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Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines

Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.

Introduction

Liver is a central regulator of glucose homeostasis. Links between metabolism and tumorigenic processes have been mainly studied at the level of glucose uptake and release under metabolic stresses and diseases such as diabetes. Hyperglycemia itself may affect both glucose and lipid metabolism through the activation of stresses signaling pathways and the generation of reactive oxygen species (ROS) [START_REF] Dey | Hyperglycemia-induced mitochondrial alterations in liver[END_REF][START_REF] Giacco | Oxidative stress and diabetic complications[END_REF]. Hyperglycemia may also regulate hexosamine pathways [START_REF] Dentin | Hepatic glucose sensing via the CREB coactivator CRTC2[END_REF]. Glucose is also a major regulator of energy homeostasis through its transcriptional activity on insulin receptor [START_REF] Decaux | Glucose-dependent and -independent effect of insulin on gene expression[END_REF], hormone sensitive lipase (HSL) [START_REF] Van Deursen | Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2[END_REF], and genes relevant to high density lipids (HDL) metabolism [START_REF] Tu | Glucose regulates the transcription of human genes relevant to HDL metabolism: responsive elements for peroxisome proliferator-activated receptor are involved in the regulation of phospholipid transfer protein[END_REF]. Its transcriptional activity may also affect proinflammatory cytokines responsive genes involved in coagulation [START_REF] Iwasaki | High glucose alone, as well as in combination with proinflammatory cytokines, stimulates nuclear factor kappa-B-mediated transcription in hepatocytes in vitro[END_REF]. Moreover hyperglycemia could promote proliferation of hepatic stellate cells through mitogen-activated kinase (MAPK) activation and ROS production [START_REF] Sugimoto | High glucose stimulates hepatic stellate cells to proliferate and to produce collagen through free radical production and activation of mitogen-activated protein kinase[END_REF]. Thus alteration of liver functions greatly affects its responses to metabolic stress, and inversely alteration of energy homeostasis may alter liver cell function. The present study was designated to study the effect of high glucose on the proliferation and survival of hepatocellular carcinoma (HCC) cells and to identify the molecular mechanisms involved.

In HCC alterations of gene expression are mainly related to cell growth and maintenance, cell cycle, and cell proliferation as well as metabolism in humans [START_REF] Patil | An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma[END_REF][START_REF] Midorikawa | Microarray-based analysis for hepatocellular carcinoma: from gene expression profiling to new challenges[END_REF][START_REF] Teufel | Genome-wide analysis of factors regulating gene expression in liver[END_REF][START_REF] Berger | Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival[END_REF]. Moreover HCC shares deregulation of translation proteins and transcription factors, such as hepatic nuclear factors 1A and 3b (HNF1 and HNF3b/FOXA2) or CCAAT/enhancer binding protein alpha (CEBPA) [START_REF] Xu | Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma[END_REF]. Cell signaling is mainly altered at the level of Wnt and MAPK signaling [START_REF] Wong | Molecular pathogenesis of hepatocellular carcinoma[END_REF], that is, elevated activation of P42/44 (Erk1/2), which promotes cell growth and protects from toxic stresses [START_REF] Huynh | Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis[END_REF]. Apoptosis and P38 MAPK activity are also reduced [START_REF] Iyoda | Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma[END_REF]. Abnormal activation of nuclear factor kappa B p65 subunit (NF𝜅B) promotes cell growth and survival and thus tumorigenic activity in HCC [START_REF] Nishimura | DHMEQ, a novel NF-𝜅B inhibitor, induces apoptosis and cell-cycle arrest in human hepatoma cells[END_REF][START_REF] Poma | Antitumor effects of the novel NF-kappaB inhibitor dehydroxymethylepoxyquinomicin on human hepatic cancer cells: Analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production[END_REF]. Moreover, it is now well established that the energy sensor 5 󸀠 -AMP-activated protein kinase (AMPK) plays a very important role in hepatic control of both proliferation and lipid metabolism [START_REF] You | The role of AMP-activated protein kinase in the action of ethanol in the liver[END_REF][START_REF] Adachi | High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase[END_REF].

In a previous study, by using the real-time cell analysis (RTCA) system xCELLigence we identified major kinases required for cell survival and proliferation in two well characterized human HCC cell lines, HepG2 and HuH7 [START_REF] Berger | Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival[END_REF]. We have shown that protein kinase C (PKC), p42/44, Janus-kinase 1 (JAK1), NF𝜅B, and Jun-NH2 kinase (JNK) were required for HepG2 cell survival during 24 hours by treatment with specific inhibitors and serum removal. High glucose induces protein kinase C (PKC) activation, oxidative stress, and consequently reactive oxigen species (ROS) production [START_REF] Sugimoto | High glucose stimulates hepatic stellate cells to proliferate and to produce collagen through free radical production and activation of mitogen-activated protein kinase[END_REF][START_REF] Palmeira | Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis[END_REF]. Resulting reduction of intracellular ATP affects protein kinase A (PKA) and adenylate cyclase activities [START_REF] Dey | Hyperglycemia-induced mitochondrial alterations in liver[END_REF], stimulates MAPK signaling, including Erk1/2 [START_REF] Sugimoto | High glucose stimulates hepatic stellate cells to proliferate and to produce collagen through free radical production and activation of mitogen-activated protein kinase[END_REF] and P38 MAPK (in HepG2 cells: [START_REF] Qiao | CCAAT/enhancerbinding protein 𝛼 mediates induction of hepatic phosphoenolpyruvate carboxykinase by p38 mitogen-activated protein kinase[END_REF]), PKC [START_REF] Giacco | Oxidative stress and diabetic complications[END_REF] and NF𝜅B signaling pathways [START_REF] Nishikawa | Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[END_REF], as well as NF𝜅B transcriptional activity (in HuH7 cells: [START_REF] Iwasaki | High glucose alone, as well as in combination with proinflammatory cytokines, stimulates nuclear factor kappa-B-mediated transcription in hepatocytes in vitro[END_REF]), and reduced basal activities of both AMPK and JNK pathways [START_REF] Díaz-Delfín | Hypoglycemic action of thiazolidinediones/peroxisome proliferator-activated receptor 𝛾 by inhibition of the c-Jun NH2-terminal kinase pathway[END_REF].

In vitro cell proliferation, survival and differentiation are highly dependent on experimental conditions such as cell density, stress, and nutrients. First of all we have determined time-dependant effects of cell density and serum deprivation on HepG2 and HuH7 cell proliferation and survival. Then we determined the modulatory effects of high (4,5 g/L) versus low glucose (1 g/L) concentrations. Using real-time proliferation assays, we found that the proliferation rate of HepG2 cells was independent of glucose concentration, opposite to that of HuH7 cells whose proliferation was reduced in low glucose. Using bioinformatic analyses of gene sets regulated (1) by glucose [START_REF] Giacco | Oxidative stress and diabetic complications[END_REF] differentially expressed in both cell lines in comparison to HCC and to healthy liver, we identified and validated on xCELLigence cell signaling pathways linked to the regulation of gene expression by glucose and dysregulated in HepG2 cells.

Experimental Procedures

2.1. Cell Culture, Treatment, and Analyses. The human hepatocarcinoma-derived cell lines HepG2 and HuH7 were provided from the European Collection of Cell Cultures (ECACC, Salisbury, UK). Cells were grown at 37 ∘ C in 5% CO 2 in DMEM, glucose 4.5 g/L containing 10% fetal calf serum, complemented with streptomycin (100 𝜇g/mL) and penicillin (100 units/mL), and removed using trypsin 0.05% (PAA Laboratories, Les Mureaux, France). Both for plating and analysis, Scepter handheld automated cell counter (Millipore S.A.S., St Quentin-en-Yvelines, France) was used with 60 𝜇m tips on living cells in suspension, measured at least in triplicate and plated in the same culture media for one day before treatments. Cell proliferation and/or survival was monitored with the xCELLigence real-time cell analyser (RTCA) system (ACEA Biosciences Inc., San Diego, USA), which allows label-free monitoring changes of cell number, viability, morphology, and quality of cell attachment by measurement of cell-to-electrode responses of cells seeded in E96-well plates manufactured with integrated microelectronic sensor arrays. The results are represented as cell indexes (CI) impedance measurements or cell indexes normalized at time of treatment (i.e., CI at time 𝑥 divided by CI at time of treatment) or slopes of linear curves after selected time of treatment. Since proliferation rate and cell index may vary from an experiment to another, data are representative experiments of at least three independent experiments and each condition was tested in at least 6 replicates. CI normalized to time of treatment depending on time are presented as mean values ± SEM with significant Student's 𝑡-test 𝑝-values 𝑝 < 0.05. Cells were plated in 6well plates for other experiments in the respect of cell plating density. For signaling pathway analyses, specific inhibitors were applied in either glucose 4.5 or 1 g/L serum-free media one day after plating. Drug concentrations were optimized for each compound according to dose-response analyses and half maximum inhibition of concentration IC50 (mean timedependant IC50).

FACS Cell Cycle Analysis.

Cells in suspension were fixed in ethanol 70% and then treated with 10 𝜇g/mL RNAse H (Promega, Charbonnières-les-Bains, France) in PBS during 1 hr before propidium iodine (Sigma Aldrich) was added (50 𝜇g/mL). Flow cytometric analysis of 5000 cells was performed on a FACSCanto II flow cytometer and data were recovered using the FACSDiva software v6.1.2 (BD Biosciences, Rungis, France). DNA content was determined using FlowJo software v8.8.6 (http://www.flowjo.com/).

Western Blots.

After plating in 6-well plates, cells were lyzed in cell lysis buffer (EDTA 0.5 M, Na 3 VO 4 0,1 M, NaF 4%, DTT 0.1 M, Tris HCL 20 mM, KCL 2,7 mM, NaCl 138 mM, MgCl 2 1 mM, glycerol 5%, and 0,1% protease inhibitors). Protein contents were determined using Bradford assay and 30 𝜇g was loaded onto 7.5% SDS-Page electrophoresis, transferred onto PVFD membranes, and hybridized with 1/100 primary antibodies (Cell Signaling, Millipore S.A.S, Saint-Quentin-en-Yvelines, France) and 1/10 000 secondary rabbit antibody (Bio-Rad, Marnes-la-Coquette, France) according to standard procedures and revelation was performed with chemoluminescent ECL (Thermo Fisher Scientific, Perbio Science, Courtaboeuf, France). Western blots were performed in at least 3 independent experiments and scanned and quantification was performed with Image Quant software (GE Healthcare Life Sciences, Velizy-Villacoublay, France). Quantifications were performed as means of ratios of phosphorylated forms (first hybridization) compared to full isoforms (second hybridization after stripping) and Student's 𝑡test 𝑝-value calculations. 

Messenger RNA

Results

Comparative Analysis of HepG2 and HuH7

Cell Lines. In a previous study, we identified signaling pathways required for cell growth, proliferation, and/or survival of HepG2 cells, some of them have been validated in HuH7 cells, using real-time cell proliferation analysis on xCELLigence [START_REF] Berger | Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival[END_REF]. Cell growth, proliferation, and survival depend on cell type, density, and duration of treatments. In the present study, we aimed to analyze the effect of glucose on cell growth, proliferation, and survival. RTCA cell index represents cell surface occupancy, thus reflecting the sum of effects on growth, proliferation, and survival as well as on cell size and adhesion force. Several conventional methods were used to validate the experiments on xCELLigence; that is, Scepter cell counts reflect cell death, cell number, and cell size, and flow cytometry was used on selected conditions to analyze cell cycle. We found that cell density may affect the rate of proliferation and that mean size of proliferative cells increased in classical culture media (Figure 1). Thus cell culture conditions were optimized for each cell line in order to treat cells when RTCA cell index reached 0.5-1 for HepG2 and 0.5-1.5 for HuH7 cells one day after plating, that is, in linear phase of proliferation. Both cell lines present differences in their mode of proliferation, HepG2 cells in tridimensional space opposite to HuH7 cells which proliferate as monolayers and HepG2 cells which proliferate faster and their size is smaller than that of HuH7 cells (Table 2). In order to test specific effects of drugs on cell growth and/or survival, cells were plated in classical culture media and were treated one day later in serum-free media (Figure 2). Serum removal itself was found to reduce cell growth in both cell lines and in HepG2 cells, several genes representative of hepatic functions, that is, the adiponectin receptor 2 (Adi-poR2) and the transcription factor Hairy Enhancer of Split 1 (HES1), were altered at transcriptional level 6 hours after serum removal.

Glucose Modulates Cell Growth and/or Survival of HuH7

Cells but Not That of HepG2 Cells. Classical culture media contain high glucose concentration (4.5 g/L) corresponding to systemic hyperglycemia. In low glucose concentrations corresponding to normoglycemia (1 g/L) the proliferation of HepG2 cells was not significantly affected although the rate of proliferation and the effect of glucose concentration were highly variable, especially at low or high cell densities (Figure 3). On the contrary, the proliferation rate of HuH7 cells was highly reduced in normoglycemic conditions. The results observed in experiments on RTCA system were confirmed by Scepter cell counts and cell cycle analyses on FACS (not shown).

Bioinformatic Analysis of Gene Networks Regulated by

Glucose. Human gene sets obtained from published experiments using microarrays were retrieved in order to identify gene networks 1/regulated by glucose in healthy liver 2/dysregulated in HCC 3/differentially affected in HepG2 and HuH7 cell lines (Table 1). In a previous study, we have characterized a number of pathways dysregulated in HepG2 cells and linked to HCC [START_REF] Berger | Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival[END_REF]. A set of 339 genes regulated by high glucose were retrieved from studies on human cells (Table 1).

A recent study identified a set of genes regulated either by glucose and by its major associated transcription factor carbohydrate-responsive element-binding protein (ChREBP) in HepG2 cells [START_REF] Jeong | Integrated expression profiling and Genome-Wide analysis of ChREBP targets reveals the dual role for ChREBP in Glucose-Regulated gene expression[END_REF]. Among the 129 genes detected, 17% are linked to hepatic phenotype and 7 of them are dysregulated in HCC (Figure 4(a)).

In a next step, we identified the molecular mechanisms involved in the control of proliferation by glycemia in HCC cells. Briefly, we retrieved published sets of human genes regulated by 48 intracellular signaling pathways and 52 transcription factors (Suppl. Information) and we compared their representativity in glucose responsive gene sets in humans and in HepG2 cells (representative of HCC cells) (Figure 5). We found that high glucose concentration regulated the transcription of genes common to 27 signaling pathways, including glycolysis, regulators of ROS production such as NADPH oxidase 1 (NOX1), glucose oxidase, LKB1/AMPK, and cyclooxygenase 2 (COX2), as well as second messenger signaling pathways (Pi3 Kinase Pi3K, protein kinases A and C. . .). Interestingly, most of these pathways are related to specific hepatic functions and they not only are subjected to altered expression in HCC but also belong to the set of cancer biomarkers.

Bioinformatic Analysis of Gene Networks Differentially

Regulated in HepG2 versus HuH7 Cells. In a second study, we applied the bioinformatical approach to identify which differences from gene transcriptional networks could explain the differential sensitivities of HepG2 and HuH7 cell lines to glucose. Two sets of genes were retrieved from published experiments which lead us to select two sets of genes upregulated in HepG2 cells versus HuH7 (fold change > 1.4):

(1) a comparative analysis to human cell lines [START_REF] Ruike | Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines[END_REF] which may represent genes linked to cancer cells and (2) a comparison to several human liver cell lines [START_REF] Sawey | Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening[END_REF], which may represent genes linked to hepatic function. We found 364 genes differentially expressed in HepG2 versus HuH7 cells commonly found in both datasets, but only 213 genes were regulated in the same way (Figure 4(c); Suppl. Information); that is, 34 genes (16%) overexpressed in HepG2 in comparison to HuH7 cells; 74 of them were commonly found in liver gene sets (13 upregulated), 13 of them in HCC gene set. Using FatiGO+ software we found that this set of genes was significantly enriched in functions linked to properties of chromatin (Figure 4(d)). In the list of genes regulated by intracellular pathways, we found significant representativity of genes regulated by ABL, AMPKinase alpha 1 subunit (AMPKa1), calcium storage, cyclooxygenase 2 (COX2), glycosylphosphatidylinositol phospholipase D (GPI-PLD), JNK, PKA, RRM2B, Tuberous sclerosis 1 and 2 (TSC1/2), and regulator of translation PTEN. Among them, only ABL, GPI-PLD, glycogen-synthase 3 GSK3, TSC1/2, and regulation of translation by PTEN have been identified as dysregulated pathways in the response of HepG2 to high glucose (Figure 5). ABL and glycolysis are the pathways which are potentially overactivated in HepG2 upon high glucose. Both pathways were found to be significantly overrepresented in the set of genes dysregulated in HepG2 versus HuH7 cells. Moreover in this set of 213 genes differentially expressed in HepG2 versus HuH7 cells, 3 genes were found to be regulated by glucose, but only interleukin-6 receptor (IL6R) is linked to HCC.

Identification of Transcription Factors Linked to Glucose Signaling.

A comparative analysis of datasets of genes regulated by high glucose to sets of genes regulated by 53 transcription factors retrieved from published microarray experiments on human cells (Table 2) suggests that high glucose may regulate transcription through at least 20 transcription factors (Figure 5) including glucose responsive ChREBP transcription factor; other factors involved in the transcriptional regulation of metabolism, such as sterol regulatory element binding protein 1 (SREBP1c), liver X receptor (LXR) or peroxisome-proliferator activated receptors (PPARs), and the PPARG coactivator 1 PPARGC1A, stress response pathways such as hypoxia-inducible factor 1a (HIF1a), Nuclear factor-(erythroid-derived 2)-like 2 (NFE2L2) and NF𝜅B, but also linked to proliferation, such as upstream transcription factors (USFs), cAMP responsive element binding protein 1 (CREB), -A). Graphs illustrate propidium iodine incorporation for 5000 cells per cm 2 ; significant increase in Sub-G1 (dying cells) was observed in 48-72 hr serum depleted cells. (c) Scepter cell index and size analyses of low density plated HepG2 cells (5000 cells/cm 2 ) after serum depletion. Living cells were selected in a range of 12-35 𝜇m and both their number and their size were reduced 48 hr after serum depletion. Inversely, the number of smaller cells representing cell death was significantly increased 48 hr after serum depletion and the mean size of living cells was significantly reduced (mean values ± SD, 𝑛 = 3; * Student's 𝑡-test 𝑝-value, 𝑝 < 0.05). (d) Gene expression was performed by real-time qPCR analysis of genes representative of hepatic phenotype and function and/or dysregulated in hepatocellulocarcinoma. mRNA quantification was normalized to hypoxanthine phosphoribosyltransferase 1 HPRT1 (mean values ± SEM, 𝑛 = 3 independent experiments, * ANOVA test 𝑝-value < 0.05). AFP: alpha feto protein; AdipoR1/R2: adiponectin receptors 1 and 2; CBX3: chromobox protein 3; CKB: casein kinase B; FABP1: fatty acid binding protein 1; HES1: hairy enhancer of Split 1; HIF1A: hypoxia responsive gene 1. early growth response factor (EGR1). This analysis suggests that, in HepG2 cells, ChREBP significantly regulates 92% of the genes also regulated by high glucose instead of 40% in human cells. In the set of genes differentially expressed in HepG2 versus HuH7 cells we found overrepresentativity of genes regulated by PPARs, PPARGC1A, Smads, and nuclear factor of activated T-cells (NFAT), although the frequency of genes potentially regulated by high glucose in common with PPARA and PPARGC1A was increased and reduced, respectively, in HepG2 cells.

Experimental Validation of Signaling Pathways Linked to the Role of Glucose in Proliferation of HCC Cell Lines.

In a previous study [START_REF] Berger | Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival[END_REF] we used real-time proliferation assay using xCELLigence system to identify signaling pathways involved in HepG2 cell growth and/or survival and dysregulated in HCC, in which inactivation by specific inhibitors leads to cell growth arrest and/or cell death one day after treatment. The effect of glucose on HepG2 and HuH7 cell growth was observed in extended times, that is, 48-72 hours in serum-free media, and selected signaling pathways were analyzed in such conditions. First of all we analyzed pathways that merged from bioinformatic analyses, and we observed that proliferation through JNK and Pi3 kinase pathways were altered in a dose-dependent manner in both HuH7 and HepG2 cells (Table 3). The main differences between HuH7 and HepG2 cells were observed at the level of LKB1, AMPK, and mitochondrial stress pathways (Figure 6): HuH7

but not HepG2 cells were sensitive to Compound C, a specific inhibitor of AMPK, and to VAS2780, a specific inhibitor of NOX, opposite to a higher sensitivity of HepG2 cells to reduced glutathione and to metformin. Other kinases known to be regulated by glucose were tested: inhibition of P38MAPK slightly affected cell growth and proliferation only in high glucose concentrations in HepG2 cells. We have previously shown that inhibition of either p42/44 or PKC leads to cell death and that of NF𝜅B leads to cell growth arrest [START_REF] Berger | Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival[END_REF]. Similar results were obtained on HuH7 cells. The effects of glucose on kinase activation in HepG2 cells were analyzed by western blot (Figure 7), showing high basal activated forms of P42/44 and low basal activated forms for P38MAPK. AMPK was characterized by high basal activity and its partial reduction in high glucose concentrations. NF𝜅B p65 subunit was highly activated independently of glucose concentration but with high variability in high glucose concentration.

Glucose Regulates Gene Transcription of Metabolic and

Proliferative Target Genes in HepG2 Cells. We have previously selected a number of genes either representative of healthy liver and dysregulated in hepatocellular carcinoma [START_REF] Berger | Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival[END_REF]. HepG2 cells were treated by either high or low glucose serumfree media during 5 hours (Table 4). Only 3 genes were upregulated by high glucose, that is, apolipoprotein C3 (APOC3), inhibitor of kappa light polypeptide gene enhancer in B cells (IKBKAP), and interferon-responsive factor 1 (IRF1). Several 1, that is, regulated by high glucose in human cells and more specifically in HepG2 cells, representative of either liver, hepatocellular carcinoma (HCC) phenotype, belonging to the list of cancer biomarkers or in the set of genes differentially detected in HepG2 versus HuH7 cells. The left panel represents intracellular pathways with significantly overrepresented transcriptional targets in the set of genes regulated by high glucose, and the right panel presents the transcription factors whose target genes are significantly overrepresented in the set of genes regulated by high glucose. Left barrels (a) indicate significant overrepresentativity of signaling pathways differentially represented in the response of HepG2 cell lines to high glucose, and central barrels (b) represent transcription factors whose target genes are significantly overrepresented in these pathways. Significant differences in representativity were calculated for 𝑧-test confidence levels >95%. Abbreviations: HCC, hepatocellular carcinoma; others and full data are reported in Supplementary Information.

genes were analyzed in low glucose concentration in presence of specific modulators for pathways at concentrations determined previously. In low glucose media, that is, with activated AMPK, the specific AMPK inhibitor Compound C did not affect the transcript levels of IRF1 (Figure 8) and APOC3 (not shown). IRF1 gene transcription was increased in the presence of either P42/44, Mek1/2, or P38MAPK inhibitors. The level of mRNA for IKBKAP was not affected by either P38MAPK or Mek1/2 but was reduced in the presence of P42/44 inhibitor. Among the 15 genes whose transcription was reduced by high glucose, the most altered gene transcripts were transcription factors forkhead box O1 (FOXO1A), linked to metabolism, EGR1, and v-myc myelocytomatosis viral oncogene homolog (MYC) which both play major roles in cell growth, proliferation, and tumorigenesis. We found that AMPK inhibition did not significantly affect AMPK, 5 󸀠 -AMP-activated protein kinase; AICAR: 5-aminoimidazole-4-carboxamide ribonucléotide; GSH: reduced glutathione; JAK1: Janus kinase 1; JNK: Jun-NH2 kinase; LKB1: serine/threonine kinase 11; NF𝜅Bp65: nuclear factor kappa B p65 subunit; NOX: NADPH oxidases; P38MAPK: P38 mitogen-activated kinase; Pi3K: Pi3 kinase; PKA: protein kinase AMPc-dependant; PKC, protein kinase C; and PPARA, peroxisome-proliferator activated receptor alpha.

MYC mRNA levels although P38MAPK and Pi3K act as repressors. PPARGC1A gene is a classical transcriptional target of AMPK, and we found that, in HepG2 cells, high glucose and AMPK inactivation did not modulate its level of transcription, although P42/44 and PPARA were activators and Pi3K was an inhibitor of PPARC1A gene transcription.

Discussion

The emerging concept that tumorigenic processes largely depend on metabolism opens new challenges and needs reevaluation of old concepts using integrative studies. In this context, nutrients should be explored to identify their potential activities as pro-or anticancerous signals. Liver is the central regulator of glucose homeostasis. High glucose concentration induces metabolic changes in liver, including not only glucose and fatty acid metabolism but also stress [START_REF] Dey | Hyperglycemia induced changes in liver: in vivo and in vitro studies[END_REF]. We have selected two human cell lines which are representative of human HCC, HuH7, and HepG2 cell lines, in order to study how glucose may affect their growth, proliferation, and/or survival. HuH7 cell line is still able to differentiate in hepatocytes at confluency, opposite to the highly proliferative HCC cell line HepG2. Real-time experiment assays confirmed that the proliferation rate was higher for HepG2 than HuH7 cells. HepG2 cells were found to be highly sensitive to stress, because they were more sensitive to serum deprivation than HuH7 cells and presented variable NF𝜅B activations in high glucose concentrations (Figure 7). Among the numerous differences between these two human cell lines, there are the following: their methylation status [START_REF] Chiba | Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells[END_REF], the highest expression of hepatocyte differentiating transcription factors CEBPA and HNF4A in HuH7 in comparison to HepG2 cells [START_REF] Sivertsson | CYP3A4 catalytic activity is induced in confluent Huh7 hepatoma cells[END_REF], and lack of the detoxifying enzyme COX2 in HepG2 cells [START_REF] Cervello | COX-2dependent and COX-2-independent mode of action of celecoxib in human liver cancer cells[END_REF] despite the fact that this enzyme is able to induce cell death in HCC cells [START_REF] Foderà | Induction of apoptosis and inhibition of cell growth in human hepatocellular carcinoma cells by COX-2 inhibitors[END_REF]. In addition, previous studies have shown that cytochrome CYP450 genes are less expressed in HepG2 than in hepatocytes [START_REF] Wilkening | Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties[END_REF][START_REF] Hart | A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues[END_REF][START_REF] Guo | Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes[END_REF].

In this study, we show that high glucose concentration can promote cancer cell proliferation on the HCC cell line HuH7, but without any significant effect on HepG2 cells. We took advantage of this result to identify glucose-mediated proliferative pathways.

Through bioinformatic analyses we selected a set of 213 genes differentially expressed in both cell lines; 84% of them are downregulated in HepG2 cells, and interestingly we found that IL6R gene transcription was overinduced in HepG2 cells although it is downregulated by glucose [START_REF] Jeong | Integrated expression profiling and Genome-Wide analysis of ChREBP targets reveals the dual role for ChREBP in Glucose-Regulated gene expression[END_REF]. In liver IL6/JAK/STAT3 pathway, the major activator of acute-phase proteins [START_REF] Klingmüller | Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways[END_REF] regulates gluconeogenesis [START_REF] Wang | Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha[END_REF] and induces growth arrest in HCC through regulation of cyclindependant kinases and CDKN1A gene expression [START_REF] Moran | Interleukin-6 mediates G 0 /G 1 growth BioMed Research International arrest in hepatocellular carcinoma through a STAT 3-dependent pathway[END_REF]. IL6/Erk1/2 pathway activates cell proliferation through transcriptional activation of immediate-early responsive genes such as FOS, JUN, and EGR1 in rat hepatocytes [START_REF] Kim | Dual signaling role of the protein tyrosine phosphatase SHP-2 in regulating expression of acutephase plasma proteins by interleukin-6 cytokine receptors in hepatic cells[END_REF]. Alteration of IL6R gene transcription is correlated with tumor grade in HCC [START_REF] Klingmüller | Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways[END_REF], and in the initial processus of hepatocellular transformation, this receptor participates in hepatocellular transformation [START_REF] Hatziapostolou | An HNF4𝛼-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis[END_REF]. Thus, it is considered as an additional marker to AFP for HCC diagnosis [START_REF] Sun | Antibody arrays identify potential diagnostic markers of hepatocellular carcinoma[END_REF]. In HepG2 cells P42/44 and STAT3 are constitutively activated [START_REF] Miyazaki | Adiponectin activates c-Jun NH2-terminal kinase and inhibits signal transducer and activator of transcription 3[END_REF]; thus our results point out a major role of IL6 pathway in the progress of tumorigenesis liver under high glucose.

Through bioinformatic analyses of gene set data, we found regulated transcription through NOX and several protein kinase pathways. Intracellular pathways modulated by extracellular glucose involve PKC, MAP kinases, and glucokinase. We found that, in HepG2 cells, crosstalk glucose signaling with those of fatty acids and including intracellular JNK, P38MAPK, PTEN, and is highly affected and that JNK, mTOR, and TSC1/2 were particularly affected in to HuH7 cells. Through real-time monitoring of cell proliferation and/or survival of both cell lines cultured in high versus low glucose conditions, we found that glucose activated HuH7 cell growth, but not that of HepG2 cells, through NOX and LKB1 pathways. LKB1 regulates hepatic glucose homeostasis through modulation of AMPK/TORC2 activity and consequently transcriptional regulation of PPARGC1A which in turn drives neoglucogenesis [START_REF] Shaw | The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin[END_REF]. High glucose inactivates AMPK and is known to induce oxidative stress and ROS production through PKC, NF𝜅B, and NOX activation and AMPK itself regulates the activity and the transcription of several NOX [START_REF] Shaw | The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin[END_REF][START_REF] Ma | ChREBP⋅Mlx is the principal mediator of glucose-induced gene expression in the liver[END_REF]. We found that AMPK activity was reduced in HepG2 cells cultured in high glucose concentrations. This results support the hypothesis that high glucose may promote cell proliferation in HCC cells by inactivation of AMPK and increased activity of NOX.

In addition, inhibition of NOX has been previously shown to inhibit EGFR pathway and TGF beta induced apoptosis in liver cells via P42/44 and Akt and to inhibit cell growth without apoptosis in HepG2 cells [START_REF] Sancho | The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-beta-induced apoptosis of liver tumor cells[END_REF]. In HepG2 cells, P42/44 is constitutively active and thus may escape from AMPK and NOX regulatory activities on ROS-mediated apoptosis. AMPK level of expression itself is reduced in HepG2 cells [START_REF] Dentin | Hepatic glucose sensing via the CREB coactivator CRTC2[END_REF]. This phenomenon may be increased in absence of regulators of ROS production, such as COX2 and GSTP1 (mRNA not detected in our experiments, data not shown) which both regulate JNK to induce apoptosis [START_REF] Marí | Mitochondrial glutathione, a key survival antioxidant[END_REF][START_REF] Pajaud | Regulation of signal transduction by glutathione transferases[END_REF]. This result is in accordance with the high level of stress oxidative responsive genes in HepG2 cells [START_REF] Morgan | Application of cDNA microarray technology to in vitro toxicology and the selection of genes for a real-time RT-PCR-based screen for oxidative stress in Hep-G2 cells[END_REF], thus conferring survival advantage to HepG2 cells [START_REF] Loiseau | Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy[END_REF].

We have identified putative glucose-linked transcription factors at the crosstalk between metabolism and cell growth, such as MYC, PPARs, LXR, or FKHR, as well as the glucose-responsive transcription factor ChREBP, which modulates the expression of 92% of the genes commonly regulated by high glucose in HepG2 cells instead of 40% in human cells. This result was not specifically linked to liver phenotype, as in rodents, we found that Mlx/ChrEBP similarly regulates 42% of hepatic genes regulated by glucose [START_REF] Ma | ChREBP⋅Mlx is the principal mediator of glucose-induced gene expression in the liver[END_REF]. Taken together with the inactivation of AMPK by high glucose in HepG2 cells, this analysis suggests that the classical glucokinase/ChrEBP pathway involved in glucose-dependant gene transcription is normally regulated by AMPK in HepG2 cells [START_REF] Leclerc | The 5'-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex[END_REF]. AMPK regulates PPARGC1A, a central coactivator of transcription factors involved in mitochondrial biogenesis and metabolic pathways linked to the faster response in liver, including neoglucogenesis [START_REF] Rodgers | Nutrient control of glucose homeostasis through a complex of PGC-1𝛼 and SIRT1[END_REF]. This regulation involves the modulation of both PPARGC1A activity through histone deacetylase/NAD+/SIRT1 pathway and crosstalk with its transcriptional regulation by Pi3k/mTORC2/CREB pathway [START_REF] Fogarty | Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer[END_REF]. We found that HepG2 cells were 100 more sensitive to both the antiproliferative activity of metformin and reduced glutathione (Figure 5). Metformin induces activation of AMPK/SIRT1 and reduces p53 abundance in HepG2 cells in high glucose media [START_REF] Nelson | A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells[END_REF], and p53 itself is less expressed in HepG2 than in HuH7 cells [START_REF] Kah | Selective induction of apoptosis by HMG-CoA reductase inhibitors in hepatoma cells and dependence on p53 expression[END_REF]. Such a difference may explain the differential sensitivity to metformin. Moreover, SIRT1 functionally interacts with PPARGC1A [START_REF] Nemoto | SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1𝛼[END_REF]. In our experiments, we found that PPARGC1A mRNA was not regulated by high glucose or inactivation of AMPK basal activity although it was repressed by Pi3K and PKA and activated by Erk1/2 and PPARA. Gene transcription analysis of PPARGC1A associated transcription factor pathways did not revealed any dysregulation of its activity, as illustrated by APOC3, target gene of ERRalpha [START_REF] Lu | Type II nuclear hormone receptors, coactivator, and target gene repression in adipose tissue in the acute-phase response[END_REF], CREBBP regulated by Foxo1A [START_REF] De Candia | A combination of genomic approaches reveals the role of FOXO1a in regulating an oxidative stress response pathway[END_REF], and HNF4A and APOC3 by HNF4A [START_REF] Leclerc | Hepatocyte nuclear factor-4alpha involved in type 1 maturity-onset diabetes of the young is a novel target of AMPactivated protein kinase[END_REF][START_REF] Naiki | Analysis of gene expression profile induced by hepatocyte nuclear factor 4alpha in hepatoma cells using an oligonucleotide microarray[END_REF][START_REF] Hong | AMP-activated protein kinase regulates HNF4𝛼 transcriptional activity by inhibiting dimer formation and decreasing protein stability[END_REF], or AdipoR2, CEBPA, and APOC3, which are target genes of PPARA and PPARG [START_REF] Berger | Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival[END_REF][START_REF] Tachibana | Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms[END_REF]. These results indicate that gene transcription was not significantly altered at the level of PPARGC1A linked pathways. Examination of microarray datasets supports the hypothesis that PPARGC1A is less abundant in HepG2 than in HuH7 cells and moreover its level of expression is frequently downregulated in HCC [START_REF] Ba | Downregulation of PGC-1alpha expression in human hepatocellular carcinoma[END_REF], including HepG2 cells, and is essential for proper hepatic gene transcription and differentiation [START_REF] Martínez-Jiménez | Underexpressed coactivators PGC1𝛼 and SRC1 impair hepatocyte nuclear factor 4𝛼 function and promote dedifferentiation in human hepatoma cells[END_REF]. We found that PKC, Pi3K, P38MAPK (inhibitors), and Mek/Erk (activator) signaling pathways were preserved in HepG2 cells although AMPK pathway failed to regulate MYC gene expression in HepG2 cells, possibly through alterations of both STAT3, constitutively activated in HepG2 cells [START_REF] Miyazaki | Adiponectin activates c-Jun NH2-terminal kinase and inhibits signal transducer and activator of transcription 3[END_REF], and STAT-responsive element in the promoter of MYC [START_REF] Vougier | Anomalous behaviour of the STAT3 binding site in the human c-myc P2 promoter[END_REF]. Both PPARGC1A and MYC gene transcription are also regulatable by CREB via opposite effects of Pi3k/mTORC2 and AMPK; however, this transcriptional regulation is preserved in HepG2 cells [START_REF] Barré | Opposite regulation of myc and p21 𝑤𝑎𝑓1 transcription by STAT3 proteins[END_REF]. These results confirm previous published data showing that high glucose inhibits MYC transcription in these cells [START_REF] Briata | c-myc gene expression in human cells is controlled by glucose[END_REF].

In conclusion, high glucose concentrations differentially modulate cell growth and survival in both HCC cell lines without significant alteration of the pathways linked to neoglucogenesis. Glycolysis, glutaminolysis, and oxidative phosphorylation are the main sources of energy, that is, NADH, NADPH, and ATP [START_REF] Iyer | Effects of glucose and insulin on HepG2-C3A cell metabolism[END_REF]. We found that the LKB1 pathway is a central regulator of the proliferation induced by high glucose in HCC cells. In HepG2 cell line high basal PKC and P42/44 activities are linked to loss of control on cell growth by glucose through the metabolic pathway LKB1/AMPK/NOX.

Figure 1 :

 1 Figure 1: Cell density affects the rates of HepG2 and HuH7 cell growth, proliferation, and survival. (a) RTCA analysis represented by cell index (mean values ± SEM, 𝑛 = 8): (1) adhesion phase and (2) proliferative phase. (b) Flow cytometry analysis of cell cycle by propidium iodine incorporation. Graphs illustrate both cell distribution (FSC-A, SSC-A subset) and their corresponding propidium iodine incorporation for 5000 cells, 72 hr. Significant increase in Sub-G1 (dying cells) was observed in low density plated cells, that is, 5000 cells/cm 2 counteracted by reduced number of proliferative cells in S phase. In another way, proliferative cells were significantly reduced in high density plated cells, that is, 10000 to 20000 cells per well (mean values ± SD; * Student's 𝑡-test 𝑝-value, 𝑝 < 0.05). (c) Scepter cell count and cell size analysis of low density plated HepG2 cells (5000 cells/cm 2 ) using 60 𝜇m tips. Cell index was reduced after 24-48 hr and then was increased within 72 hr. Cell size distribution was different in cells plated at high (80% confluency) versus low density plated cells 72 hr after serum removal. In low density plated cells, living cells were selected in a range of 12-35 𝜇m and smaller cells were considered as dying, dead cells, or cell fragments and thus they represent cell death. The fraction of cell death was significantly increased in low density plated cells and characterized by a significant reduction of mean size of living cells (mean values ± SD; * * Student's test 𝑝-value, 𝑝 < 0.005). (d) Phase contrast micrographs (5000 cells/cm 2 , ×10) after 24 and 72 hours of cell culture. HepG2 cells were found to proliferate and grow in tridimensional groups.
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 2 Figure 2: Continued.

Figure 3 :

 3 Figure 3: Glucose modulates HuH7 cell growth but does not affect HepG2 cells. Upper panels: RTCA representative experiment represented by cell index normalized at time of treatment, measured every 5 min. during 50 cycles and then every 15 min. Data are presented as mean values ± SEM (𝑛 = 8). Lower panels: analysis of cell indexes according to cell index at 𝑇0 (10 and 3 independent experiments for HepG2 and HuH7 cells, resp.) and corresponding tendency curves.

Figure 4 :

 4 Figure4: Gene sets representative of normal liver and dysregulated in hepatocellular carcinoma (HCC). Sets of genes detected in either HuH7 or HepG2 cells, specifically expressed in liver or dysregulated in HCC, or regulated by glucose, have been raised from the analysis of published datasets listed in Table1. (a) Each set is represented by gene number and percentile of crossing set; for example, among the 129 genes regulated by glucose and detected in HepG2 cells (i.e., 0.6%), 22 belong to the liver phenotype set (i.e., 17% of them) and 7 are also dysregulated in HCC (i.e., 5.4% of them). (b) Frequency of genes regulated by high (4,5 g/L) versus low (1 g/L) glucose. Asterix represents significant overrepresentativity of genes regulated by glucose. (c) Gene sets differentially expressed in HepG2 versus HuH7 cells, that is, 34 genes upregulated in HepG2 and 179 in HuH7 cell lines and representativity of liver and HCC genes in both sets. (d) Analysis of unique gene ontology (GO) biological process (left panel), cellular component (central panel), and molecular function (right panel) significantly overrepresented in the set of genes dysregulated in HepG2 versus HuH7 cell line. The set of genes dysregulated in HepG2 versus HuH7 (213 genes) was compared to sets of genes representing liver phenotype (4918 genes) or those dysregulated in hepatocellular carcinoma (806 genes) using FatiGO+ software (http://babelomics.bioinfo.cipf.es/).

Figure 6 :

 6 Figure 6: Signaling pathways with differential effect on proliferation in HepG2 cells versus HuH7 cells. Real-time proliferation assays on xCELLigence were performed in either low or high glucose serum-free media in presence of either LKB1/AMPK pathway inhibitor Compound C, mitochondrial apoptosis inhibitor reduced glutathione (GSH), LKB1 activator metformin, or NADPH oxidases inhibitor VAS2870. Dose-dependent responses were analyzed in high glucose-serum free media. Representative RTCA experiments are presented as cell index normalized at time of treatment according to time and slopes (mean values ± SEM, 𝑛 = 8) in HepG2 (left panels) and HuH7 cell lines (right panel).

Figure 7 :

 7 Figure 7: Basal activities of AMPK, P42/44, P38 MAPK, and NF𝜅B p65 in HepG2 cells grown in either 1 (Low) or 4,5 g/L (High) glucose serum-free media during 30 mn. Western blots were performed with the same protein extracts, and blots were hybridized first with antiphosphorylated kinase antibody (𝛼-Phospho), stripped, and then hybridized with antibody raised against whole kinase form (𝛼-). (a) Representative blots. (b) Ratio of electrophoretic bands detected by phosphoprotein versus whole protein antibodies (mean values ± SD). Asterix indicates significant difference in high versus low glucose treatment. * Student's 𝑡-test 𝑝-value, 𝑝 < 0.05 (3 independent experiments).

Figure 8 :

 8 Figure 8: Regulation of gene transcription by glucose in HepG2 cells measured by RT-qPCR. Analysis of specific pathways in low glucose with P42/44 inhibitor A6355, 90 𝜇M; AMPK inhibitor Compound C, 40 𝜇M; Pi3 kinase inhibitor LY294002 10 𝜇M, P38MAPK inhibitor SD169 10 𝜇M; and Mek1/2 inhibitor U0129 10 𝜇M and PPARA activator GW7647 1 𝜇M. Cells were treated in serum-free media during 5 hours in at least three independent experiments. Data are presented as mean fold change mRNA of treated sample versus vehicle, normalized to HPRT1 (hypoxanthine phosphoribosyltransferase 1) ± SEM. Significant effects were selected for Student's 𝑡-test 𝑝-values, * * * 𝑝 < 0.001.

Table 1 :

 1 Datasets retrieved from the literature and used to build phenotype sets.

					Genes with	Genes with
		Data source		Genes number	intracellular pathway	transcription factor
					𝑛 (%)	𝑛 (%)
	Genome	FatiGo+ database		31524	
	Detected in HepG2	Microarray data analysis [12]		2 0 8 3 9	11705 (56%)	10477 (50%)
	Liver	Microarray data analysis [12]		4 9 1 8	1631 (33%)	1676 (34%)
	HCC	Microarray data analysis [12]		8 0 6	516 (64%)	560 (69%)
	Cancer biomarkers	Genes representing cancer biomarkers [70]		1 2 6 2	755 (60%)	815 (65%)
	Deregulated in HepG2 versus HuH7	Common genes from: (i) Comparative analysis of human cell lines [28]	213	146 (69%)	132 (62%)
		(ii) Comparative analysis of liver cell lines [29]		
		(i) Common genes from:		447	307 (69%)	336 (75%)
		(a) Aortic cells [71]			
	High glucose	(b) Leukocytes (GSE32909)			
		(c) Vascular smooth muscle (GSE17556)			
		(ii) HepG2 [27]		1 2 9	98 (76%)	124 (96%)
	were performed according to standard protocol (Qiagen	(see Supplementary Information in Supplementary Material
	Quick prep mRNA, Qiagen, Courtaboeuf, France) includ-	available online at http://dx.doi.org/10.1155/2015/821761). In
	ing a DNase treatment. RNA integrity was assessed with	gene set comparative analyses, significativity of enrichments
	the Agilent 2100 Bioanalyzer and RNA 6000 LabChip Kit	were calculated using 𝑧-test with confidence level up to 95%.
	(Agilent Technologies, Massy, France). First strand cDNAs			
	were synthesized from 500 ng of total RNA in the pres-			
	ence of 100 U of Superscript (Invitrogen-Life Technolo-			
	gies, Eragny, France) and random hexamers and oligo-dT			
	primers (Promega). Real-time quantitative PCR (RT-qPCR)			
	was performed using ABsolute QPCR SYBR Green ROX			
	Mix (Abgene, Courtaboeuf, France) with a Rotor-GeneTM			
	6000 system (Corbett Life Science, Cambridgeshire, UK).			
	Levels of target mRNAs were normalized to hypoxanthine			
	phosphoribosyltransferase 1 (HPRT1) expression measured			
	in all samples by RT-qPCR. All quantifications were per-			
	formed at least on three independent experiments and data			
	are presented as means ± SEM. Gene names, references,			
	functions, primers, and respective qPCR conditions have			
	been published previously [12, 25].			
	2.5. Microarray Data Analyses. The sets of genes expressed in			
	human normal liver, HCC and HepG2 cells, glucose, intracel-			
	lular pathways, or transcription factors modulated by various			
	stimuli were obtained exclusively with human cells, mostly			
	cancer cell lines including HepG2 cells (Table 1). All gene sets			
	originated either from published experiments or by analysis			
	of datasets deposited in Gene Expression Omnibus (GEO)			
	(http://www.ncbi.nlm.nih.gov/) using GEO2R web tool with			
	significant 𝑝-values calculated according to the method of			
	false discovery rate [26]. Liver set, that is, genes representative			
	of healthy liver phenotype; HCC set, that is, genes dysreg-			
	ulated in HCC, and HepG2 set, that is, genes detected in			
	HepG2 cells were raised from our previous published study			
	[12]. These phenotypic gene sets were compared to published			
	gene datasets regulated by either intracellular pathways or			
	transcription factors listed in Supplementary Information			

Table 2 :

 2 Human hepatocellular carcinoma cell lines characteristics.

		HepG2	HuH7
	Number of plated cells/cm 2	2500-5000	1250-2500
	Proliferation in space	Tridimensional	Monolayer
	Doubling time (xCELLigence)	8 hr	12 hr
	Mean cell size (Scepter)	20.9 𝜇M	2 1 . 9𝜇M

  ). Sets of genes detected in either HuH7 or HepG2 cells, specifically expressed in liver or dysregulated in HCC, or regulated by glucose, have been raised from the analysis of published datasets listed in Table1. (a) Each set is represented by gene number and percentile of crossing set; for example, among the 129 genes regulated by glucose and detected in HepG2 cells (i.e., 0.6%), 22 belong to the liver phenotype set (i.e., 17% of them) and 7 are also dysregulated in HCC (i.e., 5.4% of them). (b) Frequency of genes regulated by high (4,5 g/L) versus low (1 g/L) glucose. Asterix represents significant overrepresentativity of genes regulated by glucose. (c) Gene sets differentially expressed in HepG2 versus HuH7 cells, that is, 34 genes upregulated in HepG2 and 179 in HuH7 cell lines and representativity of liver and HCC genes in both sets.

			Intracellular signaling		Transcription factors	
	(a)	High glucose	High glucose HepG2	Liver	HCC	Translation mTOR Translation PTEN ABL Adenylate cyclase AKT AMPK-p53 Cancer biomarker HepG2 versus HuH7	(b)	ATFs CREB EGR1 Elk1 Ets	High glucose	High glucose HepG2	Liver	HCC	Cancer biomarker	HepG2 versus HuH7
						Ca storage		HIF2A						
						Compound C		LXR						
						COX-2		NFAT						
						EGFR1		NFE2L2(NRF2)						
						Glycolysis (2DG)								
						Glucose oxidase		Oct1/POU2F1						
						GPI-PLD *								
						GSK3								
						HDAC HepG2		PPARGC1A						
						JNK		RARA						
						LKB1		SMADS						
						Metformin (2DG)								
						Erk1/2 (MAP2K1)		STATs						
						MKK5/Erk5		USF						
						NOX1								
						Pi3K								
						PKA								
						PKC								
						PTEN								
						N-RAS								
						TSC1/2								
		Significantly overrepresented compared to genome								
		Significantly overrepresented compared to high glucose								
		Significantly underrepresented compared to high glucose								
	*	Datasets obtained with HepG2 cells								
		Significantly different in the response of HepG2 to high glucose								

(d) Analysis of unique gene ontology (GO) biological process (left panel), cellular component (central panel), and molecular function (right panel) significantly overrepresented in the set of genes dysregulated in HepG2 versus HuH7 cell line. The set of genes dysregulated in HepG2 versus HuH7 (213 genes) was compared to sets of genes representing liver phenotype (4918 genes) or those dysregulated in hepatocellular carcinoma (806 genes) using FatiGO+ software (http://babelomics.bioinfo.cipf.es/). * CHREBP * PPARA * PPARG * SREBP1c * NF𝜅B Figure 5: Transcriptional networks regulated by high glucose in human cells. The results were obtained by comparative analysis of datasets retrieved from the literature as defined in Table

Table 3 :

 3 Pathways tested on real-time experiments.

	Pathway	Drug activator (A)/inhibitor (I) Highest dose tested	Time of significant effect	HepG2 Effect IC50 (𝜇M) Effect IC50 (𝜇M) HuH7
	AMPK	AICAR (A) Compound C (I)	2 mM 40 𝜇M	24 hr 2 4 h r	-No effect	3 10 -3	--	1.1 10 -3 3.3 10 -5
	JAK1	Butein (I)	50 𝜇M	2 4 h r	-	2 10 -5	-	Nd
	JNK	SP600125 (I)	100 𝜇M	2 4 h r	-	1.8 10 -5	-	2.2 10 -5
	LKB1	Oligomycin (A) Metformin (A)	2 mM 10 mM	48 hr 24 hr	--	3 10 -7 7 10 -6	--	2.5 10 -7 8 10 -4
	Mek1/2	U0126 (I)	250 𝜇M	1 h r	-	1.1 10 -5	-	Nd
	mTOR	Rapamycin (I)	200 nM	48 hr	No effect		No effect	
	Mitochondrial apoptosis	GSH (A)	10 𝜇M	2 4 h r	-	10 -6	-	1.3 10 -4
	NF𝜅B p65	Wedelolactone (I)	10 𝜇M	2 4 h r	-	0.8 10 -5	-	10 -5
	NOX	VAS2780 (I)	50 𝜇M	1 h r	-	5 10 -5	-	1.8 10 -5
	P38MAPK	SD169 (I)	300 𝜇M	2 4 h r	+	9 . 41 0 -5 No effect	
	P42/44	A6355 (I)	90 𝜇M	1 h r	-	-	-	-
	PKA	KT5720 (I)	20 𝜇M	4 8 h r	+	1 . 11 0 -4	+	N d
	PKC	P3115 (I)	50 𝜇M	1 h r	5 10 -6	-	-	Nd
	Pi3K	LY294002 (I)	50 𝜇M	4 8 h r	-	3.3 10 -5	-	3 10 -5
	PPARA	GW6471 (I)	1 mM	1 hr	-	5.7 10 -4	-	4 10 -4

Table 4 :

 4 Regulation of gene transcription by glucose in HepG2 cells measured by RT-qPCR. Levels of gene expression in high (4.5 g/L) versus low (1 g/L) glucose concentrations.

	Symbol	Gene name
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