

Unveiling the Power of Sterols: Optimizing Wine Fermentation with Strategic management

Giovana Girardi Piva, Erick Casalta, Jean-Luc Legras, Isabelle Sanchez, Martine Pradal, Faïza Maçna, David Moreira Ferreira, Anne Julien Ortiz, Virginie Galeote, Jean-Roch Mouret

► To cite this version:

Giovana Girardi Piva, Erick Casalta, Jean-Luc Legras, Isabelle Sanchez, Martine Pradal, et al.. Unveiling the Power of Sterols: Optimizing Wine Fermentation with Strategic management. International Journal of Food Microbiology, 2023, 406, pp.110350. 10.1016/j.ijfoodmicro.2023.110350 . hal-04185866

HAL Id: hal-04185866

<https://hal.inrae.fr/hal-04185866v1>

Submitted on 1 Oct 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 **Unveiling the Power of Adding Sterols in Wine: Optimizing Alcoholic Fermentation with
2 Strategic Management**

3

4

5 Giovana Girardi Piva^{a,c}, Erick Casalta¹, Jean-Luc Legras^a, Isabelle Sanchez^b, Martine Pradal^a, Faïza
6 Macna^a, David Ferreira^c, Anne Ortiz-Julien^c, Virginie Galeote^a, Jean-Roch Mouret^{a,*}

7

8 ^aSPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France

9 ^bMISTEA, INRAE, Institut Agro Montpellier, 34000 Montpellier, France

10 ^cLallemand SAS, 31702, Blagnac, France

11

12 * Corresponding author at: Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier,
13 France.

14 E-mail address: jean-roch.mouret@inrae.fr (JR. Mouret).

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

ABSTRACT

38 Excessive grape must clarification can result in sluggish alcoholic fermentation and sometimes
39 alcoholic stuck fermentation, because of the lack of sterols for the yeasts growth. To avoid this risk,
40 addition of sterols (ergosterol or phytosterols) can be performed, resulting in higher *Saccharomyces*
41 *cerevisiae* viability and shorter fermentation duration. However, no dedicated study was implemented
42 to evaluate the efficiency of different strategies of sterol management (considering sterol type, added
43 concentration and timing of addition) during wine fermentation. So, first, to evaluate whether the
44 response of wine yeast strains to sterol nutrition was similar according to the type and the
45 concentration of the sterol present in the initial must, it was studied the response of a set of 10 *S.*
46 *cerevisiae* strains in a synthetic grape must with low, medium and high concentrations of ergosterol or
47 phytosterols. Then, the impact of the timing of sterol addition was evaluated on 2 *S. cerevisiae* strains
48 with opposite behaviours. This work confirmed previous results concerning the role of ergosterol and
49 phytosterols but also revealed new findings in this field. At first, it was confirmed that ergosterol played
50 an important role in improving the maintenance of viable cells towards the end of fermentation,
51 particularly in sterols-limited situations, while phytosterols demonstrated an ability to reduce acetate
52 and glycerol production. But, in a second part, our study sheds new light on the beneficial impact of
53 sterol addition on amino acid assimilation in yeast, leading to an increase in maximum fermentation
54 rate, biomass production and percentage of viable cells. However, the main novelty of this research
55 work concerns the timing of ergosterol addition. This addition at the start of fermentation in a
56 phytosterols-free synthetic must enabled faster fermentations, as well as higher fermentative aroma
57 synthesis, compared to addition during stationary phase. Even if the impact of ergosterol additions
58 were relatively similar for both strains tested, notable differences were found concerning amino acid
59 assimilation and biomass production, suggesting differences in the regulation of nitrogen metabolism
60 between both strains. These findings provide new insights into our understanding of sterol role in
61 enological fermentation. It offers a basis for both the development of innovative strategies for sterol
62 management and the selection of wine yeast strains under sterol starvation.

63

64

Keywords: wine yeast, sterol management, nitrogen-sterol balance, yeast phenotype diversity, fermentative aromas.

66

67

68

70

71

72
73
74
75
76

77 1. Introduction

78 Sterols are a part of the yeast lipidome and are responsible for the maintenance of yeast cell
79 membrane integrity and optimal functionality (Aguilar et al., 2010; Klug and Daum, 2014). During wine
80 fermentation, they promote yeast growth and metabolism and ensure a good viability at the end of
81 fermentation, avoiding sluggish and stuck fermentations (Casalta et al., 2019, 2013; Duc et al., 2017;
82 Ochando et al., 2017; Rosenfeld et al., 2003).

83 Ergosterol is the final product in the yeast sterol synthesis pathway and corresponds to 90% of
84 the total content of sterols for *Saccharomyces cerevisiae* strains (Ejsing et al., 2009). Its production
85 requires oxygen (at least 7nM dissolved oxygen), as the enzymes involved in the synthesis of ergosterol
86 and its precursors are oxygen-dependent (Jordá and Puig, 2020). Under anaerobiosis, *S. cerevisiae*
87 strains can assimilate phytosterols from the grape must, thanks to the ABC transporters (ATP-binding
88 cassettes) Aus1p and Pdr11p (Jacquier and Schneiter, 2012; Li and Prinz, 2004; Tesnière et al., 2021).
89 In grape berries, β -sitosterol is the major phytosterol (around 90% of the total sterol content), followed
90 by stigmasterol and campesterol (Tumanov et al., 2015). The comparison between both sterol types
91 and their roles during wine fermentation was recently reviewed in Girardi Piva et al. (2022b).

92 Grape must clarification is a critical step employed before white wine fermentation to decrease
93 the synthesis of undesirable aldehydes and herbaceous alcohols in the final product, by removing solid
94 particles rich in sterols (Karagiannis and Lanaridis, 2002; Ma et al., 2020). However, excessive
95 clarification results in a low sterol content, which leads to high yeast cell death, limits biomass
96 production, and leads to incomplete alcoholic fermentation (Casalta et al., 2019, 2016; Ochando et al.,
97 2017; Rodríguez-Vargas et al., 2007; Sablayrolles and Barre, 1986; Waldbauer et al., 2011).

98 Oxygen addition allows to compensate for the lack of phytosterols in grape must, by allowing
99 the synthesis of ergosterol and its precursors by yeasts (Fornaiiron-Bonnefond et al., 2001; Julien et al.,
100 2000; Ochando et al., 2017; Sablayrolles et al., 1996). Another possibility is the addition of grape solid
101 particles containing phytosterols at the beginning of fermentation (Casalta et al., 2013, 2012). Inactive
102 dry yeasts can also be added during rehydration of active dry yeasts to provide ergosterol (Belviso et
103 al., 2004; Soubeyrand et al., 2005).

104

105 In a recent study, we showed that, under sterol starvation, sterol type affects fermentation
106 kinetics along with biological and Central Carbon Metabolism parameters (Girardi Piva et al., 2022a).

107 We therefore wonder if the type of sterol could also affect these same parameters with higher doses
108 of sterols, until reaching a concentration where sterols are no longer the limiting nutrient.

109 To answer this question, different strategies of addition of sterol were tested in the present
110 research work. In a first step, we evaluated the effect of sterol supplementation at the start of the
111 fermentation process (sterol dose and type, ergosterol versus phytosterols) on fermentation kinetics,
112 cell viability and synthesis of Central Carbon Metabolism (CCM) metabolites for a set of 10 *S. cerevisiae*
113 wine strains. In this part, three different sterol contents were tested: a low content (1.0 mg/L)
114 mimicking sterol limitation, as in the case of excessive grape must clarification; an intermediate
115 content similar to many classical enological fermentations (2.5 mg/L) and a higher sterol concentration
116 (4.0 mg/L), in which the nitrogen-sterol balance enables a complete assimilation of nitrogen.

117 Then, in a second step, the impact of the timing of sterol addition in a synthetic must lacking
118 sterols was evaluated. Ergosterol was thus added either at the beginning of fermentation or at the
119 beginning of the stationary phase. This specific study was performed for 2 strains displaying opposite
120 fermentation profiles and sensibility to sterol type. Impacts of these sterol additions were tested on
121 fermentation kinetics, biomass production, viability and some key metabolites, such as acetate,
122 glycerol, succinate and fermentative aromas.

123

124 **2. Materials and methods**

125 **2.1 Strains**

126 A set of 10 *Saccharomyces cerevisiae* wine yeast strains numbered L2, L3, L4, L6, L8, L10, L16,
127 L17, L18 and L21 (identical to those tested in Girardi Piva et al., 2022a) were used for sterol type and
128 dose experiments. L6 and L16 are the fastest strains, L2, L3, L4, L8 and L17 the strains with intermediate
129 fermentation time and L10, L18 and L21 the slowest strains (Girardi Piva et al., 2022a). Two of these
130 strains with opposite phenotypes were used to study the impact of sterol addition at different timings:
131 L6 (strain more resistant to sterol starvation and less susceptible to sterol type) and L10 (strain less
132 resistant to sterol starvation and more susceptible to sterol type). All strains were obtained as active
133 dried yeasts from Lallemand Oenology (Blagnac, France). Fermenters were inoculated with 0.05 g/L
134 of active dried yeast, previously rehydrated for 20 minutes at 37°C in a glucose solution (50 g/L).

135

136 **2.2 Experimental fermentations**

137 Experimental fermentations were performed in a synthetic must (SM), which mimics a grape
138 must, following the protocol described by Bely et al. (1990). This synthetic must (SM 400) contained
139 400 mg/L of assimilable nitrogen, with a ratio (m/m) of 72% assimilable amino acids and 28%
140 ammonium (NH₄Cl) and 200 g/L of sugars (50% glucose and 50% fructose). The pH was adjusted to 3.3.

141 A purified phytosterol complex, containing mainly β -sitosterol ($\geq 70\%$) (85451, Sigma-Aldrich)
142 was used to prepare the phytosterol solution, while the ergosterol solution was prepared with
143 synthetic ergosterol (E6510, Sigma-Aldrich). Two sterol stock solutions with 15 g/L of sterols (either
144 phytosterols or ergosterol) containing Tween 80[®] and ethanol (1:1, v/v) were prepared and then
145 diluted with ethanol to obtain a final solution of 1.5 g/L sterols before addition to the synthetic must
146 (Casalta et al., 2019).

147

148 **2.2.1 Sterol dose and type**

149 Three concentrations of sterols (ergosterol or phytosterols) in the SM 400 were tested: 1.0
150 mg/L, 2.5 mg/L and 4.0 mg/L (Table 1) to evaluate the impact of sterol dose.

151 All fermentations were performed in 300 mL fermenters filled with 250 mL of the
152 corresponding medium. Fermenter medium deaeration was performed before sterol addition by
153 bubbling pure argon for 20 minutes to ensure anaerobic conditions. Moreover, fermenters were fitted
154 with fermentation locks to maintain anaerobiosis (Rollero et al., 2015). All fermentations were
155 performed in biological triplicates (total of 180 fermenters).

156 Fermenters (300 ml) were placed on magnetic stirring plates (260 rpm) at 24°C. In addition,
157 fermentation kinetics were followed via an internally developed control software dedicated to the
158 study of alcoholic fermentation with a temperature control system and automatic weighing. This task
159 was performed with a robotic arm (Lab Services, Breda, Netherlands), as described in Girardi Piva et
160 al., 2022a). It allowed monitoring the amount of produced CO₂ (in g/L) and the fermentation rate (in g
161 CO₂/Lh).

162

163 **2.2.2 Timing of sterol addition**

164 For the evaluation of the timing of sterol addition, 1.2 L fermenters were filled with 1.0 L of
165 MS400. Anaerobiosis was ensured by pure argon bubbled during 30 minutes and fermentation locks.
166 Afterwards, 1.0 mg/L of phytosterols were added to all fermenters to mimic excessive clarified grape
167 musts. Moreover, 3.0 mg/L of ergosterol were added at the beginning of fermentation (T0) or during
168 stationary phase (T30, corresponding to 30 g/L of released CO₂) to switch to a condition where nitrogen
169 was the limiting nutrient (Table 1). Both modalities were compared with a control without ergosterol
170 addition. All fermentation conditions were performed in biological triplicates (a total of 18
171 fermentations).

172 1.2 L fermenters were placed on scales with magnetic stirring plates (260 rpm). A lamp system
173 and a temperature sensor for each fermenter allowed maintaining temperature at 24°C (Sablayrolles
174 et al., 1987). Fermentation kinetics were followed with automatic weighing every 20 minutes.

175

176 **2.3 Sample preparation**

177 Two samplings were done during both experiments. The first sampling was done at 85% of
178 fermentation progress, and the sample was divided in two: the first fraction was used for yeast cell
179 viability determination and cell counting; the second one was centrifuged for 10 min at 3000 rpm at
180 4°C and the corresponding supernatant was stored at -20°C until nitrogen content analysis. The second
181 sample was collected at the end of fermentation. The centrifuged supernatant (10 min at 3000 rpm at
182 4°C) was stored at -20°C to quantify central carbon metabolism (CCM) metabolites. For the study of
183 the impact of the timing of ergosterol addition, samples were collected at 85% of fermentation
184 progress and the supernatant was stored at -20°C before centrifugation until CCM metabolites and
185 fermentative aromas analysis.

186

187 **2.4 Analytical methods**

188 **2.4.1 Cell viability**

189 Cell viability was determined by flow cytometry using an Accuri® C6 cytometer (Accuri, BD
190 Biosciences) with propidium iodide (IP) as marker, as described by (Delobel et al., 2012). Viability was
191 determined as the percentage of intact and fragile cells among all cells.

192

193 **2.4.2 Cell counting**

194 Samples were diluted 1600-fold with Isoton II® (Beckman-Coulter). After sonication (30
195 seconds, 10W), cells were counted with a Coulter Z2 electronic counter (Coulter Multisizer3, Beckman
196 Coulter) fitted with a 100-µm aperture probe.

197

198 **2.4.3 Nitrogen**

199 The assimilated nitrogen content (ammonium and amino acids) was determined at 85% of
200 fermentation progress. The ammonium (NH_4) concentration was determined enzymatically
201 (Boehringer Mannheim, Mannheim, Germany). Its percentage was calculated as follows (Eq. 1):

202
$$\% \text{ Assimilated } \text{NH}_4 \text{ 85\%} = ([\text{NH}_4]_{\text{must}} - [\text{NH}_4]_{85\%}) / [\text{NH}_4]_{\text{must}}$$

203

204 The free amino acid (AA) content was determined by cation exchange chromatography with
205 post-column ninhydrin derivatization (Biochrom 30, Biochrom), as described by Crépin et al. (2012).
206 The percentage of assimilated amino acid content was determined as follows (Eq. 2):

207

208
$$\% \text{ Assimilated AA 85\%} = ([\text{AA}]_{\text{must}} - [\text{AA}]_{85\%}) / [\text{AA}]_{\text{must}}$$

209

210 **2.4.4 Determination of CCM metabolites and residual sugars**

211 Acetate, glycerol, succinate and residual sugars concentrations were determined by high-
212 performance liquid chromatography (HPLC 1290 Infinity, Agilent Technologies, Santa Clara, CA, USA)
213 with a Phenomenex Rezex ROA column (Agilent Technologies, Santa Clara, CA, USA) at 60°C, as
214 described by Rollero et al. (2015).

215

216 **2.4.5 Fermentative aroma analysis**

217 The volatile compounds analysis was performed by gas chromatography and mass
218 spectrometry, as described by Rollero et al. (2015). First, the volatile compounds were extracted with
219 dichloromethane. Then, the concentration in fermentative aromas (higher alcohols, acetate esters,
220 ethyl esters and acids) was measured via GC/MS in SIM mode using a DB-WAX GC column. Thirty-three
221 compounds were quantified using internal deuterated standards.

222

223 **2.5 Fermentation progress and variables coding**

224 The fermentation progress corresponds to the ratio between the final CO₂ production and the
225 amount of CO₂ produced at a specific time, which is proportional to the amount of sugars consumed.
226 For both conditions tested, 85% of fermentation progress corresponded to 80 g/L of produced CO₂.
227 Similarly, 33% of fermentation progress corresponded to 30 g/L of produced CO₂.

228 Some variables were coded to simplify results presentation: tCO₂_x corresponded to the time
229 to release "x" grams of CO₂; tCO₂_End corresponded to the time to achieve the end of fermentation;
230 Vmax to the maximum fermentation rate.

231

232 **2.6 Statistical Analysis**

233 Statistical analyses were performed with R software version 3.6.2 (R Development Core, 2019).
234 To describe the variability of the data set, PCA was performed with the package FactoMineR (v2.3).

235 A three-way Anova was performed for the sterol dose experiment. Strain, sterol type and sterol
236 dose were the factors evaluated using aov function with a statistical significance level of 5%, following
237 the model below (Eq. 3):

238

$$239 y = \beta_0 + \beta_1 Strain + \beta_2 Sterol + \beta_3 Dose + \beta_{12} Strain: Sterol + \beta_{13} Strain: Dose + \beta_{23} Sterol: Dose + \epsilon$$

240

241 Where β_0 is the intercept term, β_i the linear coefficients ($i = 1, 2$, and 3), β_{ij} the interaction
242 coefficients ($i = 1, 2$, and 3 ; $j = 1, 2$, and 3) and ϵ are independent $N(0, \sigma^2)$ error terms. Hypotheses
243 were checked and the normality of residual distributions and homogeneity of variance were evaluated
244 with standard diagnostic graphs.

245

246 **3. Results**

247 **3.1. Impact of sterol dose and type**

248 The impact of sterol type and concentration on fermentation kinetics was evaluated for 10 *S.*
249 *cerevisiae* strains that all performed differently, according to sterol dose and type.

250

251 **3.1.1 Overview of the impact of sterol dose and sterol type**

252 A PCA was performed to provide an overview on the global variation on the dataset and
253 highlight those that contributed the most to this variation. Most variables describing fermentation
254 kinetic, biomass, and CCM metabolites highly differentiated the individuals tested, except for succinate
255 production. As shown in Fig. 1, Dim 1 and Dim 2 explained 78% of total variation. Dim 1 was associated
256 mostly with kinetics variables, biomass and cell viability and Dim 2 with CCM metabolites (in particular
257 glycerol).

258 We can observe that the maximum fermentation rate (Vmax), biomass and the amount of
259 amino acid (assimilated_AA) were all positively correlated but inversely correlated with the beginning
260 of fermentation (tCO₂_30). Moreover, viability was correlated with these biological variables and the
261 maximum fermentation rate, and inversely correlated with variables describing fermentation duration
262 (production of CO₂ at 85% of sugar consumption or at the end of fermentation, tCO₂_80 and tCO₂_End
263 respectively). Interestingly, a faster fermentation start was associated with shorter fermentations, and
264 appeared linked to better biological parameters maintenance. Acetate content was correlated with
265 tCO₂_30, while succinate was correlated with biological variables.

266 The effect of sterol dose and type, two categorical variables, could be observed from the
267 different colours applied to individuals in the scatterplot (Fig. 1B). Fermentations performed with a
268 low sterol content (1.0 mg/L of either ergosterol and phytosterols: E1.0 and P1.0, respectively) can
269 easily be distinguished in the left part of Fig. 1B, suggesting a sterol dose effect. Indeed, these
270 fermentations started slowly with a delayed end. This was associated with large amounts of residual
271 amino acids, a low biomass content and a low viability at 85% of fermentation progress. By contrast,
272 fermentations performed with a high sterol content (4.0 mg/L of ergosterol and phytosterols: E4.0 and
273 P4.0, respectively) were completed earlier, displayed a higher Vmax and a higher viability at the end
274 of fermentation. Interestingly, fermentations performed with 2.5 mg/L of sterols (E2.5 and P2.5:
275 ergosterol and phytosterols, respectively) were closer to fermentations performed with 4.0 mg/L of
276 sterols. Nevertheless, this distance varied according to the strain, indicating a major strain effect.

277 Regarding sterol type, denoted in pink and blue for phytosterols and ergosterol, respectively,
278 it is quite clear that fermentations conducted with phytosterols are mainly located in the lower part of
279 Fig. 1B, whereas fermentations performed with ergosterol (in blue) are located in the upper part of
280 the scatterplot, which suggests an effect of sterol type.

281 We can observe specific behaviours of strains, such as for L10, L18 and L21, that were the most
282 susceptible to sterol limitation and that completed fermentation faster when the fermentation
283 medium contained ergosterol instead of phytosterols. In contrast to these 3 strains, L4 and L6
284 maintained higher viability at the 3 doses tested and were less impacted by the sterol type.

285
286 To better evaluate each parameter influence (dose and type of sterol and strain) and the
287 interaction between them, an analysis of variance (ANOVA) was performed. Table 2 shows the
288 significance of the different factors and their interactions.

289 Sterol type had a significant or very significant effect on all variables tested, except for the
290 quantity of assimilated amino acids (assimilated_AA). This means that, independently of sterol dose,
291 the sterol type (ergosterol compared to phytosterols) impacted kinetics parameters, CCM metabolites
292 and almost all biological variables. In addition, dose and strain effects were highly significant for all
293 variables ($p\text{-value} < 10^{-3}$).

294 Interestingly, significant interaction effects were noted between the sterol type and the strain
295 ($p\text{-value} < 1 \times 10^{-3}$ for viability, biomass, assimilated_AA, $t\text{CO}_2\text{-80}$, and CCM metabolites; $< 1 \times 10^{-2}$ to
296 V_{max} and $< 5 \times 10^{-2}$ to $t\text{CO}_2\text{-30}$), as well as for sterol dose and strain ($p\text{-value} < 1 \times 10^{-3}$ for all variables
297 tested). This suggests that strains do not respond to the sterol type and content available in the
298 synthetic must in a similar manner. In addition, very significant interactions were also detected
299 between sterol type and their content for viability, time to complete 85% of fermentation ($t\text{CO}_2\text{-80}$),
300 and succinate content. Moreover, a $P\text{-value} < 1.8 \times 10^{-4}$ was observed for acetate. This shows that the
301 differences in the response to the sterol type varied according to the content in the media for these
302 variables.

303
304 **3.1.2 Impact of sterol dose and sterol type in fermentation kinetics, biological and**
305 **CCM variables**

306 To better understand the significant impact of sterol dose and type on wine fermentation
307 evidenced with ANOVA, boxplots were drawn individually for kinetics, biological and CCM variables.
308 Moreover, barplots by strain, sterol type and dose were performed to observe the behaviour of each
309 strain.

310
311 **3.1.2.1 Kinetics variables**

312 In agreement with PCA results, a higher sterol content in the fermentation medium provoked
313 an increase in the maximum fermentation rate (Fig. 2A). A striking result was the wider dispersion of
314 V_{max} with phytosterols, which indicates a more variable strain response to this sterol type, in
315 comparison to ergosterol.

316 Higher sterol concentrations led to shorter fermentation time, as indicated by the time
317 required to ferment 85% of total sugars (Fig. 2B), in comparison to fermentations performed with only
318 1.0 mg/L of sterols. However, the increase in fermentation speed obtained by the addition of sterol
319 was not a linear function of the sterol content. Indeed, increasing the sterol content of the synthetic
320 must from 2.5 to 4.0 mg/L did not show any significant increase in fermentation progress, as measured
321 for tCO₂_80 for L2, L3, L4, L10, L17 and L21 for both types of sterols, L16 and L6 with phytosterols and
322 L8 with ergosterol. By contrast, when the sterol content was increased from 1.0 mg/L to 2.5 mg/L, L21
323 was able to reduce its time to release 80 g/L of CO₂ of 82h and 63 h with phytosterols and ergosterol,
324 respectively. In opposition to fermentations performed with higher concentrations of sterols, we can
325 observe a higher variability of the time required to ferment 85% of the sugar content at 1.0 mg/L.

326 Finally, the presence of ergosterol in the fermentation medium led to a reduction of
327 fermentation time, as measured by tCO₂_80, in comparison to phytosterols: L10, L18 and L21 at 1.0
328 mg/L, L8 at 2.5 mg/L and L16 at 4.0 mg/L.

329

330 **3.1.2.2 Biological variables**

331 Following Vmax results, biomass, assimilated amino acids and viability increased with higher
332 sterol concentrations. In addition, differences between ergosterol and phytosterols were bigger at 1.0
333 mg/L than at 4.0 mg/L and 2.5 mg/L for biomass (Fig. 3A). Moreover, strains were not impacted by
334 sterol dose in the same way for this biological parameter. For example, biomass increased of 63% when
335 sterol concentration raised from 1.0 mg/L to 4.0 mg/L for L3, while this difference was of 154 % for
336 L18.

337 We can observe that assimilable amino acids consumption was lower than 68% for all strains
338 at 1.0 mg/L of sterols, confirming that sterols were the limiting nutrient at this level (Fig. 3B). As
339 expected, there was no longer any sterol limitation at 4.0 mg/L of sterols, as this concentration allowed
340 all strains to consume all ammonium (data not shown) and almost 100% of amino acids in the synthetic
341 grape must. Interestingly, strains L2 and L17 were already able to assimilate all amino acids with 2.5
342 mg/L of sterols. Moreover, some strains were susceptible to the sterol type for the consumption of
343 amino acids: L21 (at 2.5 mg/L), L3 (at 1.0 and 2.5 mg/L) and L8 (at 2.5 mg/L).

344 Higher sterol concentrations increased viability (Fig. 3C): for example, the percentage of living
345 cells of strain L10 increased by 69% with phytosterols and 35% with ergosterol, when comparing the
346 extreme doses of sterols tested. However, no differences were found for viability between 2.5 and 4.0
347 mg/L with either sterols for L6 and with ergosterol for L4. At 4.0 mg/L of sterols, viability increased
348 considerably for all strains. Moreover, a wider dispersion of viability between strains was found at 1.0
349 mg/L of sterols: between 40% and 65% with ergosterol and between 20% and 65% with phytosterols.

350 Strains L3, L4, L10, L17 and L18 showed better viability with ergosterol compared to
351 phytosterols at 1.0 mg/L and strains L3 and L21 at 2.5 mg/L. However, viability was higher with
352 phytosterols for L2 and L16 at 2.5 mg/L of sterols and for L10, L21 and L16 at 4.0 mg/L. Finally, strains
353 L6 and L8 were not susceptible to sterol type for the percentage of living cells for all sterol doses.

354

355

356 **3.1.2.3 Central carbon metabolism variables**

357 The amount of acetate synthesized was inversely correlated to the sterol dose (Supplementary
358 Fig. 1A), in agreement with Ochando et al. (2017) and Deroite et al. (2018) studies. A remarkable result
359 was that phytosterols nutrition led to a lower acetate production than ergosterol at all sterol doses for
360 all strains. L4 was the strain that synthetized more acetate, while L2 produced low acetate
361 concentrations. Despite a significant effect of sterol dose for strains in general, no significant
362 differences were found neither for L16 and L17 between E2 and E4, nor for L2 and L8 between P2 and
363 P4. Interestingly, the amount of acetate synthesized with 2.5 mg/L of phytosterols was equivalent to
364 the amount produced with 4.0 mg/L of ergosterol for all strains, save L16.

365 Supplementary Fig. 1B shows variations in glycerol content depending of sterol type. Indeed,
366 a significantly higher production of glycerol was observed in presence of ergosterol than phytosterols.
367 Regarding sterol dose, despite a clear glycerol increase with sterol dose for the strain L4 and at a lesser
368 level for L6, no significant differences were observed for the other strains.

369 Regarding succinate (Supplementary Fig. 1C), we observed a higher value for this metabolite
370 with ergosterol, compared to phytosterols, when sterol concentration was equal to 4.0 mg/L for almost
371 all strains (strains L2, L8, L10, L16, L17, L18 and L21).

372 Furthermore, residual sugars (data not shown) were less than 3.0 g/L for all strains,
373 independently of wine fermentation conditions tested (except L21, which was not able to complete
374 fermentation with 1.0 mg/L of sterols), which means that almost all strains were able to achieve
375 complete fermentation with either sterols, regardless of sterol dose.

376

377 **3.2. Impact of the timing of sterol addition**

378 To study the timing of sterol addition required to restore a normal fermentation, we compared
379 the response of two strains with extreme behaviours: strain L10, which was the most impacted by
380 sterol starvation and sterol type, and strain L6, that showed little change according to sterol type. Two
381 stages were chosen for the addition of 3.0 mg/L of ergosterol to the synthetic must: at the beginning
382 of fermentation or entry into stationary phase (at 33% of fermentation progress). The fermentations
383 that received sterols were compared to a control without sterol addition, mimicking excessively

384 clarified grape musts. Fermentation kinetic parameters, as well as biological and CCM metabolites and
385 fermentative aromas were measured.

386

387 **3.2.1 Fermentation kinetics**

388 Fermentation kinetics in Supplementary Fig. 2 confirm that both strains hardly completed
389 fermentation under sterol starvation, in particular L10 that presented a sluggish fermentation (400h
390 to finish fermentation). As expected, ergosterol addition resulted in a shorter fermentation time for
391 both strains, independently of the time of addition. Finally, such addition allowed L10 to have
392 fermentation duration closer to L6.

393 Interestingly, fermentation times were 20 h and 10 h shorter when addition was done at the
394 beginning of the fermentation for L6 and L10, respectively, compared to stationary phase. A
395 remarkable result was a temporary increase of fermentation rate after ergosterol addition at 33% of
396 fermentation progress for both strains (mainly for L10).

397 Analysis of variance showed a strain effect and a modality effect for all variables tested, except
398 for residual sugars (data not shown). Thus, a Tukey test was performed on these variables combined
399 with bar charts.

400

401 **3.2.2 Biological and central carbon metabolism variables**

402 Under sterol starvation condition (control), Fig. 4A shows that L6 assimilated 58% and L10 54%
403 of amino acids from the synthetic grape must. As expected, both strains were able to assimilate all
404 amino acids content when ergosterol was added at the beginning of the fermentation (T0). A striking
405 result was that strains did not respond in the same way when ergosterol was added during stationary
406 phase (T30). This allowed L10 to assimilate 27% more amino acids than the control, while no significant
407 difference in amino acid consumption was found for L6 between T30 and control.

408 Regarding biomass (Fig. 4B), ergosterol addition at T0 enhanced cell growth (x 2 for both
409 strains), while different situations could be detected for L10 and L6 when the addition was performed
410 at T30: more biomass was produced for L10, compared to the control (more 2.0×10^7 cells/mL), while
411 the biomass content was not impacted for L6. As expected, we observed a viability increase due to the
412 supplementation of ergosterol for both *S. cerevisiae* strains, in particular for L10 that showed more
413 than 73% of viable cells after ergosterol addition and 16% without it (Fig. 4C). For L6, cell viability was
414 only increased by 21% when ergosterol was added. Interestingly, we observed a small increase in
415 viability (9 % more) for L10 when ergosterol was added at the start of fermentation, compared to the
416 stationary phase. On the other hand, L6 was not susceptible to the timing of ergosterol addition in
417 terms of viability.

418 CCM metabolites were also impacted by the timing of ergosterol addition (Fig. 4D, 4E and 4F).
419 Interestingly, ergosterol addition during stationary phase led to an increase in acetate production for
420 both strains (0.9 g/L of acetate for L6 and 0.7 g/L for L10). However, ergosterol addition at the start of
421 fermentation decreased acetate content with a total of 0.4 g/L acetate for both L6 and L10. In addition,
422 higher concentrations of glycerol were also observed for both strains when ergosterol was added at
423 T30 (7.6 g/L of glycerol for L6 and 5.9 for L10). However, the lowest glycerol concentration was found
424 at T0 for L6 (6.5 g/L), while for L10 it was found in the control (4.9 g/L).

425 Comparing both strains, L6 produced more than 1.0 g/L of succinate and L10 less than 0.8 g/L.
426 L6 and L10 showed the same tendency in terms of succinate content regarding the timing of ergosterol
427 addition. At T0, ergosterol addition resulted in increased succinate: over 0.3 g/L for L6 and more than
428 0.1 g/L of succinate for L10, compared to the control. Interestingly, the addition at T30 had the
429 opposite effect and less succinate was quantified than the other 2 modalities (T0 and control): 0.8 for
430 L10 and 0.6 for L6.

431 Less than 3.0 g/L of sugars were found at the end of fermentation for both strains, showing
432 that they were able to complete fermentation independently of the modality tested (data not shown).
433 Thus, the timing of ergosterol addition had no impact on the amount of residual sugars for L6, nor for
434 L10.

435

436 **3.2.3 Fermentative aromas**

437 The fermentative aromas for the study of the impact of timing of sterol addition were
438 evaluated (Supplementary Table 1). The most significant fermentative aromas are presented in Fig. 5A.
439 Dim 1 accounted for 47% of the variation and was particularly related to acids (dodecanoic, decanoic
440 and isobutyric acids) and ethyl esters (ethyl hexanoate and ethyl butanoate), while Dim 2 accounted
441 for 37 % of the variation and was mostly related to acetate esters.

442 The timing of ergosterol addition impacted the synthesis of fermentative aromas for both
443 strains. The addition of ergosterol increased aroma synthesis, compared to the control condition. The
444 most striking novelty was a higher production of fermentative aromas when ergosterol was added at
445 the beginning of fermentation. It is very interesting to notice that, despite ergosterol addition, each
446 strain conserved its own fermentative aroma profile, as Seguinot et al. (2018) have shown when
447 nitrogen additions were performed. L10 mostly synthesized acids, the higher alcohols methionol and
448 isobutanol and ethyl hexanoate and ethyl butanoate. Regarding L6, propanol (a nitrogen marker) and
449 acetate esters were principally produced, such as isoamyl acetate and 2 phenylethyl acetate.

450

451 **4. Discussion**

452 In this study, our primary objective was to investigate the response of wine yeast strains to
453 different types and concentrations of sterol supplementation during alcoholic fermentation. We
454 assessed how these variations in sterol nutrition influenced fermentative kinetics, biological factors
455 (cell count and viability) and metabolite production. Furthermore, we investigated the influence of the
456 timing of ergosterol addition, particularly when sterol availability was limited, on the same variables
457 as well as on aroma production.

458

459 **4.1 Sterol dose and type**

460 Strains were faced with two extreme conditions, depending on the limiting nutrient. Sterols
461 were the limiting nutrient at 1.0 mg/L of sterols, while it was nitrogen at 4.0 mg/L of sterols. A striking
462 result was that the limiting nutrient varied depending of the strain at 2.5 mg/L of sterols (Fig. 3A).
463 Sterol limitation was characterized by residual amino acids, which prevented adequate yeast
464 multiplication and resulted in lower Vmax, in agreement with the literature (Casalta et al., 2019; Duc
465 et al., 2017; Girardi Piva et al., 2022a). Moreover, strains could not maintain a high viability in the later
466 part of the fermentation, as their cell membranes were not well protected from ethanol toxicity due
467 to the lack of sterols. As a result, longer fermentation durations were observed.

468 As expected, all nitrogen content was consumed at 4.0 mg/L of sterols, allowing both higher
469 biomass production and higher Vmax. In addition, yeast cell membranes were reinforced thanks to
470 sterols, resulting in increased viability and a reduction in fermentation time, in agreement with the
471 literature (Casalta et al., 2013; Ochando et al., 2017).

472 A number of strains were still limited by sterols at 2.5 mg/L of sterols, while strains L2 and L17
473 were able to assimilate all amino acids with either sterols. This shows for the first time that sterol
474 requirements to assimilate all grape must nitrogen is strain dependent. Moreover, despite the positive
475 impact of sterol concentration increase during wine fermentation for all strains, its intensity also varied
476 according to the *S. cerevisiae* strain.

477 Interestingly, sterol type effect was stronger under sterol starvation than in the other
478 conditions tested. Indeed, ergosterol allowed better viability maintenance and shorter fermentation
479 durations, compared to phytosterols. However, almost all strains were able to complete fermentation
480 with this latter sterol, as showed by Girardi Piva et al. (2022a) but in contrast to Luparia et al. (2004).
481 Moreover, we could observe that the impact of sterol type was variable depending on the strain and
482 that the difference between ergosterol and phytosterols was more significant for strains that had
483 difficulties to cope with sterol limitation.

484

485 Regarding some key metabolites, we observed that an increase in sterol concentration
486 resulted in a lower production of acetate for all strains. Acetate is an intermediate in the lipid synthesis

487 pathway (Fig. 6). Thus, more of this metabolite would be synthesized under sterol limitation, which
488 could explain its decrease at higher sterol concentrations, as already noted by Ochando et al. (2017).

489 A possible explanation for the reduction of succinate synthesis under sterol deficiency would
490 be the management of the intracellular pool of α -ketoglutarate, an intermediate of succinate synthesis
491 and of the catabolism of amino acids. Indeed, at high sterol content, nitrogen consumption increased,
492 resulting in a stimulation of amino acids catabolism that provoked an accumulation of α -ketoglutarate,
493 which is a key metabolic intermediate in that cellular process. This accumulation of α -ketoglutarate
494 would then result in a higher synthesis of succinate. So, succinate evolution appeared to be an indirect
495 consequence of the effect of sterols addition on nitrogen consumption (Ochando et al., 2017).

496 A striking result was the higher amount of acetate synthetized with ergosterol, compared to
497 phytosterols, for all sterol doses and all 10 *S. cerevisiae* strains tested. We could hypothesize that the
498 lipid synthesis pathway was impacted by sterol type. Ergosterol being the native yeast sterol, it would
499 better protect the membrane of yeast cells than phytosterols, resulting in a lower demand in lipid
500 synthesis. This difference of the management of lipid production would then impact acetate content.
501 Thus, it can be hypothesized that a lower demand in lipids would result in a lower conversion of acetate
502 into acetyl-CoA, which would lead to acetate accumulation when ergosterol is the sterol source in the
503 fermentation medium.

504 Acetate is an intermediate in the lipid synthesis pathway (Fig. 6). Thus, more of this metabolite
505 would be synthesized under sterol limitation, which could explain its decrease at higher sterol
506 concentrations, as already noted by Ochando et al. (2017).

507 In parallel, a smaller increase in glycerol was in the presence of ergosterol compared to
508 phytosterols. A hypothesis to explain this glycerol increase would be the link between glycerol and the
509 triglycerides pathway, of which glycerol-3-phosphate is one of the precursors (Fig. 6). Indeed,
510 ergosterol would better reinforce yeasts membrane than phytosterols so less triglycerides would be
511 necessary (Ochando et al., 2017). Consequently, the triacylglycerol pathway would be less activated in
512 presence of ergosterol; so glycerol-3-phosphate flow would be mainly directed towards glycerol
513 synthesis, resulting in a higher production of this compound with ergosterol.

514

515 **4.2 Timing of sterol addition**

516 In agreement with literature, the addition of ergosterol in case of sterol deficiency intensified
517 the aroma profile for both *S. cerevisiae* strains (Mauricio et al., 1997; Varela et al., 2012). However, the
518 addition during stationary phase was less efficient than at the beginning of fermentation. This could
519 be explained by a decrease in metabolic and anabolic activities during the stationary phase, which
520 would consequently reduce fermentative aroma synthesis, compared to initial ergosterol addition.

521 Another observation common to both strains was that sterol addition at the start of
522 fermentation (versus during the stationary phase) was more efficient in terms of fermentation
523 management and metabolites production from the central carbon metabolism: shorter fermentation
524 time and lower production of acetate and glycerol. The increase in acetate after ergosterol addition
525 during stationary phase was not expected. It can thus be suggested that, after ergosterol addition at
526 33% of fermentation progress, the pathway for de novo lipids synthesis would be less active and less
527 acetyl-CoA (its precursor) would be synthetized. As a consequence, we might observe an accumulation
528 of acetate (acetyl-CoA precursor). Finally, concerning succinate, it was inversely correlated with
529 acetate, probably due to the decrease in acetyl-CoA availability (its precursor), resulting in a lower flux
530 in the TCA cycle.

531 Nevertheless, despite common behaviours, important differences were noted between the
532 two strains, revealing their different sensitivity to ergosterol addition. Indeed, the response to sterol
533 addition at T30 for L10 under sterol limitation had some similarities to nitrogen addition in a
534 fermentation medium lacking nitrogen during the stationary phase (Seguinot et al., 2018). This
535 similarity probably originates from the fact that, in the present work, ergosterol addition enabled L10
536 to consume more amino acids and resulted in an increased biomass. However, for L6, amino acid
537 assimilation and biomass production were not impacted by ergosterol addition at T30. These results
538 suggest that, in the two stains, different adaptation mechanisms were activated in response to sterol
539 limitation that induced different responses to sterol supply.

540

541 **5. Conclusion**

542 This study presents original findings regarding the response of several yeast strains to various
543 strategies for managing sterol additions, including the quantity of sterols added, the type of sterols
544 used and the timing of their addition. Especially, it was demonstrated, for the first time, that the
545 disparities between the two types of sterols were mainly noticeable under sterol limitation. Indeed,
546 ergosterol made it possible to maintain a higher viability (resulting in a shorter fermentation time)
547 compared to phytosterols under sterol starvation; but at higher sterol concentrations, these
548 differences between the two types of sterol were significantly reduced or nullified. Moreover, the
549 impact of sterol type and content varied depending on the strain, which underlines *S. cerevisiae* sterol
550 requirement diversity during wine fermentation.

551 A striking result was that ergosterol addition during stationary phase improved fermentation,
552 reducing fermentation time. However, a late addition of sterols was less efficient, from an enological
553 point of view, than an early one, as it resulted in an acetate and glycerol increase, as well as a lower
554 production of fermentative aromas.

555 These findings highlight the importance of implementing a sterol management strategy during
556 alcoholic fermentation for both the completion of the fermentation process and the production of the
557 MCC metabolites. In case of excessive clarified grape musts, it is important to manage not only the
558 quantity of sterols added, but also the nature and timing of this addition.

559 Further research should be undertaken to test the impact of the timing of sterol addition with
560 a larger set of strains and test earlier times of sterol addition during stationary phase. Moreover, it
561 would be interesting to better understand the molecular mechanisms associated with sterol
562 assimilation.

563

564 **CRediT authorship contribution statement**

565 **Giovana Girardi Piva:** Conceptualization, Methodology, Investigation, Data curation, Formal analysis,
566 Writing – original draft, Writing – review & editing, Visualization. **Erick Casalta:** Conceptualization,
567 Methodology, Writing – review & editing, Supervision. **Jean-Luc Legras:** Conceptualization,
568 Methodology, Writing – review & editing, Supervision. **Isabelle Sanchez:** Data curation, Formal
569 analysis. **Martine Pradal:** Investigation. **Faïza Macna:** Investigation. **David Ferreira:** Conceptualization,
570 Writing – review & editing, Supervision. **Anne Ortiz-Julien:** Conceptualization, Writing – review &
571 editing, Project administration. **Virginie Galeote:** Conceptualization, Methodology, Writing – review &
572 editing, Project administration. **Jean-Roch Mouret:** Conceptualization, Methodology, Writing – review
573 & editing, Project administration.

574

575 **Declaration of competing interest**

576 The authors declare that they have no known competing financial interests or personal relationships
577 that could have appeared to influence the work reported in this paper.

578

579 **Data availability**

580 Data are available from the corresponding author upon reasonable request.

581

582 **Acknowledgments**

583 We would like to thank Christian Picou and Marc Perez from INRAE for their support in using the
584 automated fermentation platform. We also thank the Occitanie region for funding the robotic device
585 used for the experiments.

586

587 **Formatting of funding sources**

588 This work was supported by Lallemand Oenology.

589 **REFERENCES**

590 Aguilar, P.S., Heiman, M.G., Walther, T.C., Engel, A., Schwudke, D., Gushwa, N., Kurzchalia, T., Walter,
591 P., 2010. Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating.
592 Proc. Natl. Acad. Sci. U. S. A. 107, 4170–4175. <https://doi.org/10.1073/pnas.0914094107>

593 Belviso, S., Bardi, L., Bartolini, A.B., Marzona, M., 2004. Lipid nutrition of *Saccharomyces cerevisiae* in
594 winemaking. Can. J. Microbiol. 50, 669–674. <https://doi.org/10.1139/w04-051>

595 Bely, M., Sablayrolles, J.M., Barre, P., 1990. Description of Alcoholic Fermentation Kinetics: Its
596 Variability and Significance. Am. J. Enol. Vitic. 41, 319 LP – 324.

597 Casalta, E., Cervi, M., Sablayrolles, J., Salmon, J., 2012. Effet combiné des niveaux d'azote assimilable
598 et de bourbes : Nouveau paramètre à prendre en compte pour la maîtrise de la fermentation
599 alcoolique. Rev. française d'oenologie 255, 9–15.

600 Casalta, E., Cervi, M.F., Salmon, J.M., Sablayrolles, J.M., 2013. White wine fermentation: Interaction of
601 assimilable nitrogen and grape solids on alcoholic fermentation under oenological conditions.
602 Aust. J. Grape Wine Res. 19, 47–52. <https://doi.org/10.1111/j.1755-0238.2012.00205.x>

603 Casalta, E., Salmon, J.M., Picou, C., Sablayrolles, J.M., 2019. Grape solids: Lipid composition and role
604 during alcoholic fermentation under enological conditions. Am. J. Enol. Vitic. 70, 147–154.
605 <https://doi.org/10.5344/ajev.2018.18049>

606 Casalta, E., Vernhet, A., Sablayrolles, J.M., Tesnière, C., Salmon, J.M., 2016. Review: Characterization
607 and role of grape solids during alcoholic fermentation under enological conditions. Am. J. Enol.
608 Vitic. 67, 133–138. <https://doi.org/10.5344/ajev.2015.15060>

609 Crépin, L., Nidelet, T., Sanchez, I., Dequin, S., Camarasa, C., 2012. Sequential use of nitrogen
610 compounds by *Saccharomyces cerevisiae* during wine fermentation: A model based on kinetic
611 and regulation characteristics of nitrogen permeases. Appl. Environ. Microbiol. 78, 8102–8111.
612 <https://doi.org/10.1128/AEM.02294-12>

613 Delobel, P., Pradal, M., Blondin, B., Tesnière, C., 2012. A “fragile cell” sub-population revealed during
614 cytometric assessment of *Saccharomyces cerevisiae* viability in lipid-limited alcoholic
615 fermentation. Lett. Appl. Microbiol. 55, 338–344. <https://doi.org/10.1111/j.1472-765X.2012.03301.x>

617 Duc, C., Pradal, M., Sanchez, I., Noble, J., Tesnière, C., Blondin, B., 2017. A set of nutrient limitations
618 trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. PLoS
619 One 12, e0184838.

620 Ejsing, C.S., Sampaio, J.L., Surendranath, V., Duchoslav, E., Ekoos, K., Klemm, R.W., Simons, K.,
621 Shevchenko, A., 2009. Global analysis of the yeast lipidome by quantitative shotgun mass
622 spectrometry. Proc. Natl. Acad. Sci. U. S. A. 106, 2136–2141.
623 <https://doi.org/10.1073/pnas.0811700106>

624 Fornairon-Bonnefond, C., Demarets, V., Rosenfeld, E., Salmon, J.M., 2001. Oxygen addition and sterol
625 synthesis in *Saccharomyces cerevisiae* during enological fermentation. J. Biosci. Bioeng. 93, 176–
626 182. [https://doi.org/10.1016/S1389-1723\(02\)80011-1](https://doi.org/10.1016/S1389-1723(02)80011-1)

627 Girardi Piva, G., Casalta, E., Legras, J., Nidelet, T., Sanchez, I., Pradal, M., Macna, F., Ortiz-, A., Tesniere,
628 C., Galeote, V., Mouret, J., 2022a. Influence of Phytosterols and Ergosterol on Wine Alcoholic
629 Fermentation for *Saccharomyces cerevisiae* Strains 34060.
630 <https://doi.org/10.3389/fmicb.2022.966245>

631 Girardi Piva, G., Casalta, E., Legras, J., Tesnière, C., Sablayrolles, J., Ferreira, D., Ortiz-julien, A., Galeote,
632 V., Mouret, J., 2022b. Characterization and Role of Sterols in *Saccharomyces cerevisiae* during

633 White Wine Alcoholic Fermentation. *Fermentation* 8, 1–20.

634 Jacquier, N., Schneiter, R., 2012. Mechanisms of sterol uptake and transport in yeast. *J. Steroid
635 Biochem. Mol. Biol.* 129, 70–78. <https://doi.org/10.1016/j.jsbmb.2010.11.014>

636 Jordá, T., Puig, S., 2020. Regulation of Ergosterol Biosynthesis in. *Genes (Basel)*.

637 Julien, A., Roustan, J.L., Dulau, L., Sablayrolles, J.M., 2000. Comparison of nitrogen and oxygen
638 demands of enological yeasts: Technological consequences. *Am. J. Enol. Vitic.* 51, 215–222.

639 Karagiannis, S., Lanaridis, P., 2002. Insoluble grape material present in must affects the overall
640 fermentation aroma of dry white wines made from three grape cultivars cultivated in Greece. *J.
641 Food Sci.* 67, 369–374. <https://doi.org/10.1111/j.1365-2621.2002.tb11412.x>

642 Klug, L., Daum, G., 2014. Yeast lipid metabolism at a glance. *FEMS Yeast Res.* 14, 369–388.
643 <https://doi.org/10.1111/1567-1364.12141>

644 Li, Y., Prinz, W.A., 2004. ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated
645 sterol movement from the plasma membrane to the endoplasmic reticulum. *J. Biol. Chem.* 279,
646 45226–45234. <https://doi.org/10.1074/jbc.M407600200>

647 Luparia, V., Soubeyrand, V., Berges, T., Julien, A., Salmon, J.M., 2004. Assimilation of grape phytosterols
648 by *Saccharomyces cerevisiae* and their impact on enological fermentations. *Appl. Microbiol.
649 Biotechnol.* 65, 25–32. <https://doi.org/10.1007/s00253-003-1549-3>

650 Ma, T.-Z., Gong, P.-F., Lu, R.-R., Zhang, B., Morata, A., Han, S.-Y., 2020. Effect of different clarification
651 treatments on the volatile composition and aromatic attributes of “Italian riesling” icewine.
652 *Molecules* 25, 1–16. <https://doi.org/10.3390/molecules25112657>

653 Mauricio, J.C., Moreno, J., Zea, L., Ortega, J.M., Medina, M., 1997. The effects of grape must
654 fermentation conditions on volatile alcohols and esters formed by *Saccharomyces cerevisiae*. *J.
655 Sci. Food Agric.* 75, 155–160. [https://doi.org/10.1002/\(SICI\)1097-0010\(199710\)75:2<155::AID-JSFA853>3.0.CO;2-S](https://doi.org/10.1002/(SICI)1097-0010(199710)75:2<155::AID-JSFA853>3.0.CO;2-S)

657 Ochando, T., Mouret, J.R., Humbert-Goffard, A., Sablayrolles, J.M., Farines, V., 2017. Impact of initial
658 lipid content and oxygen supply on alcoholic fermentation in champagne-like musts. *Food Res.
659 Int.* 98, 87–94. <https://doi.org/10.1016/j.foodres.2016.11.010>

660 R Development Core, T., 2019. A Language and Environment for Statistical Computing. Vienna R Found.
661 Stat. Comput.

662 Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J.M., Prieto, J.A., Randez-Gil, F., 2007.
663 Fluidization of membrane lipids enhances the tolerance of *Saccharomyces cerevisiae* to freezing
664 and salt stress. *Appl. Environ. Microbiol.* 73, 110–116. <https://doi.org/10.1128/AEM.01360-06>

665 Rollero, S., Bloem, A., Camarasa, C., Sanchez, I., Ortiz-Julien, A., Sablayrolles, J.-M., Dequin, S., Mouret,
666 J.-R., 2015. Combined effects of nutrients and temperature on the production of fermentative
667 aromas by *Saccharomyces cerevisiae* during wine fermentation. *Appl. Microbiol. Biotechnol.* 99,
668 2291–2304. <https://doi.org/10.1007/s00253-014-6210-9>

669 Rosenfeld, E., Beauvoit, B., Blondin, B., Salmon, J.M., 2003. Oxygen consumption by anaerobic
670 *Saccharomyces cerevisiae* under enological conditions: Effect on fermentation kinetics. *Appl.
671 Environ. Microbiol.* 69, 113–121. <https://doi.org/10.1128/AEM.69.1.113-121.2003>

672 Sablayrolles, J.M., Barre, P., 1986. Evaluation of oxygen requirement of alcoholic fermentations under
673 simulated oenological conditions. *Sci. Aliment.* 6, 373–383.

674 Sablayrolles, J.M., Barre, P., Grenier, P., 1987. Design of a laboratory automatic system for studying

675 alcoholic fermentations in anisothermal enological conditions. *Biotechnol. Tech.* 1, 181–184.
676 <https://doi.org/10.1007/BF00227557>

677 Sablayrolles, J.M., Dubois, C., Manginot, C., Roustan, J.L., Barre, P., 1996. Effectiveness of combined
678 ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine
679 fermentations. *J. Ferment. Bioeng.* 82, 377–381. [https://doi.org/10.1016/0922-338X\(96\)89154-9](https://doi.org/10.1016/0922-338X(96)89154-9)

681 Seguinot, P., Rollero, S., Sanchez, I., Sablayrolles, J.M., Ortiz-Julien, A., Camarasa, C., Mouret, J.R., 2018.
682 Impact of the timing and the nature of nitrogen additions on the production kinetics of
683 fermentative aromas by *Saccharomyces cerevisiae* during winemaking fermentation in synthetic
684 media. *Food Microbiol.* 76, 29–39. <https://doi.org/10.1016/j.fm.2018.04.005>

685 Soubeyrand, V., Luparia, V., Williams, P., Doco, T., Vernhet, A., Ortiz-Julien, A., Salmon, J.M., 2005.
686 Formation of micella containing solubilized sterols during rehydration of active dry yeasts
687 improves their fermenting capacity. *J. Agric. Food Chem.* 53, 8025–8032.
688 <https://doi.org/10.1021/jf050907m>

689 Tesnière, C., Pradal, M., Legras, J.L., 2021. Sterol uptake analysis in *Saccharomyces* and non-
690 *Saccharomyces* wine yeast species. *FEMS Yeast Res.* 21, 1–13.
691 <https://doi.org/10.1093/femsyr/foab020>

692 Tumanov, S., Zubenko, Y., Greven, M., Greenwood, D.R., Shmanai, V., Villas-Boas, S.G., 2015.
693 Comprehensive lipidome profiling of Sauvignon blanc grape juice. *Food Chem.* 180, 249–256.
694 <https://doi.org/10.1016/j.foodchem.2015.01.134>

695 Varela, C., Torrea, D., Schmidt, S.A., Ancin-Azpilicueta, C., Henschke, P.A., 2012. Effect of oxygen and
696 lipid supplementation on the volatile composition of chemically defined medium and Chardonnay
697 wine fermented with *Saccharomyces cerevisiae*. *Food Chem.* 135, 2863–2871.
698 <https://doi.org/10.1016/j.foodchem.2012.06.127>

699 Waldbauer, J.R., Newman, D.K., Summons, R.E., 2011. Microaerobic steroid biosynthesis and the
700 molecular fossil record of Archean life. *Proc. Natl. Acad. Sci.* 108, 13409 LP – 13414.
701 <https://doi.org/10.1073/pnas.1104160108>

702

703

704

705

706

707

708

709

710

711

712

713 **Table 1.** Experimental designs of sterol dose and timing of sterol addition experiments: strains
 714 used and modalities tested.

Experiment	Strains	Modalities
Sterol dose	L2, L3, L4, L6, L8, L10, L16, L17, L18 and L21	1.0 mg/L of sterol (ergosterol or phytosterols) 2.5 mg/L of sterol (ergosterol or phytosterols) 4.0 mg/L of sterol (ergosterol or phytosterols) Control: without ergosterol addition
Timing of sterol addition	L6 and L10	T0: Ergosterol addition at the beginning of fermentation T30: ergosterol addition at 30 g/L of released CO ₂

715

716 **Table 2.** Evaluation of the significance of effect of strain, sterol type and sterol dose on different
 717 variables representative of fermentation kinetics and central carbon metabolism. Fermentation kinetic
 718 variables: maximum fermentation rate (Vmax), time to reach 30 (tCO₂_30) and 80 g/L (tCO₂_80) of
 719 released CO₂; biological variables at tCO₂_80: viability, yeast biomass and assimilated amino acids
 720 (assimilated AA); central carbon metabolism variables at the end of fermentation: acetate, glycerol
 721 and succinate. Effects and interactions are colored according to P-value threshold. White: Not
 722 significant; Gray: P-value < 5 x 10⁻²; Light blue: P-value < 1 x 10⁻²; Dark blue: P-value < 1 x 10⁻³.

Variables	Effects			Interactions		
	Sterol type	Sterol dose	Strain	Sterol type : sterol dose	Sterol type : Strain	Sterol dose : Strain
Vmax	7.8 x 10 ⁻⁶	3.8 x 10 ⁻¹⁰²	4.2 x 10 ⁻⁶⁷	2.1 x 10 ⁻¹	2.1 x 10 ⁻³	2.6 x 10 ⁻¹⁵
Viability	2.4 x 10 ⁻⁴	1.2 x 10 ⁻⁹³	2.1 x 10 ⁻⁵²	1.4 x 10 ⁻¹²	1.5 x 10 ⁻⁸	1.1 x 10 ⁻²⁷
Biomass	9.4 x 10 ⁻³	7.1 x 10 ⁻¹⁰¹	8.3 x 10 ⁻⁷⁴	3.7 x 10 ⁻¹	6.2 x 10 ⁻⁵	1.4 x 10 ⁻⁴
Assimilated AA	3.0 x 10 ⁻¹	1.5 x 10 ⁻¹¹⁵	6.4 x 10 ⁻⁴⁶	4.1 x 10 ⁻¹	7.6 x 10 ⁻⁶	1.1 x 10 ⁻²⁵
tCO ₂ _30	1.7 x 10 ⁻⁶	2.5 x 10 ⁻⁶⁶	1.4 x 10 ⁻⁸²	3.6 x 10 ⁻¹	2.6 x 10 ⁻²	2.3 x 10 ⁻⁹
tCO ₂ _80	1.0 x 10 ⁻¹⁵	8.5 x 10 ⁻⁹⁴	5.1 x 10 ⁻⁶⁰	1.0 x 10 ⁻⁵	9.7 x 10 ⁻⁸	1.1 x 10 ⁻⁴¹
Acetate	7.1 x 10 ⁻⁶²	5.9 x 10 ⁻⁹¹	4.2 x 10 ⁻⁹³	1.8 x 10 ⁻⁴	1.5 x 10 ⁻¹⁸	1.7 x 10 ⁻³⁵
Glycerol	3.4 x 10 ⁻⁶⁰	4.4 x 10 ⁻²⁰	1.6 x 10 ⁻¹¹⁶	8.9 x 10 ⁻²	5.6 x 10 ⁻¹⁵	3.6 x 10 ⁻³⁰
Succinate	2.4 x 10 ⁻³⁴	1.3 x 10 ⁻⁵⁷	6.1 x 10 ⁻⁹⁰	1.3 x 10 ⁻¹⁶	3.1 x 10 ⁻⁷	2.7 x 10 ⁻²²

723

724

725

726

727

728

729

730

731

732

733 **Figure 1.** PCA for variables triplicate means of 10 wine yeast strains for the evaluation of sterol dose
734 and type. **(A)** Projection of the variables used to describe fermentation kinetics (red), biological
735 variables (purple) and central carbon metabolites (green) on the 2 main components of PCA. PCA
736 variables are: maximum fermentation rate (Vmax), times to achieve 30 and 80 g/L of released CO₂ and
737 the end of fermentation (tCO₂_30, tCO₂_80 and tCO₂_End, respectively); viability, biomass and
738 assimilated amino acids at 85 % of fermentation progress (Viability, Biomass and Assimilated_AA,
739 respectively); acetate, glycerol, succinate at the end of fermentation. **(B)** Projection of the individuals
740 in function of sterol dose and type tested: Ergosterol at 1.0, 2.5 and 4.0 mg/L (E1.0, E2.5 and E4.0,
741 respectively) and phytosterols at 1.0, 2.5 and 4.0 mg/L (P1.0, P2.5 and P4.0, respectively).

742

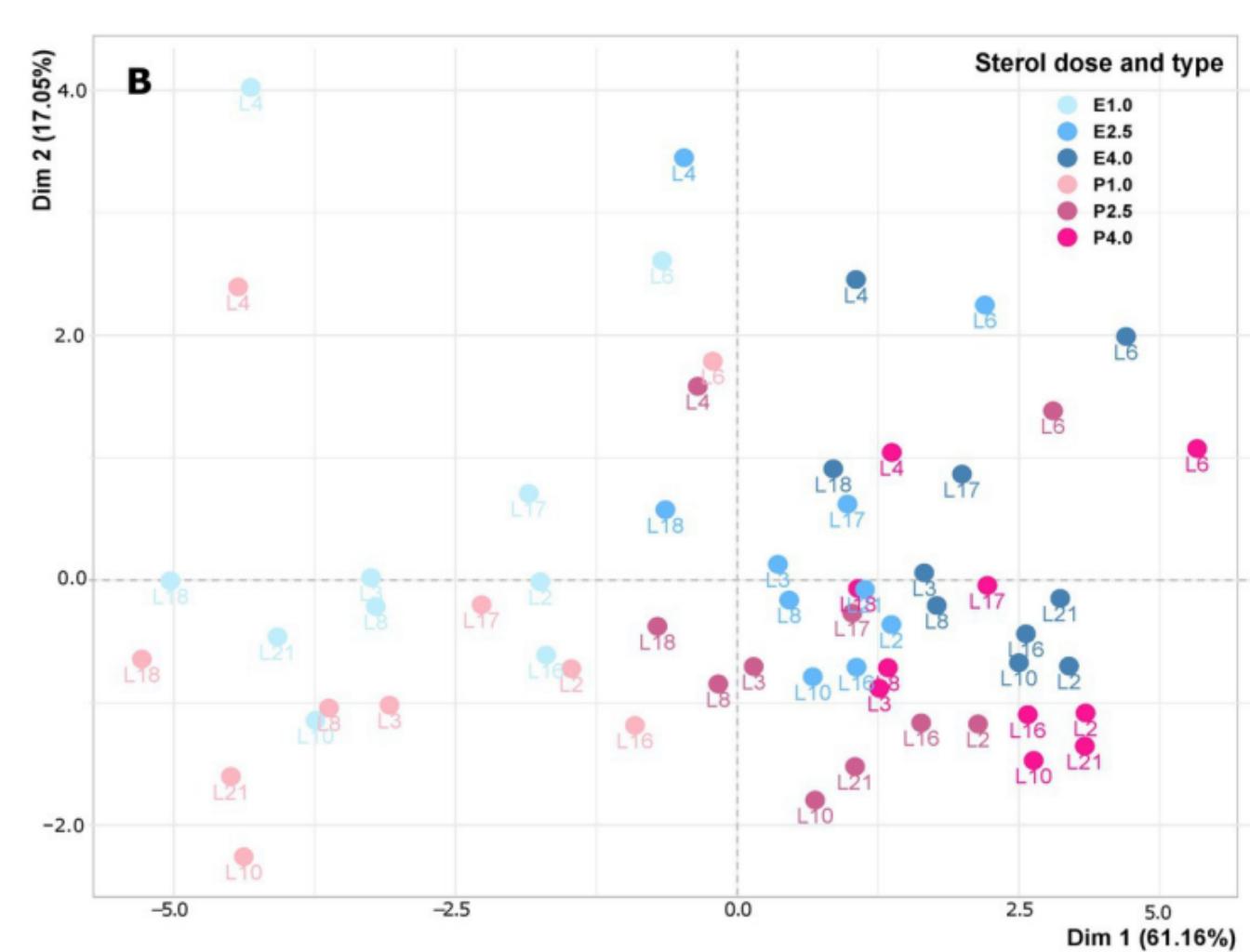
743 **Figure 2.** Kinetic variables results. **(A)** Maximum fermentation rate (Vmax) and **(B)** time to release 80
744 g/L of CO₂ of *S. cerevisiae* strains with ergosterol (orange and red) or phytosterols (blue) at 1.0, 2.5 or
745 4.0 mg/L. Boxplot with means for all 10 *S. cerevisiae*; Barplots with means for each strain according to
746 sterol dose and type: Ergosterol at 1.0, 2.5 and 4.0 mg/L (E1, E2 and E4, respectively) and phytosterols
747 at 1.0, 2.5 and 4.0 mg/L (P1, P2 and P4, respectively). Barplots with the same letters had statistically
748 equal values for the variable tested; Barplots with different letters displayed a significant difference at
749 a 5% level for the correspondent variable. Strains were not compared statistically.

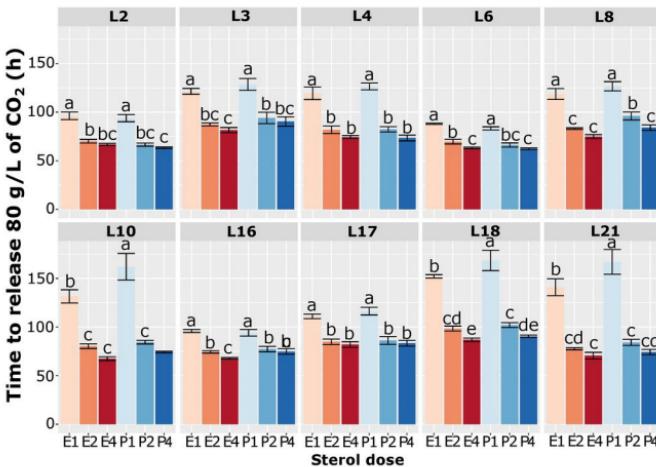
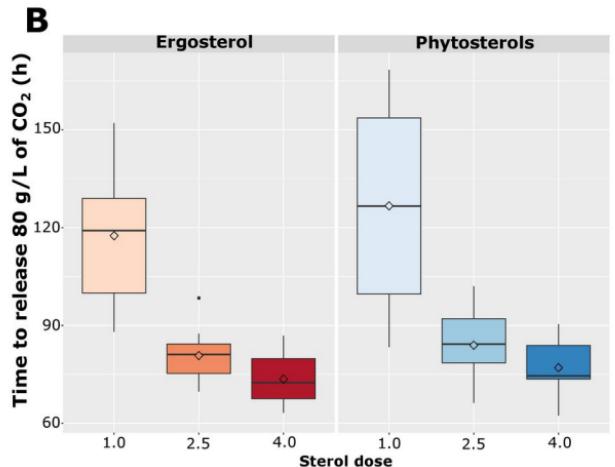
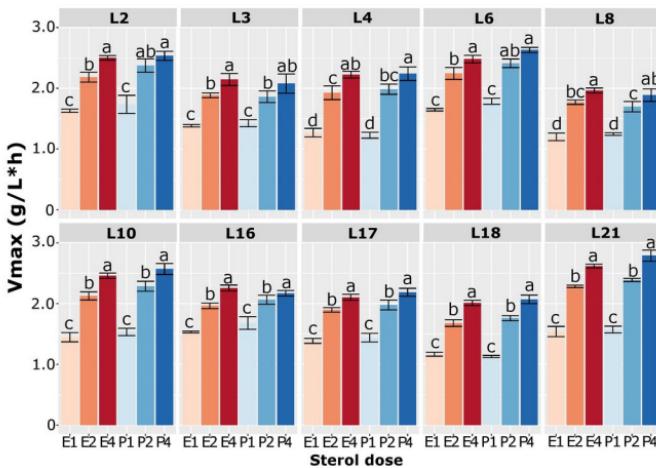
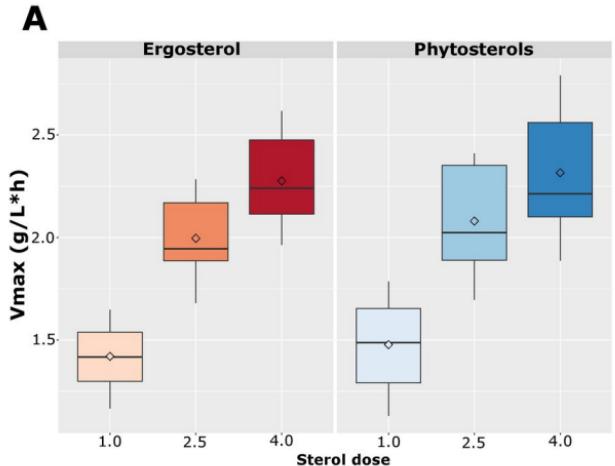
750

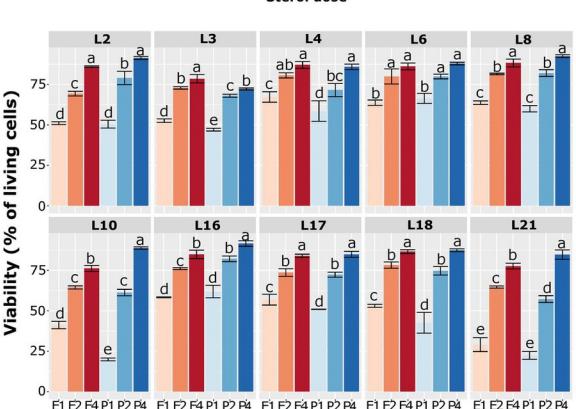
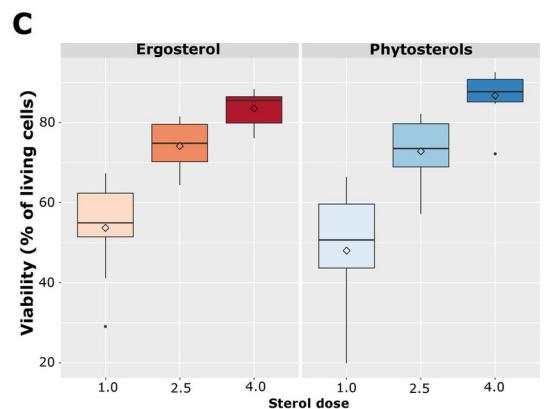
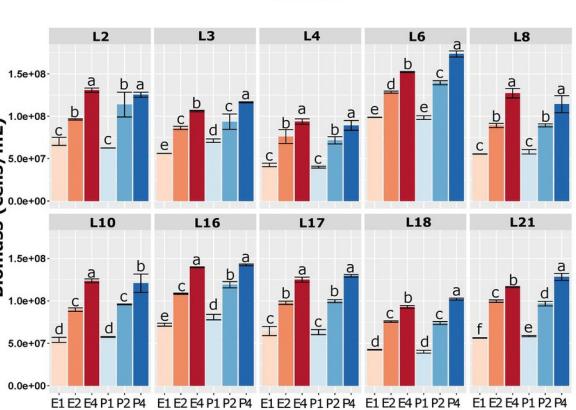
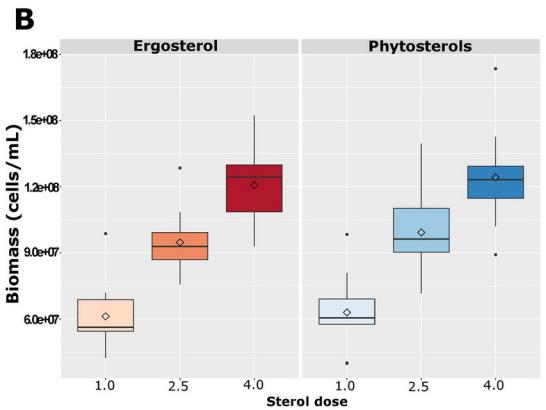
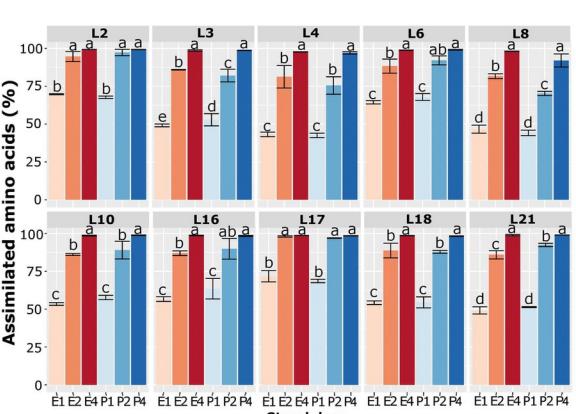
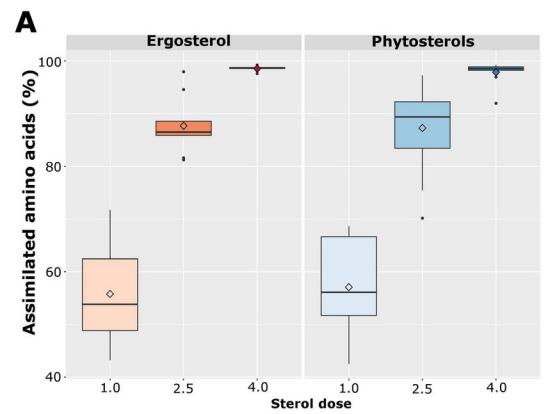
751 **Figure 3.** Biological variables results. **(A)** Assimilated amino acids, **(B)** biomass and **(C)** Viability of *S.*
752 *cerevisiae* strains with ergosterol (orange and red) or phytosterols (blue) at 1.0, 2.5 or 4.0 mg/L.
753 Boxplot with means for all 10 *S. cerevisiae*; Barplots with means for each strain according to sterol dose
754 and type: Ergosterol at 1.0, 2.5 and 4.0 mg/L (E1, E2 and E4, respectively) and phytosterols at 1.0, 2.5
755 and 4.0 mg/L (P1, P2 and P4, respectively). Barplots with the same letters had statistically equal values
756 for the variable tested; Barplots with different letters displayed a significant difference at a 5% level
757 for the correspondent variable. Strains were not compared statistically.

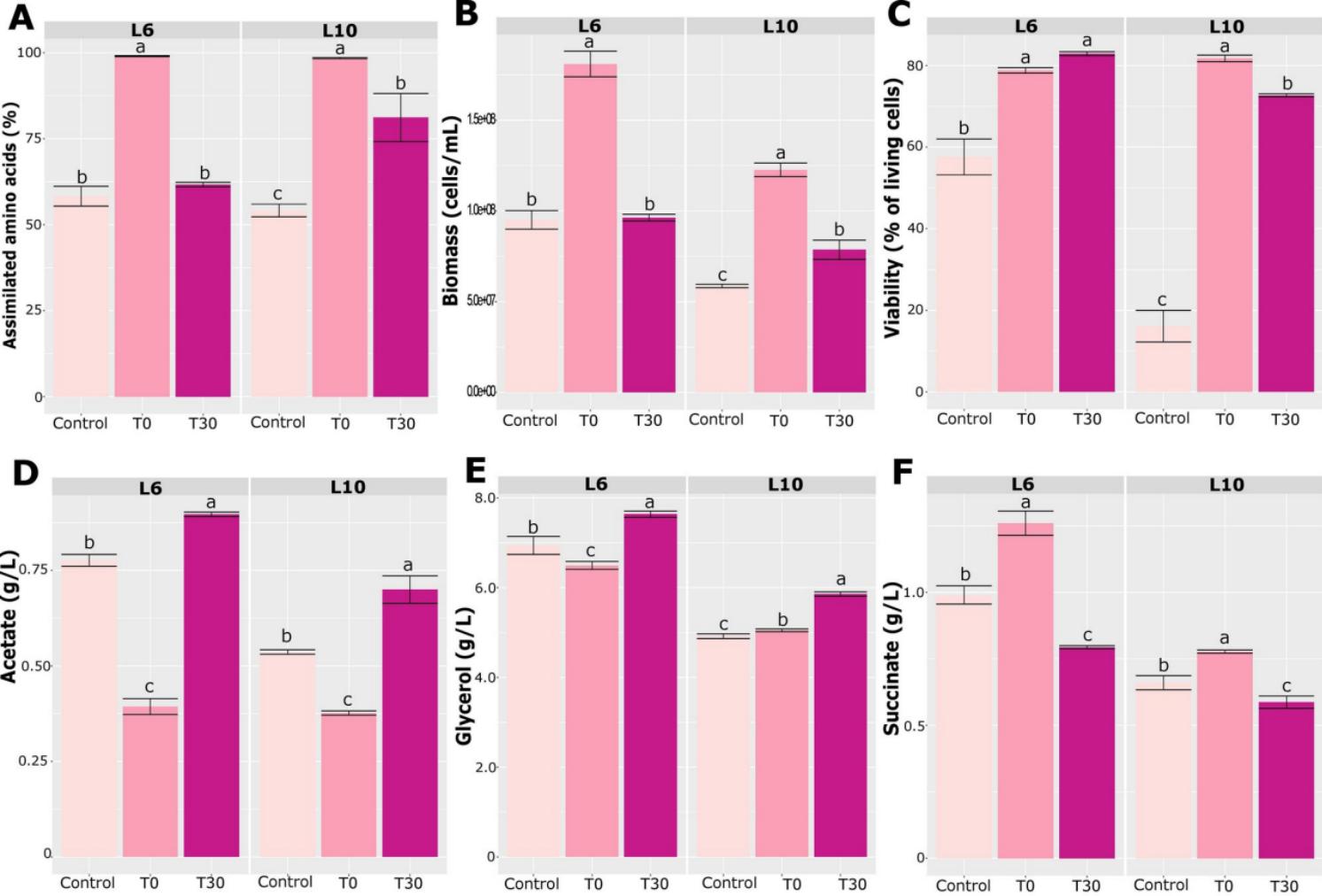
758

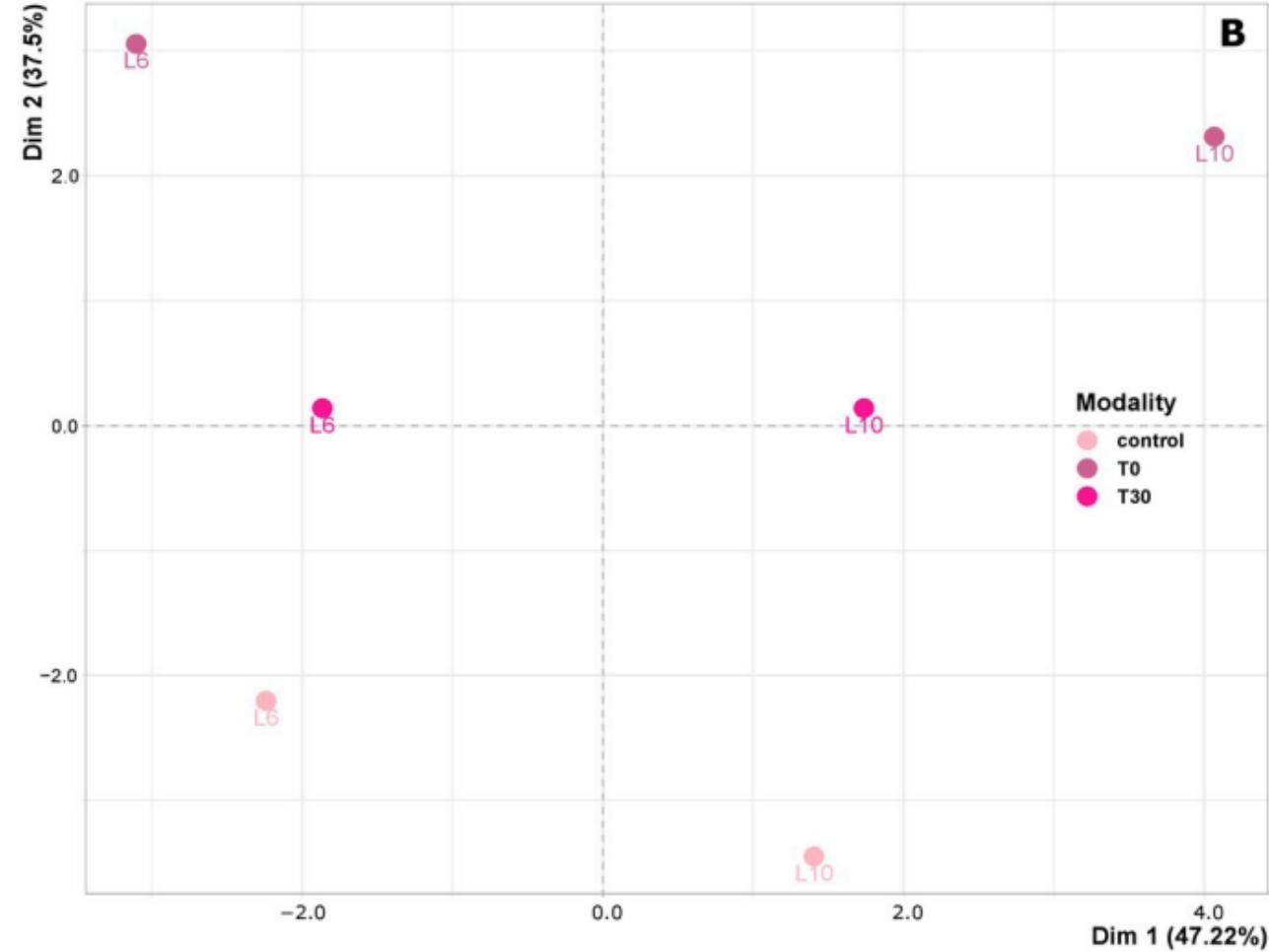
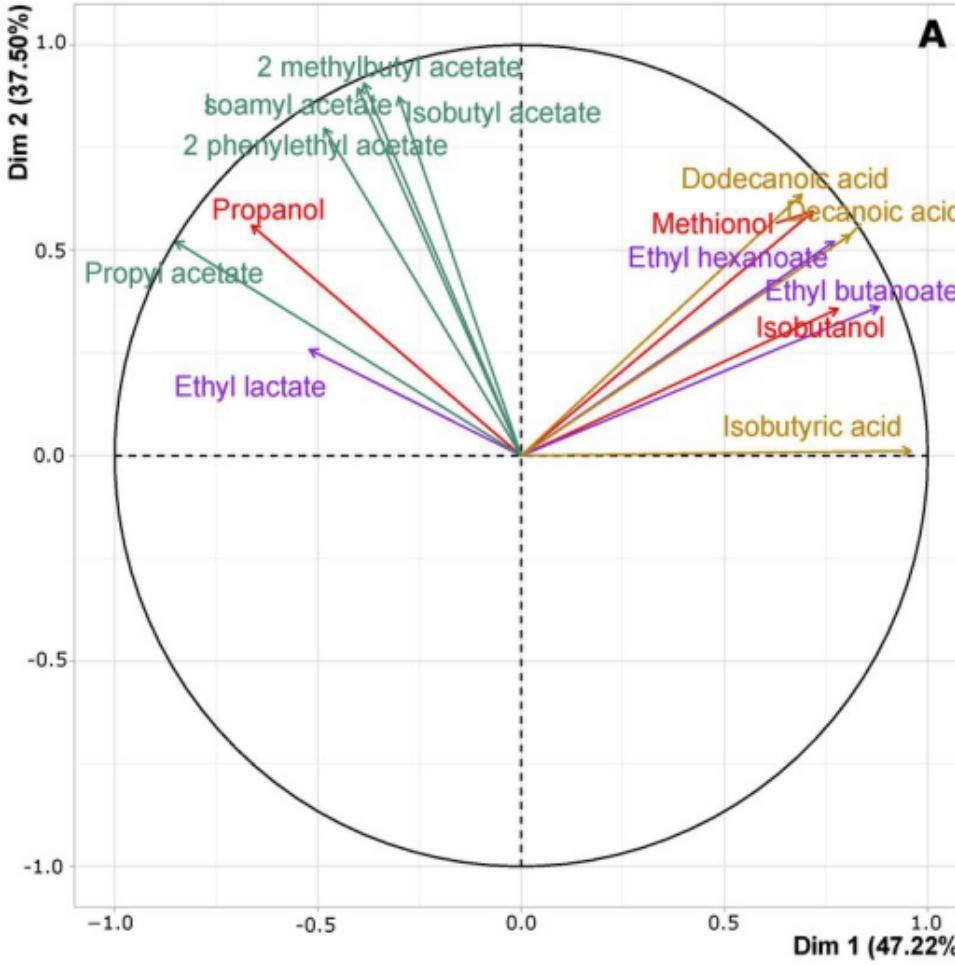
759 **Figure 4.** Barplots with the means for the impact of the timing of ergosterol addition for strains L6 and
760 L10: control (without ergosterol addition), T0 (ergosterol addition at the start of fermentation) and
761 T30 (ergosterol addition at 33% of fermentation progress). The variables represented are **(A)**
762 assimilated amino acids, **(B)** biomass and **(C)** viability at 85% of fermentation progress and **(D)** acetate,
763 **(E)** glycerol and **(F)** succinate contents at the end of fermentation. Barplots with the same letters had
764 statistically identical values for the variable tested; Barplots with different letters had a significant
765 difference at a 5% level for the correspondent variable. Strains L6 and L10 were not compared


766 statistically. The maximum point of the bars corresponds to the mean and the vertical lines are the
767 standard deviation for L6 and L10 strains, performed with the corresponding modality.





768







769 **Figure 5.** PCA for variables triplicate means of L6 and L10 strains for timing of ergosterol addition
770 experiment. **(A)** Projection of the variables used to describe fermentative aromas on the 2 main
771 components of PCA. The PCA variables are: higher alcohols, ethyl esters, acetate esters and acids. at
772 85 % of fermentation progress. **(B)** Projection of the individuals: control (without ergosterol addition);
773 T0 (ergosterol addition at the start of fermentation); T30 (ergosterol addition at 33% of fermentation
774 progress).


775



776 **Figure 6.** Biosynthesis of CCM metabolites (green), varietal aroma compounds (purple) and associated
777 pathways (gray). Reduction reactions are in orange and pink; oxidation reactions are in blue and
778 purple. *ALD2* to *ALD6* are genes involved in acetate synthesis.

