

Caractérisation des communautés d'invertébrés des cavités d'arbres par génomique environnementale

Lucas Sire, Béatrice Courtial, Chloé Martin, Guilhem Parmain, Carl Moliard, Jérémy Cours, Christophe Bouget, Carlos Lopez-Vaamonde

▶ To cite this version:

Lucas Sire, Béatrice Courtial, Chloé Martin, Guilhem Parmain, Carl Moliard, et al.. Caractérisation des communautés d'invertébrés des cavités d'arbres par génomique environnementale. Séminaire final du projet CANOPEE, Université d'Orléans, Jun 2023, Orléans, France. 19 p. hal-04186507

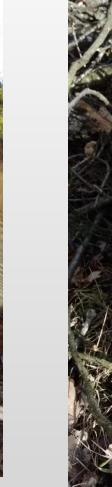
HAL Id: hal-04186507 https://hal.inrae.fr/hal-04186507

Submitted on 23 Aug 2023

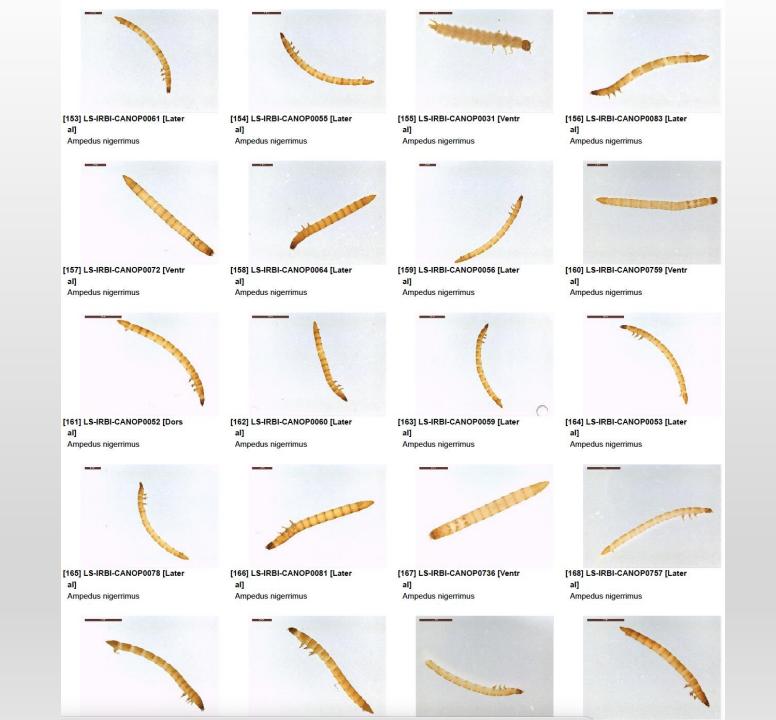
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

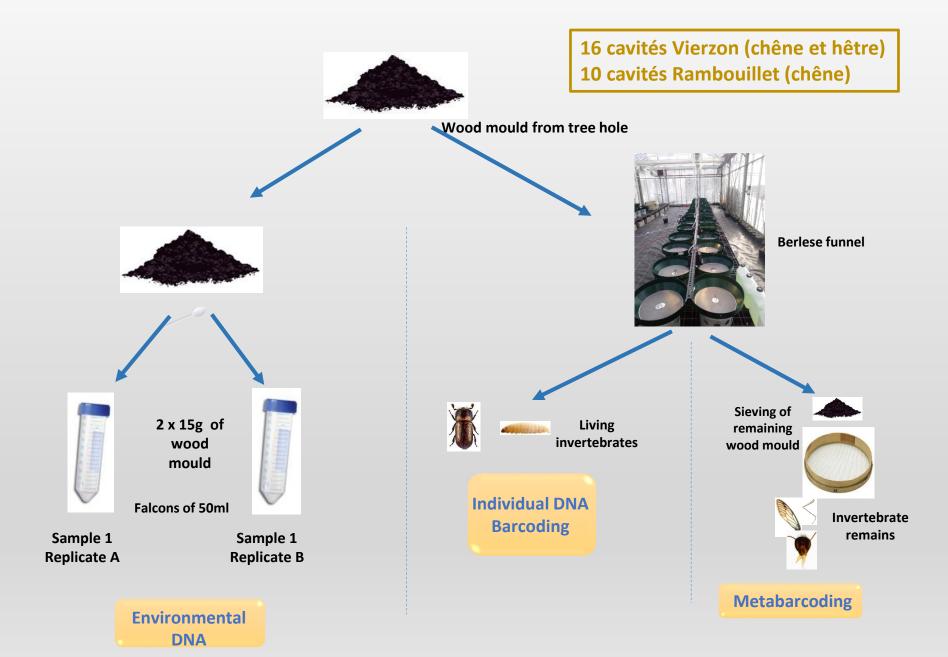
Caractérisation des communautés d'invertébrés des cavités d'arbres par génomique environnementale

Lucas SIRE, Beatrice COURTIAL, Chloé MARTIN,
Guilhem PARMAIN, Carl MOLIARD, Jeremy COURS, Christophe
BOUGET, Carlos LOPEZ-VAAMONDE



✓ Dendro-microhabitats

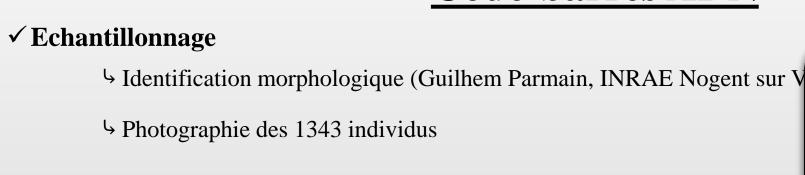




✓Problèmes méthodologiques

→ Echantillonnage → perturbation du milieu

SAMPLING OF WOOD MOULD FROM TREE HOLES



- A. Les communautés retrouvées par l'approche sur l'humus
 (ADNe) rassemblent les communautés retrouvées par les deux autres approches
- B. Les communautés partagent des espèces
- C. Les communautés sont complètement différentes

Développement d'une méthode de suivi des cavités en diminuant la perturbation lié à l'échantillonnage

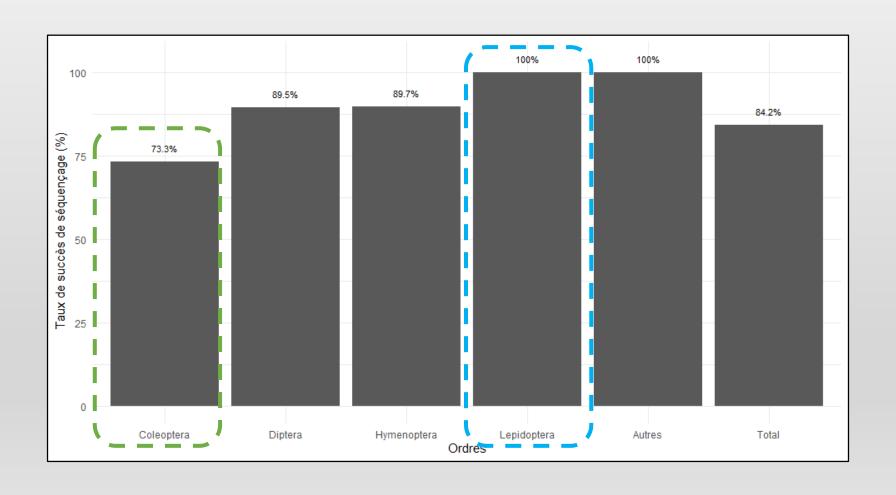
Code-barres ADN

✓ Traitement molé

4 'Canadian

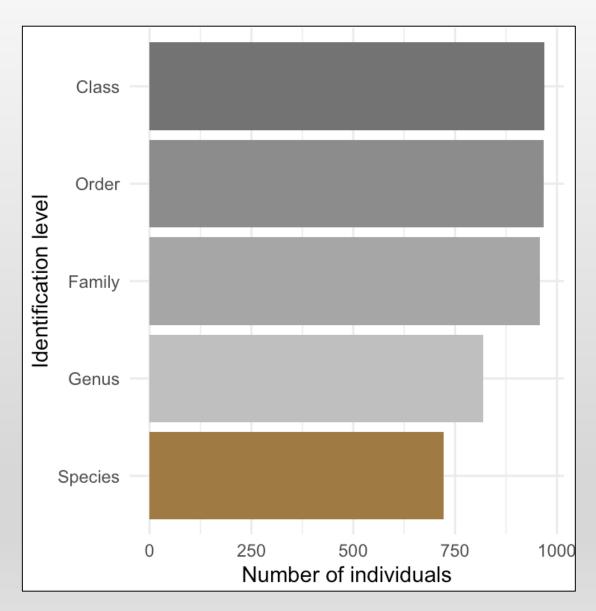
4 Extraction

Séquença

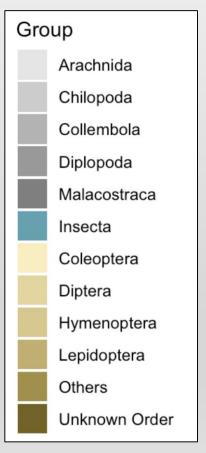

√

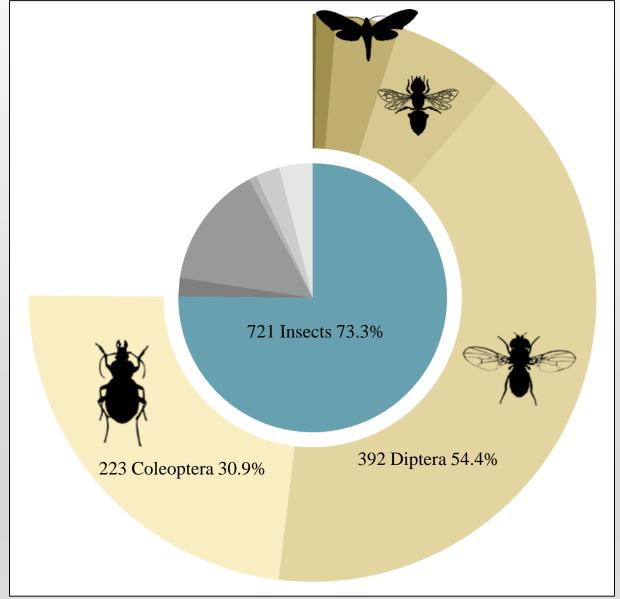
Réussite de séquençage général

✓ Différent taux de séquençage entre les ordres


→ Taux de séquençage = 76.5% (984 séquences sur 1343 individus)

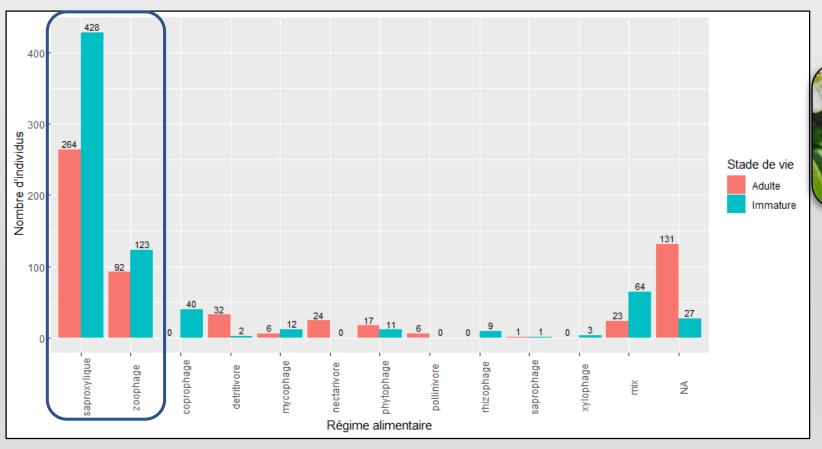
Résultats et discussion


✓ Niveau d'identification

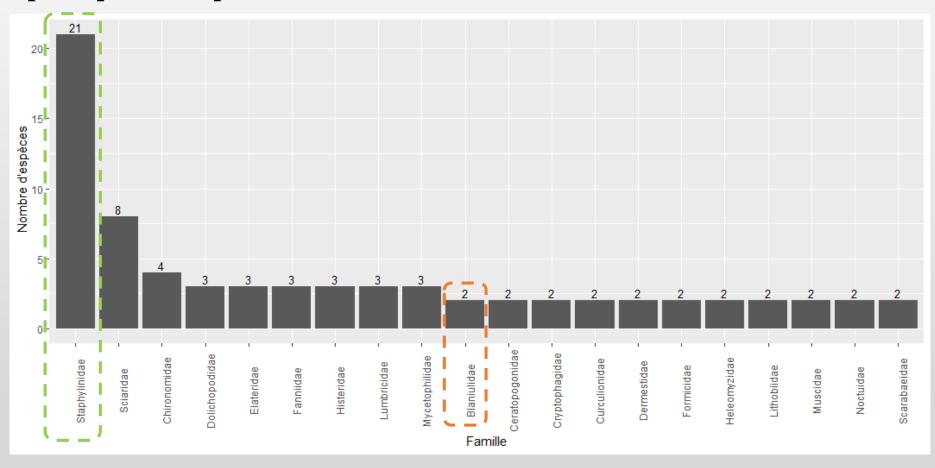

- → Ordre, 984 individus séquencés (100%)
- → Famille 980 (99.6%)
- ⁴ Genre 857 (87.1%)
- ⁴ Espèce 757 (76.9%)

✓ Communauté d'arthropodes très diverse

4 6 classes, 20 ordres, 75 familles et 125 espèces.



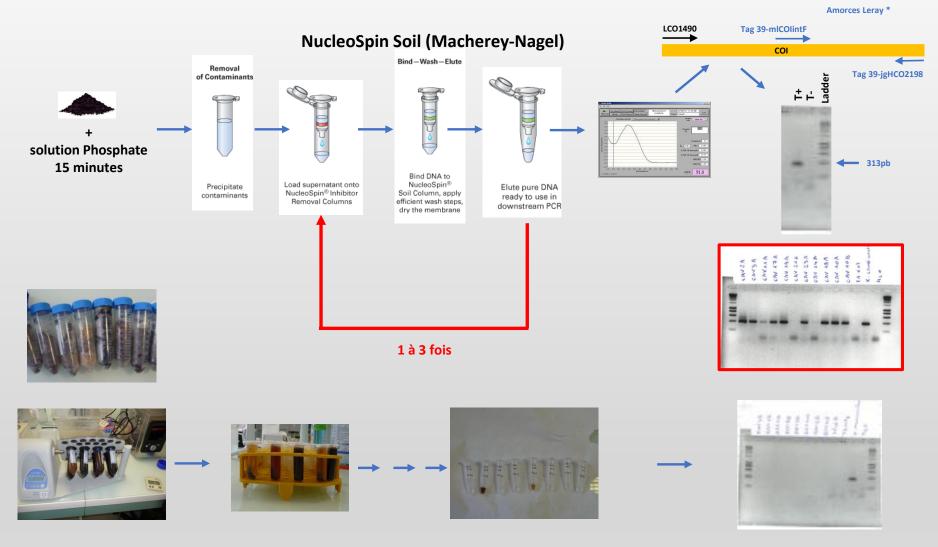
Taxa majoritairement inféodés aux milieux décomposés/en décomposition


La majorité des régimes alimentaires des familles retrouvées sont en lien avec le milieu cavicole et varient en fonction de leur stade de développement.

Cetonia aurata

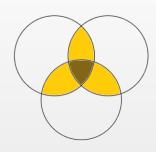
Introduction

→Staphylinidae est la famille la plus riche en espèces.

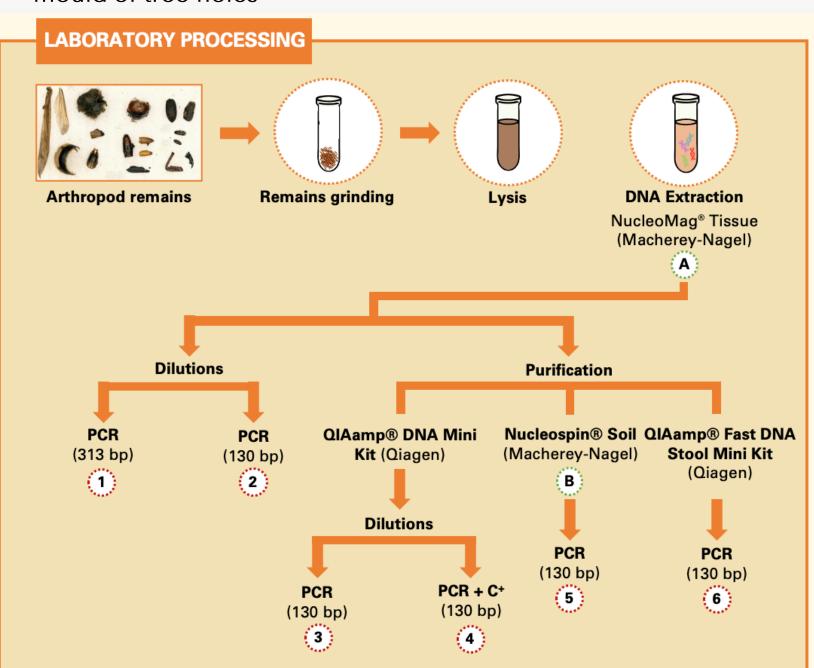

✓ Les 10 espèces les plus représentées dans les individus barcodés

PROTOCOLE EXTRACTION - QUANTIFICATION - AMPLIFICATION

^{*} Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

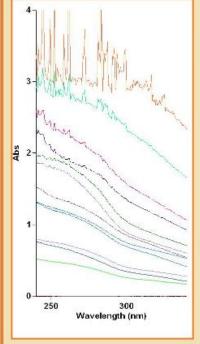

BILAN DES TESTS D'AMPLIFICATION

Série extraction	Nom échantillon	Commentaire	Concentration (en ng/µl)	PCR amorces Leray	Conclusion
Jour 1	CAV1A	Purif 1	8,337	+++	OK
	CAV2A	Purif 2	7,513	+++	OK
	CAV3A	Purif 2	4,345	++	OK
	CAV8A	Purif 1	7,877	++	ОК
	CAV11A	Purif 2	7,037	+	OK
	CAV17A	Purif 2	6,883	++	ОК
	CAV19A	Purif 2	6,558	+++	ОК
	CAV20A	Purif 3	3,324	+/-	ОК
	CAV21A	Purif 1	9,846	++	ОК
	CAV22A	Purif 1	5,544	+	ОК
	CAV23A	Purif 2	3,268	++	ОК
	CAV14A	Purif 3	2,321	+/	ОК
	CAV18A	Purif 2	4,654	++	ОК
	CAV10A	Purif 2	3,617	++	ОК
	CAV10B	Purif 2	3,109	+	ОК
	T1 ext				
	CAV16A	Purif 1	14,67	+++	ОК
Jour 2	CAV16B	Purif 1	16,234	+++	ОК
	CAV12A	Extraction	14,08	++	ОК
	CAV12B	Extraction	25,31	++	ОК
	RAM1A	Purif 2	6,105	+++	ОК
	RAM3A	Purif 2	4,865	+++	ОК
	RAM4A	Purif 2	4,387	+++	ОК
	RAM5A	Purif 2	2,819	++	ОК
	RAM7A	Purif 2	5,11	+++	ОК
	RAM8A	Purif 1	9,864	+	ОК
	RAM9A	Purif 1	11,257	++	ОК
	RAM10A	Purif 2	6,223	++	ОК
	RAM2A	Purif 1	6,65	+++	ОК
	RAM6A	Purif 2	4,522	++	ОК
	TPrelA	Purif 1	2,641	-	ОК
	TPrelA	Purif 2	2,9	-	ОК
	T2 ext				


Série extraction	Nom échantillon	Commentaire	Concentration (en ng/μl)	PCR amorces Leray	Conclusion
	CAV1B	Purif 1	10,214	++	ОК
	CAV2B	Purif 2	5,227	+++	ОК
	CAV3B	Purif 2	4,842	+++	ОК
	CAV8B	Purif 1	12,667	+++	ОК
	CAV11B	Purif 3	3,044	+/-	ОК
Jour 3	CAV17B	Purif 2	3,08	+	ОК
	CAV19B	Purif 2	3,936	++	ОК
	CAV20B	Purif 3	4,024	+/-	ОК
	CAV21B	Purif 1	7,734	++	ОК
	CAV22B	Purif 2	3,598	++	ОК
	CAV23B	Purif 2	2,844	++	ОК
	CAV14B	Purif 3	3,248	+/-	ОК
	CAV18B	Purif 2	4,943	+++	ОК
	RAM1B	Purif 2	5,42	+++	ОК
	RAM3B	Purif 2	6,253	+++	ОК
	T3 ext				
	RAM4B	Purif 2	7,32	++	ОК
	RAM5B	Purif 2	4,47	++	ОК
	RAM7B	Purif 2	7,065	+++	ОК
	RAM8B	Purif 1	9,243	++	ОК
	RAM9B	Purif 1	13,604	+	ОК
Jour 4	RAM10B	Purif 2	7,915	+++	ОК
	RAM2B	Purif 1	8,434	+++	OK
	RAM6B	Purif 2	5,908	+++	ОК
	TPrelB	Purif 1	3,802	+/-	КО
	TPrelB	Purif 2	5,859	-	OK
	T4ext				

Métabarcoding du terreau

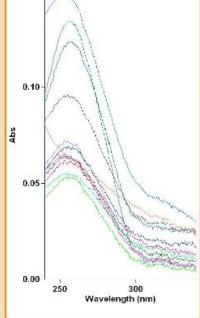
- Amplicon de 313-pb | 3 réplicas PCR par échantillon 1 read
- Assignation taxonomique BOLDIGGER (> 97% similarité)
 - 58 MOTUs d'insectes
 - 50 identifiés au niveau espèce
 - Diptera: 27 MOTUs
 - Coleoptera: 18
 - Hymenoptera: 4
 - Hemiptera: 2
 - Lepidoptera: 1



Protocol for Amplifying DNA from body remains sieved from wood mould of tree holes

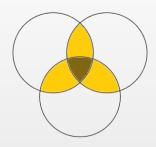
INHIBITORS REMOVAL

Spectrophotometry on VARIAN Cary 50 Curves indicate samples' absorbance at various wavelengths (max DNA abs. ~260 nm)

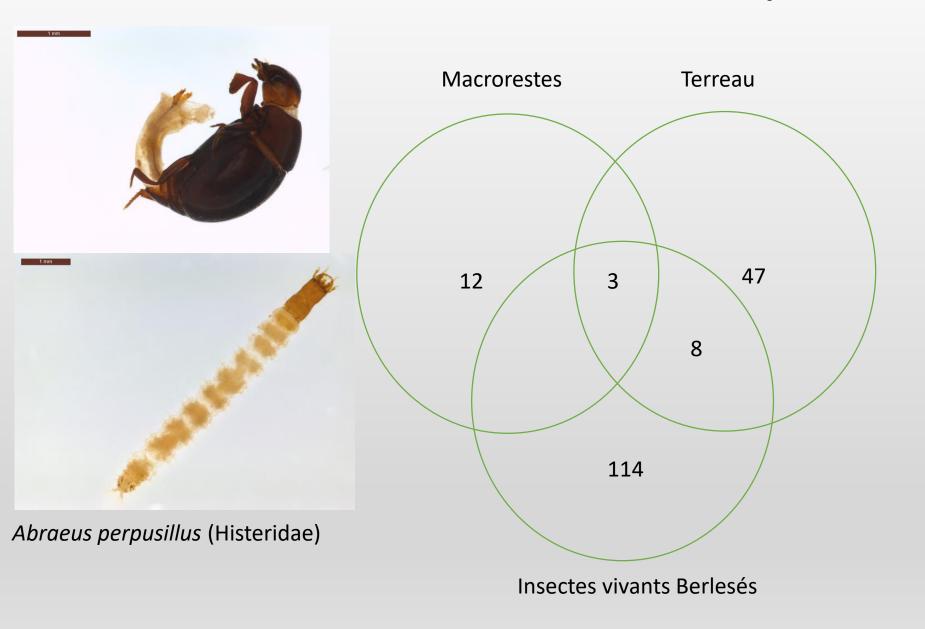


A Post-extraction

♦ NucleoMag® Tissue (Macherey-Nagel)


0.15

Métabarcoding des macrorestes


- Amplicon de 127-pb | 3 réplicas PCR par échantillon 1 read
- Assignation taxonomique BOLDIGGER (> 97% similarité)

- 15 MOTUs d'insectes
- 13 identifiés au niveau espèce

- Diptera: 7 MOTUs
- Coleoptera: 7
- Psocodea: 1

Les trois méthodes sont complémentaires

Prionychus ater (Tenebrionidae)

