Alienor Jeliazkov 
email: alienor.jeliazkov@gmail.com
  
Jonathan M Chase 
  
Alienor Orcids 
  
Jeliazkov 
  
When do traits tell more than species about a metacommunity? A synthesis across ecosystems and scales

Keywords: Species, traits, environment, beta diversity, functional, taxonomic

Linking species traits with the variation in species assemblages across habitats has often proved useful for developing a more mechanistic understanding of species distributions in metacommunities. However, by summarizing the rich tapestry of a species in all of its nuance to a few key ecological traits can also lead to an abstraction that provides less predictability than when using taxonomy alone. As a further complication, taxonomic and functional diversities can be inequitably compared, either by integrating taxonomic-level information into the calculation of how functional aspects of communities vary, or by detecting spurious trait-environment relationships. To remedy this, we here synthesize analyses of 80 datasets on different taxa, ecosystems and spatial scales that include information on abundance or presence/absence of species across sites with variable environmental conditions, and the species' traits. By developing analyses that treat functional and taxonomic diversity equitably, we ask when functional diversity helps to explain metacommunity structure. We found that patterns of functional diversity explained metacommunity structure and response to environmental variation in only 25% of the datasets using a multi-trait approach, but up to 59% using a single-trait approach. Nevertheless, an average of only 19% (interquartile range=0-29%) of the traits showed a significant signal across environmental gradients. Species-level traits, as typically collected and analyzed through functional diversity patterns, often do not bring predictive advantages over what the taxonomic information already holds. While our assessment of a limited advantage of using traits to explain variation in species assemblages was largely true across ecosystems, traits played a more useful role in explaining variation when many traits were used, and when trait constructs were more related to species' status, life history, and mobility. We propose future

Introduction

Metacommunity ecology aims to understand and predict how patterns of biodiversity and community composition are structured through space and time, and how those patterns are determined by a number of underlying processes, including biotic interactions, environmental control, dispersal, and ecological drift [START_REF] Leibold | Metacommunity Ecology. Monographs in population biology[END_REF][START_REF] Thompson | A process-based metacommunity framework linking local and regional scale community ecology[END_REF]. To this aim, the analysis of the variation of assemblage composition across space-often referred to as beta-diversity [START_REF] Whittaker | Vegetation of the Siskiyou Mountains, Oregon and California[END_REF])-is central in metacommunity ecology (e.g. [START_REF] Leibold | Metacommunity Ecology. Monographs in population biology[END_REF][START_REF] Ruhí | Interpreting beta-diversity components over time to conserve metacommunities in highly dynamic ecosystems[END_REF][START_REF] Mori | β-Diversity, Community Assembly, and Ecosystem Functioning[END_REF][START_REF] Chase | Biodiversity conservation through the lens of metacommunity ecology[END_REF]. This is because compositional variation through space, by keeping track of taxonomic identities across sites, can be more informative about community assembly processes than patterns of diversity within a site can (i.e., two sites can have similar diversity, but very different composition). By analyzing compositional variation, one can begin to disentangle the signatures from different structuring processes, such as the relative importance of niche vs. neutral assembly processes (Cottenie 2005;[START_REF] Chase | Disentangling the importance of ecological niches from stochastic processes across scales[END_REF]Soininen 2014[START_REF] Soininen | Spatial structure in ecological communities -a quantitative analysis[END_REF]. Usually, these inductive analyses are achieved either with the use of null modelling approaches (e.g. Chase et al. 2011;[START_REF] Tucker | Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity[END_REF], or the relative importance of environmental and spatial drivers of the community structuring (Peres-Neto et al. 2006;Tuomisto andRuokolainen 2006, 2008;[START_REF] Legendre | Partitioning beta diversity in a subtropical broad-leaved forest of China[END_REF]Soininen 2014[START_REF] Soininen | Spatial structure in ecological communities -a quantitative analysis[END_REF].

Studies that use only taxonomic information, even when using the best available methods, typically only explain a small amount of the variation in community composition [START_REF] Ovaskainen | What can observational data reveal about metacommunity processes?[END_REF][START_REF] Guzman | Accounting for temporal change in multiple biodiversity patterns improves the inference of metacommunity processes[END_REF] and have limited ability for prediction (Viana et al. 2022) and inference (Gilbert and Bennett 2010;Smith and Lundholm 2010;[START_REF] Viana | Spatial scale modulates the inference of metacommunity assembly processes[END_REF]. A popular solution to this limited inferential ability of taxonomic patterns is to include functional This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of
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information on species traits [START_REF] Lavorel | Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[END_REF][START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Shipley | Quantifying the importance of local nichebased and stochastic processes to tropical tree community assembly[END_REF][START_REF] Cadotte | Predicting communities from functional traits[END_REF] to potentially discriminate the signatures from different metacommunity processes (Fortin & Dale 2005;Rosindell et al. 2012). We use 'traits' in the broad sense to refer to a measurable attribute of an organism (e.g., morphological, behavioral) that influences its performance and functional role in a given environment [START_REF] Cadotte | Beyond species: functional diversity and the maintenance of ecological processes and services[END_REF][START_REF] Schneider | Towards an ecological trait-data standard[END_REF]. Traits often provide deeper insights as to how and why species vary through space and time (e.g. [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Spasojevic | Using functional diversity patterns to explore metacommunity dynamics: a framework for understanding local and regional influences on community structure[END_REF].

Two main approaches have been used to explore the role of traits for helping to infer processes of metacommunity assembly (Fig. 1). First, patterns of trait dispersion of co-occurring species have been used to make inferences about the role of interspecific interactions versus habitat filtering in driving patterns of co-occurrence (e.g., [START_REF] Weiher | Assembly Rules, Null Models, and Trait Dispersion: New Questions from Old Patterns[END_REF]de Bello 2012). A classical view is that species that are more different in some of their traits would be more likely to co-occur (trait divergence) [START_REF] Macarthur | Competition, habitat selection, and character displacement in a patchy environment[END_REF][START_REF] Weiher | Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species[END_REF][START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF][START_REF] Smith | Characterizing scale-dependent community assembly using the functional-diversity-area relationship[END_REF]). However, species that are more similar to one another (trait convergence) in certain traits can co-occur, for example, due to habitat filtering [START_REF] Weiher | Assembly Rules, Null Models, and Trait Dispersion: New Questions from Old Patterns[END_REF], or due to competitive equivalence [START_REF] Mayfield | Opposing effects of competitive exclusion on the phylogenetic structure of communities: Phylogeny and coexistence[END_REF]. At the metacommunity level, this would result in different patterns of variation of functional strategies across sites relative to variation of taxonomic composition. By comparing patterns of functional variation across sites-hereafter called functional beta diversity (e.g. [START_REF] Villéger | Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages[END_REF][START_REF] Bishop | Contrasting species and functional beta diversity in montane ant assemblages[END_REF]-with patterns of taxonomic beta diversity, we can assess whether functional strategies are either under-or overdispersed [START_REF] Swenson | Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient[END_REF][START_REF] Villéger | Low Functional β-Diversity Despite High Taxonomic β-Diversity among Tropical Estuarine Fish Communities[END_REF][START_REF] Smith | Characterizing scale-dependent community assembly using the functional-diversity-area relationship[END_REF][START_REF] Carvalho | Taxonomic divergence and functional convergence in Iberian spider forest communities: Insights from beta diversity partitioning[END_REF][START_REF] Pelicice | Contrasting continental patterns and drivers of taxonomic and functional turnover among fish assemblages across Brazilian reservoirs[END_REF]) (Fig. 1a).

The second major approach in examining the intersection of trait-based and metacommunity ecology is to understand the role of traits in the response of metacommunities to environmental variation (e.g. [START_REF] Meynard | Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France?[END_REF]Kleyer et al. 2012;[START_REF] Siefert | Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees[END_REF]. If different species traits confer advantage in different environments, we would expect strong correlations between species traits and the environment (i.e., trait-environment relationships), and a stronger response of functional diversity to environmental variation relative to taxonomic diversity [START_REF] Meynard | Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France?[END_REF][START_REF] Siefert | Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees[END_REF][START_REF] Sagouis | Taxonomic versus functional diversity metrics: how do fish communities respond to anthropogenic stressors in reservoirs?[END_REF]) (Fig. 1b). Several statistical developments have aimed towards quantifying these trait-environment relationships in order to achieve a better understanding of community assembly (e.g. [START_REF] Dolédec | Matching species traits to environmental variables: a new three-table ordination method[END_REF]Kleyer et al. 2012;Brown et al. 2014;Warton et al. 2015;[START_REF] Ovaskainen | How to make more out of community data? A conceptual framework and its implementation as models and software[END_REF][START_REF] Ter Braak | New robust weighted averaging-and model-based methods for assessing trait-environment relationships[END_REF].

Despite the apparent potential of a trait-based metacommunity ecology, some skepticism has emerged [START_REF] Clark | Why species tell more about traits than traits about species: predictive analysis[END_REF][START_REF] Didham | Circle the bandwagonschallenges mount against the theoretical foundations of applied functional trait and ecosystem service research[END_REF]). For example, many studies have shown that responses of functional diversity to environmental variation can be weaker than taxonomic responses (e.g. [START_REF] Bishop | Contrasting species and functional beta diversity in montane ant assemblages[END_REF][START_REF] Ossola | Urban habitat complexity affects species richness but not environmental filtering of morphologicallydiverse ants[END_REF][START_REF] Carvalho | Taxonomic divergence and functional convergence in Iberian spider forest communities: Insights from beta diversity partitioning[END_REF][START_REF] Saito | Comparing taxon-and trait-environment relationships in stream communities[END_REF][START_REF] Peng | Double constrained ordination for assessing biological trait responses to multiple stressors: A case study with benthic macroinvertebrate communities[END_REF][START_REF] Tison-Rosebery | Decadal biodiversity trends in rivers reveal recent community rearrangements[END_REF], and the link between a given measured trait and species performance [START_REF] Shipley | Reinforcing loose foundation stones in trait-based plant ecology[END_REF] or distribution [START_REF] Bohner | Extensive mismatches between species distributions and performance and their relationship to functional traits[END_REF]) is often weak.

Indeed, the traditional niche-based perspective is only one mechanism that can influence the cooccurrence of species in a location and their variation along environmental gradients. Other mechanisms, including dispersal limitation, drift, and density-dependence might influence patterns of species traits and their distributions along environmental gradients in a fundamentally different way than expected from a niche-centered perspective [START_REF] Leibold | Metacommunity Ecology. Monographs in population biology[END_REF]. As a consequence, some authors have called for a better use of traits [START_REF] Bishop | Contrasting species and functional beta diversity in montane ant assemblages[END_REF][START_REF] Didham | Circle the bandwagonschallenges mount against the theoretical foundations of applied functional trait and ecosystem service research[END_REF][START_REF] Schneider | Towards an ecological trait-data standard[END_REF][START_REF] Dawson | The traits of "trait ecologists": An analysis of the use of trait and functional trait terminology[END_REF] or for more trait information to improve the utility of a trait-based metacommunity ecology [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF][START_REF] Shipley | Reinforcing loose foundation stones in trait-based plant ecology[END_REF][START_REF] Sarremejane | DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates[END_REF].

Despite qualitative literature reviews (e.g. [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF][START_REF] Shipley | Reinforcing loose foundation stones in trait-based plant ecology[END_REF]), a quantitative synthesis regarding the role of trait-based approaches in metacommunity ecology is lacking. Here, we compare taxonomic and functional diversity patterns, and their responses to environmental variation across ecosystems, using a global database that was assembled explicitly for the purpose of synthetic analyses on species-trait-environment relationships (CESTES [metaCommunity Ecology: Species, Traits, Environment and Space]) [START_REF] Jeliazkov | A global database for metacommunity ecology, integrating species, traits, environment and space[END_REF]. The database consists of 80 datasets from studies on different taxa, ecosystem types, and background conditions from across the world (Appendix S1; (Jeliazkov et al. 2020)).

With this dataset compilation, we specifically investigated the following questions:

(1) When can we infer metacommunity processes from general variation of trait dispersion across communities? (Fig. 1a) Based on null modelling, significant spatial structuring of functional beta diversity relative to taxonomic beta diversity is used to infer potential mechanisms underlying metacommunity structure (i.e., underdispersion due to environmental filtering or overdispersion due to competitive interactions). Alternatively, if functional beta diversity is random with respect to taxonomic beta diversity, we might conclude that the examined traits play little role in helping explain metacommunity patterns (e.g., [START_REF] Swenson | Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient[END_REF][START_REF] Bishop | Contrasting species and functional beta diversity in montane ant assemblages[END_REF], or there could be a mixture of over-and under-dispersed functional strategies [START_REF] Weiher | Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species[END_REF][START_REF] Chase | Ecological Niches: Linking Classical and Contemporary Approaches[END_REF][START_REF] Mayfield | Opposing effects of competitive exclusion on the phylogenetic structure of communities: Phylogeny and coexistence[END_REF]. We also explored which types of traits (life history, morphology, mobility, etc.) were most likely to help inference.

(2) Is functional diversity a better indicator of metacommunity response to environmental variation relative to taxonomic diversity? (Fig. 1b) Based on a correlative analysis of functional and taxonomic diversities with environmental variation, the response of functional diversity can be stronger because dispersal limitation and ecological drift of functionally similar species may reduce the response of taxonomic composition to environment (e.g., [START_REF] Ozinga | Predictability of plant species composition from environmental conditions is constrained by dispersal limitation[END_REF][START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF]. Alternatively, if measured traits do not capture all of the nuance that allows species to persist in a given place, taxonomic diversity may better match the environment than functional diversity (e.g., [START_REF] Bishop | Contrasting species and functional beta diversity in montane ant assemblages[END_REF][START_REF] Clark | Why species tell more about traits than traits about species: predictive analysis[END_REF]. We examined whether the strength of this relationship was influenced by: (i) level of human disturbance, as traits may reflect how species can cope with these disturbances (e.g., [START_REF] Devictor | Functional biotic homogenization of bird communities in disturbed landscapes[END_REF]); (ii) mode of dispersal, which may influence the functional response to variation in environment (e.g. [START_REF] Ozinga | Predictability of plant species composition from environmental conditions is constrained by dispersal limitation[END_REF]; (iii) spatial scale (extent), which can influence the degree of environmental heterogeneity encompassed in the study, and thus the likelihood of environmental matching [START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF]); (iv) sampling properties of the dataset, as variation in the number of traits, species, sites, and environmental variables measured may all affect the detection of trait-environment relationships and the comparison of functional vs. taxonomic diversity responses (Dray and Legendre 2008;[START_REF] Leibold | Metacommunity Ecology. Monographs in population biology[END_REF].

We approached these questions via a synthesis perspective by integrating previously scattered information to address general questions that could not be tested based on single individual datasets. Therefore, our specific aim was not to test specific hypotheses (e.g., which traits are related to which environmental variables) given the wide diversity and heterogeneity among study systems, but rather how trait diversity patterns can generally help infer processes in metacommunity ecology. These predictions are mainly heuristic and do not imply direct causality. Instead, they offer the opportunity to test hypotheses derived from general ecological theories on the mechanisms potentially underlying biodiversity patterns.

Methods

Metacommunities, traits, and environmental data

We used the CESTES database-a global database for metacommunity ecology: species, traits, environment and space (see [START_REF] Jeliazkov | A global database for metacommunity ecology, integrating species, traits, environment and space[END_REF])-that was assembled explicitly for the purpose of synthetic analyses on trait-species-environment relationships across taxa, ecosystem types, and scales (Appendix S1). In this database, the traits are available at the species level. They were compiled by the authors of the original studies, either from various regional, national or international scientific sources (e.g. trait databases, ecology books, naturalist reports), or sometimes from local field measurements.

Each study analyzed empirical multivariate trait-environment relationships, and publications of datasets ranged from 1996, when the first multivariate study of trait-environment relationships was published [START_REF] Dolédec | Matching species traits to environmental variables: a new three-table ordination method[END_REF] to 2019. Importantly, each study was designed for testing trait-species-environment relationships, and thus datasets were originally sampled and/or assembled explicitly for this purpose (i.e. ensuring environmental and trait variability, relevant traits with respect to environmental conditions under study, balanced trait distributions, complete information; see [START_REF] Jeliazkov | A global database for metacommunity ecology, integrating species, traits, environment and space[END_REF]. Each dataset included four data matrices: community data (species abundances or presences/absences across multiple sites), species traits, environmental variables across sites, and spatial coordinates (Appendix S1). Here, we define a metacommunity in the broad sense as assemblages of species that potentially interact, are distributed across potentially heterogeneous landscapes, and are potentially connected by spatial processes (e.g. dispersal) [START_REF] Leibold | Metacommunity Ecology. Monographs in population biology[END_REF].

Exploring taxonomic and functional beta diversity patterns

To compare the taxonomic and functional beta diversity of each dataset (Fig. 1a), we used Rao's quadratic entropy [START_REF] Rao | Diversity and dissimilarity coefficients: A unified approach[END_REF] and calculated the normalized version of the proportional betaequivalent-additive index proposed by de Bello et al. ( 2010) ("beta_prop") via their 'Rao' function (see calculation details in Appendix S2a). This index derives from an additive partitioning of diversity and is interpreted as the average proportional difference between regional and local communities in terms of species composition (taxonomic facet) or trait composition (functional facet).

This approach has five main advantages in the context of our synthesis. First, it can integrate information on species relative abundances. Second, it can be used to calculate any facet of beta diversity (i.e. taxonomic, functional, phylogenetic, etc.) and to compare these facets within the same, standardized framework (de Bello et al. 2010). Third, it can produce uncorrelated indices of functional and taxonomic diversity (Botta-Dukát 2005), which is particularly useful to disentangle these two facets in an equitable comparison. Fourth, as the index scales between 0 and 1, this approach can be used to compare indices across different communities and regions (Chao et al. 2012). Fifth, Rao's quadratic entropy can be used to test trait convergence and divergence (de Bello 2012).

To test our first question, when functional diversity patterns reveal metacommunity assembly processes, we examined the patterns of functional beta diversity independently from the changes in taxonomic diversity by using a null model approach [START_REF] Schleuter | A user's guide to functional diversity indices[END_REF][START_REF] Swenson | Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient[END_REF]. We calculated the observed total Taxonomic Beta Diversity (TBD) and Functional Beta Diversity (FBD), based on both single and multiple traits, as the proportional beta-equivalentadditive index for each of the 80 datasets (Appendix S2a) (de Bello et al. 2010). To produce the null reference of each dataset, we applied an unconstrained trait-shuffling algorithm that permutes species labels across the species trait vector (single-trait) or matrix (multiple-trait)

while the species abundance/presence-absence matrix remains unchanged; this was repeated 1000 times. This algorithm ensures that the species abundance/presence-absence matrix keeps the same spatial structure and species richness, while the species-traits links are shuffled.

Because the distribution of the beta diversity indices calculated on the null reference data were not distributed normally in most of the cases (71 out of 80 datasets), we log transformed the values of these indices for both the observed and null-based indices (Botta-Dukát 2018). To assess the significance of low vs. high functional turnover, we calculated the Standardized Effect Size on these log transformed values [START_REF] Swenson | Functional and Phylogenetic Ecology in R[END_REF] as:

SES FBD = [ logFBDobsmean(logFBDnull) ] / sd(logFBDnull)

where FBDobs is the observed total Functional Beta Diversity of the dataset, and we used 1000 null reference communities to estimate the mean (mean(logFBDnull)) and standard deviation (sd(logFBDnull)) of the null expected FBD. A SES that is higher than 1.96 is taken to indicate high functional turnover relative to taxonomic turnover, whereas a SES lower than -1.96 is taken to indicate low functional turnover relative to taxonomic turnover (e.g. [START_REF] Swenson | Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient[END_REF].

These threshold values correspond to the critical values of a two-sided test with a 0.05 level of significance and a normal distribution centered on zero. A SES between -1.96 and 1.96 is taken to indicate that metacommunity structure is unrelated to the species' trait(s) analyzed.

Although traits cannot be classified into strict categories (e.g. [START_REF] Violle | Let the concept of trait be functional![END_REF], we used an exploratory exercise to study the ability of different types of traits to reveal significant patterns 

Modelling the response of functional and taxonomic beta diversity to environment

To analyze the response of functional and taxonomic beta diversity to environmental variation (Fig. 1b), we used the pairwise version of the beta-equivalent-additive index (de Bello et al. 2010). This metric uses the same calculation as the total beta diversity, but instead of the whole metacommunity, one index is calculated for each pair of sites (communities). This results in a site-by-site matrix of beta diversities that reflects pairwise taxonomic (TBDp) or functional (FBDp) beta diversity, respectively (Appendix S2b). This allows us to analyze the extent to which environmental differences across sites contribute to these compositional differences within a synthetic context.

To reduce collinearity in the environmental information, we first applied principal component analyses for every dataset ('dudi.pca' and 'dudi.hillsmith' in {ade4};[START_REF] Dray | The ade4 package: implementing the duality diagram for ecologists[END_REF].

We kept the principal axes that together explained more than 99% of the total variation of the environmental data. To estimate site-by-site environmental variation, we calculated the Euclidean distances between sites based on these orthonormal (scaled) predictors ('dist' in {stats}; R Core Team 2018).

We analyzed the link between pairwise functional and taxonomic beta diversities, and the environmental distances for each dataset by a regression on distance matrices [START_REF] Lichstein | Multiple regression on distance matrices: a multivariate spatial analysis tool[END_REF][START_REF] Saito | Comparing taxon-and trait-environment relationships in stream communities[END_REF]. We chose this modelling approach because: (i) it is useful for inferring links between beta diversity variation and environmental variation (e.g. diversity is as sensitive to environment as taxonomic beta diversity, while as FBDp rises higher above 0, the sensitivity of functional beta diversity to environment relative to taxonomic beta diversity increases (Fig. 1b).

To assess the differences of sensitivity of functional beta diversity to environment across ecosystems, scales, and sampling properties, we modeled the response of FBDp relative sensitivity in response to three predictors and their interactions: the level of human disturbance (levels: Natural, Mixed, Disturbed), the dispersal mode of the group (levels: Sessile, Swimmers, Walkers, Flyers), and the spatial extent of the study (log transformed). We included three general sampling properties as additional predictors: the number of environmental variables, the sample size, and the trade-off between number of traits and number of species (see Appendix S3). To build this model, we used a Bayesian Generalized Linear Multilevel Model ('brm' in {brms};

Bürkner 2017) with a Gaussian family and non-informative priors (uniform distribution) on the coefficients of the predictors. We checked the balance of our factorial design by data visualization (Appendix S4) and scaled the numeric predictors to facilitate the interpretation of their relative contribution to the FBDp relative sensitivity. Some datasets that were temporal replicates of a given sampling were considered as part of the same study. We thus added the study identifier as a random effect in the model to account for the potential dependence between the datasets that belonged to the same study (Table S1.1). We checked the model convergence and parameters estimation by examining the trace and density plots for Markov Chain Monte Carlo draws ('traceplot' function).

To verify the influence of the method choice on our conclusions, we complemented the above Appendices S5-S7).

Twelve datasets out of 80 only had presences/absences, not abundances, but were treated with the same methods as the others since it did not compromise our overall aim of comparing taxonomic with functional response in relative terms. In the synthesis analysis, we accounted for the potential effect of this difference through the random effect applied on the study identifier.

We performed all analyses in R (R Core Team 2021) and all scripts and files are available at: https://doi.org/10.57745/LLBAZD.

Results

Inferences from patterns of functional beta diversity

When we used multi-trait functional diversity, we found that only 20/80 (25%) datasets showed a significant structure in the dispersion of functional strategies between sites (Fig. 2a). Among these 20 datasets, 15 datasets indicate trait divergence and 5 datasets indicate trait convergence.

When we used single-trait functional diversity, we found that up to 47 out of the 80 datasets include at least one trait that revealed significant trait dispersion, mostly as trait divergence (Fig. 2a), particularly in plants, aquatic invertebrates and terrestrial insects (Fig. 2b). However, on average, only 19% (min=0%, 1 st quartile=0%, 2 nd quartile=7%, 3 rd quartile=29%, max=100%) of the trait information included in a given dataset showed any significant pattern (Appendix S7).

This proportion varied across some study groups, but not across kingdoms (Plantae vs. Animalia;

Kruskal-Wallis chi-squared = 3.5201, df = 3, p-value = 0.3182; Fig. 2c) nor ecosystem types (Kruskal-Wallis chi-squared = 2.6833, df = 2, p-value = 0.2614; Fig. 2d).

The metacommunities showing mostly random trait patterns here were not necessarily the ones with strongest signals of dispersal limitation (Appendix S8).

We found that all categories of traits can show either trait divergence or convergence (Fig. 3a).

Marginally, traits related to species status, life history, mobility, and integrative, unclassifiable traits (e.g. competitive strategy, survival, productivity), had a proportionately higher propensity to have underlying structure than traits related to habitat preference or morphology (Fig. 3b).

Thus, the categories of traits that have the most data (e.g. body-or feeding-related traits), are not necessarily the ones with the most signal (Fig. 3).

Sensitivity of taxonomic vs. functional beta diversity to environment

In most instances, we found that pairwise taxonomic beta diversity was better explained by the environment than was pairwise functional beta diversity (Fig. 4a). That is, 61 out of the 80 datasets (76%) showed a negative relative sensitivity of functional beta diversity to environment (Fig. 4b), indicating that taxonomic beta diversity is slightly more sensitive to environment than functional beta diversity (Wilcoxon paired test, W=2397, PV=0.003).

Even after considering different ways of analyzing the data, the results remain consistent (Appendices S5, 6, 9). For instance, according to the RLQ analysis, 36% of the datasets showed a general significant link between traits and environment, while 75% was between species and environment (Fig. S6.1). Likewise, from the double-CCA analysis, on average, only 33% of the species composition that was explained by the environment was potentially due to their traits (Fig.

S5.1).
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Overall, the sampling properties (e.g., number of traits, sample size) tested in our meta-analysis had a relationship with the relative sensitivity of the pairwise functional beta diversity, whereas the ecological factors had no or only weak relationships (Fig. 5; Appendices S11-12). The increase of the number of traits relative to the number of species had a positive link with the functional beta diversity relative sensitivity (Fig. 5a; Fig. S11.1a). Regarding the ecological factors, we observed only one marginal interaction involving the dispersal mode and the level of disturbance (Fig. 5b). Specifically, the sensitivity of functional beta diversity to environmental variation for metacommunities that were categorized as 'Walkers' was higher in more disturbed systems (Fig. 5b; Fig. S11.1b).

Discussion

Inferences from patterns of functional beta diversity Among the 80 datasets analyzed here, we showed that functional diversity enhanced our ability to inferring metacommunity processes in only 25% of the datasets using a multi-trait approach, but up to 59% using a single-trait approach (with on average 19% of the traits showing significant dispersion). This relatively small proportion of studies does not necessarily mean that competitive interactions or environmental filtering are not important in these systems, but rather that we are not able to detect them with the traits measured and the null modelling approach traditionally used to study trait diversity across metacommunities (as observed elsewhere; [START_REF] Thompson | Little evidence for limiting similarity in a long-term study of a roadside plant community[END_REF][START_REF] Bishop | Contrasting species and functional beta diversity in montane ant assemblages[END_REF][START_REF] Carvalho | Taxonomic divergence and functional convergence in Iberian spider forest communities: Insights from beta diversity partitioning[END_REF][START_REF] Pelicice | Contrasting continental patterns and drivers of taxonomic and functional turnover among fish assemblages across Brazilian reservoirs[END_REF]. While the approach based on single traits seems to be almost twice more performant than the multi-trait approach in unravelling metacommunity processes (in line with e.g. [START_REF] Weiher | Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species[END_REF][START_REF] Lepš | Quantifying and interpreting functional diversity of natural communities: practical considerations matter[END_REF], we suspect that only a small proportion of the measured traits may actually be relevant to this specific aim.

There are several reasons why we might not have detected strong trait dispersion even if important trait-mediated interactions are taking place. For example, when multiple traits are considered, we might simultaneously expect convergence of some traits and divergence of others [START_REF] Weiher | Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species[END_REF][START_REF] Chase | Ecological Niches: Linking Classical and Contemporary Approaches[END_REF][START_REF] Mayfield | Opposing effects of competitive exclusion on the phylogenetic structure of communities: Phylogeny and coexistence[END_REF], depending on the scale of analysis (Algar et al. 2011). These opposite responses could lead to the overall neutral effect that we observed in most studies (mixture in Fig. 1). However, the single-trait analysis does not systematically support this hypothesis because only 9/60 datasets that showed a random multi-trait turnover had signals of both convergence and divergence. Because most single trait analyses support both divergence and convergence patterns, this again emphasizes the limitations of such analyses for disentangling metacommunity processes across scales. In this case, a more complete solution would be to formulate different expectations for each trait and each scale (e.g. local vs. regional) [START_REF] De Bello | Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence[END_REF][START_REF] Gianuca | Integrating trait and phylogenetic distances to assess scale-dependent community assembly processes[END_REF][START_REF] Escobedo | Disturbance reinforces community assembly processes differentially across spatial scales[END_REF].

Even if we could be confident about expectations from different traits, it is also important to recognize general limitations of the null modelling approach we used here (de Bello 2012; [START_REF] Götzenberger | Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models[END_REF]. To achieve comparability across datasets, we used the most commonly used unconstrained trait randomization algorithm [START_REF] Swenson | Functional and Phylogenetic Ecology in R[END_REF]). However, this algorithm might be too conservative to test the functional link between species (de Bello 2012).

Instead, it might be more appropriate to use several null-models (e.g., [START_REF] De Bello | Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence[END_REF]de Bello 2012;[START_REF] Chalmandrier | A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns[END_REF][START_REF] Götzenberger | Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models[END_REF], accounting for the regional species pool structure (de Bello et al. 2010;de Bello 2012), or to develop more permissive null models, as done when analyzing phylogenetic diversity patterns (e.g. [START_REF] Hardy | Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community[END_REF]). However, many of the parameters needed for these sorts of null models (e.g., specification of the regional species pool) are not readily available for a synthetic analysis across studies, and the challenge remains to develop null models adapted to studying functional beta diversity patterns (de Bello 2012). It is also important to recall that this study does not allow us to draw direct causal links between patterns and processes, but instead provides insights on the potential existence of such links and allows us to assess the added value of functional information.

Another limitation of the studies we synthesized could be if some study designs were underpowered (e.g. small sample size or number of traits in some datasets). However, (i) the vast majority of the CESTES datasets are appropriate for trait-environment analyses (see Figure 6 in [START_REF] Jeliazkov | A global database for metacommunity ecology, integrating species, traits, environment and space[END_REF]); (ii) we compared taxonomic with functional diversity all else (including biases) being equal in terms of sample size and site conditions; (iii) we showed that our results

were insensitive to sample size and sensitive to number of traits relative to number of species (Appendix S13).

Despite the limitations of analyses of functional turnover patterns, the results of our synthesis show that multi-trait approaches with species-level traits rarely allow us to draw inference about the mechanisms potentially underlying metacommunity structure. First, it is possible that metacommunity patterns are largely neutral with respect to the functional traits measured. In principle, dispersal limitation and neutrality could structure most of these metacommunities and leave a stronger signature in the spatial variation of taxonomic composition than that of trait composition [START_REF] Swenson | Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient[END_REF]de Bello et al. 2013). However, our analyses indicate that the random trait dispersion often observed in the datasets analyzed here is less likely the sign of dispersal limitation than of the difficulty in capturing metacommunity complexity (Appendix S9). It is also possible that the threshold of species distinctiveness in the functional trait space, and the order of diversity (i.e., how species are weighted in proportion to their relative abundances) that are used to calculate the functional diversity may influence our ability to draw inference (Chao et al. 2019; Appendix S10).

Overall, we found that the limits of these trait-based approaches in inferring metacommunity processes may be general across systems (Appendix S13). Although outcomes are highly contingent on the way one groups the datasets [START_REF] Dawson | The traits of "trait ecologists": An analysis of the use of trait and functional trait terminology[END_REF]; Appendix S8), we did detect more frequent signatures of trait divergence among plants than in other groups. Whether this is due to fundamental differences in metacommunity dynamics, or in trait relevancy, remains an open question.

Interestingly, we detected both convergence and divergence of traits among all trait categories, which complicates the challenge of choosing specific traits to test specific hypothesis. A marginal exception may be the traits related to species status (distribution, rarity, etc.) that seem more relevant to test hypotheses on limiting similarity across scales, probably because they best reflect species abundance variation and thus species' niches or fitness [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Shipley | Reinforcing loose foundation stones in trait-based plant ecology[END_REF]. Despite the exploratory nature of this trait grouping analysis, we note that species' mobility characteristics may be better predictors of metacommunity structuring across space than habitat preferences. This may be due to the potentially strong influence of dispersal limitation in many of these metacommunities (Appendix S9). This supports the idea that integrating species' dispersal ability and mobility will help improve trait-based approaches for inference in metacommunity ecology [START_REF] Leibold | Metacommunity Ecology. Monographs in population biology[END_REF], provided appropriate null modelling is used (de Bello 2012; [START_REF] Götzenberger | Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models[END_REF]. Finally, we note that more integrative traits (e.g. species status, composite traits) may be more useful to unravelling metacommunity processes.

Sensitivity of taxonomic vs. functional beta diversity to environment

As with our first analysis, the use of traits provided little improvement for our ability to predict metacommunity response to environment compared to analyses using taxonomy alone, despite the fact that environmental context was explicitly informed. Importantly, these conclusions held even after considering different ways of analyzing the data (summarized in Appendix S5), and were in concordance with syntheses on stream mayflies [START_REF] Saito | Comparing taxon-and trait-environment relationships in stream communities[END_REF]) and plants [START_REF] Bruelheide | Global trait-environment relationships of plant communities[END_REF]. A first reason for this may be that the traits were inappropriately chosen with respect to the environment (e.g. [START_REF] Bishop | Contrasting species and functional beta diversity in montane ant assemblages[END_REF][START_REF] Ossola | Urban habitat complexity affects species richness but not environmental filtering of morphologicallydiverse ants[END_REF]. This may be due to a weak link between the traits used and the demographic rates and species performance in a given environment [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Violle | Let the concept of trait be functional![END_REF][START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF][START_REF] Shipley | Reinforcing loose foundation stones in trait-based plant ecology[END_REF].

We showed that the low sensitivity of functional beta diversity to environment is generalizable across ecosystem types, taxonomic groups, dispersal modes, and scales, despite some specific combinations of ecological situations and sampling contexts. However, when we use more traits relative to the number of species functional beta diversity becomes more sensitive to the environment, probably due to a subsequent decrease in functional redundancy (Appendix S11: Fig. S11.4). This is also consistent with the idea that taxonomic diversity may encompass more of the complexity of metacommunity responses than does functional diversity [START_REF] Clark | Why species tell more about traits than traits about species: predictive analysis[END_REF] and following an intense discussion on the utility of traits in (meta)community ecology (see e.g., [START_REF] Didham | Circle the bandwagonschallenges mount against the theoretical foundations of applied functional trait and ecosystem service research[END_REF]vs. Shipley et al. 2016), we here provide a synthesis of empirical evidence regarding the contribution of traits and their diversity for understanding metacommunity structure when compared to taxonomic diversity alone. We expected to find evidence that traits play an important role in mediating our understanding and inference of metacommunity processes across different groups [START_REF] Keddy | Assembly and response rules: two goals for predictive community ecology[END_REF][START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Mouillot | A functional approach reveals community responses to disturbances[END_REF][START_REF] Cadotte | Predicting communities from functional traits[END_REF]. However, results from our synthesis confirm recent concerns [START_REF] Didham | Circle the bandwagonschallenges mount against the theoretical foundations of applied functional trait and ecosystem service research[END_REF] regarding the limitations of trait-based approaches in metacommunity ecology. Despite some exceptions (many of which we discuss here), our overall results suggest that species-level traits may rarely bring predictive advantages over what the taxonomic information already holds. We explored the potential of two main approaches (and several more, see Supp. Mat.) used to infer potential metacommunity processes, namely (i) testing functional diversity patterns against null models, and (ii) comparing how functional diversity responds to environmental variation compared with taxonomic diversity. We found that although the second approach involves more information (measure of environmental heterogeneity), it brought even less insight than the former, possibly because of an overall high influence of dispersal in these metacommunities (e.g. Analyses in some systems have shown the benefit of traits in predicting community response to environment (e.g. [START_REF] Meynard | Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France?[END_REF][START_REF] Mouillot | A functional approach reveals community responses to disturbances[END_REF]Abonyi et al. 2018), whereas others

show (e.g. [START_REF] Clark | Why species tell more about traits than traits about species: predictive analysis[END_REF][START_REF] Read | Intraspecific variation in traits reduces ability of trait-based models to predict community structure[END_REF][START_REF] Saito | Comparing taxon-and trait-environment relationships in stream communities[END_REF]) that taxonomic information is richer and better respond to environment than functional information. Our synthesis shows that overall, these traits or functional groups could rarely be used as a surrogate of metacommunity response to environment. Given the substantial influence of environment on these metacommunities, we thus question the ability of the currently available traits to capture the complexity of communityenvironment relationships.

We suggest several refinements for improving trait-based analyses of metacommunities, including (i) searching for traits that reflect the demographic rates and performance associated with population-level processes as more direct measures of species responses to each other and the environment [START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF][START_REF] Shipley | Reinforcing loose foundation stones in trait-based plant ecology[END_REF]), (ii) incorporating the rich and varied way that traits can influence species composition in natural metacommunities, such as phenology, biotic interactions, and dispersal (see e.g. [START_REF] Sarremejane | DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates[END_REF]Bernard et al. 2023), (iii) considering scale-explicit approaches to study the role of different traits in metacommunity dynamics depending on disturbance, scales (e.g. [START_REF] Smith | Characterizing scale-dependent community assembly using the functional-diversity-area relationship[END_REF][START_REF] Mazel | Multifaceted diversity-area relationships reveal global hotspots of mammalian This is the author's accepted manuscript without copyediting[END_REF][START_REF] Carmona | Traits Without Borders: Integrating Functional Diversity Across Scales[END_REF][START_REF] Perronne | How to design trait-based analyses of community assembly mechanisms: Insights and guidelines from a literature review[END_REF][START_REF] Escobedo | Disturbance reinforces community assembly processes differentially across spatial scales[END_REF], and alpha, beta and gamma diversity components [START_REF] Spasojevic | Using functional diversity patterns to explore metacommunity dynamics: a framework for understanding local and regional influences on community structure[END_REF][START_REF] Gianuca | Integrating trait and phylogenetic distances to assess scale-dependent community assembly processes[END_REF]), (iv) using complementary and customized null modelling approaches (e.g. de Bello 2012; Ford and Roberts 2020), and (v) integrating the potential habitat connectivity into the analysis of trait dispersion using network analyses (e.g. [START_REF] Layeghifard | Spatial and species compositional networks for inferring connectivity patterns in ecological communities[END_REF].

Powerful process-based frameworks have also been developed to predict plant metacommunity assembly based on functional traits [START_REF] Lavorel | Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[END_REF][START_REF] Laughlin | A predictive model of community assembly that incorporates intraspecific trait variation[END_REF]), mainly associated with niche-based processes. We should develop these approaches further so that they can empirically apply to other groups and to a more comprehensive range of questions that are currently challenging the field of metacommunity ecology by accounting for both spatial and temporal variation [START_REF] Webb | A structured and dynamic framework to advance traits-based theory and prediction in ecology[END_REF][START_REF] García-Girón | Processes structuring macrophyte metacommunities in Mediterranean ponds: Combining novel methods to disentangle the role of dispersal limitation, species sorting and spatial scales[END_REF], and for scale-dependence [START_REF] Smith | Characterizing scale-dependent community assembly using the functional-diversity-area relationship[END_REF][START_REF] Wang | Phylogenetic and functional diversity area relationships in two temperate forests[END_REF]. This would help us to assess the relative role of traits in metacommunity dynamics and further clarify the mechanistic links between traits and metacommunity processes. Appendix S2. Calculation of taxonomic and functional beta diversity a) Total Taxonomic and Functional Beta Diversities ("TBD" and "FBD")

Statement of Authorship

The normalized proportional beta-equivalent-additive index proposed by de Bello et al. ( 2010) ("beta_prop") "represents the proportion of diversity accounted for by the differentiation between communities (or sampling units) in a given region" and "can be expressed as a percentage of the diversity of a whole region" by standardizing it by the regional diversity (gamma). The final calculation of this beta index can be expressed as follows:

𝛽 𝑁𝑜𝑟𝑚-𝑝𝑟𝑜𝑝 = 𝑛 𝑛 -1 × (1 - 1 -𝛾 𝑅𝑎𝑜 1 -𝛼 𝑅𝑎𝑜 )
where 𝑛 is the number of sampling units, 𝛼 𝑅𝑎𝑜 the mean local Rao diversity (the expected dissimilarity between two randomly chosen individuals from a sampled community), and 𝛾 𝑅𝑎𝑜 the regional Rao diversity (the expected dissimilarity between two randomly chosen individuals from the whole metacommunity), with:

𝛼 𝑅𝑎𝑜 = ∑ ∑ 𝑑 𝑖𝑗 𝑝 𝑖𝑐 𝑝 𝑗𝑐 𝑠 𝑗=1 𝑠 𝑖=1
where 𝑑 𝑖𝑗 is the dissimilarity/distance measure between species 𝑖 and species 𝑗 from the local community of 𝑠 species, and 𝑝 𝑖𝑐 , and 𝑝 𝑗𝑐 the proportion of the species 𝑖, and 𝑗 in the community, respectively (based on their relative abundances). 𝑑 𝑖𝑗 can be any type of dissimilarities/distances (taxonomic, functional, phylogenetic, etc.) depending on the biodiversity facet investigated and scales between 0 and 1. In the case of the taxonomic distances, 𝑑 𝑖𝑗 = 1 for every 𝑖 ≠ 𝑗 and 𝛼 𝑅𝑎𝑜 equates the Simpson index. For the functional version of the index, we calculated the functional distances between species as Gower distances (Podani 1999) on raw traits (function 'gowdis' in package {FD}) including appropriate weighting for dummy traits (e.g. several levels for a given categorical traits) in order to get equal contribution of the different traits.

Similarly, the regional diversity index 𝛾 𝑅𝑎𝑜 is expressed as:

𝛾 𝑅𝑎𝑜 = ∑ ∑ 𝑑 𝑖𝑗 𝑃 𝑖 𝑃 𝑗 𝑆 𝑗=1 𝑆 𝑖=1
where 𝑑 𝑖𝑗 is the dissimilarity measure between species 𝑖 and species 𝑗 from the whole metacommunity of 𝑆 species, and 𝑃 𝑖 , and 𝑃 𝑗 the proportion of the species 𝑖, and 𝑗 in the metacommunity, respectively. To see the full development of the 𝛽 𝑁𝑜𝑟𝑚-𝑝𝑟𝑜𝑝 equation, see de Bello et al. (2010).

TBD, and FBD correspond to the taxonomic, and functional 𝛽 𝑁𝑜𝑟𝑚-𝑝𝑟𝑜𝑝 , respectively.

This 𝛽 𝑁𝑜𝑟𝑚-𝑝𝑟𝑜𝑝 index can be interpreted as the proportion of different equivalent species/functional entities found across all sampling units (𝛼 𝑅𝑎𝑜 ) with respect to the total regional diversity (𝛾 𝑅𝑎𝑜 ), which is useful when comparing different facets of diversity (e.g. taxonomic, functional, phylogenetic) (de Bello et al. 2010).

b) Pairwise Taxonomic and Functional Beta Diversities ("TBDp" and "FBDp")

The pairwise version of the 𝛽 𝑁𝑜𝑟𝑚-𝑝𝑟𝑜𝑝 index consists in calculating this same index for each pair of sites. Each pairwise beta can thus be expressed as:

𝛽 𝑎𝑏 = 𝛾 𝑎𝑏 -(𝛼 𝑎 + 𝛼 𝑏 ) 2 ⁄ 𝛾 𝑎𝑏
where 𝛾 𝑎𝑏 is the number of equivalent species/functional entities over the pair of sites 𝑎 and 𝑏, 𝛼 𝑎 is the number of equivalent species/functional entities of the site 𝑎 and 𝛼 𝑏 is the number of equivalent species/functional entities of the site 𝑏 (see de Bello et al. 2010).

TBDp, and FBDp correspond to the entire sites-by-sites matrices of taxonomic, and functional pairwise 𝛽 𝑎𝑏 s, respectively. This 𝛽 𝑎𝑏 index can be interpreted as the proportion of different equivalent species/functional entities found across two sampling units (𝛼 𝑎 ,𝛼 𝑏 ) with respect to the total diversity of the pair of sites (𝛾 𝑎𝑏 ). As such, it reflects the pairwise dissimilarity across sites in terms of assemblage differences. Thus, pairs of sites that have higher 𝛽 𝑎𝑏 tend to have more different assemblages than pairs of sites that have lower 𝛽 𝑎𝑏 .

c) Note

It is important to note that the interpretation of the 𝛽 𝑁𝑜𝑟𝑚-𝑝𝑟𝑜𝑝 index strongly depends on what is considered as the regional species pool (de Bello 2012). In our case, we considered the full community, as it was done in the original studies from which we collected the data. The region indeed is a unit that is difficult to delineate, with sometimes a quite subjective scale. However, in all of the 80 original case studies, the whole pool was considered to study the ecology of the focused community and no region stratification was applied. Therefore, we considered the full community as the regional pool for the null modeling procedure.

Figure S6.1. Proportion of species composition variation due to environment including the part of variation explained that is potentially due to the measured traits (orange) and the part that is not due to the measured traits (blue). corner model tested, R_tra: relationship between environment gradients and individual trait variables, Q_env: relationship between trait syndromes and individual environmental variables, RQ: relationship between environment gradients and trait syndromes, env_tra: relationship between individual environmental variables and trait variables. In the best case scenario in terms of explanatory poweri.e. when considering syndromes with gradients -in average 20% of the trait syndromes and environment gradients are significantly related.

Results and conclusion

According to the variation partitioning analysis, metacommunities in the CESTES database are slightly more driven by dispersal than by environment (in average, [E] = 0.07 ± SD 0.06 VS. [S] = 0.11 ± SD 0.10) but this is highly variable across datasets (Fig. S9.1).

However, the metacommunities showing random trait patterns (see main MS) are not significantly more driven by dispersal limitation than the others (Fig. S9.2). Moreover, there are several metacommunities highly responsive to space that yet show significant trait structuring, either divergence or convergence (Fig. S9.2). These suggest that in these metacommunities, the randomness of trait diversity with respect to taxonomic diversity is not necessarily the evidence of dispersal limitation dominancy.

To conclude, seems that in this synthesis, the observed trait diversity randomness is not more the proof of neutral dynamics dominancy -namely dispersal, in this case -than of current trait-based approach difficulty to capturing metacommunity complexity.

To go further, one would need to test the importance of ecological drift (which is another source of stochasticity in metacommunities (e.g. Vellend 2010)) in the datasets and determine whether this could explain the majority of trait dispersion randomness observed, but this seems difficult to test with these data. of the index; in this case, the index is considered as the taxonomic diversity (but see comment below) -tau=dmean is the mean functional distance between all the species of the metacommunity and is used as the threshold from which two species are considered as distinct in the calculation of the index; in this case, the index is considered as a functional diversity with intermediate functional clustering criteria -tau=dmax is the maximum functional distance between all the species of the metacommunity and is used as the threshold from which two species are considered as distinct in the calculation of the index; in this case, the index is considered as a functional diversity with coarser functional clustering criteria.

The functional diversity index we used in the main analysis based on de Bello's approach is supposed to correspond to the combination of {q=2; tau=dmax}. The suggestion of Chao's & coll. is to explore not only this combination but also all the other ones based on the parameter values given above.

It is important to note that, in their 2019 paper, Chao & coll. seem to consider taxonomic diversity as a case of functional diversity and even name it "functional diversity" (see e.g., Chao et al. 2019: Figure 2b). This is also reflected in their code. They calculate their taxonomic diversity by using the traitbased Gower distance matrix and consider the minimal functional distance (dmin) as a threshold of species distinctiveness. They do not use the taxonomic classification as we normally do with Rao-based frameworks, i.e. considering a constant distance of 1 between species (see all the relevant works from Pavoine, de Bello, Ricotta, etc.). Therefore, we have to keep in mind that using Chao's framework here makes us compare taxonomic and functional diversity in a slightly different way than we did it through de Bello's framework in the main analysis.

We used and adapted the R script provided in Chao & coll.'s Supp. Mat to calculate their suggested measures of taxonomic and functional beta diversity.

In order to test our ability to draw inferences about metacommunity processes (habitat filtering vs. biotic sorting) with these newly calculated measures of functional diversity, we followed exactly the same procedure as the one used in the main analyses. We applied an unconstrained trait-shuffling algorithm that consists in permuting species labels across the species trait matrix while the species abundance/presence-absence matrix remains unchanged; this was repeated 500 times (instead of 1000 times because it already took 3.6 days to run). This algorithm ensures that the species abundance/presence-absence matrix keeps the same spatial structure and species richness while the species-traits links are shuffled. For each newly generated trait matrix, we calculated taxonomic and functional beta diversities based on Chao's approach. Because the distribution of the beta diversity indices calculated on the null reference data were not distributed normally in most of the cases, we log transformed the values of these indices for both the observed and null-based indices (Botta-Dukát 2018). To assess the significance of trait convergence vs. divergence, we calculated the Standardized Effect Size (Gotelli and McCabe 2002) on these log transformed values [START_REF] Swenson | Functional and Phylogenetic Ecology in R[END_REF] for each dataset: SES FBD = ( logFBDobs -mean(logFBDnull) ) / sd(logFBDnull) (for more information on the SES, see the Methods section of the paper).

Results and discussion

As a reminder, in the main analyses based on de Bello's approach, we had found that, among the 80 datasets, most (60 out of 80) did not differ from random expectations with respect to the co-occurrence of species with different traits; only 25% showed a functional turnover that was significantly different from expected given the taxonomic turnover (main manuscript: Fig. 2).

In the following, we compare this result to the new results based on the attribute-diversity approach to functional diversity proposed by Chao et al. (2019).

First, we notice that with the combination {q=2, tau=dmax} (Fig. S10.1, third panel from the left) -that is supposed to be equivalent to our original approach -we find significant functional turnover in 13 datasets out of the 80, that is 16% of the studies (11 datasets showing high turnover and 2 datasets showing low turnover). Even though these 13 datasets were also identified as structured by the original approach (they are part of the 20), the results quite differ with 10% less datasets identified compared to de Bello's approach. Consequently, we suspect the Chao's approach not to be strictly equivalent as soon as we compare the null communities-based functional diversities to this taxonomic diversity. Another reason for this discrepancy may be that many of the null distributions of functional beta diversity across tau x q combinations showed strongly non-normal distribution. Thus, in some cases, even the logtransformation probably failed in ensuring a safe SES test (Botta-Dukát 2018).

Second, when considering all of the combinations of tau and q, we find in total 38 datasets out of the 80 that show a significant functional turnover in at least one tau-q combination, that is 47.5% of the datasets. This is an undoubtedly higher number than the one we found with the original approach that considers only one tau-q combination. It is however expected since in the original approach, the functional diversity is calculated based on the extreme side of the tau-q gradient (where both q and tau are set at their maximum value). As one decreases tau, one increasingly refines the resolution of the functional grouping until the point where one functional group is simply equivalent to one (taxonomic) species. Doing so, the functional diversity becomes closer and closer to the taxonomic diversity, which makes functional diversity more and more able to show significant structure compared to taxonomic diversity. This result complements our main results. It shows that unless functional diversity is calculated with a fine resolution close to the taxonomic resolution, it allows inferring metacommunity processes in only a limited number of cases. Using the mean species functional distance as a threshold of species distinctiveness instead of the maximum distance substantially improves this (35 datasets with dmean vs. datasets dmax, considering all q together).

Third, and more interestingly, the datasets that show a significant functional turnover differ depending on the value of q. In general, 35% of the datasets show significant turnover when considering all of the three possible values of q. This is due to differences among datasets in their species abundance distributions, and thus, in the role of common species in driving diversity patterns. For instance, datasets that have a very skewed species abundance distribution with a lot of rare species will be more properly analyzed with q=0 and ability to detect significant functional turnover may be enhanced. This is more a question of optimal calibration of the diversity index on a case-by-case basis. One would first have to define which q is the best for each study and then use it for the calculation of the functional diversity. Given tau=dmax, decreasing q makes functional diversity less able to detect significant functional turnover, with 5 cases for q=0, 17 cases for q=1, and 13 (Chao)/20 (de Bello) cases for q=2. Thus, the q we used in our original analyses (q=2) based on de Bello's approach was still the one that affected the least our ability to detect significant structure in functional turnover. Therefore, when considering the functional distance threshold tau=dmax, and the species weighting scheme of q=2, we did not substantially affect our ability to detect significant structure in functional turnover compared to other parameter choices. In addition, using the same q=2 to calculate both taxonomic and functional diversity allow comparing taxonomic and functional diversity on the same level. Our general conclusion would have been at least qualitatively the same whatever q. Of course, we could draw new particular conclusions with respect to differences among datasets, and other singularities. However, this is not the scope of the main paper, which is about synthesizing and trying to find generality among classical traitbased studies.

Perspectives

Chao's framework undoubtedly brings precious insights into trait-based analyses, especially on a caseby-case basis, when trait information is limited and species abundance distribution is skewed (speciesrich assemblages). However, there are still some grey areas and points to develop in order to make it applicable in a synthesis context.

First, it would be interesting to know more about the biological hypotheses underlying specific choice of threshold of species distinctiveness and how such choices link to the traditional taxonomic diversity (i.e. based on a species classification that does not rely on any functional information). This is particularly important when considering that taxonomic diversity can encompass a lot more of ecological information than functional diversity [START_REF] Clark | Why species tell more about traits than traits about species: predictive analysis[END_REF]). Second, it would be valuable to better link this new framework with the existing de Bello's framework and harmonize approaches. In particular, Chao's approach does not provide yet any formulation for the pairwise equivalent of their beta diversity which is however very useful for modeling diversity-environment relationships. Even though it would be, by principle, possible to calculate, we do not know yet the properties of such an index. It would be good to explore these before applying it on different datasets in a synthesis context. Third, some validation steps are needed with respect to the use of null modeling approaches in Chao's framework, including checking the effect of q and tau on the normality of beta diversity measures, and clarifying which taxonomic diversity should be used in the SES test (the traditional one, or the one based on the minimum Gower distances?). Fourth, although Chao's R function is supposed to deal with presence-absence data when the user sets the argument right, it currently not work and returns error messages. Fifth, the function does not work when there is perfect functional redundancy in the dataset, that is, when several species have exactly the same traits with same trait values. We had to adapt the code in order to make it work with some of our datasets that had this particular feature. This is also, why we think that the way the taxonomic diversity is defined in Chao's framework would deserve some clarification within the grasp of the end users. An extended validation of the R function would certainly be useful for further applications.

To conclude, although such approaches are promising, they need further validation for synthetic work, in particular with respect to the cross-study comparability, the way taxonomic diversity is defined, the biological hypotheses underlying the index calculation and the properties of the generated indices. 
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 1 Figure 1. Conceptual illustration of the two main analyses performed in this synthesis adapted

Figure 2 .

 2 Figure 2. Trait-related determinism in metacommunity structure. Plot of the Standardized Effect

Figure 3 .

 3 Figure 3. Structuring and non-structuring traits. a) Overall percentage of traits / trait modalities

Figure 4 .

 4 Figure 4. Relative sensitivity of the pairwise Functional Beta Diversity to environment. a)

Figure 5 .

 5 Figure 5. Synthesis of the relative sensitivity of pairwise Functional Beta Diversity to
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Figure S9. 1 .

 1 Figure S9.1. Results from the variation partitioning applied on each of the CESTES datasets. Total variation explained (grey) and pure fractions of environment (black) and space (orange) are represented.

Figure S9. 2 .

 2 Figure S9.2. Links between trait diversity patterns and strength of the signature of dispersal dominance observed in the CESTES metacommunities. Upper panels: analysis separating trait divergence and convergence. Lower panels: analysis pooling both significant trait structures, for (a,c) multi-trait diversity analysis, and (b,d) single-trait analysis. No significant difference was found. (a) Kruskal-Wallis chi-squared = 0.12213, df = 2, p-value = 0.9408; b) Kruskal-Wallis chi-squared = 0.32997, df = 2, p-value = 0.8479; c) Kruskal-Wallis chi-squared = 0.11971, df = 1, p-value = 0.7294; d) Kruskal-Wallis chi-squared = 0.030917, df = 1, p-value = 0.8604).

Figure S10. 1 .

 1 Figure S10.1. Trait-related determinism in metacommunity structure based on the attribute-diversity approach. Plots of the Standardized Effect Size (SES) of the total functional beta diversity for each dataset showing in which cases the overall functional turnover is lower (blue dots), or higher (red dots) than

Figure S11. 2 .

 2 Figure S11.2. Exploration plots (raw data) of the relationship between the relative sensitivity of functional pairwise beta diversity (BetaFD=FBDp) and the different ecological features of the datasets, namely the a) kingdom (simplified to two levels), b) level of disturbance, c) ecosystem type, d) dispersal mode, e) study group, and f) spatial extent of the study.

FigureS11. 3 .

 3 FigureS11.3. Exploration plots of the relationship between the relative sensitivity of functional beta diversity (BetaFD=FBDp) and different sampling properties of the datasets, namely a) mean sampling coverage, b) trade-off between the number of traits and number of species, c) number of sampling sites, d) number of environmental variables, e) number of traits, and f) number of species of the datasets.

Figure S11. 4 .

 4 Figure S11.4. Functional redundancy in the datasets; a) distribution of the local functional redundancy calculated with the function 'rao.diversity' from the package {SYNCSA} (Debastiani and Pillar 2012) 2 , b) link between the mean functional redundancy of the dataset and the trade-off between the number of traits and the number of species used in the studies, and c) link between the relative sensitivity of Functional Beta Diversity to environment and the mean functional redundancy in the datasets. These plots suggest that the local functional redundancy might play a negative role in the sensitivity of
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	of functional diversity. Specifically, we classified all the traits of the 80 datasets (i.e. 1084 traits /
	trait modalities) into nine broad categories (in the same vein as e.g. Dawson et al. 2021; Martini
	et al. 2021) (Table 1; data available at: https://doi.org/10.57745/LLBAZD) and explored the
	potential relationship between FBD pattern significance and types of traits. We also explored the
	distribution of the proportion of structuring traits across kingdoms and ecosystems (Dawson et
	al. 2021), and across study groups as conditioned by the original studies (plant groups were
	further adjusted from Dansereau's classification of formation-types; Penfound 1967; Whittaker
	2012).
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	Tuomisto and Ruokolainen
	2006); (ii) it is adapted to handle potential non-linear relationships between response and
	predictor; (iii) it makes no assumption on the underlying distribution of the original variables
	(Goslee 2009); and (iv) it allows us to use exactly the same number of environmental predictors
	across all the datasets, namely one compound matrix of environmental distances that synthesizes
	the overall variability of the environment across the sites. We used a Generalized Additive
	Model (GAM) with a spline-based smoothing parameter allowing three knots (k=3; 'gam' in
	{mgcv}; Wood 2011) to detect potential hump-shaped relationships that may exist between
	compositional and environmental distances (e.g., Ferrier et al. 2007) while avoiding convergence
	issues for some datasets with small sample size.
	First, to assess how well the environmental variation explained TBDp and FBDp variations, we
	calculated the R 2 of the two models for every dataset; R²TBDp, and R²FBDp, respectively. Note that
	the R² values returned by distance-based approaches are systematically lower than by raw-data
	based approaches due to the derived nature of distances (Goslee 2009, Legendre and Fortin 2010,
	Legendre and Legendre 2012). Thus, they should only be considered in relation to each other
	across datasets. We then compared the size of R²TBDp relative to R²FBDp for every dataset. We
	finally calculated the relative sensitivity of FBDp to environmental variations as the difference
	between R²FBDp, and R²TBDp. A FBDp relative sensitivity of zero means that the functional beta
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	individual trait-environment relationships (fourth-corner & RLQ; Dray et al. 2014) and that are
	able to keep an equitable comparison (i.e. independence) between taxonomical and functional
	response to environment (hence excluding the Community Weighted Means approach that
	integrates taxonomy-related information, see Peres-Neto et al. 2017; Zelený 2017, 2018;
	analysis focused on trait dispersion, with other trait-based approaches that focus on trait
	composition variation explained by environment (double-CCA; ter Braak et al. 2018) and
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  This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of The American Naturalist, published by The University of Chicago Press. Include the DOI when citing or quoting: https://doi.org/10.1086/727471. Copyright 2023 The University of Chicago. Bello et al. 2011), it is still unclear how much we would gain from functional information measured at the individual level compared to the taxonomy alone (Clark 2016; Read et al. 2017), and in which contexts (i.e. taxon, type of traits or gradient, study scale, etc.; Albert et al. 2011; de Bello et al. 2011; Siefert et al. 2015). At intermediate scales, where the majority of our analyses took place, reducing biological complexity down to a few functional traits may not always refine our understanding of community structure (in line with de Bello et al. 2013;

	Escobedo et al. 2021).
	The importance of trait variation within species, and how it may influence expected patterns,
	remains an open question (e.g., Violle et al. 2012; Guisan et al. 2019). Ignoring trait variation
	within species across habitats could certainly have influenced our observed weak responses of

(see also Appendix S10).

communities to environmental variation

[START_REF] Bolnick | Why intraspecific trait variation matters in community ecology[END_REF][START_REF] De Bello | Quantifying the relevance of intraspecific trait variability for functional diversity[END_REF][START_REF] Swenson | Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient[END_REF]

. While integrating trait variation can increase predictability (e.g., Albert et al. 2011; de Conclusions and prospects for future research directions More than 15 years after

Violle et al.'s (2007) 

call-"Let the concept of trait be functional!"-
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  [START_REF] Heino | Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems[END_REF]. The best practice for single datasets would be to refine the null model based on the environmental and spatial information available and to assess the trait structuring across environmental gradients (e.g.de Bello 2012; de Bello et al. 2013;[START_REF] Escobedo | Disturbance reinforces community assembly processes differentially across spatial scales[END_REF], and scales (e.g.[START_REF] Gianuca | Integrating trait and phylogenetic distances to assess scale-dependent community assembly processes[END_REF]. In a synthesis context though, one would face the challenge of keeping this strategy comparably efficient across all datasets.

  the data used for this studythe CESTES datasetsare published, publicly available and archived according to open data requirements at: https://idata.idiv.de/ddm/Data/ShowData/286(Jeliazkov and the CESTES consortium 2019).Additional formats of the CESTES data and all of the R scripts used for this study are available
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Table 1

 1 The nine exploratory categories used to classify the 1084 traits/trait modalities of the CESTES database (full data table in https://doi.org/10.57745/LLBAZD).

	Code	Category	Description
	Food	Food-related	Related to diet, food apprehension, nutrient assimilation and foraging techniques
	Reproduction Reproduction-related	Related to reproduction style or ability (e.g. number of eggs)
	Mobility	Mobility-related	Related to mobility abilities, dispersal mode, propagule dissemination in space
	Habitat	Habitat-related	Related to the association with habitat / substrate / physical milieu, specialization (e.g.
			host, microhabitat, etc.)
	Body	Body-related	
	Status	Status	Related to abundance, biogeographical distribution, rarity, threat level (e.g. harvesting
			pressure, red list level), patrimonial value, etc.
	Life history Life history	Related to life cycle characteristics, phenology and ecological strategies
	Others	Others	Traits that could not at all be classified or that mix / integrate different types of
			information (including customized traits): e.g. species thermal index, home range size,
			competitive strategy, symbiont, vertical stratification, survival, behavioral innovation
			rate, fluorescence, productivity, taxonomic family, burrowing ability, number of hosts
			exploited.

Related to morphological characteristics (e.g. size, wing length, florescence type, etc.) which can indeed be related to any function related to food extraction, reproduction, etc.

Tolerance

Tolerance to disturbance Related to tolerance to any disturbance (fire regimes, drought, etc.)
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	Figure 4 Figure 5	a) Main effects b) Interaction effects		Difference in b)	variation explained<5%	80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Dataset Effects Dispersal * Scale Dispersal mode Disturbance * Scale Intercept Level of disturbance Sampling properties Spatial scale Disturbance * Dispersal	-0.2 -0.1 0.0 0.1 0.2	Relative sensitivity of FBDp to environment	0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2	Predicted relative sensitivity of BetaFD to environment
																				-0.1
																				-0.2
		Intercept (Disturbed/Flyers)	Mixed	Natural	Walkers	Swimmers	Sessile	Spatial scale	Nb Env	Nb Traits vs. Nb Species	Mixed * Swimmers Parameter Mixed * Sessile Sample size	Mixed * Walkers	Natural * Sessile	Natural * Swimmers	Natural * Walkers	Mixed * Scale	Natural * Scale	Walkers * Scale	Swimmers * Scale	Sessile * Scale

Table S1 . 1 .
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	Cleary2016 Pekin2011 Villeger2012a	Coral reefs, Jakarta, Indonesia Walpole and Albany, SW Australia Estuarine ecosystem,Terminos Lagoon, Gulf of Mexico, Mexico	16 38 51	Fishes Plants Fish	Marine Terrestrial Marine		1764 Fishing 1073 Semi-3360 Semi-	2005 2007 May-03	21 17 4	15 4 16	162 183 45	27 16 35
	Cornwell2009	Jasper Ridge Biological Preserve, Coastal, California, USA	17	Woody plants	Terrestrial		4.81 Semi-natural natural	2002-2003	3	3	42	34
	DatasetName Diaz2008 Purschke2012a Pomati2013 Villeger2012b	Ecosystem and location Segura River basin,SE Spain Semi-natural grasslands, Jordtorp area, Öland Baltic Island, Sweden peri-alpine mesotrophic Lake Zürich, Switzerland Estuarine ecosystem,Terminos Lagoon, Gulf of Mexico, Mexico	Study id 18 40 39 51	Taxonomic group Macroinvertebrates Plants Phytoplankton Fish	Ecosystem type Freshwater Terrestrial Freshwater Marine	Extent (km2)	Type of disturbance 6300 Mixed 20.25 Semi-natural natural 88.66 Mixed 3360 Semi-	Sampling date(s)/period 1999-2001 2007 2009 Jul-03	39 12 nbEnv nbTra nbSpe nbSit 62 208 104 2 164 113 8 15 20 15 4 16 48 34
	Bagaria2012 Barbaro2009a Doledec1996 Villeger2012c Drew2017 Purschke2012b Villeger2012d Dziock2011 Purschke2012c Barbaro2009b Farneda2015 Purschke2012d Villeger2012e	Mediterranean semi-natural mountain grasslands, southern Catalonia, Spain Intensive pine plantations, mosaic forest landscapes in south-Urban-rural gradient, Lyon, France Estuarine ecosystem,Terminos Lagoon, Gulf of Mexico, Mexico Archipelagos, Melanesia Semi-natural grasslands, Jordtorp area, Öland Baltic Island, Sweden Estuarine ecosystem,Terminos Lagoon, Gulf of Mexico, Mexico Dessau, Magdeburg, Elbe, Floodplain, Sachsen-Anhalt, Germany Semi-natural grasslands, Jordtorp area, Öland Baltic Island, Sweden western France Intensive pine plantations, mosaic forest landscapes in south-western France Biological Dynamics of Forest Fragments Project (BDFFP) located ca. 80 km north of Manaus, Central Amazon, Brazil Semi-natural grasslands, Jordtorp area, Öland Baltic Island, Sweden Estuarine ecosystem,Terminos Lagoon, Gulf of Mexico, Mexico	1 2 19 51 20 40 51 21 40 2 22 40 51	Plants Beetles Birds Fish Coral reef fishes Plants Fish Grasshopers Plants Birds Bats Plants Fish	Terrestrial Terrestrial Terrestrial Marine Marine Terrestrial Marine Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Marine	2000 Semi-natural 32.16 Forestry 96 Mixed natural 3360 Semi-15300000 Mixed 20.25 Semi-natural natural 3360 Semi-224 Agricultural 20.25 Semi-natural 32.16 Forestry 680 Natural 20.25 Semi-natural natural 3360 Semi-	2007 2002-2003 1981 Nov-03 NA 2007 May-06 2006 2007 2002-2003 2011-2013 2007 Jul-06	8 11 11 4 1 12 4 5 12 11 9 12 4	13 12 4 16 3 1 16 6 1 12 8 1 16	49 36 40 47 188 53 43 16 145 53 41 117 46	29 34 51 113 7 35 195 34 113 201 113 17 35
	Barbaro2012 Frenette2012a Westgate2012 Barbaro2017 Frenette2012b Purschke2012e Yates2014 Bartonova2016 Frenette2013 Rachello2007 Eallonardo2013 Fried2012 Raevel2012 Bonada2007S Bonada2007W BrindAmour2011a BrindAmour2011b Goncalves2014b Robroek2017b Goncalves2014a Robroek2017a Goncalves2010 Robinson2014 Gibb2015 Ribera2001 Gallardo2009 Choler2005	Fragmented native forests, volcanic banks peninsula, Canterbury, South Island, New Zealand Arid steppes, Eastern Morocco Eucalypt forest, Booderee National Park, Australia Vineyards, Aquitaine, France Arid steppes, Eastern Morocco Semi-natural grasslands, Jordtorp area, Öland Baltic Island, Sweden Pasture vs remnant vegetation, North east of New South Wales, Australia National Nature Reserves and National Natural Monuments, Czech Arid steppes, Eastern Morocco Coral reefs, Jakarta, Indonesia Inland salt/marsh, New York State, USA, near Montezuma; Agriculture areas, France Montpellier district, Mediterranean vertical outcrops Carncross, Howland Island and Fox Ridge Republic Mediterranean rivers, Catalonia, Spain Mediterranean rivers, Catalonia, Spain Drouin lake, Laurentian Shield Lakes, Quebec, Canada Pare lake, Laurentian Shield Lakes, Quebec, Canada Open restingas, Atlantic rainforest, Brazil Peat bogs, Western Europe Open restingas, Atlantic rainforest, Brazil Peat bogs, Western Europe Santo State, southeast Brazil Santa Lucia Biological Station (SLBS), Santa Teresa County, Espirito Various habitats, protected reserves, Prague region, Czech Republic Themeda grasslands, south-east Australia Scotland Ebro river, Mediterranee, Spain Southwestern Alps, Aravo, Grand Galibier, France	3 23 52 4 23 40 53 5 23 41 54 24 42 6 6 7 7 28 45 28 45 27 44 26 43 25 55	Birds Plants Amphibians Birds Plants Plants Ants Butterflies Ants Corals Plants Plants Plants Macroinvertebrates Macroinvertebrates Fishes Fishes Spiders Bryophytes Spiders Vascular plants Spiders Butterflies Spiders Beetles Macroinvertebrates Plants	Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Marine Mixed Terrestrial Terrestrial Freshwater Freshwater Freshwater Freshwater Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Terrestrial Freshwater Terrestrial	625 Natural 11765 Mixed natural 98 Natural 750 Agricultural 11765 Mixed 20.25 Semi-45500 Mixed natural 78866 Natural 11765 Mixed 2242 Mixed 3.5 Natural 386000 Agricultural 1886 Semi-96.3 Natural 96.3 Natural 0.31 Semi-0.23 Semi-natural 220000 Natural 3800000 Natural 220000 Natural 3800000 Natural natural natural 0.44 Natural 260 Semi-37.64970119 Mixed 78772 Mixed natural 11 Agricultural natural 0.02 Semi-	2010-2011 2009 2007-2008 2013 2010 2007 2007 2004 -2006 2010 1995 2007 2003-2006 2008-2009 summer 1996 winter 1996 2001 2010 2010-2011 2009 2010-2011 2001 2006-2007 2003-2004 2009-2011 1995-1997 2006 2001	6 5 6 6 5 12 9 11 5 47 14 11 3 16 14 17 10 9 10 9 19 1 7 7 19 30 7	7 18 2 8 18 1 11 13 6 5 14 10 7 63 63 24 22 12 22 5 24 4 6 10 20 87 8	21 32 12 56 32 137 123 128 22 93 41 75 97 70 44 6 112 10 105 15 7 146 71 86 68 35 82	50 43 26 113 18 50 20 22 27 76 122 218 52 356 56 60 309 56 90 45 20 22 36 87 17 76 75
	Campos2018 Jamil2013 Shieh2012	Tropical floodplain lakes, Upper Paraná River floodplain, Brazil Terschelling island, dune meadow, Netherlands Wu Stream, central Taiwan	8 29 46	Ostracods Plants Macroinvertebrates	Freshwater Terrestrial Freshwater		700 Mixed 84 Agricultural 696 Mixed	2011 1982 2005-2006	7 5 11	2 5 38	37 28 30	27 20 48
	Carvalho2015 Jeliazkov2013 Spake2016	Tocantins-Araguaia river basin, Amazonia, Brazil Ponds, agricultural areas, Brie, Seine-et-Marne, France Coniferous plantations, UK	9 30 47	Stream fishes Macroinvertebrates Beetles	Freshwater Freshwater Terrestrial	180000 Mixed 430 Agricultural 95000 Forestry	2008 2012 1995-1997	8 47 9	26 91 6	65 112 51	27 200 44
	Castro2010 Jeliazkov2014 Stanko2014	Southern Portugal Ponds, agricultural areas, Brie, Seine-et-Marne, France Slovakia	10 30 48	Plants Amphibians Flea	Terrestrial Freshwater Terrestrial	1.9844 Agricultural 430 Agricultural 12000 Agricultural	NA 2011-2012 1986, 1990	8 9 16	6 16 6	28 11 27	9 135 13
	Charbonnier2016a Krasnov2015 Urban2004a Charbonnier2016b Lowe2018a Chmura2016 Lowe2018b Urban2004b	Forests, Europe Palearctic area; Slovakia Ponds, 200-ha section of the Yale-Myers Research Station in Union, Forests, Europe Urban gradient, Sydney, Australia Connecticut, USA Karkonosze Mts, Sudeten Mts, Poland Urban gradient, focus on gardens, Sydney, Australia Connecticut, USA Ponds, 200-ha section of the Yale-Myers Research Station in Union,	11 31 49 11 32 12 32 49	Bats Flea Macroinvertebrates Birds Spiders Plants Spiders Amphibians	Terrestrial Terrestrial Freshwater Terrestrial Terrestrial Terrestrial Terrestrial Freshwater	4400000 Forestry 33000000 Mixed 2 Mixed 4400000 Forestry 1000 Mixed 135.05 Natural 1000 Mixed 2 Mixed	2012-2013 1958, 2008 1999-2000 2012-2013 2013 NA 2013 1999-2000	5 17 6 5 33 10 20 6	9 13 14 10 7 17 7 2	27 177 71 73 135 46 95 7	45 14 175 115 208 364 65 11
	ChongSeng2012a Marteinsdottir2014 vanKlink2017 ChongSeng2012b Meffert2013 vanKlink2018a Ossola2015 vanKlink2018b	Seychelles archipelago Grazed ex-arable fields and semi-natural grasslands, southeast Sweden Low intensity hay meadows, Swiss Plateau, Switzerland Seychelles archipelago Urban wasteland, Berlin, Germany Low intensity hay meadows, Swiss Plateau, Switzerland Urban habitat, south-eastern Melbourne, Australia Low intensity hay meadows, Swiss Plateau, Switzerland	13 33 50 13 34 50 35 50	Coral reef fishes Plants Plants Coral reef fishes Birds Bees Ants Moths	Marine Terrestrial Terrestrial Marine Terrestrial Terrestrial Terrestrial Terrestrial		3600 Semi-12 Mixed 12154 Agricultural natural 3600 Semi-natural 892 Urban 12154 Agricultural 100 Urban 12154 Agricultural	2010 2007-2008 2014-2015 2012 2007 2014-2015 2013-2014 2014-2015	17 7 11 12 4 11 20 11	2 3 5 2 5 7 5 7	147 39 129 155 30 46 60 87	79 14 35 54 35 78 29 35
	Cleary2007a Pakeman2011 vanKlink2018c	Mentaya river, Central Kalimantan province, Borneo, Indonesia Drumbuie, Scotland Low intensity hay meadows, Swiss Plateau, Switzerland	14 36 50	Birds Plants Ground beetles	Terrestrial Terrestrial Terrestrial		196 Mixed 35 Agricultural 12154 Agricultural	1997-1998 2007 2014-2015	36 33 11	4 28 7	145 148 60	37 30 33
	Cleary2007b Pavoine2011 vanKlink2018d vanKlink2018e	Coral reefs, Spermonde Archipelago, Makassar, southwest Sulawesi, Coastal marsh plain Mekhada in the east of Annaba , La Mafragh, Low intensity hay meadows, Swiss Plateau, Switzerland Indonesia Algeria Low intensity hay meadows, Swiss Plateau, Switzerland	15 37 50 50	Foraminifera Plants Rove beetles Hoverflies	Marine Terrestrial Terrestrial Terrestrial		2418 Mixed 100 Agricultural 12154 Agricultural 12154 Agricultural	1997 1979 2014-2015 2014-2015	10 8 11 11	3 14 4 6	24 56 82 26	31 32 97 35
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	b_Hemeroby_3Natural:DispSim r_Study3[21,Intercept] r_Study3[49,Intercept]	Disturbance * Dispersal Random effect Random effect	-0.1 0.01 0	0 0 0	0.05 0.03 0.03	-0.2 -0.06 -0.06	-0.13 -0.02 -0.02	-0.1 0.01 0	-0.06 0.02 0.02	0 0.07 0.06	634 596 663	1 1 1
	pl2Walkers r_Study3[22,Intercept] r_Study3[50,Intercept]	Random effect Random effect	0.02 -0.04	0 0	0.03 0.03	-0.05 -0.1	0 -0.06	0.02 -0.04	0.04 -0.01	0.08 0.02	655 488	1.01 1
	b_scaleExtent_km2_log:DispSim pl2Sessile r_Study3[23,Intercept] r_Study3[51,Intercept]	Dispersal * Scale Random effect Random effect	-0.02 0.05 0.02	0 0 0	0.03 0.04 0.03	-0.07 -0.01 -0.04	-0.04 0.03 0	-0.02 0.05 0.02	0 0.08 0.04	0.03 0.13 0.09	568 584 572	1 1 1
	b_scaleExtent_km2_log:DispSim r_Study3[24,Intercept] r_Study3[52,Intercept]	Dispersal * Scale Random effect Random effect	-0.01 0.01 -0.03	0 0 0	0.03 0.03 0.03	-0.06 -0.05 -0.09	-0.02 -0.01 -0.06	-0.01 0.01 -0.03	0.01 0.03 -0.02	0.04 0.07 0.02	577 559 566	1 1 1
	pl2Swimmers r_Study3[25,Intercept] r_Study3[53,Intercept]	Random effect Random effect	0.05 -0.03	0 0	0.03 0.03	-0.01 -0.09	0.02 -0.05	0.05 -0.02	0.07 0	0.12 0.03	524 571	1 1
	b_scaleExtent_km2_log:DispSim pl2Walkers r_Study3[26,Intercept] r_Study3[54,Intercept]	Dispersal * Scale Random effect Random effect	0.01 -0.07 0.01	0 0 0	0.03 0.03 0.03	-0.04 -0.13 -0.04	-0.01 -0.09 -0.01	0.01 -0.07 0.01	0.02 -0.04 0.03	0.06 0 0.07	642 498 531	1 1 1
	sd_Study3__Intercept r_Study3[27,Intercept] r_Study3[55,Intercept]	sd_Study3__Intercept Random effect Random effect	0.04 0.03 0.02	0 0 0	0.01 0.03 0.03	0.02 -0.03 -0.04	0.03 0.01 0	0.04 0.02 0.02	0.05 0.05 0.04	0.06 0.08 0.08	484 567 591	1 1 1
	sigma r_Study3[28,Intercept] r_Study3[56,Intercept]	sigma Random effect Random effect	0.03 0.01 -0.01	0 0 0	0.01 0.03 0.03	0.02 -0.05 -0.08	0.03 0 -0.03	0.03 0.01 -0.01	0.04 0.04 0.01	0.05 0.07 0.05	363 593 668	1.01 1 1
	r_Study3[1,Intercept] r_Study3[29,Intercept] r_Study3[57,Intercept]	Random effect Random effect Random effect	0.02 0.03 0.04	0 0 0	0.03 0.04 0.03	-0.04 -0.04 -0.01	0 0 0.02	0.02 0.03 0.04	0.04 0.05 0.06	0.07 0.1 0.11	549 527 623	1 1 1
	r_Study3[2,Intercept] r_Study3[30,Intercept] r_Study3[58,Intercept]	Random effect Random effect Random effect	0.01 -0.01 0.01	0 0 0	0.03 0.03 0.03	-0.06 -0.07 -0.04	-0.01 -0.03 -0.01	0.01 -0.01 0.01	0.03 0.01 0.03	0.07 0.05 0.07	543 561 585	1 1 1
	r_Study3[3,Intercept] r_Study3[31,Intercept] r_Study3[59,Intercept]	Random effect Random effect Random effect	-0.02 -0.04 -0.01	0 0 0	0.03 0.04 0.03	-0.1 -0.12 -0.07	-0.04 -0.06 -0.03	-0.02 -0.04 -0.01	0 -0.01 0.01	0.04 0.03 0.04	563 499 553	1 1 1
	r_Study3[4,Intercept] r_Study3[32,Intercept] r_Study3[60,Intercept]	Random effect Random effect Random effect	-0.01 0.02 -0.01	0 0 0	0.03 0.04 0.03	-0.07 -0.05 -0.06	-0.03 0 -0.03	-0.01 0.02 -0.01	0.01 0.05 0.01	0.05 0.1 0.05	596 653 494	1.01 1 1
	r_Study3[5,Intercept] r_Study3[33,Intercept] r_Study3[61,Intercept]	Random effect Random effect Random effect	0.01 -0.06 0.01	0 0 0	0.03 0.03 0.03	-0.04 -0.12 -0.04	-0.01 -0.08 -0.01	0.01 -0.06 0.01	0.03 -0.03 0.03	0.06 0.01 0.06	600 420 565	1 1.01 1
	r_Study3[6,Intercept] r_Study3[34,Intercept] r_Study3[62,Intercept]	Random effect Random effect Random effect	-0.04 0.02 0.01	0 0 0	0.03 0.03 0.03	-0.1 -0.04 -0.05	-0.06 0 -0.01	-0.04 0.02 0.01	-0.01 0.04 0.03	0.03 0.08 0.07	573 591 519	1 1 1
	r_Study3[7,Intercept] r_Study3[35,Intercept] r_Study3[63,Intercept]	Random effect Random effect Random effect	-0.02 -0.01 0.02	0 0 0	0.04 0.03 0.03	-0.1 -0.06 -0.04	-0.05 -0.03 0	-0.02 -0.01 0.02	0 0.01 0.04	0.04 0.05 0.09	595 475 558	1 1 1
	r_Study3[8,Intercept] r_Study3[36,Intercept] r_Study3[64,Intercept]	Random effect Random effect Random effect	-0.01 -0.04 0.02	0 0 0	0.03 0.04 0.03	-0.07 -0.12 -0.03	-0.03 -0.07 0	-0.01 -0.04 0.02	0.01 -0.02 0.04	0.05 0.01 0.08	607 526 484	1 1.01 1
	r_Study3[9,Intercept] r_Study3[37,Intercept] r_Study3[65,Intercept]	Random effect Random effect Random effect	-0.01 0.03 0	0 0 0	0.03 0.03 0.03	-0.07 -0.02 -0.06	-0.03 0.01 -0.02	-0.01 0.03 0	0.01 0.05 0.01	0.05 0.09 0.06	583 560 476	1 1 1
	r_Study3[10,Intercept] r_Study3[38,Intercept] r_Study3[66,Intercept]	Random effect Random effect Random effect	0 0.02 -0.01	0 0 0	0.03 0.03 0.03	-0.05 -0.04 -0.07	-0.02 0 -0.03	0 0.02 -0.01	0.02 0.04 0.01	0.05 0.08 0.05	546 557 468	1 1.01 1
	r_Study3[11,Intercept] r_Study3[39,Intercept] r_Study3[67,Intercept]	Random effect Random effect Random effect	-0.03 0.01 -0.01	0 0 0	0.03 0.03 0.03	-0.09 -0.04 -0.09	-0.04 0 -0.03	-0.02 0.01 -0.01	0 0.03 0.01	0.04 0.07 0.04	616 352 593	1 1 1
	r_Study3[12,Intercept] r_Study3[40,Intercept] lp__	Random effect Random effect lp	0.03 0 51.17	0 0 0.84	0.03 0.03 16.26	-0.02 -0.05 17.83	0.01 -0.02 41.03	0.03 0 52.11	0.06 0.02 62.63	0.1 0.05 79.64	484 613 377	1 1.01 1.02
	r_Study3[13,Intercept] r_Study3[41,Intercept]	Random effect Random effect	0.01 -0.03	0 0	0.03 0.03	-0.05 -0.09	-0.01 -0.05	0.01 -0.03	0.03 -0.01	0.07 0.04	526 628	1 1
	r_Study3[14,Intercept] r_Study3[42,Intercept]	Random effect Random effect	0 0.04	0 0	0.03 0.03	-0.05 -0.02	-0.02 0.02	0 0.04	0.02 0.06	0.07 0.1	516 557	1 1
	r_Study3[15,Intercept] r_Study3[43,Intercept]	Random effect Random effect	-0.01 0.01	0 0	0.03 0.03	-0.07 -0.04	-0.03 -0.01	-0.01 0.01	0.01 0.03	0.05 0.07	606 508	1 1.01
	r_Study3[16,Intercept] r_Study3[44,Intercept]	Random effect Random effect	0.01 0	0 0	0.03 0.03	-0.05 -0.05	-0.01 -0.02	0.01 0	0.03 0.02	0.08 0.06	547 623	1 1
	r_Study3[17,Intercept] r_Study3[45,Intercept]	Random effect Random effect	-0.03 -0.02	0 0	0.04 0.02	-0.1 -0.07	-0.05 -0.04	-0.03 -0.02	0 -0.01	0.04 0.02	585 650	1 1
	r_Study3[18,Intercept] r_Study3[46,Intercept]	Random effect Random effect	-0.04 0.04	0 0	0.03 0.03	-0.1 -0.02	-0.06 0.02	-0.04 0.04	-0.02 0.06	0.02 0.1	562 491	1 1
	r_Study3[19,Intercept] r_Study3[47,Intercept]	Random effect Random effect	-0.05 0.02	0 0	0.04 0.03	-0.13 -0.04	-0.07 0	-0.05 0.02	-0.02 0.04	0.02 0.08	523 542	1 1
	r_Study3[20,Intercept] r_Study3[48,Intercept]	Random effect Random effect	0 -0.02	0 0	0.03 0.03	-0.05 -0.08	-0.02 -0.04	0 -0.02	0.02 0	0.06 0.04	593 455	1 1
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Appendix S1. Overview of the CESTES database

The CESTES database comes from the following data paper: [START_REF] Jeliazkov | A global database for metacommunity ecology, integrating species, traits, environment and space[END_REF]. A global database for metacommunity ecology, integrating species, traits, environment and space. -Scientific Data 7: 1-15.

This database assembles 80 datasets from studies that analyzed empirical multivariate traitenvironment relationships between 1996 and 2018. Each of these datasets include four data matrices: community data (species abundances or presences/absences across multiple sites), species traits (sensu lato), environmental variables across sites, and spatial coordinates. The database is global in extent and covers different taxonomic groups, ecosystem types, levels of human disturbance, and spatial scales [START_REF] Jeliazkov | A global database for metacommunity ecology, integrating species, traits, environment and space[END_REF]: Fig. 2).

The main condition for dataset eligibility was that trait-environment relationships were the focus of the study and data use. This ensured that: (i) the trait and the taxonomic information were collected from similar biogeographic areas (minimizing mismatches between the geographic origins of trait and taxonomic data), (ii) the sampled sites were associated with background environmental information that was relevant to the community and traits under study. [START_REF] Jeliazkov | A global database for metacommunity ecology, integrating species, traits, environment and space[END_REF] focused on studies that included "RLQ" and "fourth-corner" terms because both of them are prevailing methods of multivariate trait-based analyses in ecology. This focus ensures that most of the datasets (i) are multivariate and include both several species, several traits, and several sites (spatial information) to align with a metacommunity-like structure, (ii) have a comparable structure and can be used in comparative analyses and syntheses. To know more about the data search and collection methodology, see [START_REF] Jeliazkov | A global database for metacommunity ecology, integrating species, traits, environment and space[END_REF].

Appendix S3. Summary of the sampling properties

The sampling properties were derived from a Principal Component Analysis performed on the four variables: number of sites, number of environmental variables, number of species, and number of traits for each dataset. This PCA thus allowed us to reduce the sampling properties information (that was partly correlated) into three main orthogonal axes (that explained altogether 90% of the variation, Fig. S3.1).

Figure S3.1. Results from the Principal Component Analysis applied on the four sampling properties, namely the sample size ("nbSit"), number of environmental variables ("nbEnv"), number of species ("nbSpe"), and number of traits ("nbTra"). The 1 st PCA axis explains 42% of the variability and is mainly driven by the number of environmental variables. The 2 nd axis explains an additional 25% of the variability and is mainly driven by the increase of the number of traits at the expense of the number of species. The 3 rd axis explains an additional 23% of the variability and is mainly driven by the increase of sample size. The coordinates of the studies along these three axes constituted the synthetic variables of sampling properties used in the final synthesis model, namely the "Nb Env" (the number of environmental variables, the "Nb Traits vs. Nb of species" trade-off, and the "Sample size", respectively.

Appendix S4. Data exploration Appendix S6. Complementary analysis on the contribution of traits to the variation of species composition across sites in response to environment -double-CCA approach

Overall, the percentage values of explained variation we obtained in the main analyses of the paper look particularly low. This is because distance-based approaches always give lower R2 than raw data-based approaches (Legendre andFortin 2010, Legendre andLegendre 2012) due to the derived nature of distances (Tuomisto and Ruokolainen 2006). To have an idea of the relative importance of these figures, we can consider them with respect to the maximum variation that the environment could explain with this method, namely 32% (FBD) and 33% (TBD). Our conclusions remain essentially the same when using a raw-data based approach such as the double Constrained Correspondence Analysis (see below).

Rationale

One could argue that we may have underestimated the sensitivity of beta functional diversity to environment due to the method we used to a) calculate functional diversity, b) model the response of beta diversity to environmental variation.

To check our results' robustness to the calculation of functional diversity (a), we tried other traditional approaches (Kleyer et al. 2012) such as Community Weighted Means and RDA, convex hulls, and functional dispersion measures. All of them led us essentially to the same conclusion -functional was in most cases less sensitive to the environment than taxonomic diversity. We kept de Bello's approach in the main analyses, because, contrary to the others: (i) It had received no criticism; (ii) It was adapted to our needs and hypotheses; (iii) It was recently recommended and properly validated (e.g. Chao et al. 2012); (iv) It is compatible with null modeling approaches (de Bello 2012), and crossstudy comparisons (de Bello et al. 2010, Chao et al. 2012); and (v) It provided both total and pairwise versions of beta diversity.

See also why not using CWM-RDA approach when aiming to compare taxonomic and functional responses equitably (Peres-Neto et al. 2017).

In the main manuscript, we modelled non-linear responses of beta diversity to environmental variation (b) thanks to the combination of distance-based and GAM modelling. Other methods, such as hierarchical Joint Species Distribution Models (jSDMs), allow modelling complex relationships, and interactions between species, traits, and environment (Brown et al. 2014, Warton et al. 2015, Ovaskainen et al. 2016, Robroek et al. 2017). The main limitations of these methods currently are that they pre-suppose the existence of trait-environment relationships, they do not handle all types of data (abundances vs. presence/absences), some of them still lack flexibility, they are data-hungry, and sometimes computationally challenging (especially with multiple trait-environment combinations). In our case, they were not applicable on our datasets that had very different structures.

To check that the distance-based approach did not influence our conclusion, we applied a raw-data based approach that is more flexible than jSDMs; the double Constrained Correspondence Analysis (see below). In this case, the taxonomic composition is the fundamental level of information and the functional information explains a more or less important part of the variation of the taxonomic composition constrained by the environmental conditions. One of the advantages of the double CCA approach compared to other methods is that it is able to account for correlations among both environmental and trait variables (ter Braak et al. 2018).

Summary of the double CCA approach

This analysis studies the role of traits in the response of species composition to environment (Kleyer et al. 2012, ter Braak et al. 2018). The response is the raw beta diversity, i.e. the variation of species composition across sites (Legendre et al. 2005(Legendre et al. , 2008)), instead of the variation of beta diversity as used in the distance-based approach (Tuomisto andRuokolainen 2006, 2008). Double CCA consists in constraining the species abundance matrix with the matrix before constraining it with the environment matrix. Thus, the fraction of species composition variation explained by environment when constrained by traits is always smaller than the fraction when no trait constraint is applied. Hence, this method assumes taxonomic diversity is always more, or at best equally informative as functional diversity. We applied the double-CCA analysis on the Hellinger-transformed species matrix, the orthonormalized environmental variables (representing 95% of the environmental data variation), and the orthonormalized traits (representing 95% of the trait data variation).

Raw data-based approaches are known to be particularly sensitive to the number of variables in the matrices (see Dray and Legendre 2008[START_REF] Leibold | Metacommunity Ecology. Monographs in population biology[END_REF], Peres-Neto et al. 2017). Therefore, given the high heterogeneity of our datasets, we did not use it in the main study, but we here provide it as an exploration.

Results and conclusion

We first note that the percentages of total variation of species composition explained by environment obtained from the simple CCA of the species matrix with environment and without traits are well within the range of variation explained in other similar syntheses (e.g. Cottenie 2005, Soininen 2014), namely in average 31% (min = 5%, max 88%) (Fig. S6.1).

The double-CCA analysis (i.e. with the additional constraint of the trait matrix) further shows that, in average, 33% of the species composition explained by the environment would potentially be due to traits (min=1%, median=26%, max=100%) (Fig. S6.1).

From the perspective that species diversity is always more informative than functional diversity (Petchey et al. 2004[START_REF] Clark | Why species tell more about traits than traits about species: predictive analysis[END_REF], this analysis shows that traits composition can cover in most cases one third of the information that the species composition already covers.

Appendix S7. Results from the RLQ and 4 th corner analyses of the CESTES database

We applied the RLQ and fourth-corner analyses on the raw species, trait and environment data matrices (see R scripts for more information: https://doi.org/10.57745/LLBAZD).

For detailed information on the methods, please see the seminal papers: Appendix S9. Are random patterns of traits evidence of neutral processes of metacommunities such as dispersal? Analysis of variation partitioning

Rationale

In our synthesis, we find that functional diversity explained metacommunity structure and response to environment in 25% of the datasets using multi-trait approach, and up to 59% using single-trait approach with 19%±27% of the traits showing significant signal. In most situations and for all types of traits, we find that trait diversity structure is mainly random with respect to taxonomic diversity (see the figures of the main MS). We conclude that in most situations and for a majority of traits, trait diversity does not improve our ability to infer metacommunity processes compared to taxonomic diversity alone.

However, some could interpret this absence of signal as the signature of stochastic processes of metacommunity structuring, such as dispersal (e.g. de Bello et al. 2013). Although we do not think, an absence of signal should be treated as an evidence of the existence of an effect, we found this assumption interesting and worth investigating further.

Therefore, we re-analysed each of the CESTES dataset and addressed the following question: Are the metacommunities that show random trait patterns more likely dominated by dispersal processes?

Summary of the applied method of variation partitioning

To address our question, we used a classical variation partitioning approach that allows estimating the relative importance of space vs. environment in metacommunity structuring. The method of variation partitioning has widely been used to assess the relative contribution of niche vs. dispersal effects in metacommunity studies (e.g. Cottenie 2005, Soininen 2014, 2016). However, this approach has strong and well-recognized limitations (e.g. Smith and Lundholm 2010, Gilbert and Bennett 2010, Viana et al. 2022) and it is not yet adapted to a trait-based analysis, making hard to compare functional with taxonomic diversities. Therefore, we did not use it for the main manuscript. However, to explore the above-mentioned assumption in our context of synthesis and post-hoc interpretation, it was the most straightforward approach.

For each of the 80 CESTES datasets, we used the RDA-based variation partitioning on the Hellinger transformed community table (Legendre andGallagher 2001, Legendre andLegendre 2012) in response to the environment table (orthonormal components from a Principal Component Analysis of the environmental variables) and to the space table (Moran Eigenvector Maps derived from a relative neighbour graph with binary weights) (for more details on these classical approaches, see e.g. Pereset al. 2006, Dray et al. 2006, 2012, Soininen 2014, Bauman et al. 2018). A forward selection procedure (999 permutations) was applied on both environment and space matrices to select only relevant variables and avoid variation inflation. We further used the Moran Spectral Randomization correction to avoid spurious correlations between environment and space (Clappe et al. 2018). We then extracted the pure spatial fraction (i.e. the effect of space only, once environmental effect is removed) as the potential signature of dispersal effects.

Finally, to test whether dispersal processes more likely dominated the metacommunities that expressed random trait patterns in the main analysis, we plotted the distribution of the pure spatial fraction against the types of trait pattern revealed by the trait analyses. We tested the difference significance with Kruskall-Wallis rank sum test.

Appendix S10. Supplementary analysis on the role of functional diversity in inferring metacommunity processes -Chao's approach

Rationale

In the main analyses, we used the biodiversity partitioning approach proposed by de Bello (2010) which is based on Rao's quadratic entropy. Such a Rao-based framework has several important advantages and unique properties allowing comparison across different diversity and study ecosystems within a single framework (de Bello et al. 2010, Chao et al. 2012).

By using this framework to calculate functional beta diversity, our main analyses detected significant of functional strategies (either lower or higher than expected given the taxonomic turnover) in only 25% of the datasets. We concluded that the role of trait diversity in inferring metacommunity processes might be more limited than expected given the enthusiasm towards trait-based community ecology.

Nevertheless, one could argue that we may have underestimated the ability of functional beta diversity analysis to uncover patterns of functional turnover due to the method we used. In particular, a new approach was recently proposed as potentially able to bring further insights: the attribute-diversity approach to functional diversity (Chao et al. 2019). Thus, we here provide a supplementary analysis based on this approach in order to compare our results and put them in perspective.

Summary of the attribute-diversity approach to functional diversity

The approach proposed by Chao et al. (2019) is based on Rao's quadratic entropy and thus has many commonalities with de Bello's approach (de Bello et al. 2010) we used in the main analyses. They are both based on the effective number of species/functional entities ("species-equivalent").

The main difference is that Chao's approach proposes to explore not only one given beta diversity value for every dataset but a range of diversity values ("diversity profiles") by varying two parameters: a) the order of diversity (q={0, 1, 2}; depending on how strong the common vs. rare species are weighted by their abundances), and b) the threshold of species distinctiveness (tau ∈ [dmin, dmax]; depending on the threshold used for the functional clustering of the species).

In order to ease the comparison of several beta diversity profiles across many datasets, the authors suggest exploring at least the following combinations of parameters q={0, 1, 2} x tau={dmin, dmean, dmax} where:

-q=0 implies that every species has the same weight in the calculation of the index (in the case of taxonomic diversity, this index equates the species richness). -q=1 implies weighting each species in proportion to its abundance (with a geometric average) in the calculation of the index (in the case of taxonomic diversity, this index equates the Shannon entropy index). -q=2 implies weighting each species in proportion to its abundance (with an arithmetic average) in the calculation of the index, giving disproportionately more weight to dominant species (in the case of taxonomic diversity, this index equates the Simpson index). -tau=dmin is the minimum (functional) distance between all the species of the metacommunity and is used as the threshold from which two species are considered as distinct in the calculation Appendix S11. Role of sampling and ecological contexts in the Relative Sensitivity of pairwise Functional Beta Diversity to environment model including a nested random effect on Study|Dataset). Parameters of the model are given in the main MS. The dashed lines represent the thresholds of -1.96 and 1.96 that are used to assess the SES significance as indicator of trait convergence and trait divergence, respectively.