; Layan
et al., 2023). LPAIV surveillance is particularly chal-
lenging because infections rarely cause severe disease
in poultry and can easily be missed (Hurt et al.,
2014; Parvin et al., 2020). Although HPAIV is likely
easier to detect due to its higher pathogenicity, in
some countries farmers may avoid reporting HPAIV
cases for fear that birds will be culled without financial
compensation (Chattopadhyay et al., 2018; Parvin
et al., 2020; Moyen et al., 2021; Ripa et al., 2021).

Phylogeographic analysis can be performed using
continuous models (Box 1) in which the spread of
viruses is modelled using geographical coordinates
(Lemey et al., 2009, 2010). Continuous phylogeo-
graphic analyses can be preferable to discrete analyses
when it is beneficial to understand virus spread in both
sampled and intermediate unsampled locations
(Box 1) (Lemey et al., 2009, 2010). Continuous phylo-
geographic analysis indicated that the HPAIV H5N1
movement in Java in 2003 was characterized by
short-range dispersal events interspersed with
occasional long-range movements (Lam et al., 2012).
Similar approaches were also used to show that
short-distance viral movement was more common
than long-distance movements during Italy’s 2016–
17 HPAI H5N8 epidemic, with the first outbreak
wave generally restricted to the north-eastern areas
of the country (Harvey et al., 2021). Biased sampling
between geographical locations can result in a failure
to determine the true origin of the outbreak and in
the underestimation of viral diffusion rates into an
oversampled region from an undersampled area
when using continuous phylogeographic methods
(Hill et al., 2021; Kalkauskas et al., 2021). The incor-
poration of sequence-free samples from affected yet
unsampled areas may somewhat alleviate the effect
of sampling bias in continuous phylogeographic ana-
lyses (as proposed in Kalkauskas et al. (2021)). How-
ever, this approach requires a prior understanding of
the spatial distribution of outbreaks.

Drivers of dispersal

Understanding which species or breeds are most
important for maintaining AIV within poultry systems
can allow for the preferential targeting of surveillance
and control efforts toward certain host types (Hill
et al., 2015; Barman et al., 2017; Hicks et al., 2020;
Youk et al., 2020; Harvey et al., 2021). A study using
Markov jump and reward analysis showed that, in
live bird markets in the Republic of Korea, the trans-
mission rate of H9N2 from domestic ducks to chickens
was higher than the rate in the opposite direction (Youk
et al., 2020). Similarly, structured coalescent approaches
(Box 1) demonstrated that the H5N2 viral transmission
rates from layer chicken to turkey populations were
higher than the reverse during a 2014–2015 outbreak
in North America (Hicks et al., 2020).

Phylogeographic analyses helped identify factors
associated with AIV spread in domestic birds (Yang,
Müller, et al., 2019; Dellicour, Lemey, et al., 2020; Del-
licour, Lequime, et al., 2020; Hicks et al., 2020), thus
highlighting which components of the production sys-
tem may be most affected in future outbreaks. DTA-
GLMs (Box 1) are commonly used for this purpose
and have identified several economic and agricultural
factors significantly associated with AIV dispersal in
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domestic birds in China (such as poultry population
density, freight transportation, the number of markets
selling poultry or poultry products, and high human
density) (Lu et al., 2017). When both precise location
and detailed geographical environmental data are
available, we can also investigate factors associated
with viral dispersal in a continuous phylogeographic
analysis using the R package “seraphim” (Dellicour
et al., 2016) (Box 1). For example, this approach ident-
ified weak support for the association of several spatial
factors (e.g. human, chicken and duck population
densities, inaccessibility, savanna) with heterogeneity
in lineage dispersal velocity of H5N1 in the Mekong
region (Cambodia, Laos, Thailand, Vietnam) (Delli-
cour, Lemey, et al., 2020).

The impact of commercial poultry movement net-
works on AIV dissemination in domestic birds rep-
resents an important, but particularly challenging,
area of research (Lu et al., 2017; Yang et al., 2020;
Moyen et al., 2021). Poultry trading records are
difficult to obtain on a large scale, especially in low-
and middle-income countries where poultry pro-
duction systems can be highly complex and dynamic,
and where these data are not already routinely col-
lected (Yang et al., 2020; Moyen et al., 2021). As
such, most phylogeographic studies have used proxies
for poultry trade networks (Lu et al., 2017; Yang et al.,
2020). For example, one study used DTA-GLMs (Box
1) to show that a proxy network of poultry transpor-
tation in China, as determined by a gravity model
built from metrics of domestic poultry production
and egg production, was positively associated with
the large-scale movement of three AIV subtypes
(H5N1, H7N9, and H5N6) (Yang et al., 2020). Greater
availability of accurate poultry trade data would likely
allow for more rigorous assessment of the impact of
poultry movements on AIV dispersal (Parvin et al.,
2020; Yang et al., 2020; Moyen et al., 2021).

Across borders

Although AIV dispersal in domestic poultry typically
occurs within countries, several phylodynamic studies
have investigated lineage movements across borders
(Melville & Shortridge, 2006; Yang, Müller et al.,
2019; Yang, Xie et al., 2019). The occurrence of
long-distance trade-facilitated AIV movements was
highlighted by a 2004 report that linked the 1500 km
spread of HPAIV H5N1 from Lanzhou (Gansu Pro-
vince, Northwest China) to Lhasa (Tibetan Auton-
omous Region) to the transport of domestic birds
(Melville & Shortridge, 2006). More recently, studies
have begun to explore larger-scale factors that can
drive interprovincial or international virus movement
(Yang, Müller et al., 2019; Yang, Xie, et al., 2019).
Through a GLM extension of a structured coalescent
model (Box 1), one study identified annual levels of

international live poultry trade between countries
and national poultry production as predictors of
cross-border H9N2 virus movement in domestic
Asian birds (Yang, Chowdury et al., 2019). Illegal
trade may also drive the international spread of AIV.
However, phylodynamic investigations are limited in
their ability to investigate the impact of illegal bird
trade on the global dispersal of AIV, as this predictor
cannot be easily quantified (Tian, Zhou, et al., 2015;
Yang, Müller, et al., 2019; Yang, Xie, et al., 2019).

5.5. Evaluating control efforts

In addition to helping guide the design of novel
measures aimed at tackling AIV spread, phylodynamic
analyses have been used to evaluate the efficacy of pre-
viously implemented control measures (Lee et al.,
2014; Tian, Cui, et al., 2015; Nickbakhsh et al., 2016;
Kwon et al., 2020; Chakraborty et al., 2022). By incor-
porating time-varying predictors into a GLM exten-
sion of a structured coalescent phylogeographic
model (Box 1), one study showed that duck culling
in France likely reduced the spread of HPAIV H5N8
between French administrative divisions (Chakra-
borty et al., 2022). Several studies have also employed
phylodynamic methods that infer past population
demographic dynamics to explore the effectiveness
of control measures (Lee et al., 2014; Tian, Cui,
et al., 2015; Kwon et al., 2020). For example, Kwon
et al. (2020) argued that an observed fall in H5N1
virus effective population size in Bangladesh over
3 years was due to reduced virus prevalence in dom-
estic birds following the concurrent introduction of
wide-scale vaccination, although alternative expla-
nations are possible (Kwon et al., 2020). Likewise,
one study used estimates of effective reproduction
numbers (Box 2) to infer that HPAI-targeted control
measures (e.g. culling of infected flocks, pre-emptive
culling of neighbouring flocks) introduced in Italy in
2000 successfully slowed the epidemic growth of a
novel HPAI outbreak but not that of its LPAI progeni-
tor lineage (Nickbakhsh et al., 2016).

Outlook

Whilst this review highlights where phylodynamic
analyses have contributed significantly to our under-
standing of AIV over the last few decades, we identify
several areas that can aid future progress of the field.
First, we can benefit from the wide range of new
approaches developed and extended during the
COVID-19 pandemic. For example, methods that
enable accessible, “real-time” and easily scalable
incorporation of sequences into viral phylogenies
(e.g. Nextstrain (Hadfield et al., 2018)) could be
used more extensively to support surveillance, and
methods that incorporate host travel history within
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phylogeographic analyses could be explored to
accommodate bird migration histories (Lemey
et al., 2020).

Despite many recent methodological advances, for-
mally integrating different data types within phylody-
namic analyses remains a key challenge (Frost et al.,
2015; Baele et al., 2017). Approaches that can better
integrate temporally varying environmental and demo-
graphic data alongside genetic sequences would be
extremely valuable to study how bird movements
drive AIV lineage spread. Ideally, such models would
be developed to handle a broad array of new data
types, including bird tracking data from mobile global
positioning systems (e.g. GPS-3G-Bluetooth technol-
ogies developed to investigate bird spatial behaviour
(Yu et al., 2022)), satellite imagery of high-risk locations
for AIV transmission between wild and domestic
species, and poultry trade data. In locations where it
is difficult for authorities to access trading records com-
prehensively, purpose-built apps could facilitate collec-
tion of more complete poultry trade network data for
use in such new models (Ravindran, 2021; Grubaugh
et al., 2019; Lycett et al., 2019; Cardona-Ospina et al.,
2021). The development of methods that effectively
accommodate reassortment in phylodynamic analyses
in a user-friendly fashion would help better understand
AIV spread (Frost et al., 2015; Lycett et al., 2019; Ver-
hagen, Fouchier, et al., 2021).

It is essential to improve AIV genome sequence
and metadata availability (Kalkauskas et al., 2021;
Layan et al., 2023). Missing metadata (such as date
of collection, host type or species, precise location
for wild birds, or production context for domestic
poultry) reduces the value of virus genomes within
phylodynamics. Likewise, as discussed throughout
this review, sampling biases increase the risk of draw-
ing incorrect conclusions from phylodynamic ana-
lyses. It is therefore important to grow capacity for
AIV genomic monitoring in currently under-rep-
resented countries and sampling from understudied
species.

Finally, tackling challenges related to feasibility and
resource-intensity is essential for enhancing phylody-
namic studies of AIVs. At present, and particularly
when dealing with large genomic datasets, a significant
level of technical expertise and robust computing
infrastructure is often required to formulate appropri-
ate phylodynamic models, execute them, and interpret
their results (Duchene et al., 2018; Sagulenko et al.,
2018; Attwood et al., 2022). As such, the continued
development of faster tools (e.g. recently introduced
ML methods (Sagulenko et al., 2018; Ishikawa et al.,
2019)) and the advancement of computational
packages that allow existing tools to make more effec-
tive use of available computer hardware (e.g. BEAGLE
(Ayres et al., 2012)) are critical, especially in more
resource-constrained environments and where results

are intended to inform emergency responses (Suchard
& Rambaut, 2009; Baele et al., 2019). The use of cloud
computing in phylodynamic analyses, which was criti-
cal for handling the unprecedently large genomic
datasets produced the COVID-19 pandemic, could
be beneficial in helping researchers handle increased
numbers of genome sequences. Greater investment
in appropriate training and computational infrastruc-
ture in many lower- and middle-income countries
would improve global accessibility of phylodynamic
approaches (Rife et al., 2017; Hill et al., 2021; Attwood
et al., 2022).

Conclusions

AIVs can severely harm domestic and wild birds, and
their effective control in birds can help protect the
health of humans and other mammalian species.
Phylodynamic approaches can be insightful in recon-
structing the spatiotemporal dispersal of AIVs, with
models capable of analysing viral diffusion within
and between different host populations and locations.
However, limitations in phylodynamic models exist
when key metadata are missing, virus genomic
sampling is uneven, and for analysing reassortant
viruses. Addressing these challenges will be important
to further fulfil the potential of phylodynamic analyses
to improve human and animal health.
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