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1  |  INTRODUCTION

Advances in high- throughput sequencing (HTS) technologies have 
boosted the application of molecular methods for species identifi-
cations. Metabarcoding, the simultaneous tagging, sequencing, and 
identification of multiple species within a single environmental sam-
ple (Taberlet, Coissac, Hajibabaei, & Rieseberg, 2012) is now a widely 
applied technique in biodiversity research (Compson et al., 2020). 
Metabarcoding involves PCR- based amplification of taxonomically 
informative gene fragments (‘DNA barcodes’, markers) that are 
subsequently sequenced to be used for species identifications in 
the presence of reference sequence data (DNA barcodes). Before 
identification, the sequencing data are processed in several steps 
(Figure 1) where one of the first steps is usually performing quality 
control on the data. A sequence analysis pipeline is generated by 
applying various steps using a collection of software and algorithms 
with the ultimate goal of producing an accurate features table with 
potential taxon annotations by sample (i.e. with features metadata). 
In metabarcoding, features refer to amplicon sequence variants 
(ASVs), operational taxonomic units (OTUs) or annotated taxa; and 
their sample- wise distribution matrix can be further utilized in rele-
vant biostatistical analyses.

With the emergence of practical guidelines (e.g. Bruce 
et al., 2021; Lear et al., 2018; Tedersoo et al., 2022), the scalability 
and throughput of environmental DNA (eDNA; a mixture of DNA 
from different organisms in an environmental sample; Taberlet, 
Coissac, Pompanon, et al., 2012) sample processing has contributed 
to the popularity of the metabarcoding approach among ecologists. 
However, one of the bottlenecks of metabarcoding is choosing how 

to process sequencing data sets into relevant feature tables bioin-
formatically. Among the first highly successful software developed 
for that purpose have been mothur (Schloss et al., 2009), USEARCH 
(Edgar, 2010) and QIIME 1 (Caporaso et al., 2010), which consists of 
algorithms that can be combined to create full metabarcoding data 
analysis pipelines. Over the years, these programs have been sup-
plemented with additional algorithms to help reduce artefactual se-
quences and implement different sequencing clustering approaches. 
These pipelines were initially developed for microbial 16S rRNA 
amplicon analysis, but the applications of metabarcoding have been 
expanded to a wide range of taxa from various environmental sam-
ples, resulting in a boom in pipeline development. Some workflows 
include a set of newly designed algorithms, but others represent a 
combination of different open- source tools used for the different 
analysis steps bound into executable pipelines. From the lack of 
easy- to- use bioinformatics tools from the early age of metabarcod-
ing, we have reached a phase where the choices are so numerous 
that it may be difficult to select among the multitude of analytical 
workflows.

Below, we delve into the properties of thirty- two software pack-
ages that can be used for the bioinformatics processing of metabar-
coding data. In this review, we outline several key aspects of those 
metabarcoding software, including which ones represent software 
suites or precompiled pipelines, consideration of the software de-
pending on the utilized sequencing platform, available operating 
system and interface preference (Figure 2). By addressing these 
components, we seek to offer a comprehensive understanding of 
the software landscape for metabarcoding projects. Since differ-
ent users will have different needs, we do not seek to recommend 
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Abstract
Environmental DNA (eDNA) metabarcoding has gained growing attention as a strat-
egy for monitoring biodiversity in ecology. However, taxa identifications produced 
through metabarcoding require sophisticated processing of high- throughput se-
quencing data from taxonomically informative DNA barcodes. Various sets of uni-
versal and taxon- specific primers have been developed, extending the usability of 
metabarcoding across archaea, bacteria and eukaryotes. Accordingly, a multitude of 
metabarcoding data analysis tools and pipelines have also been developed. Often, 
several developed workflows are designed to process the same amplicon sequenc-
ing data, making it somewhat puzzling to choose one among the plethora of exist-
ing pipelines. However, each pipeline has its own specific philosophy, strengths and 
limitations, which should be considered depending on the aims of any specific study, 
as well as the bioinformatics expertise of the user. In this review, we outline the input 
data requirements, supported operating systems and particular attributes of thirty- 
two amplicon processing pipelines with the goal of helping users to select a pipeline 
for their metabarcoding projects.
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amplicon data analysis, bioinformatics, environmental DNA, metabarcoding, pipeline, review
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    | 3HAKIMZADEH et al.

the best- performing pipeline, a task that would be highly context- 
dependent, but rather to give an overview of the software that are 
available for metabarcoding data analysis. Table 1 lists the software 
discussed here and their extended description and specific capabili-
ties are outlined in Appendix S1.

2  |  SOFTWARE SUITES AND 
PRECOMPILED PIPELINES

The metabarcoding data processing software may be roughly di-
vided into two categories based on their structure for executable 
algorithms— software providing a set of algorithms, and pipelines 
providing a predefined chain of algorithms. USEARCH, VSEARCH 
(Rognes et al., 2016), DADA2 (Callahan et al., 2016), OBITools (Boyer 
et al., 2016), mothur and QIIME 2 (Bolyen et al., 2019) are software 
suites that host numerous algorithms for sequence data analysis, 
thus are highly customizable to construct user- defined pipelines 
with a specific chain of commands and settings. VSEARCH largely 
mirrors the diverse functionalities of USEARCH, but without the re-
quirement to purchase a licence for a version that can handle large 
data sets and use more than 4 GB of a computer's memory. Besides 
consisting of a large set of unique data processing algorithms, mo-
thur and QIIME 2 wrap some functionalities of VSEARCH and/or 
DADA2.

Software providing a predefined chain of algorithms represents 
full analytical pipelines with specific workflow steps, as depicted in 
Figure 1. The predefined pipelines consist of workflow steps vali-
dated on certain sequencing data to facilitate the metabarcoding 

data analysis, which may be especially convenient for users with 
few bioinformatics skills. Some workflows include a set of newly de-
signed algorithms, but others represent a combination of different 
open- source tools used for the different steps that are bound into 
easily executable pipelines Although, these pipelines are predefined, 
they often allow the user to customize the settings depending on the 
characteristics of the sequencing data set.

3  |  BASIC STRUCTURE OF A 
METABARCODING PIPELINE

3.1  | Demultiplexing

Demultiplexed sequences are often provided to users since this 
process has been integrated into sequencing provider software, 
such as bcl2fastq (for Illumina raw data) and SMRT Tools (for 
Pacific Biosciences [PacBio] reads). Demultiplexing distributes 
the sequences into individual files, most often corresponding to 
the experiment's samples. However, when requesting multiplexed 
data (pooled sequences from multiple samples), the reads from a 
sequencing run may need to be demultiplexed before using some 
of the application software. The demultiplexing step is not incor-
porated into all software (Table 1). In cases where it is not, other 
programs such as cutadapt (Martin, 2011), sdm (Falk Hildebrand 
et al., 2014) or lima (https://lima.how/; for single- end reads only) may 
be used. In cases where multiple markers are used per sample (via 
multiplex PCR), amplicons from different primer sets should also be 
split. The latter step is included in the Anacapa and VTAM pipeline 

F IGURE  1 Examples of basic bioinformatics workflows for metabarcoding data. The workflow begins with demultiplexing, assigning 
reads to respective samples based on unique molecular identifiers. Next, quality filtering removes low- quality reads to reduce errors and 
improve reliability. Denoising algorithms identify and correct sequencing errors while preserving biological variation. For paired- end reads, 
merging combines forward and reverse reads into single- end sequences. Artifacts filtering aims to remove artifacts such as chimeras and 
NUMTs. Clustering groups of sequences into features. Finally, taxonomic assignment of the features against a reference database. * Primer 
trimming between any of these steps can be applied. *1 Only for paired- end data (may be performed before or after quality filtering). 
*2 Error correction; formation of ASVs. *3 Including chimera filtering, off- target gene removal (pseudogene removal, ITS extraction). *4 
Formation of OTUs/swarm- clusters.
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4  |    HAKIMZADEH et al.

(Curd et al., 2019; González et al., 2023), where different markers are 
automatically separated based on the primer sequences.

3.2  |  Primer trimming

Sequencing adapters, indexes and primers should be removed be-
fore the following analyses. Depending on the data structure, the 
former two may be absent, but the programs mentioned above 
(for demultiplexing) may be used to double- check this and remove 
primers. Adapter/primer clipping is often implemented into a pipe-
line by wrapping the cutadapt, Trimmomatic (Bolger et al., 2014) or 
AdapterRemoval (Lindgreen, 2012) functionality, in others done dur-
ing quality filtering and demultiplexing steps (e.g. sdm; Table S1).

3.3  | Quality filtering & merging paired- end reads

The following phases of a standard DNA metabarcoding pipeline 
is sequence filtration based on the read quality scores, removal 
of putative chimeric/artefactual sequences, the definition of fea-
tures (e.g. ASVs, OTUs) and taxonomic annotation of the features 
(Figure 1). In the case of paired- end data, the merging process of the 
overlapping sequences may be performed before or after the qual-
ity filtering step and even sometimes after the sequence clustering 
step. There are a multitude of strategies for performing the above- 
listed processes, where the selection of an approach may depend 
on the specific characteristics of the sequencing data or the aims of 
the study. The strategies for quality filtering include per- sequence 
or per- nucleotide(s)- based filtering. Per- sequence filtering includes 

F IGURE  2 Software for metabarcoding 
data bioinformatics processing 
categorized by input read type (paired- 
end, single- end (the tools in electric blue 
are capable of handling both paired- end 
and single- end reads)), software type 
(suite, precompiled pipeline), interface 
(CLI, GUI, Web, Galaxy web platform), 
produced feature type (OTU, ASV, swarm- 
cluster) and operating system (Linux, 
macOS, Windows).
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    | 5HAKIMZADEH et al.

TABLE  1 A list of the reviewed metabarcoding data analyses pipelines (in alphabetical order).

Pipelines First/latest release Software type Feature Demux
Primer/adapter 
removal Marker

AMPtk Nov 2017/Jan 2023 Precompiled ASV, OTU Yes Yes 16S, 28S, COI, ITS

Anacapa June 2018/June 
2018

Precompiled ASV Multilocus 
demux 
based on 
primers

Yes Multimarker

APSCALE Jan 2022/Feb 2023 Precompiled ASV, OTU No Yes Multimarker

Barque Sep 2016/Dec 2022 Precompiled ASV, OTU No Yes Multimarker

BIOCOM- PIPE Aug 2020/Jan 2021 Precompiled ASV, OTU Yes Yes 16S, 18S, 23S

Cascabel Nov 2020/Dec 
2022

Precompiled ASV, OTU, 
swarm- 
cluster

Yes Yes Multimarker

CoMA Dec 2020/Jan 2022 Precompiled ASV, OTU, 
swarm- 
cluster

No Yes Multimarker

DADA2 May 2016/Nov 
2022

Set of algorithms ASV No Yes Multimarker

Dadaist2 May 2020/Jul 2022 Precompiled ASV No Yes Multimarker

dadasnake Apr 2020/Feb 2023 Precompiled ASV, OTU No Yes Multimarker (with ITSx)

DAnIEL Apr 2021/May 
2021

Precompiled ASV Yes Yes ITS

eDNAflow Jul 2020/Jan 2021 Precompiled ASV Yes Yes Multimarker

FROGS Jan 2016/Apr 2023 Set of algorithms ASV, swarm- 
cluster

Yes Yes Multimarker (with ITSx)

gDAT Mar 2020/Jan 2021 Precompiled 
and set of 
algorithms

OTU No Yes 18S, ITS

JAMP Jan 2017/Jan 2022 Precompiled OTU Yes Yes Multimarker (without 
taxonomic 
assignment)

LotuS2 May 2021/Apr 
2023

Precompiled ASV, OTU, 
swarm- 
cluster

Yes Yes Multimarker (16S, 18S, 
23S, 28S, ITS with 
ITSx)

MetaWorks Jun 2020/Mar 2023 Precompiled ASV, OTU No Yes Multimarker; SSU (12S, 
16S, 18S), ITS (with 
ITSx), LSU (28S), COI 
(with pseudogene 
removal), rbcL 
(with pseudogene 
removal)

MICCA Oct 2014/Aug 2018 Precompiled ASV, OTU, 
swarm- 
cluster

Yes Yes 16S, 18S, 28S, ITS

mothur Feb 2009/May 
2022

Set of algorithms ASV, OTU Yes No Multimarker

NextITS July 2022/May 
2023

Precompiled ASV, OTU, 
swarm- 
cluster

Yes Yes ITS (with ITSx)

nf- core/
ampliseq

Dec 2018/Mar 
2022

Precompiled ASV No Yes Multimarker (with ITSx)

OBITools3 Sep 2019/Sep 2022 Set of algorithms ASV Yes Yes Multimarker

PEMA Feb 2020/Dec 2021 Precompiled OTU, swarm- 
cluster

No Yes Multimarker

(Continues)
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6  |    HAKIMZADEH et al.

discarding the whole sequence if it does not meet the threshold re-
quirements, whereas the per- nucleotide(s) approach truncates the 
sequence from the position below the threshold to keep a partial 
amplicon. Among the quality threshold calculation methods, the fil-
tering based on the expected number of errors (sum of the error 
probabilities) is preferred over the average quality score threshold 
(Edgar & Flyvbjerg, 2015), because a ‘good’ average quality score 
may mask several bases with relatively high error probabilities that 
can subsequently propagate into false positive features. Haplotype- 
level (ASV) analyses may require relatively stringent quality cutoffs 
for accurate fine- resolution analyses, whereas cutoffs may be more 
lenient when generating OTUs (because clustering collapses many of 
the accumulated errors during sequencing) or if summarizing data to 
more inclusive taxonomic ranks (species, genera, etc.).

3.4  | Artefacts filtering

Putative chimeric sequences are most commonly removed by com-
paring sequences against each other (de novo method), but with the 
existence of an appropriate (curated, chimera- free) reference data-
base, additional reference- based chimera filtering is recommended 
(Tedersoo et al., 2022). De novo methods tend also to discard se-
quences that are incorrectly flagged as chimeric (false- positive 
chimeric sequences; Pauvert et al., 2019; Tedersoo et al., 2022). 
The loss of these false positive chimeric sequences detection may 
be more ‘costly’ for data sets with low sequencing depths. To at-
tempt to rescue those real members of the sequenced community 
(false- positive chimeras), NextITS (Mikryukov et al., 2022) and 
FROGS (Bernard et al., 2021; Escudié et al., 2018) pipelines have 

implemented an approach to recover sequences that occur in mul-
tiple samples (because the formation of an identical chimera in dif-
ferent PCR runs is highly unlikely). With NextITS, it is also possible 
to inspect the distribution of UCHIME scores (Edgar et al., 2011) of 
putative chimeras, which allows adjustment of sensitivity- specificity 
trade- offs in chimera discrimination according to the study aims. 
A custom false- positive chimeras recovery method is also imple-
mented in BIOCOM- PIPE (Djemiel, Dequiedt, et al., 2020), where 
initially discarded chimeras can be recovered based on their taxo-
nomic assignments.

3.5  | Denoising & clustering

The formation of features in many pipelines includes both ASVs and 
OTUs (Table 1). ASVs are identical denoised reads with as few as 1 
base pair difference between variants, representing an inference of 
the biological sequences prior to amplification and sequencing errors 
(Callahan et al., 2017). ASVs are mainly formed through the two most 
popular denoising algorithms, DADA2 and UNOISE (Edgar, 2016b). 
Although features formed via UNOISE are referred as zOTUs (zero- 
radius OTUs; Edgar, 2016b), sometimes also as ESVs (exact sequence 
variants; Buchner et al., 2022; Porter & Hajibabaei, 2022), we herein 
denote those with a unified term— ASVs. Although less frequently 
implemented in the pipeline, deblur (Amir et al., 2017) and obiclean 
(Boyer et al., 2016) are other denoising algorithms for ASVs forma-
tion (Table S1). The OTU clustering approaches include a much wider 
set of algorithms across different software (Table S1), which typically 
rely on global sequence similarities. Notably, the clustering process 
in SCATA (Durling et al., 2011) includes collapsing of homopolymer 

Pipelines First/latest release Software type Feature Demux
Primer/adapter 
removal Marker

PipeCraft2 Dec 2021/Dec 
2022

Precompiled 
and set of 
algorithms

ASV, OTU Yes Yes Multimarker (with ITSx 
and pseudogene 
removal)

PIPITS Dec 2014/Nov 
2022

Precompiled OTU No Yes ITS (with ITSx)

QIIME 2 July 2016/May 
2023

Set of algorithms ASV, OTU Yes Yes Multimarker (with 
ITSxpress)

SCATA Feb 2010/Oct 2021 Precompiled OTU Yes Yes Multimarker (with ITSx)

SEED2 Feb 2018/Oct 2020 Precompiled OTU Yes Yes 16S, ITS (with ITSx)

Tourmaline July 2022/Apr 2023 Precompiled ASV, OTU Yes Yes Multimarker

USEARCH 2010/Mar 2020 Set of algorithms ASV, OTU No No Multimarker

VSEARCH Nov 2014/Sep 2022 Set of algorithms ASV, OTU No No Multimarker

VTAM Oct 2020/May 
2022

Precompiled ASV, OTU Yes Yes Multimarker (with 
pseudogene 
removal)

Note: Column “software type,” denotes the structure of the pipeline. “Feature” denotes the pipeline output unit, operational taxonomic units (OTU), 
amplicon sequence variants (ASV) or swam- clusters (using swarm). “Demux” indicates whether the demultiplexing step is implemented. “Primer/
adapter removal” indicates whether primer/adapter removal step in implemented. Column “Marker” states the gene region for which the pipeline has 
been benchmarked. More details about software in Appendix S1.

TABLE  1 (Continued)
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    | 7HAKIMZADEH et al.

regions to account for homopolymer- length errors during sequenc-
ing (which are especially common on 454 and Ion Torrent platforms; 
Laehnemann et al., 2016). Similarly, before the formation of fea-
tures, NextITS implemented the correction of homopolymer errors 
in PacBio reads. Swarm (Mahé et al., 2022) is a notably different 
sequence clustering approach. It relies on the maximum number of 
differences between reads (local linking threshold), where clusters 
are resilient to input- order changes, therefore, forming stable, high- 
resolution features (herein referred to as swarm- clusters). Swarm is 
currently implemented in Cascabel, CoMA, FROGS, LotuS2 (Özkurt 
et al., 2022), MICCA (Albanese et al., 2015), NextITS, and PEMA 
(Zafeiropoulos et al., 2020) pipelines (Table S1; Appendix S1).

Which type of features to prefer may be context- dependent, and 
both may even be used in the same study. Denoised ASVs provide 
a biologically informative fine- scale resolution that are collapsed 
during the OTU formation process (Callahan et al., 2016). For ex-
ample, by testing several ASVs and OTUs- based workflows for de-
tecting the Botrylloides (Ascidiacea) haplotypes, Couton et al. (2021) 
reported that ASVs pipeline (DADA2) retrieved all expected hap-
lotypes, whereas OTUs datasets (99.5% threshold for clustering) 
missed several expected haplotypes by collapsing very closely re-
lated ones into a single OTU. By default, denoisers tend to discard 
low- abundant sequence variants, which are more likely to be arte-
facts (Anslan et al., 2021; Reitmeier et al., 2021). Although denois-
ing greatly lowers the fraction of spurious features (e.g. de Santiago 
et al., 2022), in some contexts it may be difficult to separate noise 
from a real signal in low abundant ASVs. For example, the denoising 
process might discard some rare taxa, that is, ASVs with a low num-
ber of sequences (Edgar, 2016b; Nearing et al., 2018). This may have 
a larger impact when working with a data set with a relatively low 
sequencing depth. Nevertheless, in some pipelines (e.g., DADA2, 
FROGS, VSEARCH, and USEARCH), the sensitivity to rare ASVs can 
be modified according to the user's needs. Importantly, ASVs repre-
sent stable and reproducible units across studies whereas OTUs are 
dataset- specific features (Callahan et al., 2017). However, the ASVs 
approach may not accurately reflect species composition in the 
community of, for example, metazoans with highly variable levels 
of intraspecific polymorphism in the COI gene (Brandt et al., 2021) 
and fungi with multiple different ITS copies per genome and their 
size polymorphism (Estensmo et al. 2021; Tedersoo et al., 2022) ex-
cept when the treatment of ITSs is particularly taken into account 
(as, e.g., in FROGS; Bernard et al., 2021). If relevant, upon forma-
tion of ASVs, those may be subjected to further clustering (Antich 
et al., 2021; Brandt et al., 2021; Porter & Hajibabaei, 2020). The 
latter approach is implemented in, for example, MetaWorks (Porter 
& Hajibabaei, 2022), PipeCraft2 (Anslan et al., 2017), and dada-
snake (Weißbecker et al., 2020). Additionally, QIIME 2, nf- core/am-
pliseq (Ewels et al., 2020; Straub et al., 2020) and LotuS2 support 
the features collapsing by annotated taxon levels, resulting in taxa 
features. Overall, the resulting community patterns of a study are 
often highly similar regardless of the utilized feature (e.g. Glassman 
& Martiny, 2018; Kang et al., 2021; Porter & Hajibabaei, 2020), but 
may vary in recovering rare taxa (Nearing et al., 2018).

After the formation of features, the presence of a long tail of 
low- abundant units is common. This tail is often discarded, assum-
ing that a large proportion of low- abundant features are artefactual 
(Huse et al., 2010; Reeder & Knight, 2009). However, without ap-
plying arbitrary cutoff levels (e.g. removing features with <10 reads 
per- sample; Brown et al., 2015), the postclustering process aids in 
removing the erroneous features but keeping the rare, potentially 
real ones. Postclustering tools, such as LULU (Frøslev et al., 2017) are 
implemented in AMPTk (Palmer et al., 2018), eDNAflow (Mousavi- 
Derazmahalleh et al., 2021), APSCALE (Buchner et al., 2022), LotuS2, 
PipeCraft2 and ReClustOR (Terrat et al., 2020) in BIOCOM- PIPE.

Postclustering, however, does not resolve the tag- switching phe-
nomena, where some low- abundant nonartificial features may rep-
resent false- positive occurrences across samples. Tag- switching is a 
well- documented issue (e.g. Carlsen et al., 2012; Rodriguez- Martinez 
et al., 2022; Schnell et al., 2015), but is rarely considered in practice 
because the low proportions of tag- switching errors do not heav-
ily impact the community- level analyses (e.g., Anslan et al., 2021). 
Nevertheless, the incorrect sample assignments of features artifi-
cially inflate the richness. For discarding potential tag- switching 
errors from the feature table, pipelines such as NextITS, LotuS2, 
PipeCraft2 and Dadaist2 (Ansorge et al., 2021) wrap the UNCROSS2 
(Edgar, 2018b) algorithm (from USEARCH). Based on the included 
control samples, AMPtk and VTAM attempt to automatically cor-
rect for tag- switching errors. Notably, the tag- switching issue can 
be minimized by accounting for this in the laboratory work protocol 
(Carøe & Bohmann, 2020; Taberlet et al., 2018). However, for further 
feature occurrence filtering to filter out low- confidence detections 
biological/technical replicates per sample are recommended (Gold 
et al., 2021). This allows examining the feature co- occurrence pat-
terns across replicates to estimate detection probabilities and retain 
only high- confidence detections (by applying, e.g., site occupancy 
modelling). Among the precompiled pipelines, VTAM implements a 
feature occurrence filtering procedure based on the user- defined 
number of technical replicates they appear in, and samples may be 
discarded when the sequence composition in the replicate samples 
is too dissimilar. Not incorporated to the pipelines discussed here, 
but the MetabaR package (Zinger et al., 2021) aids to detect differ-
ent types of artefactual sequences, such as potential contaminants, 
tag- switches, and dysfunctional PCRs (on the basis of similarities be-
tween replicate samples).

3.6  |  Taxonomy assignment

In the reviewed pipelines, the most common taxonomy assign-
ment methods include alignment- based (such as BLAST; Altschul 
et al., 1997) and sequence composition- based approaches (e.g. RDP 
Naïve Bayesian classifier; Wang et al., 2007; see Table S1). Several 
studies have tested the accuracy of different taxonomy assignment 
methods (e.g. Bokulich et al., 2018; Curd et al., 2019; Edgar, 2018a; 
Hleap et al., 2021; Richardson et al., 2017) and have recognized a 
relationship between the reference database completeness and 
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the classification accuracy. Regardless of the taxonomic group, the 
reference databases are far from being complete (Gold et al., 2021; 
McGee et al., 2019; Nilsson et al., 2016; Weigand et al., 2019). 
Therefore, a trade- off between the detection of true- positives (cor-
rectly assigned sequences) and false- positives (incorrectly assigned 
sequences), that is, the precision and the recall rate, should be con-
sidered when choosing a threshold for the classification (Bokulich 
et al., 2018; Edgar, 2018a). Hleap et al. (2021) suggested that a mul-
tilayer approach could enhance the effectiveness of similarity- based 
methodologies. The goal of this strategy is to improve the precision 
of taxonomic assignments, minimize the occurrence of false posi-
tives, and boost the efficiency of the classification process. VTAM's 
taxonomy assignment function has incorporated elements of this 
strategy. It begins the assignment process with a high percentage 
identity threshold, which is gradually lowered until the lowest taxo-
nomic group is established.

Although composition- based (and other ‘complex’) methods 
may be more sensitive to the patchy coverage databases than 
‘simple’ alignment- based methods (Hleap et al., 2021), in certain 
circumstances Naïve Bayesian classifiers may outperform BLAST 
(Rosen et al., 2011). However, the assignment accuracy to higher 
taxonomic ranks (such as Family level) generally has similar per-
formance across the approaches (Hleap et al., 2021). A recent de-
velopment in QIIME 2 involves utilizing public microbiome data 
for probabilistic taxonomy assignment (Kaehler et al., 2019). This 
method offers several advantages, including the potential for 
higher resolution taxonomic classification for instance, it can en-
able species- level classification when previously only genus- level 
classification was possible. Other pipelines, such as LotuS2, can 
assign features from multiple taxonomic databases, to preferen-
tially assign taxonomies based on databases that are specific to a 
given environment. FROGS returns an original multiaffiliation out-
put to highlight databases conflicts and uncertainties taxonomic 
affiliations. AMPtk implements a hybrid taxonomy assignment that 
utilizes global alignment (VSEARCH) and SINTAX (Edgar, 2016a) 
to calculate a consensus LCA (last common ancestor) taxonomy. 
Regardless of the taxonomy assignment methods used, the refer-
ence database should also include a proportion of nontarget taxa 
(including potential contaminants) to limit the overclassification of 
features to the target taxa (e.g. Anslan et al., 2018).

4  |  SEQUENCING PLATFORM

The most commonly utilized high- throughput sequencing ap-
proaches for metabarcoding are short- read, second- generation 
technologies, such as those provided by Illumina platforms. These 
platforms produce a high number of high- quality paired- end short 
reads (up to 300 bp for single- end) with a relatively low cost per sam-
ple. Therefore, most amplicon data analysis pipelines are set up to 
be able to handle paired- end sequencing data (Table 1; Figure 2). As 
the MGI- Tech platforms may also produce paired- end reads (with 
comparable data quality and throughput properties compared with 

Illumina; Anslan et al., 2021), the paired- end compatible pipelines 
may be used to analyse data from the latter platforms as well.

Some pipelines are restricted to paired- end input, that is, the an-
alytical pipeline cannot be completed using only a single- end part of 
the data, or sequencing data from the long- read (third- generation) 
sequencing platforms (Table 1; Appendix S1). With the rapid de-
velopments in third- generation sequencing accuracy and through-
put, there is increasing interest to generate longer metabarcodes, 
which potentially increases the taxonomic resolution (Tedersoo 
et al., 2021, 2022) and has lower sequencing bias toward short 
amplicons (Castaño et al., 2020). Therefore, some software devel-
oped for short reads have been updated to also process longer se-
quences (specifically PacBio reads; Appendix S1). Although, some of 
the software considered here have performed well for sequencing 
data (HiFi reads) processing from PacBio platforms (e.g., Castaño 
et al., 2020; Heeger et al., 2018; Tedersoo & Anslan, 2019), the data 
from Oxford Nanopore Technologies (ONT) platform may require 
other customized approaches (Baloğlu et al., 2021). Herein listed 
software (Table 1) have not been specifically developed for analys-
ing ONT data, thus care should be taken when applying these tools 
for nanopore reads.

The sequencing depth may vary considerably between sequenc-
ing platforms. For example, Illumina MiSeq system may produce 
up to 25 M 2 × 300 bp reads and NovaSeq up to 1600 M 2 × 250 bp 
reads per flow cell, whereas the throughput of PacBio Sequel II(e) 
system is up to 4 M HiFi reads. Since the denoising tools are sensitive 
(by default) to low abundant sequences, then one must be wary that 
strict denoising of low sequencing depth samples increases the num-
ber of false negatives, that is, rare true positives may be denoised 
out (Furneaux et al., 2021), especially if the samples contain com-
plex communities, such as found in soil. Besides sequencing depth, 
the detection of rare sequence variants may be affected by the dif-
ferent chemistry utilized by different platforms (e.g. NovaSeq vs. 
MiSeq; Singer et al., 2019). Importantly, denoising algorithms, such 
as UNOISE and deblur, are designed for Illumina reads and may not 
perform well with data from other sequencing platforms. Therefore, 
opting for an OTU clustering approach may be more appropriate for 
analysing complex communities sequenced by the third- generation 
platforms. The remaining bioinformatically unscreened low- 
abundance spurious OTUs could then be abandoned after the post-
clustering step, by, for example, filtering out unclassified features at 
the phylum level, and based on the number of samples they occur 
in (e.g. discard features only observed in one sample). Although, 
DADA2 has a specific denoising function to estimate errors from 
PacBio reads (Callahan et al., 2019) which performs well also on syn-
thetic long reads (Callahan et al., 2021), its application may still re-
quire higher sequencing depth for high diversity samples (Furneaux 
et al., 2021). However, the throughput of the most recent PacBio 
long- read sequencing system, Revio (commercially available from 
the first half of 2023), is expectedly up to 15 times higher compared 
with Sequel II. But the performance of the denoisers with the greatly 
increased throughput of long- read data (exceeds the throughput of, 
e.g., Illumina MiSeq) is yet to be tested.
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    | 9HAKIMZADEH et al.

In case the amplicon is shorter than the sequencing cycle (e.g. 
expected amplicon is ~130 bp, but one cycle synthesizes 250 bp), 
the Illumina NovaSeq and NextSeq platforms may extend the ampl-
icon by adding a poly- G tail (with ‘good’ quality scores). Therefore, 
trimming primers from amplicon reads should be used by default, 
as this will discard the overhanging sequence parts. Fastp tool 
(Chen et al., 2018), wrapped also in PipeCraft2 and NextITS, may 
be used to specifically trim these non- biological poly- G (or poly- X) 
tails. Additionally, Phred scores from third- generation sequencing 
platforms range from 0 to 93, thus may require adjustments of the 
maximum quality score setting when using, for example, VSEARCH 
or USEARCH software (where the default is 41, for Illumina).

5  | OPERATING SYSTEMS AND 
WORKFLOW MANAGERS

Unix- based operating systems (OS), such as Linux and macOS, are the 
most common and convenient platforms in bioinformatics, as users 
may run software with a comparable interface on a personal computer 
or high- performance computing (HPC) system. As a result, they are 
by far the most widely used for the development and use of bioinfor-
matics tools. Accordingly, almost all the presented pipelines can be 
executed in Linux and/or macOS operating systems (Table 1; Figure 2). 
Since many users have computers running on Windows- based operat-
ing systems, several pipeline developers have gone through the effort 
of making the Unix- based workflows executable in Windows; some-
times through native code adaptations or by making their software 
available in either containers or through websites (such as Galaxy; 
Galaxy Community, 2022), making the pipelines independent of the 
OS (Table 1).

Some metabarcoding data analysis tools, such as DADA2 rely ex-
clusively on R and are thus also compatible with any OS that can exe-
cute R. JAMP (https://github.com/Vasco Elbre cht/JAMP) is another R 
package that wraps full metabarcoding and haplotyping pipelines, al-
though it is only available for Linux and macOS. Additionally, with the 
development of containerization technology (e.g. Docker, Singularity), 
it becomes easier to develop bioinformatics pipelines that can run on 
the three major operating systems, Windows, macOS, and Linux. A 
container encapsulates the code and dependencies needed for the 
data analyses so that the pipeline may run reliably on any OS. Once 
the containerization software is installed, users are free to instal all 
the underlying dependencies. For a few of the presented pipelines, 
the developers have included the prebuilt containers and/or virtual 
machine images required to run it (Table 1; Appendix S1). Pipelines 
such as those distributed by nf- core/ampliseq, PipeCraft2, PEMA, and 
Tourmaline require utilizing Docker/Singularity containers at the back- 
end, so the core bioinformatics processes are running on a Linux envi-
ronment but may also be executed on Windows and macOS systems. 
Moreover, containerized pipelines resolve the numerical instability 
issue occurring while running software on different computational 
platforms (Di Tommaso et al., 2017), ensuring the consistency of re-
sults and allowing more reproducible computational workflows.

Essentially all the pipelines can be run on any OS via contain-
ers or virtual machines. However, containers are preferred to virtual 
machines (e.g. VirtualBox), as virtualization (i.e. running a second OS 
on top of the main OS) has high overhead and comes at the cost of a 
computer's RAM usage, which ultimately limits the amount of data 
that can be processed. Considering container engines, Docker is 
usually unavailable on HPC clusters, as potential vulnerability could 
provide means to gain root access to the system they are running on. 
Therefore, Singularity (Kurtzer et al., 2017) is generally more wide-
spread on HPC clusters as it was specifically developed for it.

With the capacity to provide computational resources, web- 
based platforms, such as DAnIEL (Loos et al., 2021) and SCATA may 
be simply used through a web browser on any operating system. 
Additionally, some other pipelines, such as FROGS and LotuS2, can 
also be accessed through Galaxy websites, and nf- core/ampliseq 
(Straub et al., 2020) can be launched via Nextflow Tower (a monitor-
ing and management platform for Nextflow workflows).

The increasing complexity of bioinformatics pipelines, which 
consist of a large number of computational steps, encouraged the 
development of workflow management systems capable of orches-
trating in a scalable and reproducible manner (Mölder et al., 2021; 
Wratten et al., 2021). Workflow managers allow pipelines to resume 
after a failure and start from the last successfully completed step, 
automate pipeline execution triggered by input or reference data 
updates and perform parameter exploration. Nextflow (Di Tommaso 
et al., 2017) and Snakemake (Koster & Rahmann, 2012; Mölder 
et al., 2021) are among the most prominent workflow management 
systems in the field of bioinformatics. They simplify pipeline devel-
opment, maximize resource usage efficiency and handle installation 
and versioning of the software dependencies (e.g. using Docker and 
Singularity containers or conda environments). These systems allow 
running workflow steps in parallel locally or using resources of HPC 
clusters or commercial cloud computing providers (Amazon web 
services (Bai et al., 2019), Microsoft Azure (Copeland et al., 2015), 
Google Cloud (Hussain & Aleem, 2018)) almost without the need to 
adapt pipeline code to a specific platform architecture. MetaWorks, 
dadasnake, Tourmaline (Thompson et al., 2022), and Cascabel 
(Asbun et al., 2020) are examples of Snakemake- based pipelines, 
while nf- core/ampliseq, eDNAflow and NextITS were developed 
using Nextflow.

6  |  THE INTERFACE

Generally, the Unix- based command- line interfaces (CLI; commands 
are typed into a terminal) are often preferred by analysts with bio-
informatics experience. That is because most of the pipelines are 
developed as CLI- runnable software that can be operated on HPC 
clusters, but also due to the flexibility and availability of applying 
various custom processes to manage the data effectively. Although 
the CLI tools offer numerous advantages, using a CLI might be intim-
idating for users with less programming experience. To facilitate the 
analysis of metabarcoding data by nonbioinformaticians, APSCALE, 
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CoMA (Hupfauf et al., 2020), gDAT (Vasar et al., 2021), PipeCraft2 
and SEED 2 (Vetrovský et al., 2018) provide a graphical user interface 
(GUI; interaction via clickable graphical icons; Table 1; Figure 2) as a 
front- end for specifying the settings of the bioinformatics analyses, 
which will be executed on the back- end. Depending on the architec-
ture, the GUI- based applications may require more RAM than CLI 
pipelines. Pipelines that have web server support (DAnIEL, SCATA) 
or have been implemented into Galaxy server (LotuS2, FROGS, 
QIIME 2) naturally possess a web- based GUI for specifying the set-
tings of the analysis. Some software that is wrapped into GUI may 
also be executed through CLI (Table 1).

7  | MARKER- SPECIFIC PIPELINES

A marker (i.e., ‘DNA barcode’) is a taxonomically informative gene 
fragment that is utilized for species identifications in the presence 
of reference sequence data. Bioinformatics processes combined in 
a pipeline may be specifically designed to analyse amplicons from 
a specific marker, that is, the analytical steps may depend on the 
characteristics of the amplicons. For example, when processing ITS 
amplicon data, it is common to remove conservative flanking genes 
of ITS for accurate taxonomic classification purposes (Tedersoo 
et al., 2022; Vu et al., 2022). When processing sequences from the 
COI gene, removing the co- amplified putative nuclear mitochondrial 
pseudogenes (NUMTs) is highly recommended (Creedy et al., 2022; 
Porter & Hajibabaei, 2021; Song et al., 2008). The subsections below 
outline the herein- considered marker- specific and multimarker pipe-
lines and highlight some of the results from their benchmarking trials.

7.1  |  Prokaryotic 16S rRNA

Amplicon sequencing targeting the 16S rRNA gene is com-
monly utilized to investigate microbiomes from various ecosys-
tems/substrates (Knight et al., 2018; Pollock et al., 2018; Staats 
et al., 2016). The 16S gene sequence is roughly 1500 bp in length 
and contains nine distinct hypervariable regions (V1– V9). The V4 
hypervariable region is most often used in short- read sequenc-
ing, whereas full- length 16S analyses are becoming increasingly 
utilized with the increased quality, availability, and decreasing 
costs of long- read sequencing methods. For processing 16S ampli-
cons, mothur, USEARCH, QIIME 2 and DADA2 are the most used 
ones. Recently established pipelines such as dadaist2, dadasnake, 
nf- core/ampliseq, Tourmaline also wrap QIIME 2 and/or DADA2 
functionalities and are thus optimized for 16S (but not exclusively) 
analyses. BIOCOM- PIPE, Cascabel, CoMA, LotuS2, MICCA, PEMA 
and FROGS have also benchmarked their pipelines using 16S data 
sets. However, since the bioinformatics processing of 16S amplicon 
data was at the forefront of metabarcoding data analyses before 
the wide- scale utilization of other markers, other multimarker pipe-
lines (Table 1) that consist of critical filtering steps may also be used 
to process 16S reads.

Testing different workflows on 16S V4 amplicon mock data 
(known composition of taxa in a sample), Straub et al. (2020) found 
QIIME 2 pipeline with the DADA2 plugin being the most optimal 
compared to mothur, QIIME 1 and MEGAN (Huson et al., 2007) 
workflows. Based on the benchmarking results, the nf- core/am-
pliseq pipeline was developed which demonstrated a high degree of 
similarity with the results produced by QIIME 2. Prodan et al. (2020) 
reported good performance of all tested ASV workflows (DADA2, 
QIIME 2 deblur, UNOISE3), but with slight variations in their sen-
sitivity and specificity to detect mock community members. In the 
latter study, two OTU workflows also performed well (UPARSE, mo-
thur; but not QIIME 1- uclust), but with lower specificity than ASV 
pipelines. A more recent study by Özkurt et al. (2022) reported the 
higher accuracy of LotuS2 compared with QIIME 2, DADA2, and 
PipeCraft2. The LotuS2 pipeline runs with stringent read filter-
ing and implements a unique feature, a ‘seed extension’ algorithm, 
that improves the quality of a feature's representative sequence. 
By introducing the CoMA pipeline that uses LotuS1/2 (Hildebrand 
et al., 2014) at its core, Hupfauf et al. (2020) reported a good per-
formance of all tested pipelines (CoMA, QIIME 2, mothur). However, 
some degree of variability was evidently depending on the test 
data set. In general, the lack of consensus as to the ‘best perform-
ing pipeline’ illustrates the importance of the underlying dataset 
properties. Considering the dataset's characteristics under the op-
eration, tweaking, and fine- tuning the settings of different pipelines 
may further, at least to some extent, diminish the variability in their 
accuracy.

7.2  |  ITS rRNA

The nuclear ribosomal internal transcribed spacer (ITS) region is a 
standard marker in fungal metabarcoding studies (Nilsson et al., 2019). 
It is also taxonomically informative in other eukaryotic groups (e.g. 
flowering plants, mites, springtails; Anslan & Tedersoo, 2015; Banchi 
et al., 2020; Ben- David et al., 2007). The ITS region is highly variable 
in length among eukaryotic groups, complicating the bioinformat-
ics analysis steps that rely on aligning (such as, e.g., mothur OTU 
clustering) or require uniform sequence length (such as, e.g., deblur). 
Pipelines such as NextITS, PIPITS (Gweon et al., 2015), and DAnIEL 
are developed explicitly for ITS amplicon analyses. Those pipelines 
implement the extraction of ITS sub- regions (ITS1/ITS2, or full ITS) 
to exclude flanking conservative regions (18S/5.8S/28S), which 
is optimal for taxonomic assignment accuracy (Bengtsson- Palme 
et al., 2013; Vu et al., 2022). SCATA is also optimized for the ITS 
region, and for other amplicon sequences which cannot be easily 
aligned. However, a few other universal pipelines, such as LotuS2, 
SEED 2, nf- core/ampliseq, PipeCraft2, MetaWorks, dadasnake, 
FROGS (all using ITSx; Bengtsson- Palme et al., 2013), and QIIME 
2 (using the ITSxpress plugin; Rivers et al., 2018) incorporate the 
step for extracting the ITS sub- regions for optimal processing of ITS 
amplicon data. Because the ITS- subregions of some fungal groups 
may not sufficiently overlap during the paired- end data assembly 
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process, FROGS, PipeCraft2, Dadaist2 and Cascabel (latter two 
without ITSx) implement settings to also include nonassembled 
reads to ensure that taxa with longer ITS regions are not excluded 
(Bernard et al., 2021).

Although AMPtk, DADA2, eDNAflow, and gDAT were validated 
using ITS reads, these pipelines lack a step to clip the flanking regions 
from ITS reads. While ITS extraction tools may eliminate some fungal 
strains from the data, many false- positive molecular units are gener-
ated when this extraction process is excluded (Pauvert et al., 2019). 
To mitigate the detection of false- negatives, the exclusion of the ITS 
extraction may be more appropriate if the aim is to find specific tar-
get taxa, whereas the ITS extraction operation should be included in 
community ecology studies (Pauvert et al., 2019).

Tested on technical replicates from soil samples (i.e. DNA from 
the same sample sequenced twice), compositional matrices of ITS 
data from QIIME 2 and LotuS2 were more reproducible than native 
DADA2, where the latter did not incorporate an ITS extraction step 
(Özkurt et al., 2022). Differences in the ITS amplicon data analyses 
among various software (PipeCraft1, QIIME 2, PIPITS, LotuS1, and 
custom pipeline compiled on Galaxy platform) were evident also in 
the study by Anslan et al. (2018) where QIIME 2 and Galaxy- based 
pipelines did not include the ITS extraction step (because it was not 
yet implemented). Although the inclusion of ITS region extraction 
step lowers the amount of nontarget features, the latter study con-
cluded that none of the tested workflows were able to fully filter out 
the erroneous sequences, which contributed to the demonstrated 
differences between pipelines.

7.3  |  COI

Found in the mitochondria, the cytochrome oxidase subunit I (COI/
CO1/cox1) is a standard animal barcode (Hajibabaei et al., 2011; 
Hebert et al., 2003). Compared with other suitable markers (e.g. mt 
16S, ITS, 28S) for most metazoan groups, the reference database of 
the COI is vast (Porter & Hajibabaei, 2018) and COI fragments are 
extensively used in metabarcoding studies.

Metabarcoding of metazoan communities is increasingly em-
ployed in ecology, but the strategies for analysing the sequenc-
ing data vary largely across studies. Generally, the metabarcoding 
studies utilizing protein- coding genes (such as COI) have largely 
followed the bioinformatic workflows designed to characterize 
microbial diversity without adapting the workflows to the charac-
teristics of protein- coding markers (Creedy et al., 2022). When pro-
cessing protein- coding markers, the noise of nuclear mitochondrial 
pseudogenes (NUMTs) may inflate the richness estimates and thus in-
troduce biases in biodiversity research using metabarcoding (Porter 
& Hajibabaei, 2021). Thus, the amino acid translation, but also the 
length of the read should be used to identify erroneous sequences 
(Creedy et al., 2022). Of the pipelines reviewed here, MetaWorks 
and VTAM implement a step of removing putative NUMTs, which 
alleviates the burden of manual curation of the features to pro-
duce more accurate richness estimates. The multimarker amplicon 

processing platform PipeCraft2 has also wrapped MetaWorks strat-
egy of the pseudogene removal step. Apart from the full pipelines, 
the multisample features matrix may be processed with metaMATE 
(Andújar et al., 2021) to remove putative NUMTs and other errone-
ous sequences (based on, e.g., length and relative read abundance). 
Additionally, DARN (Zafeiropoulos et al., 2021), which makes use of 
the phylogenetic tree, aids in filtering out nontarget features and 
upon denoising, the characteristics of protein coding genes are also 
accounted for in the DnoisE (Antich et al., 2022). We will most likely 
see the latter module integrated into the already established pipe-
lines in the near future.

7.4  | Other markers and multimarker pipelines

Besides the above- mentioned markers, other popular markers 
used for metabarcoding are mt 16S rRNA for Metazoa, mt 12S 
rRNA for fish (Miya et al., 2020), 18S rRNA for protists and other 
eukaryotes, 28S rRNA for nematodes and eukaryotes in general, 
rbcL for diatoms (Rimet et al., 2019), rbcL + matK and trnL for plants 
(CBOL Plant Working Group 1 et al., 2009; Taberlet et al., 2007), 
and 23S rRNA for photosynthetic microbes (Djemiel, Dequiedt, 
et al., 2020; Djemiel, Plassard, et al., 2020). A variety of pipelines 
have been applied for the analyses of the amplicon sequences 
from these markers. For example, MICCA, DADA2 for 18S rRNA 
(Harrison et al., 2021; Minerovic et al., 2020); DADA2, OBITools 
for mt 16S (Marquina et al., 2019; Thomsen & Sigsgaard, 2019); 
and custom built pipelines (using multiple third- party sequence 
data analysis tools) for other markers above (Anslan et al., 2021; 
Elbrecht et al., 2016; Liu & Zhang, 2021; Westfall et al., 2020). 
Benchmarked on mt 12S reads from both simulated and real eDNA 
data, the Barque pipeline demonstrated a small sensitivity improve-
ment over QIIME 2 and OBITools (Mathon et al., 2021). Moreover, 
another VSEARCH- based custom pipeline found in the latter study, 
which was designed to match Barque's performance by adjusting 
the parameters and threshold, showed the same mean sensitivity as 
Barque, demonstrating that the careful choice of the tools for the 
required task provides accurate results.

Table 1 lists multimarker software that may be utilized for various 
markers. All of the developed application software contain the most 
crucial steps for basic metabarcoding data analyses, but the suitabil-
ity of a software or workflow steps for a given marker should be 
assessed. For example, considering the length variability and align-
ability of the amplicon set is important when some pipeline steps 
(e.g. clustering) use alignment- based methods (such as in mothur) 
or require uniform read lengths (such as deblur denoising). When 
working, for example, rbcL amplicons (or amplicons from any other 
protein coding gene), validation is needed to ensure that the gener-
ated features do not represent potential pseudogenes (or off- target 
taxa) for biodiversity analyses. Some multimarker pipelines incorpo-
rate marker- specific steps, for example, extracting the ITS region, re-
moving putative pseudogenes and off- target features (Appendix S1). 
Using a pipeline that is not restricted to a certain marker gene, but 
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where the above listed automated filtering processes are lacking, a 
manual feature curation step is usually required to filter out bioin-
formatically unfiltered noise or to validate that most of the noise has 
already been removed. Depending on the study context, different 
analytical pipelines may yield highly compatible results (e.g. Baltrušis 
et al., 2022; Kang et al., 2021), but the outcome and interpretation 
may also vary considerably (Anslan et al., 2018; Bailet et al., 2020; 
Pauvert et al., 2019; Straub et al., 2020) without the validation of the 
software suitability for a given marker.

8  |  CONCLUDING REMARKS

The development of a wide range of metabarcoding data analysis 
pipelines illustrates the need for not only ‘easy- to- use’ software but 
also of specific customized workflows depending on the underlying 
sequencing data set. Although most of the precompiled pipelines 
largely mirror the functionalities of several software suites by in-
corporating steps from algorithms providing software suites, they 
offer easily executable automated alternatives for users with less 
bioinformatics experience. Additionally, many precompiled pipe-
lines are supplemented with several possibilities for downstream 
analyses by wrapping various third- party tools. Applying different 
workflows on the same data will always demonstrate a certain level 
of variation among pipelines. These variations are usually most ob-
vious in terms of the reported number of features. This generally 
derives from variations in filtering out spurious and low- abundant 
sequences (e.g. Edgar, 2017; Prodan et al., 2020). Therefore, one 
pipeline may produce a higher number of features per sample and 
the other much less, but the correlations between sample- wise 
richness from one to another result are in most cases very high 
(Baltrušis et al., 2022; Kang et al., 2021). However, depending on 
the analysed data set, this correlation pattern may be the opposite 
(Nearing et al., 2018) and pipeline settings should be carefully con-
sidered, especially when identifying rare taxa is imperative. Thus, 
although the automated pipelines have made the analyses easier 
and more reproducible, expertise is still required to validate the ac-
curacy of the biological results. It is noteworthy that a pipeline's 
performance measured on mock community samples with relatively 
few species may vary when applied to a complex data set originat-
ing from environmental samples. Nevertheless, including a mock 
community control sample(s) in a study will certainly aid in identify-
ing false positives and false negatives. A robust sense of the com-
munity patterns may be obtained by applying ‘default’ parameter 
values but fine- tuning of the parameters may be required to find an 
appropriate compromise between false positive removal and reten-
tion of true detections.

Table 1 and Figure 2 are aiming to provide assistance in narrow-
ing down the desirable pipelines for the task. Once the potential 
target workhorses have been selected, one would naturally need 
to explore the respective user guides for more detailed information 
about the underlying procedures.
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