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Abstract. This paper presents retrospective simulations (1963–2019) and future projections (1976–2100) of
daily time series of discharge and stream temperature for 52 278 reaches (median length of 1.3 km) over the
Loire River basin (105 km2) in France, using a physical process-based thermal model coupled with a semi-
distributed hydrological model. Retrospective simulations are based on the 8 km gridded Safran meteorolog-
ical reanalysis over France. Twenty-first century projections are based on a subset of the 8 km gridded and
bias-corrected DRIAS-2020 dataset over France. The discharge and stream temperature dataset stands out
from existing ones thanks to its large scale and its high spatial resolution and the use of a physical process-
based thermal model. The whole dataset is freely available and can be downloaded in NetCDF format from
https://doi.org/10.57745/LBPGFS (Seyedhashemi et al., 2022a).

1 Introduction

Stream (water) temperature (Tw) is a critical parameter af-
fecting the eutrophication of water bodies (Minaudo et al.,
2018; Le Moal et al., 2019; Zhao et al., 2022), a wide range
of biogeochemical processes (Ouellet et al., 2020), and the
life cycle (Elliott and Elliott, 2010) and spatial distribution
of aquatic organisms (Cox and Rutherford, 2000; Morales-
Marín et al., 2019; Picard et al., 2022). Recent evidence sug-
gests the worldwide rise in this critical parameter due to cli-
mate change over the past decades (e.g., Moatar and Gail-
hard, 2006; Orr et al., 2015; Arora et al., 2016; Michel et al.,
2020; Seyedhashemi et al., 2022b), which is also anticipated
to continue in the future (e.g., Kwak et al., 2017; Carlson
et al., 2017; Seixas et al., 2018; Du et al., 2019; Lee et al.,
2020; Piotrowski et al., 2021; Michel et al., 2022). How-
ever, missing continuous long-term Tw data at a large scale
over the past (Nelson and Palmer, 2007; Webb et al., 2008;

Arora et al., 2016) has limited our understanding of large-
scale controlling factors and spatio-temporal variability of
thermal regimes and of the impacts of such a variability on
stream ecosystems in light of climate change (Hannah and
Garner, 2015).

To overcome the lack of Tw data and to understand how the
thermal regime responds to the climate change, physically-
based, or deterministic, models can be used (Dugdale et al.,
2017). These models simulate and project Tw dynamics
through a heat budget, accounting for energy exchanges
and effects of landscape characteristics on energy transfer
(Sinokrot et al., 1995; Webb and Walling, 1997; Yearsley,
2009; van Vliet et al., 2013; Beaufort et al., 2016b). Depend-
ing on the input data, these models can be run at different
temporal resolution and spatial scales, ranging from small
streams to large rivers (Dugdale et al., 2017). The outputs
of these models allow detecting past and future changes in
rivers’ thermal regimes and exploring the influence of hydro-
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climatic – i.e., air temperature (Ta) and discharge (Q) – and
basin drivers on such changes (see recent studies: e.g., Seyed-
hashemi et al., 2022b; Michel et al., 2022). For example,
Seyedhashemi et al. (2022b), using a physical process-based
thermal model, found that Tw increased faster than air tem-
perature over the past recent decades and attributed such an
increase in Tw to the increase in Ta and decrease in Q. They
also found the greatest increase in large rivers, while riparian
shading mitigated the increase in Tw in small mountainous
streams. Additionally, climate-induced changes in Tw could
also help us to predict the vulnerability of aquatic species to
climate change (Lee et al., 2020).

This paper, using outputs of the 1-D Temperature-
NETwork (T-NET) physical process-based thermal model
coupled with the EROS semi-distributed hydrological model,
presents daily time series of Q and Tw from the past to future
at the reach scale over the Loire River basin (105 km2), one of
the largest in Europe. EROS and daily Q data are presented
in Sect. 2. T-NET and daily Tw data are presented in Sect. 3.
Although the time series of both Q and Tw are available for
the whole year, here, data description is mostly focused on
the June to August months (hereafter referred to as summer);
the time of the year which is crucial for the survival (Steel
et al., 2017), growth, and migration of aquatic communities
(Arevalo et al., 2020). Note that a part of retrospective sim-
ulations has also been previously commented on by Seyed-
hashemi et al. (2022b).

2 EROS hydrological model and daily discharge
data

2.1 Principles and input data of EROS

EROS is a semi-distributed hydrological model which simu-
lates daily discharge at the outlet of 368 homogeneous (with
respect to land use and geology) sub-basins for the Loire
River basin (see Fig. 1). At the outlet of each sub-basin, the
water balance is modeled by a lumped model using three
reservoirs (see Fig. S2 in the Supplement of Seyedhashemi
et al., 2022b) and a routing function for propagation across
sub-basins. To reconstruct daily Q at the sub-basin outlets
(“Retrospective simulations” in Fig. 1), EROS uses daily air
temperature (Ta in ◦C), precipitation (P in mm) and potential
evapotranspiration (ET0 in mm) computed with the Penman–
Monteith equation (Allen et al., 1998). These meteorological
data are provided by the 8 km gridded Safran atmospheric re-
analysis (Quintana-Segui et al., 2008; Vidal et al., 2010) re-
leased by Météo-France (see Fig. 1) and then averaged over
each sub-basin. Finally, to have daily Q at the reach scale,
simulated Q at the sub-basin outlets is redistributed along the
river network inside each sub-basin according to each reach
drainage area (through a routine in T-NET).

2.2 Calibration and validation of EROS

EROS had been calibrated over 1974–2018 to maximize the
number of discharge near-natural observations, with 1971–
1974 used for the warm-up. The calibration optimized all un-
known parameters (soil capacity, recession times, and prop-
agation times) through maximizing the Nash–Sutcliffe effi-
ciency (NSE) criterion on the square root of discharge and
minimizing the overall bias (see Seyedhashemi et al., 2022b).
Seyedhashemi et al. (2022b) validated and assessed the per-
formance of the EROS through computing seasonal and an-
nual relative biases, together with Nash–Sutcliffe efficiency
on Q, ln(Q), and

√
Q over the 1963–2019 period. In a major-

ity of calibration stations (75 %), and stations on the French
Reference Hydrometric Network (83 %), NSE is > 0.7 for
all Q, ln(Q), and

√
Q. EROS performed well at the annual

scale (median relative bias of 0 %), while it slightly underes-
timated winter (−6.27 %) and spring Q (−3.47 %) and over-
estimated summer (+34.7 %) and autumn Q (+20.9 %) (see
Fig. S6 of Seyedhashemi et al., 2022b). Such an overesti-
mation in Q over summer and autumn was attributed to the
fact that EROS does not consider the influence of water ab-
stractions and impoundments. Moreover, significant spatial
correlation (p < 0.05) between seasonal Q trends in retro-
spective simulation against observations at hydrometric sta-
tions with long-term continuous daily data were also noted
(see Fig. S10 of Seyedhashemi et al., 2022b).

2.3 Projections (1976–2100)

For future projections of daily Q, EROS uses meteorological
data provided by the DRIAS-2020 climate projection dataset,
which has been released over France through the DRIAS por-
tal (see http://www.drias-climat.fr/, last access: 3 July 2023)
(Soubeyroux et al., 2020). It comprises an ensemble of cli-
mate projections under three Representative Concentration
Pathways (RCPs) used in the fifth IPCC Assessment Report
(Core Writing Team et al., 2015) derived from the larger EU-
ROCORDEX dataset using regional climate models (RCMs)
over Europe. This ensemble is downscaled over France to
the 8 km Safran grid and bias corrected with respect to the
Safran reanalysis data with the ADAMONT method (Verfail-
lie et al., 2017). In this study a subset of three contrasted fu-
ture climate models (GCMs–RCMs) are used to sample the
dispersion of the full ensemble of 12 GCM–RCM projec-
tions from the DRIAS-2020 dataset. The three future climate
models include a warm and wet couple of models (IPSL-
CM5A–MRWRF381P), an intermediate one (CNRM-CM5-
LR–ALADIN63), and a hot and dry couple (HadGEM2–
CCLM4-8-17).

All three selected future climate models (GCMs–RCMs)
include RCP 4.5 and 8.5, which are intermediate and ex-
treme scenarios corresponding to a plausible representation
of the future behavior of human societies. The CNRM-CM5-
LR–ALADIN63 model also includes RCP 2.6. Therefore,
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Figure 1. Synthetic diagram showing the methodology of retrospective simulations and projections of daily Q and Tw over the Loire River
basin as well as the spatial resolution of input data in each step. The red circles in the map of sub-basins show the outlets of 368 sub-basins,
while the three black triangles show the position of sub-basin examples in the southern (L’Allier at Monistrol-d’Allier), the middle (L’Arnon
at Méreau (Pont de Méreau)), and the northern part (La Loire at Montjean) of the basin used in the text.

the projections are conducted under seven projections in to-
tal. For each GCM–RCM, two periods are considered: (1)
the period with GCMs forced by historical concentrations in
greenhouse gases between 1976 and 2005, and (2) the projec-
tion part using RCPs as forcings, which extends from 2005 to
2100 (see Table 1 and projections in Figs. 1 and S1). It should
be noted that, although selected projections start in the 1950s,
the hydrological model in the current study is forced from the
1970s onwards.

Daily Ta, P , and potential evapotranspiration (PET) pro-
vided by these seven projections are integrated into EROS. It
then produces daily Q under each projection over the histor-
ical period (1976–2005) and the future (2005–2100) (“Pro-
jections” in Fig. 1). Note that PET in DRIAS-2020 is com-
puted by a Penman–Monteith equation using a proxy for ra-
diation (calculated by maximum and minimum Ta), in or-
der to use neither GCM–RCM radiation nor Safran radia-
tion for the bias correction (see http://www.drias-climat.fr/
accompagnement/sections/310 for PET calculation in projec-
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Table 1. GCMs, RCMs, and RCPs used in the current study. More information can be found at http://www.drias-climat.fr/.

GCM RCM HIST RCP 2.6 RCP 4.5 RCP 8.5 Period

IPSL-CM5-MIR WRF381P X X X 1976–2005; 2005–2100

Dufresne et al. (2013) Skamarock et al. (2008)
Hourdin et al. (2013)

CNRM-CM5 ALADIN63 V2 X X X X 1976–2005; 2005–2100

Voldoire et al. (2013) Colin et al. (2010)
Bador et al. (2017)

HadGEM2-ES CCLM4-8-17 X X X 1976–2005; 2005–2099

Jones et al. (2011) Keuler et al. (2016)

tions). This PET equation is therefore slightly different from
the one used for calibrating EROS. Note also that EROS is
calibrated and run under present land cover and land use.

To assess future projections of Q in the present day and
their biases, we consider daily Q retrospective simulations
(under Safran reanalysis) at the sub-basin outlets as the ref-
erence data and compare them with projections under the
DRIAS-2020 dataset over the 1976–2005 summer period.
The 1976–2005 period is the reference period used to cor-
rect the biases of climate projections with respect to Safran
in the DRIAS-2020 dataset.

2.4 Data description over the summer period
(June–August)

2.4.1 Retrospective simulation (1963–2019)

Trends in Q over the 1963–2019 period are highly variable in
magnitude and direction across the basin, with decreasing Q

in the southern part of the basin (in the Massif Central up to
−16 % per decade) and increasing Q in the remaining parts
of the basin (see Fig. 3 of Seyedhashemi et al., 2022b). Sim-
ilarly, a retrospective simulation in Fig. 2 shows a decrease
in summer Q for a sub-basin in the southern part, while the
same variable is relatively stationary at the other two sub-
basins in the middle and northern part. Seyedhashemi et al.
(2022b) also found that the seasonal and annual anomalies
of Q show a relatively stationary evolution with −100 % to
150 % values in summer across the basin (their Fig. S17).

2.4.2 Projections (1976–2100)

Projections underestimate summer Q (up to −45 % depend-
ing on the GCM–RCM) mainly in the middle and north part
of the basin and overestimate summer Q in the southern part
of the basin (Fig. 3). An overestimation can be found over
the whole basin for HadGEM2–CCLM4-8-17. Such differ-
ences between simulations and projections can be due to dif-
ferences in PET calculation between the retrospective sim-

ulation and projections, as well as the specifics of the bias-
correction method (Soubeyroux et al., 2020).

In the southern (L’Allier at Monistrol-d’Allier) and north-
ern parts (La Loire at Montjean) of the basin, summer
Q is decreasing in 21st century projections regardless of
the GCM–RCM, with the largest decrease for HadGEM2–
CCLM4-8-17 (Fig. 2). However, such a decrease is lim-
ited in the middle part of the basin (L’Arnon at Méreau
(Pont de Méreau)). Figure 4 shows that for IPSL-CM5A–
MRWRF381P, there is a north-to-south and increase-to-
decrease gradient in the middle of the century (2040–2069)
with respect to the present time (1990–2019) under RCP
8.5. There is also a decrease in the downstream part of the
basin for HadGEM2–CCLM4-8-17 and to a lesser extent for
CNRM-CM5-LR–ALADIN63. However, for the latter, an in-
crease in summer Q is observed in some parts in the south,
while for HadGEM2–CCLM4-8-17, a decrease in summer Q

is projected for the whole basin with the greatest decrease in
the southern part (Fig. 4).

Under RCP 8.5, the annual regime of projected Q will also
be different from one GCM–RCM to another and from one
sub-basin to another (see Fig. S2). For instance, at a sub-
basin in the southern part of the basin (L’Allier at Monistrol-
d’Allier), the highest Q is projected by HadGEM2–CCLM4-
8-17 over spring, while this happens over winter for IPSL-
CM5A–MRWRF381P for a northern sub-basin (La Loire
at Montjean). Nevertheless, for both sub-basins, the annual
regime of Q for HadGEM2–CCLM4-8-17 under RCP 8.5
shows that the low-flow period lasts longer (even until fall)
compared to the other two model combinations.

3 T-NET thermal model and daily stream
temperature data

3.1 Principles and input of T-NET

To estimate daily Tw for 52 278 reaches (median length of
1.3 km) over the Loire River basin, T-NET calculates the
equilibrium temperature and solves the local heat budget

Earth Syst. Sci. Data, 15, 2827–2839, 2023 https://doi.org/10.5194/essd-15-2827-2023
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Figure 2. Summer Q in retrospective simulations and projections under RCP 8.5 for three sub-basins in the southern (L’Allier at Monistrol-
d’Allier), middle (L’Arnon at Méreau (Pont de Méreau)), and northern part (La Loire at Montjean) of the Loire basin as shown in Fig. 1.
The dashed line represents the average of summer Q in the retrospective simulation over the 1963–2019 period. Blue lines roughly show the
temporal evolution using local regression models. It should be noted that EROS performs well in reconstructing daily Q at the outlet of these
three sub-basins (see Fig. S8 of Seyedhashemi et al., 2022b).

Figure 3. Map of relative biases between summer Q in projections and in the retrospective simulation at the outlet of 368 sub-basins over
the 1976–2005 period.

https://doi.org/10.5194/essd-15-2827-2023 Earth Syst. Sci. Data, 15, 2827–2839, 2023
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Figure 4. Changes in summer Q with respect to the 1990–2019 period in the middle of the century (2040–2069) for all GCMs–RCMs under
RCP 8.5 at the outlet of 368 sub-basins and at the reach scale (for 52 278 reaches).

while assuming steady-state conditions and accounting for
confluence thermal signal mixing with respect to discharges.
The equilibrium temperature is defined as the temperature at
which the total heat fluxes at the water body is 0 (see Eqs. 1
and 2 of Beaufort et al., 2016a). The heat fluxes include
net solar radiation, atmospheric longwave radiation, long-
wave radiation emitted from the surface water, evaporative
heat flux, convective heat flux, and groundwater flux. T-NET
also simulates the Tw longitudinal variation and upstream–
downstream thermal propagation through water travel time
(TT).

To compute the six heat fluxes and the water travel time for
each reach, Q at the reach scale is used in a hydraulic geom-
etry model assuming a rectangular river section to simulate
water depth (H ), width (W ), and velocity (V ). Then, to es-
timate hourly Tw at each reach, T-NET uses these estimated
Q, H , W , and TT (the ratio of reach length to water velocity)
as well as Ta, shortwave net solar radiation (Hns), longwave
radiation (Hla), specific humidity (RH), wind velocity (W ),
and riparian shading (as a function of vegetation density, so-
lar elevation angle, tree height, river width, and phonology)
at an hourly time step (see Seyedhashemi et al., 2022b, for
more detailed information). Meteorological variables such as
Ta, Hns, Hla, RH, and W are provided by the 8 km Safran
grid (see Fig. 1). All reaches within a grid cell are attributed
meteorological data values for that cell. For reaches flowing
through more than one grid cell, meteorological variables are
weighted by the relative length of the reach within each grid

cell (Seyedhashemi et al., 2022b). Finally, hourly outputs of
T-NET are averaged on a daily scale to have daily Tw.

3.2 Validation of T-NET

Unlike EROS, T-NET does not have any free parameters, and
hence it is not calibrated. A validation was already done by
Seyedhashemi et al. (2022b) over the 2010–2014 period at
67 near-natural observational stations with continuous daily
data, which were also weakly influenced by impoundments
(spotted through the “thermal signatures” approach in Seyed-
hashemi et al., 2021). A small underestimation in seasonal
Tw (median range: −0.29 to +0.15 ◦C) on large rivers was
found (see Fig. S9 of Seyedhashemi et al., 2022b). Indeed,
3 % to 83 % of stations (resp. 50 % to 100 %) on small and
medium (resp. large) rivers had an RMSE < 1 ◦C across sea-
sons (see their Fig. S9, bottom panel). A significant spatial
correlation between seasonal and annual Tw trends in ret-
rospective simulations against observations was also found
at Tw stations with long-term continuous daily data (see
Fig. S11 of Seyedhashemi et al., 2022b). At the seasonal and
annual scales, a strong temporal coherence and agreement
between observations and reconstruction were also found for
the four stations along the main stem of the Loire River with
the long-term data (see Fig. 2 Seyedhashemi et al., 2022b).

Figure 5 also shows a good performance of T-NET in re-
constructing daily Tw at the Avoine on the Loire River (un-
influenced by human impacts) in 2003, the hottest year in

Earth Syst. Sci. Data, 15, 2827–2839, 2023 https://doi.org/10.5194/essd-15-2827-2023
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Figure 5. Observed and simulated daily Tw at Avoine on the downstream part of the Loire River in 2003. The dashed line shows the
maximum daily Tw over observed data at Avoine. The map of simulated maximum daily Tw in 2003 for all 52 278 reaches is also presented
with the line size showing the Strahler order (SO) of the reach. The black triangle shows the position of Avoine on the Loire River.

Figure 6. Simulated daily Tw for reaches with different SOs in 2003. Each curve corresponds to the daily Tw time series of 1 of the 52 278
reaches in the basin. The dashed line shows the maximum observed daily Tw at Avoine on the Loire River (see Fig. 5), which is a large river
with an SO≥ 7. Panel titles give the percentage of reaches within each SO class.

the recent period (Moatar and Gailhard, 2006; Bustillo et al.,
2014; Seyedhashemi et al., 2022b). Although there is a small
bias (0.7 ◦C) between simulations and observations over the
year, an overestimation in simulation (2.5 ◦C) is observed at
the day with maximum daily Tw.

The maximum observed daily Tw at Avoine in 2003 is
31 ◦C (see Fig. 5). Such a value is expected to be seen at

rivers with low velocity and shallow water, which are mainly
large rivers (OS≥ 7) like the river of Avoine station. How-
ever, all of 470 reaches with at least 1 d with Tw > 31 ◦C in
2003 are not located on large rivers (see Fig. 6). Of these
reaches, 57 % have a Strahler order between 5 and 6, and
12 % have a Strahler order less than 5, indicating an overes-
timation in maximum daily Tw (see Fig. 6).

https://doi.org/10.5194/essd-15-2827-2023 Earth Syst. Sci. Data, 15, 2827–2839, 2023
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Figure 7. Time series of summer Tw in retrospective simulation and projections. The solid line and shaded area represent the median and the
10th–90th percentile band over all 52 278 reaches, respectively. The dashed lines show the average of the median summer Tw values (solid
line) in the retrospective simulation over the 1963–2019 period.

3.3 Projections (1976–2100)

For future projections of daily Tw (see Fig. 1), T-NET uses
the meteorological variables (Ta, Hns, Hla, RH, and W ) at
the hourly step under seven projections described in Sect. 2.3
(see also Table 1). Like EROS, T-NET is run under present
land cover and land use. To assess future projections of Tw in
the present day, we follow the same approach as for Q (see
Sect. 2.3). We consider daily Tw retrospective simulations
(under Safran reanalysis) for 52 278 reaches as the reference
data and compare them with projections from the DRIAS-
2020 dataset over the 1976–2005 summer period.

3.4 Data description over the summer period
(June–August)

3.4.1 Retrospective simulation (1963–2019)

An increase in Tw was detected for almost all reaches in all
seasons (mean of +0.38 ◦C per decade) over 1963–2019 by
Seyedhashemi et al. (2022b) with a median increase in sum-
mer Tw over the basin of +0.44 ◦C per decade (i.e., +2.5 ◦C
over the whole 1963–2019 period). Such a consistent in-
crease in summer Tw in retrospective simulations can be also
seen in Fig. 7. Nevertheless, only 14 % of reaches in ret-
rospective simulations have an average summer Tw > 18◦C
(Fig. 8). In 2003, the hottest year in the recent periods, the
majority of reaches (76 %) have a maximum daily Tw >

22 ◦C, and 49 % of reaches show a maximum daily Tw >

24 ◦C (Fig. 5).

Earth Syst. Sci. Data, 15, 2827–2839, 2023 https://doi.org/10.5194/essd-15-2827-2023
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Figure 8. Spatial variability of average summer Tw in the retrospective simulation over the 1963–2019 period and in projections for all
GCMs–RCMs under RCP 8.5 in the middle of the century (2040–2069). Figure S3 presents corresponding results at the end of the century
(2070–2099).

3.4.2 Projections (1976–2100)

There is a slight overestimation of Tw across GCMs–RCMs
over 1976–2005 (median bias of 0.2–0.4 ◦C, and see Fig. 9).
The interquartile range (IQR) remains small (0.2 ◦C) and
similar across GCMs–RCMs. Across GCMs–RCMs, the
largest biases are found in the northeast part of the basin
and in some middle reaches. The underestimation in Tw oc-
curs partially for reaches in the higher altitudes mostly for
HadGEM2–CCLM4-8-17 (Fig. 9).

Time series of all reaches under all GCMs–RCMs show
a consistent increase in summer Tw from the past to future
under RCP 8.5 (Fig. 7). Under this RCP, the median of sum-
mer anomalies over the basin at the end of the century with
respect to the 1963–2019 ranges between 5.8 and 7.8 ◦C de-
pending on the GCMs–RCMs. Conversely, summer Tw under
RCP 2.6 and 4.5 is more stable after 2050 (Fig. 7). Neverthe-
less, under these two RCPs, anomalies from 2050 onwards
are yet quite large (the median over the basin is 4.2 to 4.7 ◦C
depending on GCMs–RCMs and RCP). These overall con-
clusions are exemplified in Fig. S3.

https://doi.org/10.5194/essd-15-2827-2023 Earth Syst. Sci. Data, 15, 2827–2839, 2023
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Figure 9. Map of summer Tw biases between projections and the retrospective simulation over the 1976–2005 period.

Figure 8 shows a considerable increase in mean sum-
mer Tw in the middle of the century (2040–2069) com-
pared to the retrospective simulation over the 1963–2019 pe-
riod. Only 14 % of reaches have a mean summer Tw > 18 ◦C
over the 1963–2019 period, while in the middle of century,
their number is expected to reach 42 %–73 % depending on
the GCM–RCM and RCP. Indeed, the frequency of reaches
with Tw > 18 ◦C is increasing (57 %–96 % of reaches) to-
wards the end of the century, with the exception of IPSL-
CM5A–MRWRF381P under RCP 4.5 and CNRM-CM5-
LR–ALADIN63 under RCP 2.6 (see Fig. S4). For the three
selected sub-basins, an increase in the frequency of days
Tw > 25 ◦C is also found towards the end of the century re-
gardless of GCM–RCM under RCP 8.5, with the largest val-
ues at the end of the century (> 50 d; see Fig. S5).

4 Data availability

Daily Q and Tw for the retrospective simulation
over the 1963–2019 period and for the seven pro-
jections over the 1976–2100 period are available for
the T-NET hydrographic network (52 278 reaches)
under the Attribution-NonCommercial 4.0 Interna-
tional (CC-BY-NC 4.0) in NetCDF file format through
https://doi.org/10.57745/LBPGFS (Seyedhashemi et al.,
2022a). Ta and other meteorological variables corresponding
to each reach can be extracted from the closest grid cell (to
the reach) of the Safran reanalysis and the DRIAS-2020
projection dataset. Safran is available upon request from
Météo-France for research purposes. The DRIAS-2020
dataset is freely available from the French national Cli-
mate Services Portal DRIAS – Les futurs du Climat at
http://www.drias-climat.fr/commande (Ministère de la
Transition Écologique, 2023).

5 Conclusions

This data paper presented and described daily Q and Tw re-
constructions over the 1963–2019 period as well as projec-
tions over the 1976–2100 period for 52 278 reaches over the
Loire River basin (105 km2) using a physical process-based

T-NET thermal model coupled with the EROS hydrological
model.

Daily Q and Tw are projected under three con-
trasted downscaled and bias-corrected climate projec-
tions (GCMs–RCMs) including warm and wet (IPSL-
CM5A–MRWRF381P), intermediate (CNRM-CM5-LR–
ALADIN63), and hot and dry (HadGEM2–CCLM4-8-17)
models from the DRIAS-2020 dataset (Soubeyroux et al.,
2020), under three Representative Concentration Pathways
(RCPs) from the fifth report of IPCC (Core Writing Team
et al., 2015). All of these three GCM–RCMs were run under
RCP 4.5 and RCP 8.5, and CNRM-CM5-LR–ALADIN63
was also run under RCP 2.6.

The potential applications of the proposed dataset over the
past and future are manifold. This can be employed to under-
stand spatio-temporal variability in Q and Tw, to assess the
synchronicity of extremes (following e.g., Arismendi et al.,
2013; Arevalo et al., 2020; Seyedhashemi et al., 2023), to
better explain and predict the possible spatial distribution
of aquatic communities (following, e.g., Picard et al., 2022,
who used this specific dataset), and to assess the various
stresses on freshwater habitat due to climate change (e.g.,
Lee et al., 2020).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-2827-2023-supplement.
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