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Early childhood cryptosporidiosis causes acute 
disease and mortality, as well as lasting malnu-
trition and developmental delay. However, 
there are no safe and effective therapeutics 
for cryptosporidiosis. Developing such ther-
apeutics will save hundreds and thousands 
of lives in young children and spare millions 
of disability-adjusted life years lost (DALYs). 
This white paper discusses the global public 
health impact of Cryptosporidium infections, 
the immediate need for more effective 
treatment of cryptosporidiosis, and recent 
advances that are yielding multiple promising 
leads for therapeutic development. We will 
discuss the remaining challenges, which is to 
complete the preclinical and clinical steps to 
bring these novel therapeutics to children in 
urgent need of treatment.

Diarrhoeal diseases cause unacceptable loss 
of life, mainly among infants and children 
in low-income and middle-income countries 
(LMICs). The Global Enteric Multicentre 
Study (GEMS) revealed the pathogens asso-
ciated with diarrhoea in children in LMICs.1 
Of particular prevalence, as cause of severe 
disease, were rotavirus, Cryptosporidium spp, 
enterotoxigenic Escherichia coli and Shigella. 
The parasite Cryptosporidium (C. hominis and 
C. parvum) remains one of the most lethal 
pathogens for malnourished infants and chil-
dren, with a devastating health impact on 
those under 2 years of age. The GEMS study 
estimated about 7.5 million cases of Crypto-
sporidium infection occur every year within 
this population in Africa and Asia resulting 
in over 200 000 Cryptosporidium-attributable 
deaths due to moderate-to-severe diarrhoea, 
with an excess of 59 000 deaths compared 
with children with similar symptoms that were 
Cryptosporidium negative.2

Cryptosporidium infection in these malnour-
ished children is also significantly associated 

with debilitating stunted growth contributing 
to excess mortality.3–6 This Cryptosporidium-
associated stunting and wasting leads to poor 
physical and neurological health with poor 
childhood development, resulting in a lasting 
effect on population health in LMICs.5 This 
burden falls disproportionately on children in 
sub-Saharan Africa, but also in South America 
and Asia (figure  1). In 2018, Dr Khalil and 
coworkers at the Institute for Health Metrics 
and Evaluation reported that acute Cryptospo-
ridium infection was associated with an annual 
loss of greater than 4.2 million DALYs.3 Each 
DALY represents the loss of a full year of 
healthy life. In 2019, the Global Burden of 
Disease study revised the number of deaths 
and DALYs attributable to Cryptosporidium 
to 133 422 deaths and 8.2 million DALYs per 
year, taking into account both the acute and 
long-term effects of Cryptosporidium infec-
tion.7 To put this in perspective with other 
diarrhoeal diseases within the same 2019 
study, cholera is attributable to less deaths 
(117 000) and DALYs (7.1 million), and 
both Shigella and Rotavirus were responsible 
for only slightly more deaths (148 000 and 
235 000, respectively) and DALYs (10 million 
and 17 million).7 In contrast to cryptosporid-
iosis, vaccines or treatments are available or in 
advanced development for these infections. 
Notably, when comparing Cryptosporidium 
with WHO recognised neglected tropical 
diseases (NTDs), it greatly exceeds both the 
deaths and DALYs associated with essentially 
all of these diseases (figure 2).8

Effective treatment to mitigate the impact of 
cryptosporidiosis on child health and survival 
is woefully lacking. Nitazoxanide is the only 
US Food and Drug Administration (FDA) 
approved therapeutic for treating Cryptospo-
ridium infection. It has been shown to be inef-
fective in immunocompromised individuals 
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and less than 50% effective in malnourished children less 
than 5 years old.9 Nitazoxanide in vitro does have direct 
activity against Cryptosporidium, but only at concentra-
tions much higher than those achieved during therapy. 
Animal models suggest nitazoxanide likely relies on stim-
ulation of the immune system to expel Cryptosporidium. 
Those most threatened by infection, malnourished chil-
dren and the immunocompromised cannot mount the 
immune response required for effective therapy with 
nitazoxanide.10 11

This unmet medical need inspired a recent surge in Cryp-
tosporidium research that has yielded the modern experi-
mental tools and facile animal models needed to discover 
antiparasitic compounds and validate their targets.12–23 

Most importantly, safe and effective compounds in 
preclinical models with direct action against Cryptospo-
ridium have emerged.13 15 16 18 24–31 This represents a major 
advance, significantly expanding the quality and quan-
tity of the portfolio. Multiple drug candidates are now 
progressing towards preclinical development and clin-
ical trials at an uneven pace (table 1). The initial high-
risk research that led to these compounds was conducted 
by multiple academic and industry groups, often with 
extensive academic and industry collaboration and with 
governmental and philanthropic support. Now further 
investments are needed to capitalise on this rich portfolio 
and accelerate the development and registration of trans-
formative therapies for this largely unmet medical need.

Figure 1  Total (acute and long-term) Cryptosporidium DALYs per 1000 child-years among children under 5 (GBD 
estimates and geographic distribution, Ibrahim Khalil). DALYs after accounting for undernutrition-associated DALYs due to 
cryptosporidiosis.7 DALYs, disability-adjusted life years lost; GBD, Global Burden of Disease.

Figure 2  Infectious disease deaths and DALYs by WHO region.8 There are estimated to be 133 000 deaths per year and 
8200K DALYs due to cryptosporidiosis (pink), which greatly exceed the WHO NTDs, note differences in scales. DALYs, 
disability-adjusted life years lost; NTDs, neglected tropical diseases.
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A vaccine that prevents Cryptosporidium morbidity and 
mortality would be of great benefit to childhood health 
in LMICs, and research towards vaccination should be 
supported. However, natural immunity to Cryptospo-
ridium is non-sterile and requires multiple infections, 
highlighting the parasite’s potential to evade immunity. 
Developing vaccines to address parasitic infections, like 
Cryptosporidium, has been difficult and we are probably at 
least a decade from having a safe and effective vaccine. 
Developing a therapeutic will allow us to address child 
health in LMICs in a much faster time frame. Even after 
vaccines arrive, there will be a need for drugs because of 
insufficient protection, lack of coverage and challenges 
of roll-out and delivery.

Multiple recent efforts centred in academia, industry 
and in joint venture have produced highly promising late 
preclinical therapeutic leads that are markedly superior 
to nitazoxanide in preclinical models (table 1). This is a 
truly transformative advance in both quality and quan-
tity offering a viable path towards treatment. These 
compounds now require varying degrees of advanced 
preclinical testing, and clinical trials performed before 
they can be deployed. The target population is infants, 
however, for a proof of concept (phase 2a) study, testing 
in infants is inadvisable due to safety, pharmacokinetic 
and ethical challenges. Cryptosporidiosis is typically 
rare in adults living in high transmission areas due to 
acquired immunity, except in HIV/AIDS patients. Recent 
advances in the clinical evaluation of novel antimalarials 
provide critical guidance forward. Human challenge 
models using healthy volunteers have proven an invalu-
able tool32 33 providing an insight into efficacy without 
the risks associated with highly vulnerable populations. 
Multiple such studies have been conducted with Crypto-
sporidium in the past and were found to be safe34–36 and 
the model has recently be updated.37 We support a clin-
ical trial plan proposed in which the proof of concept 
(phase 2a study) is conducted with volunteers intention-
ally infected with C. parvum, followed by phase 2b and 3 
studies in children in endemic areas.37

Since malaria and Cryptosporidium belong to the same 
phylum Apicomplexa, they share some conserved drug 
targets, and thus there is a synergy possibility in research 

and development of malaria and Cryptosporidium thera-
peutics. But like malaria, Cryptosporidium may develop 
resistance to monotherapy, given the high numbers of 
parasites during infection. Indeed, emergence of resis-
tance has been documented in the newborn calf model 
of infection for one compound that targets methionyl-
tRNA-synthetase.38 Therefore, it is probably necessary to 
take several compounds through clinical development 
to provide the possibility of combination treatment 
(table 1). There are also possibilities for synergy with the 
animal health market, particularly for dairy cattle, where 
in some areas nearly 100% of newborn calves acquire C. 
parvum infection, and Cryptosporidium infection has been 
shown to lead to lasting weight loss and reduced milk 
production.39–41

A challenge to be addressed is the clinical usage of an 
anti-Cryptosporidium drug. Studies indicate that there are 
multiple causes of diarrhoea; as indicated above, caus-
ative organisms include Shigella spp, enterotoxigenic E. 
coli, Campylobacter jejuni and rotavirus. There is current 
compelling evidence of unmet therapeutic need for 
enteric cryptosporidiosis found in three patient groups: 
(1) young children aged 0–24 months in LMICs; (2) 
malnourished children under age 5 and (3) immunosup-
pressed individuals of any age.42 43 A recent publication 
outlines an effective therapeutic could be used to reduce 
the large burden of Cryptosporidium in LMICs (table 2).42 
Cryptosporidium therapy could be used syndromically, for 
instance in children less than 2 years old with moderate-
to-severe diarrhoea, probably combined with an antibac-
terial to cover the major treatable causes, E. coli, Shigella 
spp. and C. jejuni. Treatment could be carried out with a 
diagnostic, such as a point-of care rapid antigen detec-
tion test, or a PCR, similar to that used in SARS-CoV-2 
detection. This diagnostic-directed therapy might be 
especially helpful in malnourished children less than 
5 years old, where asymptomatic and mildly symptom-
atic Cryptosporidium has been shown to be highly associ-
ated with poor outcomes, such as stunting, poor physical 
and mental development and excess deaths from other 
causes. These diagnostic tools are available now, and the 
rapid antigen detection test can be done at small village 
clinics where sick and malnourished children are first 

Table 1  Examples of compounds in preclinical development

Inhibitor/compound series Lead laboratory
Effective in 
animal models Stage References

Phosphatidylinositol 4-kinase Novartis Yes Phase 1 human trials 15

Bumped kinase inhibitors University of Washington Yes Preclinical candidate 26

Lysyl tRNA synthetase DDU, University of Dundee Yes Late lead profiling 13

Benzoxaborole Anacor, University of Vermont Yes Late lead profiling 29

SLU-2633/MMV665917 St. Louis University, University 
of Vermont

Yes Late lead profiling 31

Phenylalanine tRNA synthetase BROAD Institute, University of 
Vermont

Yes Early lead profiling 16
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seen. In the event that a compound or combination with 
appropriate safety profile can be developed, mass drug 
administration could be used, particularly given the high 
infectivity of the parasite and the fact that many infants 
are likely to be chronically infected.

Beyond this, the authors believe that Cryptosporidium 
should be formally recognised as a NTD by the WHO, for 
its major impact is in LMICs and predominantly affects 
infants and young children. As noted above, Cryptospo-
ridium has a very significant impact compared with many 
other NTDs currently listed by the WHO (figure  2). 
This status will bring the critical medical need of Crypto-
sporidium treatment to the attention of funding bodies, 
foundations, international health organisations and phar-
maceutical companies. Cryptosporidium should also be on 
the list of tropical infections eligible for a priority review 
voucher (PRV) by US FDA.44 The PRV programme has 
proven to be an important financial incentive to pharma-
ceutical companies wishing to develop drugs for NTDs.

There are some exciting compounds at a later preclin-
ical or early clinical stage. This calls for more funding 
to move these leads into clinical trials, to properly eval-
uate the effect that they will have on millions of people 
(primarily infants and young children). Going into the 
clinic will enable us to determine the profile of a drug 

that can have clinical impact and to establish a way for 
its use.

Thus, in summary, using either deaths or DALYs as 
parameters, the unmet medical need for Cryptosporidium 
infection exceeds that of most NTDs and causes a huge 
impact on Africa and Asia. The current therapeutic avail-
able is inadequate for the vast majority of this unmet 
medical need. Tenable use case scenarios exist for how 
more effective therapeutics for Cryptosporidium infection 
could be deployed to reduce deaths and DALYs. Crypto-
sporidium should be recognised as a major unmet medical 
need and designated a NTD by the WHO and as a trop-
ical disease with PRV status by the US FDA. The fastest 
way to address the unmet need is to close funding gaps in 
preclinical candidates and clinical trials, and this should 
lead to an effective Cryptosporidium therapeutic in a few 
years.
Collaborators  Cryptosporidiosis Therapeutics Advocacy Group: Samuel L M 
Arnold, PhD, University of Washington School of Pharmacy; Beatriz Baragana, 
PhD, University of Dundee; Lynn Barrett, University of Washington; Frederick S 
Buckner, MD, University of Washington; Jeremy D Burrows, Phil, Medicines for 
Malaria Venture; Maria A Caravedo, MD, University of Texas Medical Branch; 
Ryan Choi University of Washington; Robert K M Choy, PhD, PATH; Eugenio de 
Hostos, PhD, Calibr at Scripps Research; Thierry Diagana, PhD, Global Health, 
Novartis Institutes for BioMedical Research, Inc.; Suzanne Duce, PhD, University 
of Dundee; Rashidul Haque, MB, PhD, ICDDR, B; Matthew A Hulverson, University 

Table 2  Use case scenarios for an anti-Cryptosporidium therapeutic for LMICs adapted from42

Target population Disease burden
Potential treatment 
sites

Potential treatment 
strategies

Current applicability: 
nitazoxanide

Young children aged 
0–24 months

7.5 million cases with 
moderate-to-severe 
diarrhoea,2 133 000 
deaths and 8.2M 
DALYs annually in 
LMICs7

Primary, secondary 
and tertiary health 
facilities in LMICs

Diagnosis-based 
treatment

Not approved in children 
under 12 months, 
only ~30% efficacy in 
malnourished9

Empiric treatment in 
high-risk populations 
where diagnostic tools 
are not available

Insufficient evidence and 
guidelines

Community based 
treatment

Mass drug administration 
in seasons with high 
prevalence

Insufficient evidence and 
guidelines

Malnourished children Estimated 50 million 
wasted children 
globally.45 Recent 
studies indicate 
10%–20% prevalence 
of cryptosporidiosis 
in children with acute 
malnourishment.9 46–48

Primary, secondary 
and tertiary health 
facilities in LMICs.
Malnutrition care 
centres in clinics and 
hospitals

Diagnosis-based 
treatment

Poorly effective (~30% 
efficacious)9

Empiric treatment in 
high-risk populations 
where diagnostic tools 
are not available

Insufficient evidence and 
guidelines. Nitazoxanide 
poorly effective9

Immunocompromised 
patients

Estimates range from 
5% to 50% of PLWHA 
and up to 30% of 
solid organ transplant 
recipients.49–53

Primary, secondary 
and tertiary health 
facilities in LMICs.
HIV/AIDS treatment 
programmes.
Transplant centres in 
any global setting

Diagnosis-based 
treatment

Poorly or non-effective for 
PLWHA9 43 54

Empiric treatment in 
high-risk populations 
where diagnostic tools 
are not available

Insufficient evidence and 
guidelines
Poorly or non-effective for 
PLWHA9 43 54

Adapted from Ashigbie et al.42

DALYs, disability-adjusted life years lost; LMICs, low-income and middle-income countries; PLWHA, people living with HIV/AIDS.
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University of Washington; Minju Kim, University of Washington Hans Rosling Center 
Global Health; Poonum Korpe, MD, Johns Hopkins Bloomberg School of Public 
Health; Benoît Laleu, PhD, Medicines for Malaria Venture; Diana Lalika, University 
of Washington; Fabrice Laurent, PhD, INRAE, Univ. of Tours; Case W McNamara, 
PhD, Calibr at Scripps Research; Marvin J Meyers, PhD, St. Louis University; 
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