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Abstract
Background The composition of ripe fruits depends on various metabolites which content evolves greatly 
throughout fruit development and may be influenced by the environment. The corresponding metabolism 
regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other 
metabolites that do not show large changes in content have scarcely been studied.

Results We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using 
complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients 
of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. 
We then posited that metabolite contents could be stabilized through complex regulations and combined their 
data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed 
shared regulations between several metabolites, which interestingly remained linked to early fruit development. 
We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, 
which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related 
pathways.

Conclusions The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in 
metabolic pathways or as signalling molecules.
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Background
Fruit metabolites are key players in both fleshy fruit 
development and human nutrition. Many studies have 
described metabolite changes during fruit development 
[1]. Significant changes have been described in soluble 
sugars, organic acids, amino acids and in several fami-
lies of specialized metabolites, including phenolics and 
isoprenoids. Multi-omic approaches have given clues to 
the regulation of such metabolite changes, especially dur-
ing ripening in tomatoes [2–4], grape berries [5, 6] and 
strawberries [7].

The environment and microenvironment experienced 
by the fruit during its development may also impact its 
metabolism and final composition [8], as observed in 
grape berry bunches [9] and tomato trusses [10], in rela-
tion with the notion of metabolism plasticity.

To compare fruit developmental stages or environ-
mental conditions within and especially between experi-
ments, absolute quantification is ideal. However, omics 
absolute quantification data remain rare despite their 
crucial interest for meta-analyses and metabolic model 
parameterization. Relative quantification is widely used 
in metabolomics, although absolute quantification data 
can be acquired with dedicated protocols [11]. In shot-
gun proteomics, absolute quantification is possible yet 
uncommon [12, 13]. In transcriptomics, absolute quan-
tification data are accessible by spiking of internal stan-
dards in plant extracts at the beginning of the RNA 
purification process [14]. Although obtaining such omics 
data requires more effort, it allows rigorous comparisons 
between experiments of a given species and between 
fruit species.

Transcripts, proteins and metabolites that are differ-
entially expressed or accumulated during development 
have usually been studied more than those showing more 
stable patterns. However, the most stable ones may play 
crucial roles. In the 90s, the notion of ‘house-keeping’ 
genes aroused special interest in RT-PCR data normal-
ization [15, 16] and has remained in use ever since [17–
19]. House-keeping proteins were identified and used 
in a similar way and with the same limitations [20]. The 
notion of house-keeping metabolite has rarely been men-
tioned or used for normalization. To our knowledge, only 
one study mentioned it in a fitting strategy minimizing 
the molecular profile difference of a group of molecules 
unaffected by the biological treatment in an iterative 
algorithm proposed for LC-MS data normalization [21]. 
However, metabolites with a stable content in several 
conditions might be sentinels or hubs crucial for cell 
functioning throughout development and may be sub-
mitted to fine-tuning.

The objectives of the present study were (i) to identify 
the metabolites that varied the least from a tomato fruit 
metabolome dataset obtained from a range of analytical 

strategies (most of them providing absolute quantifica-
tion data), (ii) to verify whether these metabolites have a 
functional link with the least variable proteins and tran-
scripts measured in the same samples and in datasets 
from a repository, and (iii) to combine these metabolite 
data with quantitative proteome and transcriptome data, 
to highlight the shared and specific regulations of metab-
olite contents.

Results
All metabolomic strategies contributed to differentiate 
fruit stages but 22 metabolites were more stable
The metabolome data comprised 1,243 variables from 
five analytical strategies (deposited in https://entrepot.
recherche.data.gouv.fr): enzymatic analysis of starch, 
proton nuclear magnetic resonance (1 H-NMR) profiling 
of major polar compounds, targeted liquid chromatogra-
phy coupled to tandem mass spectrometry (LC-MS/MS) 
of organic or amino acids and intermediaries of central 
metabolism, liquid chromatography coupled with diode 
array detection (LC-DAD) of isoprenoids, untargeted 
liquid chromatography coupled to quadrupole time-of-
flight mass spectrometry (LC-QTOF-MS). To obtain an 
overview of the metabolome data, a principal compo-
nent analysis (PCA) was performed on these variables. 
The scores plot (Fig. 1A) showed that the trusses of one 
stage tended to cluster: the differences within a cluster 
were lower than or similar to the differences between 
two successive stages of development. The first two prin-
cipal components (PC) accounting for 76% of total vari-
ability separated the fruit stages. PC1 clearly separated 
8 DPA and 15 DPA samples on its negative side from 
all the other samples on its positive side. Ripening from 
42 to 53 days post-anthesis (DPA) corresponded to an 
upward move along PC2. The comparison of the scores 
plot and the loadings plot (Fig. 1B) showed that all ana-
lytical strategies contributed to stage separation based 
on composition. The youngest stage was characterized 
by a higher content in most variables determined by LC-
QTOF-MS, most of them being specialized metabolites. 
A detailed annotation of the loadings plot (Additional file 
1) showed higher sucrose, quinate, glucose-6-phosphate, 
chlorophylls, and chlorogenate contents at the earliest 
stage. The 15 to 34 DPA stages were characterized by 
the highest contents in ribulose-1,5-bisphosphate and 
sedoheptulose-bisphosphate. The 53 DPA ripe stage was 
characterized by the highest contents in β-carotene and 
glutamate as expected, but also in glutamine, galactose, 
glucose-1-P, caffeate and naringenin. We verified that the 
pericarp water content had little impact on this overview 
of metabolome data by performing a PCA on the same 
data expressed on a DW basis (Additional file 2) which 
showed the same tendencies for the scores and the load-
ings plots.

https://entrepot.recherche.data.gouv.fr
https://entrepot.recherche.data.gouv.fr
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To measure metabolite variability, we calculated coef-
ficients of variation (CVs) between trusses and between 
stages (Additional file 3). The mean CVs calculated 
between trusses ranged from 4 to 66% (Additional file 
4A). The CVs calculated between stages ranged from 
13 to 275% (Additional file 4B). We selected 55 vari-
ables with values below 25% for the mean CV calcu-
lated between trusses and for the CV calculated between 
stages (Additional file 3, Additional file 7): two variables 
measured using targeted LC-MS/MS, eight variables 
measured using 1 H-NMR and 45 MS-based metabolite 
signatures obtained from untargeted LC-MS. Examina-
tion of the latter MS-signature data revealed the pres-
ence of one peptide and redundancy due to in-source 
fragmentation, adducts and isotopes. After these verifica-
tions, 22 metabolites or metabolite signatures were kept 
as most stable metabolites for further analyses: malate, 
dihydroxyacetone-phosphate (DHAP), glucose, fructose, 
mannose, rhamnose, γ-aminobutyrate (GABA), phenyl-
alanine, tyrosine, an unknown NMR-based metabolite 
signature (R_unkD5.56) and 12 MS-based metabolite 
signatures. The unknown NMR-based signature at 5.56 
ppm had a too small intensity to observe correlations in 
HSQC. Its coupling in JRES was about 8–9 Hz, i.e. close 
to the coupling of the beta anomeric protons of a hexose 
moiety. In COSY, its doublet correlated with a massive 
hidden under the sugar signals at 3.56 ppm, but no other 
information could be obtained for its annotation. A ten-
tative annotation of the MS-based metabolite signatures 
suggested several raw molecular formulae without fur-
ther identification with a Metabolomics Standards Initia-
tive (MSI) level 2 or 1, except for Q_M206T391 identified 
as a tryptophan signature (Additional file 7). To illustrate 
the pattern difference between most stable metabolites 

and other metabolites, the mean contents of most stable 
metabolites and five changing metabolites from differ-
ent biochemical families (soluble sugars, organic acids, 
amino acids, intermediaries of primary metabolism and 
specialized metabolites) at all stages of development are 
shown in Additional file 6.

Several highly stable proteins but only a few highly stable 
transcripts are involved in metabolism
First, we calculated the mean CV of proteins or tran-
scripts per functional category (Additional file 5) to find 
and compare the categories with the lowest CV values 
(Wilcoxon test, corrected P < 0.01). For proteins, the 
functional categories with the three lowest means for 
CVs between stages of development (Additional file 5A) 
were BIN14 (DNA damage response), BIN1 (photosyn-
thesis) and BIN25 (nutrient uptake). For instance, BIN14 
CV between stages was significantly lower than BIN12 
(chromatin organisation) one (Additional file 5B). The 
three functional categories with the lowest means for 
CVs between trusses (Additional file 5C) were BIN25 
(nutrient uptake), BIN10 (redox homeostasis) and BIN2 
(cellular respiration). For instance, BIN25 (Additional file 
5D) had a significantly lower CV between trusses than 
BIN9 (secondary metabolism), BIN11 (phytohormone 
action), BIN21 (cell wall organisation) or BIN22 (vesicle 
trafficking). For transcripts, the functional categories 
with the three lowest means for CVs between stages of 
development (Additional file 5E) were BIN16 (RNA 
processing), BIN22 (vesicle trafficking) and BIN2 (cellu-
lar respiration). For instance, BIN16 had a significantly 
lower CV between stages than all BINs, except BIN2 
(cellular respiration), BIN14 (DNA damage response), 
BIN22 (vesicle trafficking), BIN23 (protein translocation) 

Fig. 1 PCA of the metabolome data. The data comprised 1,243 variables expressed on a FW basis and determined in 25 samples, measured using 
1 H-NMR, untargeted LC-MS, targeted LC-MS/MS, LC-DAD or enzymatic analyses in pericarp at nine stages of tomato fruit development in three trusses 
and expressed on a FW basis. (A) PC1xPC2 scores plot, the symbol size indicates fruit size changes. (B) PC1xPC2 loadings plots, the symbol shape and 
colour depend on the analytical strategy. See Additional file 1 for metabolite annotation on the loadings plot
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and BIN25 (nutrient uptake) (Additional file 5F). The 
three functional categories with the lowest means for 
CVs between trusses (Additional file 5G) were BIN17 
(protein biosynthesis), BIN2 (cellular respiration) and 
BIN23 (protein translocation). For instance, BIN17 had 
a significantly lower CV between trusses than all catego-
ries (Additional file 5H), except BIN2 (cellular respira-
tion). Overall, except for respiration, redox homeostasis 
and polyamine biosynthesis, the functional categories 
involved in metabolism were not among the categories 
with the lowest CVs.

In line with the hypothesis of the ‘steady state’ of both 
metabolite contents and metabolic fluxes, we searched 
for the proteome and transcriptome variables that were 
also the most stable, to verify any putative functional link 
with the most stable metabolites. Although we used the 
same 25% CV threshold for proteins, we increased this 
threshold to 40% for the transcriptome data to be able 
to select more than 50 variables. We selected 120 pro-
teins with values below 25% for the mean CV calculated 
between trusses and for the CV calculated between stage 
means. Sixty-four of these most stable proteins were 
annotated (Table 1). An enrichment analysis within this 
protein group did not reveal any overrepresentation or 
underrepresentation (Fisher’s tests with false discovery 
rate (FDR) correction, P > 0.05). Nineteen proteins were 
involved in primary metabolism: five in carbohydrate 
metabolism, four in amino acid metabolism, three in 
lipid metabolism, two in cellular respiration, and five in 
photosynthesis. Three proteins were involved in other 
metabolic pathways. Five proteins were involved in sol-
ute transport. Eight proteins were involved in protein 
homeostasis, and four in multi-process regulations. 
Among the proteins involved in central metabolism, 
two PEP-carboxylases and a cytosolic NADP-dependent 
malic enzyme may contribute to malate stability, and a 
cytosolic fructose-1,6-bisphosphatase, an ATP-depen-
dent phosphofructokinase and an aldose 6-phosphate 
reductase may contribute to fructose stability. We veri-
fied that the contents of the six latter proteins were close 
neither to the detection limit nor to signal saturation.

We selected 87 transcripts that had values below 40% 
for the mean CV calculated between trusses and for the 
CV calculated between stages. Among these transcripts, 
40 were annotated (Table  2). An enrichment analysis 
within this transcript group did not reveal any overrep-
resentation or underrepresentation (Fisher’s tests with 
FDR correction, P > 0.05). Fewer transcripts than proteins 
were linked to metabolism. Only two of the most stable 
transcripts were directly involved in metabolism: a pro-
tein involved in lipid degradation and another involved in 
nucleotide metabolism. Two transcripts were involved in 
solute transport, six in transcriptional regulation, five in 

redox homeostasis, five in protein homeostasis and one 
in protein translocation.

Several proteins and transcripts covary with sets of the 
most stable metabolites
In line with the hypothesis that the lowest variability in 
the contents of the most stable metabolites resulted from 
complex metabolic flux regulations, we searched for 
common trends between several metabolites and pro-
teins or transcripts by using a multiblock sparse partial-
least-square analysis (sPLS) approach for proteome and 
transcriptome data separately. This approach was used to 
explore and visualize the links between metabolites and 
proteins (or transcripts) by maximizing the covariance 
between the latent variables of the two data blocks. It 
also allowed the selection of a given number of variables 
with its sparse mode. To focus on important variables 
and facilitate their biological interpretation, we selected 
10 times more proteome or transcriptome variables than 
metabolites. First, an sPLS analysis combining the most 
stable metabolites and proteome data allowed the selec-
tion of 210 protein variables covarying with these metab-
olites (Fig.  2). Scores plots (Fig.  2A-B) showed a clear 
separation of the first two stages of development from 
all other stages along component 1, and a clear separa-
tion of the last two stages of development from all other 
stages along component 2. Loadings were combined on 
the same plot to highlight the co-regulations of metabo-
lites and proteins. The common loadings plot of the most 
stable metabolites and proteins highlighted four groups 
of variables, three of them with a similar trend for sev-
eral metabolites and several proteins (Fig.  2C). One 
hundred and forty proteins (protein Group P1) tended 
to covary (loading value over 0.6) with mannose, rham-
nose, Q_M743T700 and Q_M784T1884. An enrich-
ment analysis (Fig. 2C) within this protein group showed 
an overrepresentation of several categories, including 
BIN2.4 (cellular respiration.oxidative phosphorylation), 
BIN5.1 (lipid metabolism.fatty acid metabolism), BIN7.3 
(coenzyme metabolism.S-adenosyl methionine (SAM) 
cycle), BIN10.5 (redox homeostasis.ascorbate-based 
redox regulation), BIN17.1 (protein biosynthesis.ribo-
some biogenesis), BIN17.6 (protein biosynthesis.organ-
elle machinery), and an underrepresentation of BIN19 
(protein homeostasis) and unannotated proteins. Forty 
proteins (protein Group P2) tended to covary with Q_
M473T714. An enrichment analysis (Fig. 2C) within this 
protein group showed an overrepresentation of BIN6 
(nucleotide metabolism), BIN9.1 (secondary metabolism.
terpenoids) and BIN21 (cell wall organisation) category. 
Thirty proteins (protein Group P3) tended to covary with 
DHAP, Q_M304T619 and R_unkD5.56. The enrichment 
analysis in the latter protein group (Fig.  2C) showed an 
overrepresentation of several categories including BIN1.1 
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Proteins CV be-
tween 
stages

CV 
between 
trusses

Annotation in Mercator BINCODE Functional category in Mercator

P_Solyc02g014150.2 23.26 13.32 photosystem II stability/assembly factor 1.1.1.3.5 Photosynthesis.photophosphorylation

P_Solyc04g082250.2 18.09 12.19 protease 1.1.1.4.1 Photosynthesis.photophosphorylation

P_Solyc01g100650.2 17.68 18.33 non-photochemical quenching regulatory 
protein (SOQ1)

1.1.1.5.3.2.2 Photosynthesis.photophosphorylation

P_Solyc12g014250.1 24.55 13.86 PEP carboxylase 1.4.1.1 Photosynthesis.CAM/C4 photosynthesis

P_Solyc05g056270.2 15.27 14.89 PEP carboxylase 1.4.1.1 Photosynthesis.CAM/C4 photosynthesis

P_Solyc09g010560.1 19.07 14.81 oxoprolinase 10.3.2.2 Redox homeostasis.glutathione-based 
redox regulation

P_Solyc11g011250.1 24.89 12.20 dehydroascorbate reductase (DHAR) 10.5.3 Redox homeostasis.ascorbate-based 
redox regulation

P_Solyc08g068570.2 9.49 17.04 tocopherol cyclase (VTE1/TC) 10.6.5 Redox homeostasis.tocopherol 
biosynthesis

P_Solyc11g064890.1 21.85 20.22 brassinosteroid signalling protein kinase 
(BSK)

11.3.2.1.4 Phytohormone action.brassinosteroid

P_Solyc03g121700.2 18.67 20.73 histone chaperone (NAP) 12.2.6 Chromatin organisation.histone chaper-
one activities

P_Solyc10g084210.1 22.08 11.49 Qc-SNARE component SYP71 of SNARE cell-
plate vesicle fusion complex

13.4.2.3.3 Cell cycle organisation.cytokinesis

P_Solyc01g095200.2 17.49 15.17 ER-associated protein (Reticulon) 13.4.5.1 Cell cycle organisation.cytokinesis

P_Solyc03g120720.2 17.88 13.64 protein disulfide isomerase (PDI-L) 18.12.1.4 Protein modification.cysteine disulfide 
formation

P_Solyc03g123540.2 22.39 19.77 class-C-III small heat-shock-responsive 
protein

19.1.8.3 Protein homeostasis.protein quality 
control

P_Solyc09g011450.2 24.13 11.93 26 S proteasome regulator (PTRE1) 19.2.5.3.1 Protein homeostasis.ubiquitin-protea-
some system

P_Solyc03g033620.2 17.60 16.20 S28-class serine carboxypeptidase 19.4.2.7 Protein homeostasis.proteolysis

P_Solyc01g100520.2 22.60 21.78 proteolytic core component ClpP1/3–6 of 
chloroplast Clp-type protease complex

19.4.2.9.1 Protein homeostasis.proteolysis

P_Solyc07g051850.2 21.07 14.47 pepsin-type protease 19.4.3.1 Protein homeostasis.proteolysis

P_Solyc03g111180.2 23.03 14.94 M18-class aspartyl aminopeptidase (DAP) 19.4.5.6.4 Protein homeostasis.proteolysis

P_Solyc08g062630.2 21.11 12.67 M1 neutral/aromatic-hydroxyl amino acid 
aminopeptidase

19.4.5.6.5 Protein homeostasis.proteolysis

P_Solyc04g079440.2 22.41 14.47 serpin protease inhibitor 19.4.6.1 Protein homeostasis.proteolysis

P_Solyc03g111010.2 13.20 13.91 NAD-dependent glyceraldehyde 3-phos-
phate dehydrogenase

2.1.1.4.1 Cellular respiration.glycolysis

P_Solyc02g081400.2 15.37 15.83 glutathione-independent glyoxalase (GLY-III) 2.1.2.3 Cellular respiration.glycolysis

P_Solyc01g096780.2 22.11 16.82 inner nuclear envelope component Cter-SUN 
of SUN-WIP cytoskeleton-nucleoskeleton-
linker complex

20.4.2.1.1 Cytoskeleton organisation.nuclear 
dynamics

P_Solyc03g123630.2 11.16 14.19 pectin methylesterase 21.3.1.2.1 Cell wall organisation.pectin

P_Solyc04g072850.2 14.98 17.50 bifunctional alpha-L-arabinofuranosidase and 
beta-D-xylosidase (BXL)

21.3.2.2.4.2 Cell wall organisation.pectin

P_Solyc02g071170.2 13.92 24.72 subunit zeta of cargo adaptor F-subcomplex 22.2.1.1.4.4 Vesicle trafficking.Golgi-ER retrograde 
trafficking

P_Solyc08g065900.2 24.75 12.78 component VPS32/SNF7 of ESCRT-III complex 22.4.1.3.2 Vesicle trafficking.endocytic trafficking

P_Solyc12g089340.1 14.54 15.15 component VPS35 of Retromer protein 
recycling complex

22.4.2.1.1 Vesicle trafficking.endocytic trafficking

P_Solyc12g096550.1 17.05 13.57 component Tic55 of inner envelope TIC 
translocation system

23.1.3.5.2 Protein translocation.chloroplast

P_Solyc03g082940.2 14.58 13.23 nucleocytoplasmic import karyopherin 
(IMB1)

23.5.1.2.2 Protein translocation.nucleus

P_Solyc06g052030.2 16.13 16.73 nucleocytoplasmic import karyopherin 
(IMB1)

23.5.1.2.2 Protein translocation.nucleus

P_Solyc06g082120.2 23.69 14.39 Ran-activation accessory protein (RanBP1) 23.5.1.5 Protein translocation.nucleus

Table 1 List of most stable proteins. Proteins in tomato fruit with a coefficient of variation (CV) between stages of development or a 
coefficient of variation between trusses below 25%
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Proteins CV be-
tween 
stages

CV 
between 
trusses

Annotation in Mercator BINCODE Functional category in Mercator

P_Solyc01g110120.2 16.13 15.51 subunit a of V-type ATPase membrane V0 
subcomplex

24.1.1.1.1 Solute transport.primary active 
transport

P_Solyc10g081530.1 19.64 16.99 subunit d of V-type ATPase membrane V0 
subcomplex

24.1.1.1.3 Solute transport.primary active 
transport

P_Solyc07g053830.2 23.01 14.95 solute transporter (MTCC) 24.2.13 Solute transport.carrier-mediated 
transport

P_Solyc08g081190.2 23.41 16.04 plasma membrane intrinsic protein (PIP) 24.3.1.2 Solute transport.channels

P_Solyc11g069430.1 23.54 12.53 plasma membrane intrinsic protein (PIP) 24.3.1.2 Solute transport.channels

P_Solyc07g032740.2 23.24 12.40 aspartate aminotransferase 25.1.6 Nutrient uptake.nitrogen assimilation

P_Solyc09g098150.2 12.78 13.08 programmed cell death metacaspase-like 
regulator (MCP2)

27.2.4.3 Multi-process regulation.Programmed 
Cell Death (PCD) system

P_Solyc08g015630.2 21.47 14.43 inositol trisphosphate kinase (ITPK4) 27.5.1.5.4 Multi-process regulation.phospha-
tidylinositol and inositol phosphate 
system

P_Solyc05g052760.2 18.13 24.14 phosphatidylinositol phospholipase C 
(PI-PLC)

27.5.2.8 Multi-process regulation.phospha-
tidylinositol and inositol phosphate 
system

P_Solyc12g055830.1 24.00 16.76 cytosolic pyrophosphatase 27.6.1 Multi-process regulation.pyrophos-
phate homeostasis

P_Solyc12g056530.1 20.12 15.85 cytosolic fructose-1,6-bisphosphatase 3.1.2.3 Carbohydrate metabolism.sucrose 
metabolism

P_Solyc11g010450.1 24.42 16.85 ATP-dependent phosphofructokinase 3.12.1 Carbohydrate metabolism.plastidial 
glycolysis

P_Solyc01g110450.2 23.35 14.18 aldose 6-phosphate reductase 3.5.1 Carbohydrate metabolism.sorbitol 
metabolism

P_Solyc02g093830.2 19.36 13.31 glucose-6-phosphate dehydrogenase 3.9.1.1 Carbohydrate metabolism.oxidative 
pentose phosphate pathway

P_Solyc06g053200.2 11.53 11.58 6-phosphogluconolactonase 3.9.1.2 Carbohydrate metabolism.oxidative 
pentose phosphate pathway

P_Solyc11g068730.1 17.38 15.34 nitrilase 30.1.2.5 Clade-specific metabolism.Brassicaceae

P_Solyc08g076990.2 9.85 11.82 N2-acetylornithine deacetylase 4.1.1.1.1.6 Amino acid metabolism.biosynthesis

P_Solyc02g068640.2 20.29 12.75 pyrroline-5-carboxylate reductase 4.1.1.1.4.1.2 Amino acid metabolism.biosynthesis

P_Solyc02g071890.2 12.62 19.77 histidinol dehydrogenase 4.1.1.2.9 Amino acid metabolism.biosynthesis

P_Solyc01g107550.2 24.46 13.50 methylthioribose kinase (MTK) 4.1.2.2.6.4.2 Amino acid metabolism.biosynthesis

P_Solyc05g050120.2 23.91 13.02 cytosolic NADP-dependent malic enzyme 5.1.1.4 Lipid metabolism.fatty acid biosynthesis

P_Solyc10g076600.1 22.71 22.12 acyl CoA oxidase (ACX) 5.7.3.2.1 Lipid metabolism.lipid degradation

P_Solyc07g045290.2 15.10 15.87 long-chain acyl-CoA synthetase (LACS9) 5.8.2.5 Lipid metabolism.lipid trafficking

P_Solyc01g099090.2 20.83 13.57 mannosylglycoprotein 
endo-beta-mannosidase

50.3.2 Enzyme classification.EC_3 hydrolases

P_Solyc06g068860.2 22.34 12.86 alpha-mannosidase 50.3.2 Enzyme classification.EC_3 hydrolases

P_Solyc02g062970.2 19.14 13.64 aminopeptidase 50.3.4 Enzyme classification.EC_3 hydrolases

P_Solyc01g112280.2 21.68 12.73 peptidase M20/M25/M40 family protein 50.3.5 Enzyme classification.EC_3 hydrolases

P_Solyc11g012970.1 19.37 21.82 peptidase M20/M25/M40 family protein 50.3.5 Enzyme classification.EC_3 hydrolases

P_Solyc10g047630.1 20.03 14.57 beta-ureidopropionase 6.2.4.5 Nucleotide metabolism.pyrimidines

P_Solyc02g079100.2 20.47 13.64 riboflavin kinase 7.10.9 Coenzyme metabolism.FMN/FAD 
biosynthesis

P_Solyc01g087260.2 15.37 14.03 carotenoid cleavage dioxygenase (CCD1) 9.1.6.3.1 Secondary metabolism.terpenoids
Mean of nine stages for the coefficients of variation calculated between trusses per stage, and coefficient of variation between stages calculated from stage means. 
Only annotated proteins are kept

Table 1 (continued) 
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Transcript CV be-
tween 
stages

CV 
between 
trusses

Annotation in Mercator BINCODE Functional category in Mercator

T_Solyc01g081270.2 36.68 28.13 glutathione S-transferase 10.3.3.3 Redox homeostasis.glutathione-based redox 
regulation

T_Solyc01g081310.2 33.61 25.32 glutathione S-transferase 10.3.3.3 Redox homeostasis.glutathione-based redox 
regulation

T_Solyc09g011550.2 37.82 38.40 glutathione S-transferase 10.3.3.3 Redox homeostasis.glutathione-based redox 
regulation

T_Solyc02g079960.2 30.49 13.08  H-type thioredoxin 10.4.3.2 Redox homeostasis.thiol-based redox regulation

T_Solyc09g007270.2 25.69 34.29 ascorbate peroxidase (APX) 10.5.1 Redox homeostasis.ascorbate-based redox 
regulation

T_Solyc07g065860.2 35.87 31.79 RGF-peptide receptor (RGFR) 11.10.1.8.2 Phytohormone action.signalling peptides

T_Solyc06g062690.2 34.87 19.64 histone chaperone (NAP) 12.2.6 Chromatin organisation.histone chaperone activities

T_Solyc04g005250.2 32.60 26.04 de novo DNA methylase (DRM) 12.5.1.11 Chromatin organisation.DNA methylation

T_Solyc04g007330.1 39.48 30.23 meiotic recombination homolog 
pairing factor (ASY1)

13.3.5.1.4 Cell cycle organisation.mitosis and meiosis

T_Solyc12g044900.1 39.52 39.83 ER tubulae formation factor 
(RHD3/RL)

13.4.5.2 Cell cycle organisation.cytokinesis

T_Solyc03g026020.2 32.98 13.67 transcription factor (HSF) 15.5.13 RNA biosynthesis.transcriptional regulation

T_Solyc07g063420.2 34.38 21.08 transcription factor (NAC) 15.5.17 RNA biosynthesis.transcriptional regulation

T_Solyc01g057910.2 35.51 33.40 transcription factor (MYB) 15.5.2.1 RNA biosynthesis.transcriptional regulation

T_Solyc06g053220.2 37.44 33.50 transcription factor (HD-ZIP I/II) 15.5.3.1 RNA biosynthesis.transcriptional regulation

T_Solyc06g061240.2 32.43 17.21 transcription factor (PLATZ) 15.5.41 RNA biosynthesis.transcriptional regulation

T_Solyc05g006040.2 33.17 33.73 component PRIN2 of plastid-
encoded RNA polymerase

15.6.1.2.3.9 RNA biosynthesis.organelle machinery

T_Solyc07g064620.1 39.78 17.97 assembly factor (eIF1) of eIF1 17.4.1.1.1 Protein biosynthesis.translation initiation

T_Solyc05g009010.1 38.82 25.15 protein kinase (LRK10-1-like) 18.4.1.20 Protein modification.phosphorylation

T_Solyc10g012240.2 38.24 15.64 ubiquitin-conjugating compo-
nent GID3 of GID ubiquitination 
complex

19.2.1.3.1.3 Protein homeostasis.ubiquitin-proteasome system

T_Solyc05g012560.1 24.76 25.73 RING-HC-class E3 ligase 19.2.2.1.4.3.2 Protein homeostasis.ubiquitin-proteasome system

T_Solyc04g011430.2 28.89 13.41 component Ubc13 of Ubc13-
Uev1 conjugating E2 complex

19.2.2.1.5.1.1 Protein homeostasis.ubiquitin-proteasome system

T_Solyc04g079970.2 34.18 15.24 RUB conjugation E2 protein 
(RCE1)

19.2.2.3.3 Protein homeostasis.ubiquitin-proteasome system

T_Solyc04g079480.2 24.12 35.22 serpin protease inhibitor 19.4.6.1 Protein homeostasis.proteolysis

T_Solyc09g072600.1 36.44 21.35 actin-depolymerizing factor 20.2.2.8 Cytoskeleton organisation.microfilament network

T_Solyc09g072590.2 31.74 17.14 actin-depolymerizing factor 20.2.2.8 Cytoskeleton organisation.microfilament network

T_Solyc07g064180.2 28.00 24.26 pectin methylesterase 21.3.1.2.1 Cell wall organisation.pectin.homogalacturonan

T_Solyc06g076450.2 35.59 24.51  A-class RAB GTPase 22.3.4.1.1 Vesicle trafficking.post-Golgi trafficking

T_Solyc02g093330.2 34.05 39.99 nucleoporin of nuclear pore 
complex (NUP98)

23.5.1.1.6.1 Protein translocation.nucleus

T_Solyc11g065820.1 39.02 34.99 metabolite transporter (DTX) 24.2.4.1.1 Solute transport.carrier-mediated transport

T_Solyc05g051220.2 39.27 26.73 voltage-gated potassium cation 
channel (AKT/SKOR/GORK)

24.3.2.2 Solute transport.channels

T_Solyc08g060920.2 25.69 19.44 phosphate signalling regulatory 
protein (SPX)

25.3.1.2 Nutrient uptake.phosphorus assimilation

T_Solyc12g056650.1 39.32 36.55 zeitlupe-mediated photoper-
ception regulator protein 
(GIGANTEA)

26.1.2.3.2 External stimuli response.light

T_Solyc02g083280.2 22.95 20.25 arsenate reductase (HAC) 26.7.2.2 External stimuli response.toxic compounds

T_Solyc09g059430.2 38.35 28.01 effector-triggered immunity 
RPM1-interacting factor (RIN4)

26.9.2.2.2 External stimuli response.pathogen

T_Solyc07g017510.2 33.15 29.12 phosphatidylinositol 3-phos-
phate 5-kinase (FAB1)

27.5.1.4.4 Multi-process regulation.phosphatidylinositol and 
inositol phosphate system

Table 2 List of most stable transcripts. Transcripts in tomato fruit with a coefficient of variation (CV) between stages of development 
or a coefficient of variation between trusses below 40%
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(photosynthesis.photophosphorylation), BIN1.4 (photo-
synthesis.CAM/C4 photosynthesis), BIN11 (phytohor-
mone action), BIN17.6 (protein biosynthesis.organelle 
machinery) and BIN21.9 (cell wall organisation.cutin and 
suberin).

Second, an sPLS analysis combining the most stable 
metabolites and transcriptome data allowed the selec-
tion of 210 transcript variables covarying with these 
metabolites (Fig.  3). Scores plots (Fig.  3A-B) showed 
the same separations as in Fig. 2. The common loadings 

plot of the most stable metabolites and transcripts high-
lighted four groups of variables with a similar trend for 
several metabolites and proteins (Fig.  3C). Fourteen 
transcripts (transcript Group T1) tended to covary with 
mannose, rhamnose, Q_M743T700 and Q_M784T1884. 
An enrichment analysis (Fig. 3C) in this transcript group 
showed neither overrepresentation nor underrepre-
sentation. Thirty-nine transcripts (transcript Group 
T2) tended to covary with Q_M473T714. An enrich-
ment analysis (Fig.  3C) in this transcript group showed 

Fig. 2 sPLS analyses of 22 most stable metabolites with proteome data. The sparse approach was parameterized to select 10 times more proteome 
variables than the metabolite ones. (A) Scores plot of the selected proteome data. (B) Scores plot of most stable metabolome data. (C) Loadings plot 
combining the proteome and metabolome data. For each protein group (P1, P2, P3), the PageMan functional categories of genes are displayed. Fisher’s 
test was used to identify functional categories over-represented or under-represented within a protein group compared to the entire 2,282 protein 
set. Coloured boxes indicate statistically-significant groups (Fisher’s test p-value < 0.05). The colour scale represents z-transformed p-values, with yellow 
shades indicating a trend within the group for over-representation relative to the 2,282 protein set, and blue shades under-representation relative to the 
2,282 protein set. Text on the right indicates PageMan annotation of protein classes

 

Transcript CV be-
tween 
stages

CV 
between 
trusses

Annotation in Mercator BINCODE Functional category in Mercator

T_Solyc06g053670.1 29.54 18.42 dodecenoyl-CoA isomerase 5.7.3.5.1 Lipid metabolism.lipid degradation

T_Solyc05g008290.2 39.48 22.45 multicopper oxidase LPR1 50.1.10 Enzyme classification.EC_1 oxidoreductases

T_Solyc01g096280.1 39.17 39.57 cytochrome P450 78A3 50.1.13 Enzyme classification.EC_1 oxidoreductases

T_Solyc12g009420.1 36.72 37.64 polygalacturonase QRT2 50.3.2 Enzyme classification.EC_3 hydrolases

T_Solyc05g005600.1 28.32 38.72 deoxyguanidine triphosphatase 6.3.3.3 Nucleotide metabolism.deoxynucleotides
Mean of nine stages for the coefficients of variation calculated between trusses per stage, and coefficient of variation between stages calculated from stage means. 
Only annotated transcripts are kept

Table 2 (continued) 
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an overrepresentation of several categories, including 
BIN5.7 (lipid metabolism.lipid trafficking), BIN15 (RNA 
biosynthesis) and BIN24.1 (solute transport.primary 
active transport). Thirty-one transcripts (transcript 
Group T3) tended to covary with DHAP, Q_M304T619 
and R_unkD5.56. An enrichment analysis (Fig.  3C) in 
this transcript group showed an overrepresentation of 
BIN7.9 (coenzyme metabolism.NAD/NADP biosynthe-
sis), BIN11.5 (phytohormone action.ethylene), BIN11.6 
(phytohormone action.gibberellin) and BIN18.8 (protein 
modification.S-glutathionylation) and an underrepre-
sentation of unannotated transcripts. One hundred and 
twenty-six transcripts (transcript Group T4) tended to 
covary with phenylalanine and Q_M1134T848_1. An 
enrichment analysis (Fig.  3C) in the latter transcript 
group showed an overrepresentation of 11 categories, 
including BIN1.1 (photosynthesis.photophosphory-
lation), BIN1.2 (photosynthesis.calvin cycle), BIN2.1 
(cellular respiration.glycolysis), BIN9.3 (secondary 

metabolism.betaines), BIN11.2 (phytohormone action.
auxin), BIN15.1 and BIN19.1 (protein homeostasis.
protein quality control), and an underrepresentation of 
BIN15.5 (RNA biosynthesis.transcriptional regulation), 
BIN18.4 (protein modification.phosphorylation) and 
BIN24.2 (solute transport.carrier-mediated transport).

Several proteins and transcripts correlate with a given 
metabolite
To complete this approach aimed at highlighting regu-
lations or stabilities shared between several of the most 
stable metabolites, we studied the links between each 
metabolite variable and all the variables of the other 
two omics datasets in an unfocused manner. To search 
for such trends specific to a given metabolite, we used 
non-linear correlations (Spearman) between that metab-
olite and the proteome and transcriptome datasets 
separately. Nine metabolites correlated with a thresh-
old of P < 0.0001, with at least 10 assigned proteins or 

Fig. 3 sPLS analyses of 22 most stable metabolites with transcriptome data. The sparse approach was parameterized to select 10 times more transcrip-
tome variables than the metabolite ones. (A) Scores plot of the selected transcriptome data. (B) Scores plot of most stable metabolome data. (C) Loadings 
plot combining the proteome and metabolome data. For each transcript group (T1, T2, T3, T4), the PageMan functional categories of genes are displayed. 
Fisher’s test was used to identify functional categories over-represented or under-represented within a protein group compared to the entire 23,631 
transcript set. Coloured boxes indicate statistically-significant groups (Fisher’s test p-value < 0.05). The colour scale represents z-transformed p-values, 
with yellow shades indicating a trend within the group for over-representation relative to the 23,631 transcript set, and blue shades under-representation 
relative to the 23,631 transcript set. * indicates that the corrected Fisher’s test p-value was below 0.05
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10 assigned transcripts (Table  3): mannose, rhamnose, 
and metabolite signatures R_unkD5.56, Q_M124T836, 
Q_M319T481, Q_M473T714, Q_M743T700, Q_
M1069T686 and Q_M1134T848_1. We performed an 
enrichment analysis of the proteins (Additional file 8) 
or transcripts (Additional file 9) positively or negatively 
correlated with a given metabolite (Fisher test, corrected 
P < 0.05).

For M1134T848 only, enrichments were observed 
for both the proteins and transcripts with the defined 
correlation threshold. The proteins positively corre-
lated with M1134T848 showed an overrepresentation 
of BIN17 (protein biosynthesis) and six of its subcat-
egories (BIN17.1, BIN17.1.2, BIN17.1.2.1, BIN17.1.3, 
BIN17.1.3.1, BIN17.6.2), and an underrepresentation of 
BIN19 (protein homeostasis) and one of its subcategories 
(BIN19.2, Additional file 8). The transcripts positively 
correlated with M1134T848 showed an overrepresenta-
tion of BIN24.3.1 (solute transport.channels.MIP family) 
and one of its subcategories (BIN24.3.1.2, Additional file 
9).

The transcripts (Additional file 9) negatively correlated 
with mannose showed an overrepresentation of BIN3.11 
(carbohydrate metabolism.fermentation) and two of its 
subcategories (BIN3.11.1, BIN3.11.1.1), of BIN13.2.1 
(cell division.cell cycle organization.cell cycle control) 
and two of its subcategories (BIN13.2.1.1, BIN13.2.1.1.2), 
and of BIN19.4.6 (protein homeostasis.proteolysis.pro-
tease inhibitor activities) and one of its subcategories 
(BIN19.4.6.2). The transcripts negatively correlated with 
rhamnose showed an overrepresentation of BIN19.4.6 
(protein homeostasis.proteolysis.protease inhibitor activ-
ities) and one of its subcategories (BIN19.4.6.2).

The transcripts positively correlated with M319T481 
showed an overrepresentation of BIN2 (cellular respira-
tion) and two of its subcategories (BIN2.4, BIN2.4.3), and 
of BIN10 (redox homeostasis) and two of its subcatego-
ries (BIN10.2, BIN10.0.1.3).

The transcripts negatively correlated with M743T700 
showed an overrepresentation of BIN13 (cell divi-
sion) and four of its subcategories (BIN13.2, BIN13.2.1, 
BIN13.2.1.1, BIN13.2.1.1.2), of BIN5.5.2 (lipid metabo-
lism.phytosterol metabolism.phytosterol C4-demethyl-
ation complex), and of BIN 19.4.6 (protein homeostasis.
proteolysis.protease inhibitor activities) and one of its 
subcategories (BIN19.4.6.2).

The most stable metabolites do not always correlate with 
proteins and transcripts of their known related pathways
We then focused on the known pathways of these metab-
olites. We listed the proteins and transcripts linked to 
each metabolite’s metabolic pathways (Additional file 
10) and looked for the 10 proteins and 10 transcripts 
with the highest absolute values of Spearman correlation 

coefficients (Additional file 11). For some metabolites, 
proteins or transcripts correlation p-values below 0.001 
were rare (Table 4), yet several correlations with p-values 
below 0.01 remained of interest. Each list of correlated 
genes comprised several metabolic pathways (Additional 
files 10–11). This was especially true for transcripts and 
proteins correlated with DHAP and malate, in which sev-
eral genes are involved in different metabolic pathways 
and link photosynthesis, respiration, carbohydrate and 
lipid metabolism.

Surprisingly, no gene of the known metabolic pathways 
of the most stable soluble sugars correlated with fructose 
or glucose at P < 0.001, and all the correlations with the 
corresponding listed proteins (P < 0.01) were negative 
(Additional file 11). No transcripts or proteins of known 
glucose pathways correlated with glucose at P < 0.01. Only 
four proteins of known pathways involving fructose cor-
related with fructose at P < 0.01. For fructose, the highest 
absolute value of correlation with a protein was observed 
with an alkaline invertase (R= -0.59, P = 0.0020), while the 
highest absolute value of correlation with a transcript 
was observed with a granule-bound starch amylose syn-
thase (R = 0.47, P = 0.0173). Conversely, over 10 proteins 
and 10 transcripts of known mannose or rhamnose path-
ways correlated with mannose or rhamnose at P < 0.01, 
and over 10 transcripts and one protein of known man-
nose pathways correlated with mannose at P < 0.001 
(Table 4). The highest absolute value of correlation with 
a protein was observed with a fructose kinase (R = 0.66, 
P = 0.0004), and that with a transcript was observed with 
a gene annotated as pyruvate decarboxylase (R=-0.77, 
P < 0.0001). Only one protein of known rhamnose path-
ways correlated with rhamnose at P < 0.001. The highest 
absolute value of correlation of rhamnose with a protein 
was observed with an aldehyde dehydrogenase (R=-0.62, 
P = 0.0009), and that with a transcript was observed with 
a hexokinase (R=-0.59, P = 0.0021). For DHAP, three tran-
scripts of known DHAP pathways correlated at P < 0.001, 
and the highest absolute value of correlation was with a 
transketolase (R=-0.66, P = 0.0003). The highest absolute 
value of correlation with a protein was observed with a 
starch-debranching isoamylase (R = 0.62, P = 0.0012).

For malate, only one protein and no transcript of 
known malate pathways correlated at P < 0.001. The 
highest absolute value of correlation with a protein was 
observed with a monofunctional hydroxyacyl-CoA dehy-
drogenase (R = 0.62, P = 0.0009), and that with a tran-
script was observed with a malate synthase (R=-0.59, 
P = 0.0017). Concerning GABA, a most stable amino acid, 
the highest absolute value of correlation with a protein 
was observed with a diaminopimelate decarboxylase (R=-
0.61, P = 0.0013), which catalyses the last step of lysine 
biosynthesis, and that with a transcript was observed 
with the same diaminopimelate decarboxylase (R = 0.59, 
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P = 0.0018). This suggests that GABA, a product of lysine 
catabolism, could exert a negative feedback at the tran-
scriptional level of lysine biosynthesis. For phenylalanine 
and tyrosine, more transcripts than proteins of the cor-
responding pathways correlated with each of the latter 
metabolites at P < 0.01. For phenylalanine, the highest 
absolute value of correlation observed with a protein was 
with a gene annotated as a phospholipase D (R = 0.58, 
P = 0.0025), while that with a transcript was observed 
with an acireductone dioxygenase (R = 0.55, P = 0.0041). 
Two phenylalanine ammonia lyases were correlated at 
0.50 and 0.52. For tyrosine, only one protein and no tran-
script of known tyrosine pathways correlated at P < 0.001. 
The highest absolute value of correlation with a protein 
was observed with a gene annotated as an aldehyde dehy-
drogenase ALDH2B (R = 0.68, P = 0.0002), and that with a 

transcript was observed with an alcohol dehydrogenase 
(R = 0.60, P = 0.0017). For tryptophan, no protein and no 
transcript of known tryptophan pathways correlated at 
P < 0.001. The highest absolute value of correlation with 
a protein was observed with a gene annotated as an M1 
neutral/aromatic-hydroxyl amino acid aminopeptidase 
(R=-0.43, P = 0.0337), while that with a transcript was 
observed with an allene oxidase synthase involved in jas-
monate biosynthesis (R = 0.47, P = 0.0175).

Discussion
Several of the most stable metabolites are considered as 
metabolic pathway hubs
Malate, DHAP, glucose, fructose, mannose, rhamnose, 
GABA, phenylalanine and tyrosine appeared to be the 
least variable or most homeostatic, identified metabolites 

Table 4 Proteins or transcripts of genes in known metabolic pathways implicating a given most stable metabolite (Table S4) 
correlated with this metabolite and selected if P < 0.001
Most stable 
metabolite

Correlated target Target functional categories in Mercator Target annotation in 
Mercator

R P

G_DHAP T_Solyc01g018020.1 Photosynthesis.calvin cycle transketolase -0.6614 3.179E-04

T_Solyc12g008430.1 Lipid metabolism.fatty acid biosynthesis.citrate 
shuttle

cytosolic NADP-depen-
dent malic enzyme

0.6193 9.628E-04

T_Solyc10g083300.1 Carbohydrate metabolism.sucrose metabolism.
degradation.invertase activities

acid 
beta-fructofuranosidase

0.6226 8.884E-04

G_malate P_Solyc05g054370.2 Lipid metabolism.lipid degradation.fatty acid degra-
dation.alternative beta-oxidation

monofunctio-
nial hydroxyacyl-CoA 
dehydrogenase

0.6231 8.778E-04

R_mannose T_Solyc09g005110.2 Carbohydrate metabolism.fermentation.acetic acid 
biosynthesis

pyruvate decarboxylase 
(PDC)

-0.7692 6.999E-06

T_Solyc02g077240.2 Carbohydrate metabolism.fermentation.acetic acid 
biosynthesis

pyruvate decarboxylase 
(PDC)

-0.7508 1.536E-05

T_Solyc10g076510.1 Carbohydrate metabolism.fermentation.acetic acid 
biosynthesis

pyruvate decarboxylase 
(PDC)

-0.7015 9.327E-05

T_Solyc04g005030.2 Carbohydrate metabolism.mannose metabolism. phosphomannomutase -0.6762 2.070E-04

T_Solyc07g042550.2 Carbohydrate metabolism.sucrose metabolism.
degradation

sucrose synthase -0.6738 2.218E-04

T_Solyc12g008510.1 Carbohydrate metabolism.sucrose metabolism.
degradation

hexokinase -0.6600 3.310E-04

T_Solyc02g081300.2 Carbohydrate metabolism.sucrose metabolism.
degradation

sucrose synthase 0.6562 3.686E-04

P_Solyc03g006860.2 Carbohydrate metabolism.sucrose metabolism.
degradation

fructose kinase 0.6609 4.390E-04

T_Solyc08g007100.2 Carbohydrate metabolism.mannose metabolism. phosphosugar 
phosphatase

0.6631 3.033E-04

T_Solyc02g086090.2 Redox homeostasis.ascorbate-based redox regula-
tion.ascorbate metabolism.L-galactose biosynthesis 
pathway

phosphomannose isom-
erase (PMI)

0.6669 2.716E-04

T_Solyc08g013840.2 Carbohydrate metabolism.mannose metabolism phosphosugar 
phosphatase

0.7446 1.966E-05

R_rhamnose P_Solyc05g005700.2 Carbohydrate metabolism.fermentation.acetic acid 
biosynthesis

aldehyde dehydrogenase 
(ALDH2B)

-0.6238 8.612E-04

R_tyrosine P_Solyc03g114150.2 Protein biosynthesis.aminoacyl-tRNA synthetase 
activities

aldehyde dehydrogenase 
(ALDH2B)

0.6823 1.719E-04

Proteins (P_) or transcripts (T_) are considered as targets here. For each target, the pathway and annotation in Mercator are indicated. R is the Spearman correlation 
coefficient value and P is its corresponding p-value. For each metabolite, the 10 proteins and 10 transcripts with the highest absolute value of R were pre-selected 
and those with a correlation P < 0.001 are listed. See Additional file 11 for results before p-value filtering
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in tomato fruit pericarp in our experiment. Among sug-
ars, mannose may link primary cell-wall metabolism and 
ascorbate biosynthesis through GDP-D-mannose epim-
erase [22]. Rhamnose in plants is mostly found as part of 
cell wall polymers or conjugated to specialized metabo-
lites [23].

The stability of malate can be attributed to its involve-
ment in balancing the ATP/NAD(P)H ratio in various 
subcellular compartments via the so-called malate valves 
[24]. Malate has been shown in transformant plants 
to play a key role in starch metabolism and ripening of 
tomato fruit [25]. DHAP is involved in several metabolic 
pathways such as photosynthesis, respiration, carbohy-
drate metabolism and lipid metabolism. The stability of 
its content in tomato pericarp may reflect the fact that it 
is a crossroad metabolite.

GABA plays a role in the GABA shunt related to the 
TCA cycle, and in the polyamine biosynthesis pathway. 
It can also be synthesized by a nonenzymatic reaction 
from proline under oxidative stress [26]. In tomato, the 
fact that its precursor glutamate is strongly accumulated 
during ripening while GABA remains relatively stable 
suggests that GABA homeostasis is important for fruit 
ripening. Besides fuelling protein synthesis, phenylala-
nine and tyrosine play a key role in primary and special-
ized metabolism as precursors of a range of specialized 
metabolites including phenylpropanoids. The phenylpro-
panoid pathway and especially its ammonia-lyases are 
highly regulated at the transcriptional, post-transcrip-
tional, and post-translational levels [27]. In Arabidopsis, 
a metabolic crosstalk exists between cytosolic phenylala-
nine biosynthesis and tryptophan-dependent auxin bio-
synthesis [28]. A similar crosstalk may exist in fruit.

For some of these metabolites, their involvement in 
multiple pathways depends on their mobility toward the 
different plant cell compartments. This is particularly 
the case for malate but also for glucose and fructose for 
which families of channels and/or transporters have been 
identified [24, 29, 30]. Indeed, glucose and fructose both 
belong to the sucrose cycle which involves the cytosol 
and the vacuole in fruit cells [31]. The expansion of the 
latter might be largely due to the accumulation of these 
hexoses that predominate in osmolytes. This would also 
account for their great stability throughout the develop-
ment of tomato fruit [32]. The existence of transporters 
is crucial for the subcellular partitioning of metabolites, 
especially in fleshy fruits [33].

Several highly stable metabolites may also be considered 
as signalling molecules
In addition to being involved in different metabolic path-
ways, several of the most stable metabolites in the present 
experiment have been proposed as signalling molecules 
in regulatory pathways in plants: glucose [34], fructose 

[35] and GABA [36]. For instance, concerning the regula-
tion of sugar metabolism, hexokinase is thought to play a 
key role in the uncoupling of glucose signalling from glu-
cose metabolism in plants [37–39]. In the present study, 
no link was observed between glucose and a hexokinase. 
Only a hexokinase transcript and a fructokinase protein 
correlated negatively with fructose content, but with a 
coefficient that was not below − 0.5.

GABA has been shown to play a key role in regulating 
pollen tube growth and stomatal pore aperture [40], and 
the latter authors proposed an additional role in long-
distance signalling and a possible involvement in cross-
talk with hormonal signals. In fruit, GABA is involved 
in development [41], and the equilibrium between eth-
ylene and GABA signalling may contribute to regulate 
fruit taste through the modulation of tonoplast-local-
ized ALMT-mediated malate storage during ripening 
[40]. The latter authors proposed a more general role for 
GABA in connecting plant primary metabolism to plant 
physiological status, a mechanism that could be essential 
for fruit growth adjustment to plant fitness.

DHAP has rarely been mentioned to play a signal-
ling role in plants. Redox control involving plastoqui-
none is thought to be contingent on signals related to 
the relative availability of trioses-P [42]. A recent study 
on human cells proposed DHAP as a glucose-derived 
signalling molecule that activates the rapamycin com-
plex 1 (mTORC1) kinase, leading to cell growth [43]. 
The TOR kinase signalling pathway is determinant for 
plant development [44] and it contributes to regulating 
cell-cell transport in mature photosynthesizing leaves 
[45]. Whether or not the metabolic signal activation of 
the TOR pathway in plants involves DHAP is currently 
unknown. Such a signalling role might also be played by 
the other most stable metabolites in the present study. 
Indeed, mannose was shown to regulate the Sus1 sucrose 
synthase gene via hexokinase-modulated mechanisms in 
Arabidopsis [46].

Links between a highly stable metabolite and proteins or 
transcripts of its known related pathways are not always 
obvious
We tested whether the least variable metabolites were 
regulated by quite stable pathways or part of their path-
ways, i.e. stable proteins and transcripts, or by proteins 
and transcripts of their corresponding pathways exhibit-
ing greater variations.

Overall, and with rare exceptions, the functional cat-
egories of proteins and transcripts involved in metabo-
lism were not those with the lowest CVs. Few of the most 
stable proteins and the most stable transcripts involved 
members of the metabolic pathways of the most stable 
metabolites. Fewer highly stable transcripts than highly 
stable proteins were involved in metabolism. Only malate 
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and fructose contents might be partly regulated by 
enzymes with a limited content variation between trusses 
and between stages of development. The other highly sta-
ble metabolites might be regulated post-transcriptionally 
or post-translationally, or by the effect of allosteric effec-
tors on enzyme activities, all of which might allow rapid 
fine-tuning [47].

When we searched for correlations between each 
highly stable metabolite and transcripts or proteins in 
an unfocused manner, we found a limited over-repre-
sentation of transcripts or proteins of related metabolic 
pathways. Only the transcripts negatively correlated with 
mannose showed an over-representation for a carbohy-
drate metabolism sub-category. Therefore, we searched 
for correlations between each highly stable metabo-
lite and individual transcripts or proteins of its known 
related pathways. At a P < 0.001 threshold for the correla-
tions, over 10 transcripts and one protein of known man-
nose pathways correlated with mannose, but no or only 
a few transcripts or proteins of their known metabolic 
pathways correlated with fructose, glucose, rhamnose, 
DHAP or tyrosine. Such behaviour may indicate that the 
fine regulation mode of the majority of the most stable 
metabolites in the present study changes throughout 
fruit development. These changes may subsume evolving 
metabolic priorities in line with the successive develop-
mental stages (e.g. cell division requiring energy [32], cell 
expansion requiring vacuolar solutes [31]), with the pos-
sible involvement of different isoforms throughout devel-
opment, as is the case for cell wall modifications and 
ethylene biosynthesis [48].

Common trends of metabolite regulations are linked with 
early fruit development
Although the choice of metabolites was based on their 
limited variation during development and between 
trusses, they continued to show faint developmental 
changes. In accordance with the well-known develop-
mental phases of tomato fruit development [2], three 
groups of metabolite variation profiles were obtained, 
fitting with the two fruit growth phases, cell division 
and cell expansion, and with fruit ripening. Regarding 
the covariations of each metabolite group with protein 
or transcript groups, unannotated proteins were very 
under-represented at early stages and transcripts at inter-
mediary stages. This could be due to the fact that cova-
rying protein or transcript groups at these stages have 
crucial functions, and are therefore well-known and 
well-annotated.

Mannose, rhamnose, Q_M743T700 and Q_
M784T1884, with higher contents at the first stage of 
development, covaried with a group of proteins that were 
overrepresented for cellular respiration, lipid metabo-
lism, S-adenosyl methionine (SAM) metabolism, redox 

homeostasis and protein biosynthesis. All these protein 
types are linked to cell division requiring active lipid and 
protein biosynthesis and a turbo respiration rate [32]. 
Fine-tuning of free mannose and rhamnose content at 
the early stages of fruit development may be crucial for 
cell wall remodelling, which is essential for fruit growth 
[49]. Whereas SAM is known to be involved in the rip-
ening of climacteric fruit as a precursor of ethylene bio-
synthesis, it is also a ubiquitous methyl donor that may 
be crucial for polysaccharide methylation in primary cell 
walls [50] in the early stages of fruit development.

DHAP, Q_M304T619 and R_unkD5.56, which had 
higher contents during fruit expansion stages, covaried 
with a group of proteins overrepresented for photosyn-
thesis, phytohormone action, protein biosynthesis and 
cell wall organization. DHAP as a precursor of membrane 
glycerolipids [51] might be crucial for cell expansion. Q_
M304T619 and R_unkD5.56 could not be identified.

Phenylalanine and Q_M1134T848_1, which had higher 
contents in the last seven stages compared to the first 
two ones, showed common trends, as they covaried 
with a group of transcripts over-represented for pho-
tosynthesis, cellular respiration.glycolysis, secondary 
metabolism.betaines, phytohormone action.auxin, and 
protein homeostasis.protein quality control. In Arabi-
dopsis, auxin-regulated plant growth is fine-tuned by the 
early stages of phenylpropanoid biosynthesis, and it has 
been suggested that metabolites accumulating upstream 
of the C4H step impact the auxin response mechanism 
[52].

Metabolite homeostasis may impact fruit breeding for 
quality
In the present work, we found that several most sta-
ble metabolites during tomato fruit development and 
between trusses correspond to metabolites crucial for 
fruit quality such as fructose, glucose, malate or GABA. 
The comparison of the CV tendencies observed for 
tomato with those for eight other fleshy fruit species 
([53], Additional file 12) showed that the CVs between 
stages for malate were generally low during fruit develop-
ment, and even below 25% in eggplant, apple and peach. 
Moreover, for pepper, eggplant, kiwi fruit, cucumber, 
apple, peach and clementine, malate CV between stages 
was lower than citrate CV between stages. Similarly, the 
CVs between stages for fructose and glucose were rather 
low (below or equal to 35%) in eggplant, cucumber and 
peach, and in eggplant, cucumber, apple and peach, 
respectively (Additional file 12). These features were 
independent of the climacteric or non-climacteric ripen-
ing mode of the fruit species.

Identifying such “housekeeping” metabolites provides 
knowledge about metabolism regulation but also poten-
tial information for fruit breeding for organoleptic or 
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nutritional quality. Based on our results and the latter 
multispecies comparison, increasing fruit acidity seems 
more feasible by increasing citrate content (less homeo-
static) than malate content (more homeostatic). For glu-
cose and fructose, as their homeostasis and accumulation 
level during ripening depended on the species (Addi-
tional file 12), no general conclusion for fleshy fruits 
can be proposed. However, as for the majority of most 
stable metabolites almost no direct correlation between 
a metabolite and its specific pathway-related transcripts 
or proteins was observed in tomato, metabolomics-based 
biochemical phenotyping appears as a crucial comple-
ment to molecular breeding [54, 55].

Conclusions
In this work, we tested a new way of analysing omics 
data by focusing on the most homeostatic metabolites. 
In agreement with our hypothesis that they might play a 
particular role during tomato fruit development, several 
of them proved to be hubs in metabolic pathways or had 
a signalling role. We investigated whether they were reg-
ulated either by stable proteins or transcripts, or by com-
plex regulations involving coordinated changes in the 
contents of several proteins and transcripts (Fig. 4). The 
latter hypothesis was more in line with our data. To verify 
whether these trends are common to fleshy fruits, similar 
work should be performed on another fruit species.

Materials and methods
Plant material
Tomato plants (Solanum lycopersicum cv. Moneymaker, 
seeds provided by Dr Alisdair Fernie at Max Planck Insti-
tute of Molecular Plant Physiology) were grown under 
conditions of commercial production in a greenhouse. 
Fruits were harvested at nine stages of tomato fruit devel-
opment (8, 15, 21, 28, 34, 42, 48, 50 and 53 DPA), on the 
5th, 6th and 7th trusses. The fruits of the different trusses 
experienced slightly different microenvironmental and 
environmental conditions, including temperature that 
may modify their metabolism and composition. Fruit 
pericarp was taken, immediately frozen and analysed 
using metabolomic, proteomic and transcriptomics strat-
egies. For details about samples, see [56].

Compound and metabolome analyses
Metabolites, metabolite signatures and starch were deter-
mined in fresh-frozen or lyophilized samples using the 
following analytical strategies. Absolute concentrations 
were calculated for starch and for all identified metabo-
lites whenever possible. The percent dry weight of each 
sample was determined using lyophilisation. All results 
are expressed on a fresh weight basis for all data analyses. 
However, to verify the possible impact of pericarp water 
content, the metabolome data were also expressed on a 
dry weight basis for its overview using a PCA analysis.

Targeted analyses of starch
Starch contents were extracted from a previous study 
performed on the same samples [32] using determination 

Fig. 4 Schema of possible regulatory factors controlling least variable metabolites in tomato pericarp. We hypothesise that the least stable metabolites 
are hubs in metabolic networks and have a signalling role for the regulation of more variable proteins and transcripts in a complex regulatory network 
implicating several metabolic pathways
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in the pellets obtained after polar compound extraction 
with enzymatic analyses performed on a robotic Star/
Starlet platform (Hamilton, Villebon sur Yvette, France) 
and spectrophotometers. After neutralization of the sus-
pended pellet, starch was determined and expressed in 
glucose equivalents per g fresh weight (FW).

Proton NMR profiling
NMR analyses of major polar compounds (major soluble 
sugars, organic acids, amino acids, amines) were per-
formed on ethanolic extracts of 20-mg lyophilized sam-
ples, as previously described [2]. Absolute quantification 
of individual metabolites was achieved using a 500-MHz 
Avance III NMR spectrometer (Bruker Biospin, Wissem-
bourg, France) equipped with a 5-mm ATMA BBI inverse 
probe and a BACS-120 autosampler using TopSpin Icon-
NMR 3.0 software (Bruker Biospin, Karlsruhe, Germany) 
and the ERETIC II method (Digital ERETIC, Bruker 
TopSpin 3.0) for quantification. The analysis tempera-
ture was 300 K. A single pulse (zg) sequence was used for 
1H-NMR acquisitions with the following parameters: 64 
scans, a 6,002-Hz spectral width, 2.73-s acquisition time, 
90° pulse angle (pulsecal), 25-s recycle delay, a fix receiver 
gain. The raw 1D 1H spectral data were processed with 
TopSpin 3.0 software. After Fourier transformation and 
a line broadening of 0.3 Hz on the obtained free induc-
tion decay (FID), the spectra were manually phased and 
calibrated at 0 ppm using the TSP signal. The baseline 
was manually corrected globally and locally using poly-
nomial functions. Metabolite assignments were made by 
comparing proton chemical shifts with literature [2] or 
database values (in-house library, MERYB [57], HMDB 
[58], BMRB [59]), spiking and complementary 2D NMR 
experiments (heteronuclear single quantum coherence, 
HSQC; J-resolved spectroscopy, JRES; correlated spec-
troscopy, COSY) performed on representative samples. 
The areas of resonances of interest were integrated using 
the ‘Analytical Profiler’ mode of the AMIX software (ver-
sion 3.9.14, Bruker). Metabolite quantification was per-
formed using calibration curves, as previously described 
[2]. Unidentified metabolite resonances were named 
‘Unk’ followed by the shape of the NMR pattern (S = sin-
glet, D = doublet, M = multiplet) and by their chemical 
shift value.

LC-MS-based targeted analyses
A first series of MS-based targeted analyses was per-
formed on 20-mg methanolic extracts of fresh frozen 
powder using ion-pair reversed phase LC-MS/MS as 
described previously [60], to determine several organic 
acids, amino acids and intermediaries of central metabo-
lism including sugar phosphates.

A second series of MS-based targeted analyses was 
performed on ethanolic extracts of fresh frozen powder 

using LC-HRMS/MS to determine several additional 
amino acids. Fifty mg FW were extracted with 300 µL 
ethanol/water (80:20 v/v). Ten µL of a mixture of 13C- and 
15N-labelled internal standards (including arginine (13C6; 
15N4), histidine (13C6; 15N3), lysine (13C6; 15N2), methio-
nine (13C5; 15N), serine (13C3; 15N) from Cambridge Iso-
tope Laboratories (Andover, USA) with purity between 
98% and 99.9% for each compound) were added for quan-
tification. Extraction was carried out at 80 °C for 20 min. 
Centrifugation was performed at 14,462 g for 5 min, and 
the supernatant was filtered at 0.2  μm and analysed by 
LC-HRMS/MS. For unlabelled citrulline and ornithine, 
standard solutions for calibration were prepared in ace-
tonitrile/water (50:50 v/v) with concentrations rang-
ing from 0.2 to 10 µg.mL− 1. All solutions were stored at 
-20 °C before use. Liquid chromatography was performed 
on a Dionex UHPLC Ultimate 3000 (Thermo Scientific, 
Villebon-sur-Yvette, France) equipped with a binary 
solvent delivery system, a sample manager, a column 
compartment and a diode array detector. Hydrophilic 
interaction liquid chromatography (HILIC) separation 
was performed on an Acclaim Mixed-Mode HILIC-1 
column (2.1 × 150  mm; 3  μm, Dionex-Thermo Scien-
tific, Courtaboeuf, France) equipped with an Acclaim 
Mixed-Mode HILIC-1 guard column (2.1 × 10 mm; 5 μm, 
Dionex). Solvent A was composed of 20 mM of ammo-
nium formate in water at pH 4 (95%) and 5% acetonitrile, 
and solvent B was acetonitrile. The gradient started at 
95% B for 2.5 min, followed by a linear gradient down to 
75% B for 3 min, and a second linear gradient for 2.5 min 
to 0% B. The mobile phase remained at 0% B for 5 min 
and then returned to the initial conditions in 0.5 min. The 
column was equilibrated for 7.5 min in the initial condi-
tions (95% B) prior to the next injection, for a total run 
time of 21 min. Flow rate was 0.35 mL.min− 1 and column 
temperature was maintained at 30  °C. The autosampler 
temperature was maintained at 4  °C and the injection 
volume was 5 µL. The UHPLC system was coupled with 
an LTQ-Orbitrap Elite mass spectrometer (Thermo Sci-
entific, Bremen, Germany). A HESI II interface was used 
and analyses were performed in both positive and nega-
tive modes. Acquisition was performed in full scan mode 
with a resolving power of 120,000 FWHM at m/z 400 in 
the scan range of m/z 50-1000. ESI parameters were as 
follows: heater temperature 350  °C, capillary tempera-
ture 350 °C, sheath gas 45 (arbitrary units), auxiliary gas 
15 (arbitrary units), S-Lens 60  V, spray voltage: 3.2  kV 
in ESI+ and 2.5  kV in ESI−. Data were recorded using 
Xcalibur software (Thermo Scientific, Bremen, Germany) 
and QuanBrowser software was used for quantification. 
Chromatograms of targeted compounds were extracted 
using exact m/z of the protonated or deprotonated mol-
ecule with a 10-ppm mass window tolerance. Acetoni-
trile, formic acid and ammonium formate were of LC-MS 
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grade and purchased from Sigma-Aldrich® (Steinheim, 
Germany). Ethanol (absolute, ≥ 99.8%) was also obtained 
from Sigma-Aldrich® (Steinheim, Germany).

LC-DAD targeted analyses of isoprenoids
Isoprenoids were determined on the chloroform phase 
of extracts of fresh frozen samples, dried under a stream 
of nitrogen and resuspended in ethyl acetate using LC-
DAD, as previously described [2].

LC-MS-based untargeted analyses
MS-based untargeted analyses were performed on meth-
anolic extracts of lyophilized powder to obtain signatures 
of specialized metabolites, such as phenolics and glycoal-
kaloids. Extraction was performed on 20 mg dry weight 
(DW) using a MeOH/H2O (70/30 v/v) solvent contain-
ing 0.1% formic acid and 1.37 mM of methyl vanillate 
(used to verify injection) in an ice-cold ultrasonic bath 
followed by centrifugation at 14,462 g for 5 min. Super-
natants were filtered (0.22  μm, PVDF, Millipore, Cork, 
Ireland) and transferred into HPLC vials. The prepara-
tion of an extraction blank was also performed to elimi-
nate contaminants during data processing. A quality 
control (QC) sample was made up from the mixture of 
50 µL of each sample extract. Five µL of each extract were 
injected. The analytes were separated by HPLC (Ther-
moscientific Ultimate 3000, Dionex, CA, USA) on a C18 
reverse phase column (Gemini, 150 mm x 2.1 mm, 3 μm, 
Phenomenex, CA, USA). The gradient used was as previ-
ously described [61], with a flow rate of 350 µL/min. The 
compounds were ionized by an electrospray source in 
positive (4.5 kV) mode and detected by a hybrid QTOF 
mass analyser, micrOTOF-Q (Bruker Daltonics, Bremen, 
Germany). The mass-to-charge ratio ion scan was m/z 50 
to m/z 1,500 with an acquisition frequency of 2 Hz and a 
resolving power of 15,000 at m/z 922. The nebulizer gas 
was at a pressure of 2.4 bar and dry gas flow was 8 L/min 
at a temperature of 190 °C. The samples were maintained 
at a temperature of 6 °C in the autosampler. The QC were 
injected every 10 samples to check for measurement 
stability.

After acquisition, the data set was converted into 
mzML format and exported to the W4M platform [62] 
to process the data using XCMS for variable filtration, 
identification of peaks, clustering of peaks, correction 
of retention times and generation of a data matrix. This 
matrix was normalized with the weights used for the 
extraction of each sample. The variables present in the 
blanks were eliminated, followed by those with a coeffi-
cient of variation between the QCs greater than 50%. The 
final matrix for data mining had 1,166 metabolite signa-
ture variables. Thirteen of them were annotated based 
on published data [61] and public spectral databases 
(Massbank [63, 64], mzCloud [65]). Further annotations 

of selected variables were attempted after data statistical 
analysis, based on SmartFormula algorithm (Bruker Dal-
tonics, Bremen, Germany) and PubChem database [66] 
search.

Proteome and transcriptome data
The proteome and transcriptome data, issued from the 
same fruit samples as those used for metabolomics, were 
from the deposited data mentioned in the study of [56]. 
For LC-MS/MS-based proteomics, peptide ions were 
quantified using extracted ion chromatograms. The pep-
tide intensities of each sample were normalized based 
on the intensities of a reference sample. Proteins were 
quantified. Absolute quantification was approximated 
based on the ‘Total Protein Amount’ approach [67]. To 
determine the absolute concentration of transcripts after 
transcriptome sequencing, internal standards (AM 1780, 
Ambion by Life Technologies, Array Control RNA spikes, 
Invitrogen™) at selected concentrations were spiked in 
the plant extracts at the beginning of the RNA purifica-
tion process. Therefore, both proteome and transcrip-
tome data are absolute quantification data expressed as 
µmol per g FW. Protein and transcript sequences were 
recovered from the Sol Genomics Network database 
([68] ITAG2.4 gene models) and annotated with Merca-
tor4 v4.0 [69, 70].

Statistical analyses
A PCA was performed on the metabolome data set after 
mean-centring and unit-variance scaling with BioStat-
Flow based on R scripts (v2.9, [71, 72]). The most stable 
variables in the metabolome dataset were selected based 
on their CV between trusses and that between stages. 
The CV between trusses was the mean of all CVs between 
trusses calculated per stage. The CV between stages was 
calculated from the means of the three trusses per stage 
of development. The thresholds used for variable selec-
tion were CV of stage means below 25%, and the mean 
of the nine CVs between trusses per stage below 25%. 
After elimination of redundancy in the MS-based sig-
natures present in this selected set (manual filtration of 
fragments, adducts and isotopes), this set constituted the 
most stable variables of interest.

First, we examined the most stable proteome and tran-
scriptome variables based on their CVs between trusses 
and between stages, to verify any putative functional link 
with the most stable metabolites. For proteome and tran-
scriptome, the CVs between trusses and between stages 
per functional category were calculated as the mean of 
the CVs of the proteins or transcripts belonging to this 
functional category.

Second, in line with possible metabolic regulations, 
the set of most stable metabolite variables was combined 
with the entire proteome or transcriptome data with the 
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mixOmics package of R [73], using the DIABLO applica-
tion [74] for an sPLS analysis with LASSO penalization 
on the loading vectors of the latent variables. We used the 
regression mode to explore the links between the most 
stable metabolome dataset and the proteome or tran-
scriptome one, and the sparse mode to perform variable 
selection in the proteome or transcriptome datasets. We 
did not use this approach to predict a dataset or ‘block’ 
from another data block, but rather to select variables 
that covary between the most stable variables and one of 
the other omic datasets. The annotations of the selected 
proteins and genes from Mercator4 were used to calcu-
late category enrichments using PageMan ([75], Fisher’s 
tests with FDR correction).

To study the links between each of the most stable 
metabolite variables and all the variables of the other two 
omics datasets in a metabolite by metabolite approach, 
we calculated Spearman correlation coefficients and 
their corresponding p-values with R scripts. We selected 
the correlation pairs with a stringent P < 0.0001 thresh-
old without correcting for multiple testing, as the cor-
rection effect would differ between the proteome (2,282 
variables) and transcriptome (23,631 variables) datasets. 
The annotation of the selected proteins and genes from 
Mercator4 were used to calculate category enrichments 
for both positive and negative correlations using Page-
Man [75]. We also used an approach focusing on the 
known pathways involving each most stable metabolite. 
We looked for each metabolite’s pathways in the tomato 
SolCyc biochemical pathways database [76, 77] and 
found the included gene/protein accession numbers. This 
list was then refined using the BIN classification from 
the Mercator4 annotation [69] of our dataset to remove 
gene/protein with uncertain annotations and add missing 
ones. Spearman correlation coefficients were calculated 
from the most stable metabolites and the transcripts and 
proteins of the corresponding pathways.
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