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Abstract   17 

Carbon emissions in agriculture play a major role in climate change. Modelling studies enable to 18 
investigate the impacts of climate change in crops, accounting for soil organic carbon feedbacks and 19 
CO2 concentrations. But it is primordial that crop models properly consider the CO2 exchanges at the 20 
level of crop rotations beyond the cycle of a single crop. With this goal in mind, we used the outputs 21 
of the soil-crop model STICS in its standard pre-parameterized version to model (i) the Gross Primary 22 
Productivity (GPP), derived from the autotrophic respiration and the Net Primary Productivity, which 23 
is computed through the daily change in plant carbon (C) pools; (ii) the Ecosystem Respiration 24 
(RECO), with the autotrophic component being derived from the plant biomass, plant nitrogen 25 
concentration and GPP, and the heterotrophic component from the mineralization of residues and 26 
organic matter; and (iii) the Net Ecosystem Exchange, equal to the sum of GPP and RECO. The 27 
comparison of simulations with field observations indicates that the model is able to simulate 28 
accurately daily CO2 fluxes originating from a long-term and diversified crop rotation (efficiency EF 29 
equal to 0.79 for GPP, 0.59 for RECO and 0.67 for NEE). Concerning the evaluation of the cumulated 30 
fluxes over the 16-year rotation, the model is able to evaluate it accurately for RECO, with a slight 31 
underestimation (normalized deviation ND = 15.7%), and very accurately for GPP (ND = 5.12%). But 32 
for NEE, the relative overestimation is higher (ND = 62.2%), indicating that a more precise estimation 33 
of HR is required to obtain reliable net C budgets. The model also succeeds to capture the trends in the 34 
influence of several environmental drivers on CO2 fluxes. It globally proves to be a valuable tool in 35 
the investigation of CO2 exchanges of crop rotations in historical and future climatic conditions. 36 

Keywords: Net Ecosystem Exchange; Crop model; Gross Primary Productivity; Autotrophic respiration; 37 
Heterotrophic respiration; Carbon balance   38 
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1.  Introduction 39 

Climate change causes widespread negative impacts, not only on ecosystems but also on people, 40 

settlements and infrastructure. Among these, extreme events such as heatwaves, heavy precipitations, 41 

droughts, fires, etc. are impacting ecosystems, human health and the economy and causing 42 

humanitarian crises. Furthermore, these effects are expected to intensify with a very high level of 43 

confidence (IPCC, 2022). 44 

Among greenhouse gases, that are directly responsible for climate change, CO2 emissions 45 

constitute 75% of global net anthropogenic emissions (IPCC, 2013). Agricultural lands generate very 46 

large CO2 fluxes, but the balance between their source and sink capacities is subject to large 47 

uncertainties and high annual and spatial variability (Smith et al., 2007; Wattenbach et al., 2010). 48 

Globally, soils are known to store more than twice as much carbon as is contained in the vegetation or 49 

the atmosphere (Bellamy et al., 2005). Croplands have thus potential to mitigate climate change, but 50 

this requires a deep understanding of soil CO2 fluxes and how agricultural management and 51 

environmental variables affect them. 52 

The two major CO2 fluxes between the atmosphere and the terrestrial biosphere result from the 53 

photosynthesis by vegetation and the respiration from autotrophic and heterotrophic organisms 54 

(Klosterhalfen et al., 2017). It is photosynthesis that is the primary source of carbon (C) in ecosystems, 55 

by fixing C in plants and adding it to soil as above- and belowground organic matter (Bolinder et al., 56 

2007). This amount of C fixed is referred to as the Gross Primary Productivity (GPP). About half of 57 

this photosynthetically fixed carbon is lost by internal plant metabolism for plant growth and 58 

maintenance processes. These processes are called the Autotrophic Respiration (AR) (Kirschbaum and 59 

Mueller, 2001). The difference between GPP and AR is called Net Primary Productivity (NPP). The 60 

other part of the respiration is called Heterotrophic Respiration (HR). It refers to the carbon that is lost 61 

by all organisms in ecosystems other than plants: animals that live aboveground, but mostly all macro- 62 

and micro-organisms that live in the soil and the litter and decompose organic matter. The sum of the 63 

autotrophic and heterotrophic respirations is referred to as Ecosystem Respiration (RECO). Finally, 64 

Net Ecosystem Exchange (NEE) is the balance between photosynthesis, that fixes carbon, and 65 
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respiration, that releases it. 66 

The standardization of eddy-covariance measurements (Aubinet et al., 1999) has allowed the 67 

development of regional flux-tower networks (such as EUROFLUX which later morphed into 68 

CARBOEUROPE and ICOS, or AMERIFLUX) that produce standardized and long-term observations 69 

on the carbon balance of various terrestrial ecosystems ( Baldocchi et al., 2008). They have notably led 70 

to studies investigating the carbon budgets of crops using datasets ranging from one to multiple 71 

experimental sites and from one cropping season to full crop rotations. Globally, agro-ecosystems had 72 

negative annual NEE, indicating that the plants sequester more carbon than what is respired. However, 73 

they were found to be C sources when considering Net Biome Production (NBP) that also considers 74 

lateral C fluxes such as manure and harvest (Aubinet et al., 2009; Kutsch et al., 2010; Buysse et al., 75 

2017; Dold et al., 2017). Such C losses lead to a decrease in soil organic carbon (SOC) stocks, 76 

threatening soils fertility on the long term but also potential of crops for climate mitigation.  77 

Globally, longer-term studies are necessary to consider the inter-annual variability of C fluxes in 78 

agro-ecosystems, which is large and influenced by genetics (e.g. crop type), environment (e.g. 79 

radiation, temperature or water availability) and management (e.g. tillage) (Chi et al., 2016; Buysse et 80 

al., 2017). The determination of GPP and RECO fluxes may require combining altogether the use of 81 

eddy-covariance with soil chambers measurements, which is both time- and money-consuming and 82 

does not allow to deal easily with plot scales (Vuichard et al., 2016). An alternative consists in using 83 

partitioning methods such as non-linear regressions, look-up tables or statistical analyses, which might 84 

induce some errors (Smith et al., 2010). Moreover, if one wants to separate soil respiration into its 85 

autotrophic and heterotrophic components, additional experimental effort is needed, for example 86 

keeping a plot without vegetation nor roots in order to have a heterotrophic-only respiration area 87 

(Suleau et al., 2011), at the cost of high labour requirements. This is why it is particularly interesting 88 

to be able to estimate the components of CO2 fluxes from a crop modelling-based approach. 89 

Process-based models are essential research tools for extrapolating field results in both time and 90 

space. They not only allow assessing the impact of climate change on these systems through the 91 

account for soil-plant feedback mechanisms considering notably the interaction between soil organic 92 
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carbon and carbon dioxide (Basso et al., 2018), but also their potential to mitigate it (Kang et al., 2009; 93 

Rosenzweig et al., 2014; Asseng et al., 2015; Lobell et al., 2017). They also help to represent current 94 

understanding of the impacts of drivers such as temperature or water content on agronomic and 95 

physical processes (Sándor et al., 2020).  96 

Several process-based models like Agro-C (Huang et al., 2009), DNDC (Li et al., 2005), SPAc 97 

(Sus et al., 2010) or ORCHIDEE-STICS (Krinner et al., 2005) have already been developed for 98 

modelling CO2 fluxes of the soil-plant system and compared to each other (Wattenbach et al., 2010; 99 

Lokupitiya et al., 2016; Sándor et al., 2020). It appears that most of these models either under- or 100 

overpredict CO2 fluxes, with the most precise models limited either in their range of simulated crops 101 

or in their type of modelled flux (GPP or RECO). This restrains their ability to simulate the full carbon 102 

balance of diversified crop rotations. This is why simulating CO2 fluxes with a process-based model 103 

such as the soil-crop model STICS (Brisson et al., 2008), already able to simulate a wide range of 104 

agronomic and environmental indicators in various agro-environmental conditions (Coucheney et al., 105 

2015), might be profitable. 106 

Several methods are used to model these CO2 fluxes. Heterotrophic respiration is computed via 107 

the mineralization of humus, mulch and residues, with a dependence on different factors such as 108 

temperature (Tuomi et al., 2008), moisture availability or quality and supply of decomposable 109 

substrate material (Trumbore, 2006). 110 

GPP and/or NPP are usually calculated by multiplying the amount of solar radiation intercepted 111 

by a coefficient of conversion of this radiation into biomass, this coefficient depending on several 112 

factors such as green leaf nitrogen content, air temperature, soil moisture and atmospheric CO2 113 

concentration (Kirschbaum and Mueller, 2001; Huang et al., 2009). If it is NPP that is calculated, GPP 114 

will be obtained by adding autotrophic respiration, whereas if GPP is directly derived, respiration is 115 

implicitly taken into account into the parameterization of growth functions. 116 

To model crop respiration, a first simple approach involves using photosynthesis (GPP) and 117 

multiplying it by a respiration:photosynthesis ratio. This ratio of respiration to gross photosynthesis 118 

might be assumed to be constant over a wide range of plant sizes and growth rates, CO2 concentrations 119 
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and temperatures, but this could induce modelling uncertainties since whole-plant chambers 120 

measurements reported that this ratio might vary from 0.35 to 0.6 (Kirschbaum and Mueller, 2001; 121 

Gifford, 1995). A second approach to derive plant respiration consists in partitioning respiration into 122 

the components of growth and maintenance (Amthor, 1984). The growth respiration allows the 123 

synthesis of new tissues, while the maintenance respiration represents the cost of maintaining the 124 

existing biomass, i.e. the costs of protein synthesis and replacement, membrane repair and the 125 

maintenance of ion gradients. The advantage of this approach is that growth costs are fixed for a unit 126 

of new tissue whereas maintenance respiration varies with environment (e.g. temperature), protein 127 

turnover, plant species and even organs (greater in roots than in the shoot) (Amthor, 1984; Ryan, 128 

1991). However, it remains theorical since maintenance and growth respiration are not biochemically 129 

distinct and cannot be differentiated experimentally. To consider the energy requirement for 130 

maintenance due to protein turnover, we can take advantage of the correlation between maintenance 131 

respiration and tissue nitrogen concentration (Ryan, 1991; Sun et al., 2007).  132 

In this paper, we present an innovative methodology to model the CO2 exchanges of a crop 133 

rotation. Data recorded over a 16-year crop rotation at the ICOS site of Lonzée in Belgium (BE-LON), 134 

comprising winter wheat, sugarbeet, potato, maize and cover crops, allow to calibrate and validate our 135 

approach. The soil-crop model STICS is used to model the crop rotation and as a basis to derive CO2 136 

fluxes. The objectives of this study are (i) to elaborate the methodology to compute GPP, RECO and 137 

NEE; (ii) to assess its validity and accuracy by a comparison with observed CO2 fluxes; and (iii) to 138 

discuss the influence of various environmental drivers on crop rotations CO2 fluxes, based on both 139 

field observations and simulations. 140 

2. Material and Methods 141 

2.1. Site description 142 

The BE-LON experimental site is situated in Lonzée, about 45 km at the south-east of Brussels 143 

in Belgium (50°33’08’’N, 4°44’42’’E, 165 m asl). It belongs to the Integrated Carbon Observations 144 

Systems (ICOS) network, a European infrastructure, since the 17
th
 November of 2017. Fluxes and 145 

meteorological variables were measured with eddy-covariance following ICOS protocols, except for 146 
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the period before 2014 when CARBOEUROPE-IP and FLUXNET network standards were used 147 

(Buysse et al., 2017). The measured fluxes, after correction, filtering and gap-filling, provide the NEE, 148 

following the ONEFlux processing pipeline methodology (Pastorello et al., 2020). The later 149 

partitioning of experimentally measured NEE into GPP and RECO components was conducted 150 

following the procedures used and described by Reichstein et al. (2005). Both raw fluxes 151 

measurements and treated fluxes are available in Heinesch et al. (2021). Later in the manuscript, we 152 

will refer to these fluxes as observed, despite GPP and RECO being computed from NEE which was 153 

the only flux actually measured on the field. 154 

In Lonzée, the climate is temperate maritime (classified as Cfb in the Köppen classification; 155 

Köppen, 1984). Mean annual temperature and precipitation are about 10°C and 800 mm respectively. 156 

The field of BE-LON experimental site covers about 12 ha on a fairly flat plateau with a 157 

quadrilateral shape. The soil is classified as a Luvisol with, in August 2007, a soil organic C stock of 158 

46.7 tC ha
-1

 over the 0-30 cm soil layer (Buysse et al., 2017). Records indicate that the field has been 159 

cultivated for over 80 years. Since 2004, crop rotation has been stabilized to the following 4-year 160 

sequence: sugarbeet, winter wheat, seed potatoes and winter wheat. An exception occurred in 2012 161 

when sugarbeet was replaced by maize. Mustard was sown as cover crop and N trap in 2009, 2013, 162 

2015 and 2017 (Table A1 in Appendices). Fertilization, mainly as nitrogen, and pesticide applications 163 

for weeding, growth regulator, control of insects and fungal followed Belgian common practices 164 

(Buysse et al., 2017). Regular soil tillage, namely 25-cm deep tillage after each winter wheat crop, was 165 

practiced.  166 

The dataset that was used includes both agronomic and environmental data. The first category 167 

comprises Leaf Area Index (LAI), shoot biomass, yield, and N concentration in the plant and in the 168 

grain. The latter involves soil organic carbon, standard meteorological variables, evapotranspiration 169 

and CO2 fluxes (GPP, RECO and NEE). 170 

Further details about the BE-LON experimental site, crop management activities and data 171 

collection procedures are available e.g. in Aubinet et al. (2009), Suleau et al. (2011) or Buysse et al. 172 

(2017). 173 
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2.2. The STICS soil-crop model (v9.2) 174 

In this study, we used the standard version 9.2 of STICS (Simulateur mulTIdisciplinaire pour 175 

les Cultures Standard in French); see Beaudoin et al. (2022) for a detailed description of the different 176 

versions of the model. STICS is a soil-crop model which computes changes in both agronomic (e.g. 177 

biomass and yield) and environmental variables (e.g. soil organic carbon, nitrate leaching, soil water 178 

and nitrogen, etc.) from input variables and parameters relating to weather conditions, soils and 179 

cropping systems (Brisson et al., 2009). It is a process-based model that simulates plant growth as well 180 

as water, C and N fluxes. Biomass is computed from the radiation intercepted by foliage (LAI), that is 181 

incremented on a daily basis as a logistic function of phasic development. The amount of N taken up 182 

by the plant is assumed to be the daily minimum between soil N supply and crop N demand. 183 

STICS does not explicitly simulate neither GPP nor autotrophic respiration since it relies on the 184 

concept of radiation use efficiency that combines photosynthesis and respiration. Yet it explicitly 185 

simulates heterotrophic respiration from mineralization of all crop residues and soil organic matter 186 

(humus). The decomposition of residues follows a first-order kinetics, with a rate depending on their 187 

nature, their C:N ratio, soil temperature, water and mineral nitrogen content. The decomposition of 188 

humified organic matter depends on a mineralization rate constant (calculated according to the soil 189 

characteristics) that is multiplied by stress factors accounting for the effects of soil temperature and 190 

moisture. 191 

2.3. Deriving GPP, AR and NEE from STICS output variables 192 

The Gross Primary Productivity is the sum of the Net Primary Productivity and the autotrophic 193 

respiration (Kirschbaum and Mueller, 2001). Taking as a convention that fluxes towards the soil are 194 

regarded as negative and those leaving from the soil as positive (as e.g. in Buysse et al. (2017)), this 195 

gives: 196 

               

The approach used to compute the different CO2 fluxes from STICS outputs is represented on 197 

Figure 1 and detailed hereafter.. 198 
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 199 

Figure 1. Overview of the methodology used to compute the different CO2 fluxes from STICS 200 
outputs. STICS variables are written in italic.  201 

2.3.1 Net Primary Productivity 202 

NPP is the daily change in the total carbon content (TCC) of the aboveground and belowground 203 

parts of the plant. Considering the different biomass pools in STICS (Brisson et al., 2009), a first 204 

method to compute the TCC is: 205 

                                                                

with the STICS variables masecveg, mafruit, msrac and mafeuiltombe standing for the biomass of 206 

respectively vegetative organs, harvested organs, roots and fallen leaves due to senescence, and where 207 

each pool is multiplied by a carbon content coefficient, as defined in the STICS model. 208 

However, this first method reveals limitations, that we hypothesize to be linked to (i) the uncertainty 209 

associated with the simulated roots biomass and C content, which might be of importance since a 210 

significant proportion of NPP is allocated to belowground plant parts (Bolinder et al., 2007; Pausch 211 

and Kuzyakov, 2018), and (ii) the carbon fraction being actually different between crops. Indeed, root 212 

biomass is not explicitly simulated at a daily time-step in STICS v9.2 (it is only calculated at harvest 213 

when roots become belowground crop residues). Furthermore, STICS assumes the carbon fraction as 214 

constant, but it actually varies, especially for the carbon contained in harvested organs (Penning de 215 

Vries, 1989).  216 
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 To address these limitations, we chose to not use directly the roots biomass simulated by 217 

STICS, because (i) we lacked field data to validate belowground simulations, and, most of all, (ii) we 218 

wanted to use the standard version of STICS to avoid overfitting and keep generality and usability. In 219 

the standard parameterization of STICS, there is no dependence between root length expansion and 220 

shoot growth, which is indispensable to obtain a reliable soil-crop C balance. Instead, to derive 221 

belowground NPP, we used a constant coefficient coming from shoot-root ratios and harvest indices. It 222 

allowed to estimate NPP due to roots based on aboveground organs simulations, following the 223 

coefficients for several crops including sugarbeet, potato and maize provided by Bolinder et al. (2007) 224 

and Bolinder et al. (2015). As mentioned in these papers, this allows the approach to be easily 225 

transferable and updated with new experimental results. Rhizodeposition was considered, as carbon is 226 

exudated into the soil from the extra-root component (Asseng et al., 1997; Bolinder et al., 2007).  For 227 

mustard used as cover crop, a shoot-root ratio of 5 was used, from De Baets et al. (2011). For winter 228 

wheat, we took benefit from the more extensive literature to use a dynamic shoot-root ratio evolving 229 

along the crop season, following the coefficients used in Asseng et al. (1997) which also consider 230 

exudation. This dynamic shoot-root ratio is equal to 0.66 before the maximal rate of leaf growth (end 231 

of juvenile phase), 2.33 between the maximal rate of leaf growth and flowering and 3 after flowering. 232 

This is in accordance with the constant value of 2.46 proposed by Bolinder et al. (2007). All allocation 233 

coefficients used for computing carbon stored in roots and rhizodeposition from aboveground 234 

vegetative biomass are summarized in Table A2. Secondly, for the carbon contained in harvested 235 

organs (linked to mafruit), a carbon fraction specific to each crop, lying in the interval 0.42-0.45, was 236 

proposed (Penning De Vries et al, 1989). Two reasons explain this choice. Firstly, not referring to the 237 

carbon content of harvested organs prescribed within STICS is not problematic, since i) our module is 238 

external to the crop model and ii) these organs are exported and therefore not returned to the soil. 239 

Secondly, while the model is known to be reliable as a source of biomass simulation (Coucheney et 240 

al., 2015), as it uses a constant carbon fraction within harvested organs for all crops (equal to 0.44), we 241 

believe that it is not as trustworthy for carbon estimates across a crop rotation including a diversity of 242 

plants (sugarbeet, wheat, etc.). 243 
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2.3.2 Autotrophic respiration 244 

For the autotrophic respiration calculation, we separated it between its two components for 245 

growth (GR) and maintenance (MR): 246 

              

Growth respiration is the CO2 emitted resulting from growth processes that convert glucose into 247 

other organic components (Penning de Vries, 1989). Therefore, from the amount of glucose required 248 

to synthetize 1g of plant material, Ruimy et al. (1996) found a growth coefficient of 0.28   249 

            , based on various natural ecosystems and various organs. This role of glucose molecules, 250 

serving as building components for virtually all organic constituents, is common and almost constant 251 

to all plants (Penning de Vries, 1972; Amthor, 1984; Penning de Vries, 1989; Ryan, 1991; Poorter, 252 

1994).  253 

To compute GR, we used the equation of the ORCHIDEE model described in Krinner et al. 254 

(2005) and  Vuichard et al. (2016). A fixed fraction (28%) of the available carbon for growth (GPP-255 

MR) was used for GR. As highlighted in Figure 1, GPP, AR and GR are interlinked. To deal with 256 

computation issues, we computed GR at day i as being a function of GPP at day i-1, such a correlation 257 

being suggested in Suleau et al. (2011): 258 

                           

Initial values GPP1 and GR1 are null since we started the simulations in STICS, specific to each 259 

crop season, before sowing. 260 

2.3.3 Maintenance respiration 261 

To simulate maintenance respiration, we used the correlation between plant maintenance 262 

respiration and tissue N, as reported by Ryan (1991). This relationship conceives that a major energy 263 

demand for plant tissue maintenance is for protein turnover, to support protein repair and replacement 264 

(Ryan et al., 1991; Kirschbaum and Mueller, 2001; Sun et al., 2007). Following Amthor (2000), 265 

Kirschbaum and Mueller (2001) and Sun et al. (2007), we used the following relationship between the 266 

maintenance respiration MR [kg C m
-2 

day
-1

], the aboveground plant biomass W [kg m
-2

], the 267 

environmental temperature T [°C] and the tissue N content [%]: 268 



11 
 

               

    
          

with     a temperature coefficient of respiration equal to 2 (the Q10 value and the reference 269 

temperature are widely confirmed by the literature, e.g. in Vandendriessche (2000)). Sun et al. (2007) 270 

found from pot experiments, for wheat and rice and for the aboveground AR, coefficients a and b 271 

respectively equal to 2.16 and -0.66 (when converted to the units we used). These are also used for 272 

several crops in the Agro-C model (Huang et al., 2009). 273 

However, since we made the choice to compute AR from its maintenance and growth 274 

components, we need to calculate the coefficients a and b of Eq. (5) for maintenance respiration only. 275 

We took benefit from our long-term dataset to separate it into randomly selected independent 276 

calibration and validation sets for each crop (Table A3). Since the amount of data did not allow an 277 

independent validation for maize and cover crops, we decided to use for these crops the coefficients 278 

obtained from winter wheat. It appeared that the coefficients should be fitted separately for winter 279 

wheat, sugarbeet and potato. Indeed physiological differences exist between organs respiration rates. 280 

For example, Amthor (1984) indicated that the maintenance respiration coefficient is greater in roots 281 

than in the shoot, and Suleau et al. (2011) suggested that the storage organs of sugarbeet respire less 282 

than fine roots.   283 

For the fitting process, we started from the equality 284 

                  

and substituted GR and MR by their expressions in Eq. (4) and Eq. (5), leading to the following 285 

relationship: 286 

                               

                                        

    
         

where all indicators are replaced by their estimated values except for RECO which is observed. This 287 

allowed to estimate by linear regression the values of the coefficients a and b for the different crops 288 

with the following equality, with i and i-1 indicating the day: 289 
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We finally computed total autotrophic respiration with Eq. (3). 290 

2.3.4 Net Ecosystem Exchange 291 

Using the soil heterotrophic respiration (HR) simulated by STICS, we computed the Net 292 

Ecosystem Exchange (NEE) with 293 

                                  

One should note that, if its objective is to compute NEE with no regard to autotrophic 294 

respiration, combining Eqs. (1) and (10), it is similar to compute NEE with 295 

                           

2.4. Environmental drivers of NEE 296 

NEE is known to vary between cropping years, even for a given crop (Aubinet et al., 2009; 297 

Buysse et al., 2017). The BE-LON dataset allowed us to study the influence of environmental factors 298 

on NEE inter-annual variability. Indeed, the same management was applied to same crops for different 299 

cropping years. As in the study of Buysse et al. (2017), we explored using linear regressions between 300 

seasonal NEE (from emergence to harvest) and environmental drivers such as (i) the number of days 301 

of active vegetation (NDAV), i.e. days when daily GPP was in absolute value over a certain threshold 302 

estimated to be optimal to avoid the influence of weeds that the model is unable to reproduce (50 g C 303 

m
-2

 d
-1 

for winter wheat and 10 g C m
-2

 d
-1 

for the other crops as in Ceschia et al. (2010) and Buysse et 304 

al. (2017)), (ii) the cumulated radiation (Qcum) during active vegetation period, (iii) the average air 305 

temperature (Tair,av) during the active vegetation period, (iv) the water balance (precipitation minus 306 

evapotranspiration) and (v) the SPEI. The Standardized Precipitation-Evapotranspiration Index (SPEI) 307 

characterizes the onset, duration and magnitude of a drought based on the difference between 308 

precipitations and evapotranspiration (Vicente-Serrano et al., 2010). It then captures the impact of 309 

temperature on water demand. Correlations were tested for the SPEI at different months as well as for 310 

different durations. 311 



13 
 

2.5. Crop model parameterization and validation 312 

2.5.1 Parameterization 313 

Soil parameters initializing the simulations originated from observations used to define a 314 

standard profile, because no initial values were available. For the plants, we used the standard 315 

parameters provided with STICS v9.2 that were validated on the large and diversified datasets of the 316 

STICS core team (Beaudoin et al., 2022).  Few slight modifications were made for winter wheat, 317 

according to Dumont et al. (2016), and for potato, according to M. Launay (personal communication). 318 

All simulations files related to soil and plant parameterization, crop management and outputs are 319 

available in Appendix A3. 320 

2.5.2 Validation 321 

To evaluate the accuracy of the model simulations, three different indicators were used: the 322 

Root Mean Square Error (RMSE), the Model Efficiency (EF) and the Normalized Deviation (ND): 323 

        
 

 
         

 

 

   

 

      
        

  
   

          
   

 

    
    

 
        

 
   

   
 
   

 

with    the simulations and    the observations. We consider that the model is adequate for a 324 

given variable of interest if         and            (Beaudoin et al., 2008). A graphical analysis 325 

based on RMSE decomposition between its systematic (RMSEs) and unsystematic (RMSEu) 326 

components (Willmott et al., 1981), initially proposed in Taylor (2001), was used to assess model 327 

global performance. They were calculated as follows: 328 

         
 

 
     

     
 

 

   

 

         
 

 
         

   

 

   

 

with   
            the linear regression of observed versus simulated values. This was 329 
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utilized for example by Coucheney et al. (2015), which established criteria allowing to qualify an 330 

indicator simulation as satisfactory, good or very good. RMSE components were standardized to 331 

compare the performance of simulation between variables having different units. 332 

We also used the parameters    and    of the linear regression   
            of simulated 333 

versus observed values as supplementary indicators of the goodness of fit: the intercept    and the 334 

slope    being as close as possible to respectively 0 and 1 (Pineiro et al., 2008). 335 

3. Results and Discussion 336 

3.1. Relationship between plant N concentration and maintenance respiration 337 

 338 

Figure 2. Fitting results to compute maintenance respiration (MR) from plant N concentration 339 
for winter wheat (2a and 2b), sugarbeet (2c and 2d) and potatoes (2e and 2f). Fig. 2a, 2c and 2e 340 
show, for each crop, the relationship between plant N concentration and simulated MR (divided 341 
by the Q10-coefficient and biomass W) in the calibration set, with in blue the linear regression 342 
and its 95%-confidence interval. Fig. 2b, 2d and 2f compare, in the independent validation set, 343 
the simulated MR on the x-axis, and the MR computed with observed RECO (as defined in Eq. 344 
(9)) on the y-axis. Regression coefficients and goodness of fit indicators are summarized in Table 345 
A4. 346 

As illustrated in Fig. 2, calibration proved that the model is adequate to predict maintenance 347 
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respiration (R
2 

between 0.43 and 0.92 for calibration), with however a higher variability in winter 348 

wheat response (Fig. 2a). Such a variability may be caused by the different varieties that were sown 349 

and/or different turnover rates for the enzymatic processes of respiration (Ryan, 1991). Similarly, the 350 

potato cropping season of 2006 (red points in Fig. 2e) is seen to observe a different respiration rate 351 

compared to the two other seasons. We believe it is because of the different cultivar sown during that 352 

year (cv. Spunta) compared to 2014 and 2018 cropping seasons (cv. Draga). Bouma et al. (1992) 353 

indicated that differences in potato leaf respiration rates between cultivars might be due to contrasted 354 

general metabolic activity due to different optima for temperature. The maintenance coefficient a, 355 

which represents the dependence of maintenance respiration (per unit of dry matter) on nitrogen 356 

content, is higher for potato compared to the two other crops (Table A4). This might be due to (i) the 357 

lower variability of simulated N concentration in its aboveground tissues, (ii) the difference of 358 

maintenance respiration rates between above- and belowground parts of the plant (Amthor, 1984), and 359 

(iii) the energy cost associated to nocturnal carbohydrate export (proportional to the total dark 360 

respiration) within starch-storing species (Bouma et al., 1995). Validation confirmed the model 361 

pertinence (Fig. 2b, 2d, 2f and Table A4).  362 

3.2. Model performance 363 

The STICS model satisfactorily simulated the agronomic indicators that are involved in CO2 364 

fluxes computation: shoot biomass, yield, N concentration in the grain and evapotranspiration were all 365 

well simulated (Fig. 3). We see on Figure 3 that the RMSE is largely dominated by its unsystematic 366 

component, indicating that model errors are mainly related to data dispersion rather than due to a 367 

systematic bias in the model (Willmott, 1981; Coucheney et al., 2015). For the soil organic carbon, 368 

field observations were only made in 2007 and 2017, but they confirm that soil C content simulations 369 

were realistic over the long-term period (Fig. A1). The ‘good’ simulation of daily evapotranspiration 370 

(EF = 0.65), and the ‘very good’ simulation associated to the prediction of biomass and yield     371 

      and to N concentration in harvested organs          for the grain) provided a reliable basis 372 

to further proceed with CO2 fluxes modelling.  373 
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 374 

Figure 3. Model performance for the main indicators over the 16-year dataset in Lonzée 375 
(Belgium).  376 

Calculation performance of daily GPP, RECO and NEE ranged from satisfactory to very good 377 

(Fig. 3). Figure 4 illustrates the advantages of the approach allowing to distinguish the different pools 378 

in GPP allocation (Fig. 4a) and RECO (Fig. 4b). For each cropping season, the dynamics of the 379 

observed and simulated CO2 fluxes (GPP, RECO and NEE) are available in Appendix A2. Globally, 380 

we noticed that a bias in GPP estimation during the growth period was often concomitant with a 381 

similar bias in RECO estimation; these underestimations are illustrated respectively on Fig. 4a and 382 

Fig. 4b. As exemplified on Fig. 4c, these mismatches might compensate for each other and provide a 383 

better estimation of NEE. For RECO, an underestimation of plant nitrogen content, that would induce 384 

an underestimation of maintenance respiration, might be at play – see e.g. Fig. A2. However, too few 385 

data were available for the validation of total plant N uptake over the different crops. Therefore, the 386 

standard parameterization of each crop was used to simulate plant N uptake. We believe this might be 387 

a point of attention for future researches and improvement of our methodology. 388 



17 
 

 389 

Figure 4. Dynamics of the CO2 fluxes related to NEE, GPP and RECO, observed and simulated, 390 
for the winter wheat cropping season of 2010-2011. For GPP and RECO, the contribution of the 391 
different pools or sources to the global fluxes are presented. 392 

 393 

Figure 5. Comparison between observations and simulations for a) GPP b) RECO and c) NEE. 394 
The red line represents the ideal 1:1 trajectory and the blue line designates the linear regression 395 
of observations-simulations pairs. 396 
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All three global efficiencies for CO2 fluxes simulation were satisfactory to very good (Table 1). 397 

Yet while the model offered good results on RMSEs, EF and ND criteria, the goodness of fit 398 

indicators    and    - respectively statistically different from 0 and 1 (Table 1) - suggest that the 399 

model would benefit from additional calibration for plant parameterization. Potatoes and cover crops 400 

results were slightly less satisfying than other crops (Table A5). For potatoes, this might be due to the 401 

different varieties that were sown, all simulated with the same standard parameters. For cover crops, 402 

few agronomic data such as LAI, biomass or N content were available to validate the simulations. 403 

Underestimations of RECO were notably noticed for some cover crop seasons (Appendix A2). Hence 404 

errors in CO2 fluxes estimations can be ascribed to a bias in biomass and/or N content simulations at 405 

daily time scale impacting the inferred calculations of CO2 fluxes. Regarding future research, we 406 

recommend to investigate further on the calibration related to the winter periods and/or cover crop 407 

seasons. Indeed we noticed that RECO was also sometimes underestimated over the early winter 408 

months of winter wheat seasons (Appendix A2). Since HR is predominant at these periods, it might be 409 

valuable to explore further the parameterization of mineralization rates. Moreover, we used for cover 410 

crops the coefficients between plant N concentration and maintenance respiration derived for winter 411 

wheat, but we believe that specific calibration of these coefficients for mustard cover crop would be 412 

helpful. We lacked data to investigate further these suggested improvements, but we believe they 413 

might be worth to be explored in future work. 414 

 GPP RECO NEE 

RMSE 

EF 

26.35 14.25 22.98 

EF 0.79 0.59 0.67 

ND -0.05 0.16 -0.62 

Intercept    -6.82 

[-7.48, -6.15] 

 

9.73 

[9.27, 10.19] 

2.27 

[1.76, 2.78] 

Slope    0.78 

[0.78, 0.79] 

0.78 

[0.76, 0.79] 

0.75 

[0.74, 0.76] 

Table 1. Global performance indicators for CO2 fluxes modelling. RMSE is given in [kg C ha
-1 415 
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day
-1

]. The coefficients of the regression of all daily points with simulated C flux in abscissa and 416 
observed one in ordinate axis,    (in [kg C ha

-1 
day

-1
]) and   , are given with their 95%-417 

confidence interval.  418 

 419 

Figure 6. Cumulated CO2 fluxes for the whole 16-year period.  We use as convention that fluxes 420 
towards the soil are regarded as negative and those leaving from the soil as positive. 421 

We see with Figure 6, that illustrates cumulated CO2 fluxes for the 16-year period, and with ND 422 

criteria of Figure 5, summarized in Tables 1 and A5 (for separate crops), that the model might be 423 

considered as satisfying to elaborate the cumulated fluxes of a long-term and diversified crop rotation, 424 

with a global error equal to 5.12% for GPP (overestimated in absolute value) and 15.7% for RECO 425 

(underestimated). It is possible that our overestimation of GPP might be slightly greater than observed 426 

on Fig. 5 and Fig. 6 since the model does not consider weeds nor crop re-growth after harvest. Yet the 427 

observations might include the CO2 fluxes they generate, and this tends to increase (in absolute value) 428 

GPP (Ceschia et al., 2010; Sus et al., 2010; Klosterhalfen et al., 2017; Pique et al., 2020).  429 

ND was much greater for NEE (62.2%). This poor performance might be explained by the 430 

presence in daily NEE of both positive and negative values, leading to lower absolute mean value and 431 

therefore to a relative error much greater. However, in this case, reliable crop rotations NEE budgets 432 

would require, in view of the ND value associated to RECO, better estimates of HR (since NEE does 433 
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not involve AR), as already suggested above. This is in accordance with Vuichard et al. (2016) which 434 

indicated that current crop models fail to establish precise net CO2 fluxes budgets and that a bias in 435 

NEE budgets is often explained by a bias in RECO. This suggests that the model is more suitable to 436 

establish comparisons between crops, environments and management rather than to provide absolute 437 

carbon budgets.   438 

We compared our results with those obtained by the multi-models and multi-sites comparisons 439 

of Sándor et al. (2020) and Wattenbach et al. (2010) (Table A6). Sándor et al. (2020) compared 440 

individually 23 models at three different cropping sites, with full calibration based on data such as 441 

biomass, phenology, soil temperature, moisture, mineral N, N2O emissions and soil organic C and N 442 

flux. They also compared the multi-model median (MMM) describing the models ensemble 443 

performance (with some models specialized in one or two kinds of CO2 fluxes). Wattenbach et al. 444 

(2010) compared four models at five cropping sites. Globally, our approach performed better on 445 

RECO, GPP and NEE, even if one must retain that our study dataset is limited to one experimental 446 

site. Our approach is however outperformed for NEE prediction by the Soil Plant Atmosphere model 447 

(SPA), which obtained better results for GPP and NEE in Wattenbach et al. (2010). This model is 448 

specialized in predicting photosynthesis and water balance (Williams et al., 1996) and requires a 449 

granular parameterization since it uses very fine temporal and spatial scales (30 min time step, ten 450 

canopy and twenty soil layers, leaf-level photosynthesis and transpiration) (Williams et al., 2000; 451 

Wattenbach et al., 2010). 452 

We also compared our results with those of the ORCHIDEE-STICS model. It combines the 453 

ORCHIDEE ecosystem model to STICS (Li et al., 2011). The main difference between ORCHIDEE-454 

STICS and our methodology lies in the calculation of maintenance respiration (MR), which we based 455 

on a linear relationship between N content in biomass and MR with a    -Van’t Hoff equation 456 

temperature dependence, whereas the ORCHIDEE model estimates MR as a function of the C:N ratio 457 

of each tissue plus a linear increase with the temperature (Krinner et al., 2005). The ORCHIDEE 458 

model also computes photosynthesis with a 30 min time step at the canopy scale. ORCHIDEE-STICS 459 

was used at seven wheat cropping seasons in Vuichard et al. (2016) and five maize cropping seasons 460 
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in Li et al. (2011) (Table A6). Our approach performed globally better, both for winter wheat and 461 

maize, even if one must notice that studies concerned different agro-environmental conditions. When 462 

compared with the model ORCHIDEE-CROP, a small variant of ORCHIDEE-STICS, it appeared 463 

graphically -the study does not report indicators- that our approach performed better for estimating 464 

NEE for the 2006-07 wheat cropping season at the same experimental site of BE-LON (Wu et al., 465 

2016). 466 

3.3. Roots NPP 467 

As detailed above, roots NPP was computed from shoot-root ratios rather than from root 468 

biomass simulated by STICS. This choice was motivated by the desire to use the standard version 469 

(v9.2) released, for generality and usability purposes. In that version, all crops are parameterized 470 

without dependence of root length expansion on shoot growth, which might be detrimental to roots C 471 

balance simulation. The proposed methodology allows to obtain reliable C simulations without any 472 

specific parameterization relative to plant roots. This is interesting because of the typical difficulty to 473 

gather roots experimental data. Our results reported that the importance of roots and rhizodeposition 474 

into global NPP ranges in average from 24.3% for winter wheat to only 2.15% for potato and 0.7% for 475 

sugarbeet. For wheat, this is in line with Bolinder et al. (2007), that estimated to 19.6% the relative 476 

proportion of NPP due to roots and rhizodeposition. For sugarbeet and potatoes, this is also consistent 477 

with Bolinder et al. (2015), that provided the shoot-root ratios that we used for these crops and 478 

estimated this relative proportion to 2.5% for potato and 1.7% for sugarbeet, suggesting that it is much 479 

lower for root crops than for other annual crops. However, whereas our objective was to estimate NPP 480 

continuously along the growing season, Bolinder et al. (2015) focused on estimating annual C inputs 481 

to soil, hence not considering for example coarse lateral roots that are attached to the beet (because it 482 

is removed at harvest). This suggests that roots NPP might be slightly higher for sugarbeet than 483 

estimated from our methodology.  484 

3.4. NEE inter-annual variability and relation to driving variables 485 

variable1, 

variable2 
     

   R
2
 p 

 Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. 
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Winter wheat cropping seasons (n = 8) 

NDAV -150.63 
(53.68) 

-161.32 
(25.38) 

- - 9314 
(5533) 

7485 
(2645) 

0.57 0.87 0.03** 7.1e-4** 

Qcum 
-4.33 

(2.79) 

-15.95 

(1.69) 

- - -4261 

(1866) 

1340 

(1127) 

0.29 0.94 0.172 7.9e-5** 

Qcum, Tair, av -4.21 

(3.03) 

-15.98 

(1.85) 

244 

(611.1) 

-74.78 

(373.37) 

-7777 

(9034) 

2418 

(5519) 

0.31 0.94 0.398 9.7e-4** 

Potato cropping seasons (n = 4) 

Tair, av 174.7 
(142.7) 

198.3 
(105.1) 

- - -5491 
(2419) 

-6283 
(1782) 

0.43 0.64 0.288 0.199 

Qcum, Tair, av -2.67 

(3.18) 

-2.33 

(1.99) 

137.1 

(161.02) 

165.46 

(100.42) 

-3863 

(3262) 

-4863 

(2034) 

0.67 0.85 0.579 0.389 

Surgarbeet cropping seasons (n = 3) 

NDAV -205.59 
(64.69) 

40.1 
(133.8) 

- - 22798 
(9950) 

-15649 
(18030) 

0.91 0.08 0.194 0.815 

Tair, av 1318.9 

(460.5) 

804 

(1514) 

- - -29639 

(7202) 

-23255 

(23685) 

0.89 0.22 0.214 0.689 

 

SPEI-3 in 

month 

preceding 

harvest 

-822.6 

(1875.9) 

-2602 

(1041) 

- - -9571 

(2198) 

-12731 

(1220) 

0.16 0.86 0.737 0.243 

Cover crop periods (n = 4) 

NDAV 0.47 

(3.74) 

-27.29 

(8.11) 

- - 214  

(243) 

1646 

(537) 

0.008 0.85 0.829 0.078* 

Qcum 1.42 

(1.37) 

-10.55 

(3.72) 

- - -199  

(148) 

703  

(401) 

0.35 0.80 0.408 0.105 

Qcum, Tair, av 1.23 

(1.62) 

-11.18 

(3.93) 

-84.5 

(122.42) 

-274.32 

(297.27) 

717 

(1339) 

3678 

(3251) 

0.56 0.89 0.663 0.328 

Table 2. Regression coefficients of the relation                                 for the 486 
different crops between crop emergence and harvest. Only the regressions that are significant (**p 487 
< 0.05, *p < 0.1) or almost significant for at least the observations and/or the simulations are 488 
displayed.    is expressed in kg C ha-1 d-1 with variable1 = NDAV, in kg C ha-1 (MJ m-2)-1 with 489 
variable1 = Qcum, in kg C ha-1 °C-1 with variable1 = Tair, av and in kg C ha-1 with variable1 = SPEI-3.    is 490 
expressed in kg C ha-1 °C-1. Values between brackets are the standard errors of the coefficients.  491 

Globally, most significant correlations were found for winter wheat, which is explained by its 492 

higher number of cropping seasons. Yet global trends were similar between crops. 493 

For winter wheat and cover crops, NDAV was negatively correlated with NEE, indicating a 494 

greater C sequestration when the number of active vegetation days increases (Table 2 and Fig. A3a). 495 

Similar behaviour was reported by Ceschia et al. (2010) and Buysse et al. (2017), the latter reporting 496 

an R
2
-value of 0.58 when considering all winter wheat cropping seasons between 2005 and 2015. This 497 
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result emphasizes the importance of extending the vegetation period whenever it is possible, e.g. by 498 

early sowing or long cover crops, for greater environmental performance such as C sequestration. 499 

Based on simulations, NEE was also correlated with the photosynthetic active radiation 500 

intercepted by the canopy, Qcum (Table 2 and Fig. A3b). The correlation was even stronger when the 501 

regression also included air temperature. This relates to the positive influence of these two drivers on 502 

crop growth. No significant correlation was found based on observations.  503 

No significant correlations were found either between NEE and any SPEI. However, for 504 

sugarbeet, a non-significant correlation (R
2
 = 0.86, p = 0.243) between simulations and the SPEI-3, 505 

based on the last 3 months preceding harvest (i.e. August or September), was suggested (correlation 506 

significancy is difficult to satisfy because of the low number of sugarbeet cropping seasons). A wetter 507 

end of the cropping season, leading to a higher SPEI-3, was associated to an increase in C 508 

sequestration, suggesting that the better water availability increased crop growth (Shrestha et al., 509 

2010).  510 

Globally, we observed that, except in some cases for potato and sugarbeet, correlations, even 511 

when not significant, were higher when obtained from the simulated NEE than from the observed one. 512 

The model is deterministic and process-based; therefore it is coherent that simulated physiological 513 

processes and our new external algorithms are found to be correlated to driving variables. However, in 514 

real life, external events might increase the dispersion of observed values and decrease the strength of 515 

the correlation. Such events might be material failure, gap filling, wheat lodging that would slow down 516 

maturity and increase the growing period, etc. 517 

3.5. Respiration components 518 

3.5.1 Influence of management operations on heterotrophic respiration  519 

As exemplified on Figure 7, we noticed that there was a systematic peak in simulated HR when 520 

crops were harvested. We believe that this is associated to two modelling assumptions. Firstly, organic 521 

residues mineralization rate might be overestimated, which would also explain the sudden peak at 522 

stubble breaking not observed in the field. Indeed mineralization rates used in STICS were calibrated 523 

on really finely crushed residues whereas crop residues in the field often form bigger pieces 524 
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(Nicolardot et al., 2001). STICS tends to overestimate carbon mineralization, and a previous 525 

sensitivity analysis showed that the decomposition rate of residues has an influence on the shape of the 526 

kinetics at the beginning of decomposition (Nicolardot et al., 2001). Secondly, in STICS v9.2, root 527 

biomass is computed at harvest and returned to the soil as belowground residues. This might 528 

contribute to the simulated HR peak at harvest, not observed in field data because part of the roots 529 

actually died along the season before harvest. 530 

 531 

Figure 7. Ecosystem respiration during the 2006-07 season of winter wheat. The arrows show the 532 
harvest (in orange) and the stubble breaking (in blue) dates. 533 

3.5.2 Contribution of autotrophic to total respiration 534 

We compared the mean daily ratios of autotrophic respiration to total ecosystem respiration for 535 

specific seasons (Table A7). The work of Suleau et al. (2011), performed at the same experimental site 536 

of BE-LON with soil chambers, allows us to compare the respective importance of observed versus 537 

simulated autotrophic and heterotrophic components of ecosystem respiration. The comparison 538 
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between observations and simulations gave very satisfying results (Table A7), except for potatoes for 539 

which the difference was greater. The global AR/RECO ratios obtained for the different crops (Table 540 

A7) seem to confirm the assumption of Buysse et al. (2017) which suggested that the autotrophic 541 

contribution of sugarbeet to total ecosystem respiration is lower than the one for maize and winter 542 

wheat. The reported domination of the autotrophic component of ecosystem respiration is also 543 

confirmed by many studies such as Moureaux et al. (2008), Wang et al. (2015) and Demyan et al. 544 

(2016). Suleau et al. (2011) suggested that this is due to the relatively low SOC level and limited 545 

manure input which are typical of the loam region where BE-LON is situated. 546 

3.5.3 Influence of temperature on respiration components 547 

Partitioning of respiration allows us to investigate the influence of temperature on respiration 548 

components. They all include a dependance on temperature in their calculation, directly for MR (Eq. 549 

(5)) and for HR (with an exponential increase in mineralization rates with higher soil temperatures 550 

(Brisson et al. (2009)), and indirectly for GR (depending on GPP and MR). Such a dependance is thus 551 

induced by the parameters that we use in our methodology and in the STICS model, and can be 552 

compared with field or lab experiments results. Figure A4 presents the evolution of AR and HR with 553 

the soil temperature for winter wheat, the most represented crop in our dataset. Using Van’t Hoff 554 

equation, we obtained                       with 95%-confidence) for HR and            555 

           ) for AR. This contrasts with Suleau et al. (2011) which found a bigger correlation with 556 

temperature for HR than for AR (Q10 = 2.11 for HR and Q10 = 1.76 for AR). They however utilized 557 

only one crop season (against eight in our study) and warned that their results were difficult to 558 

generalize. Zhang et al. (2020) suggested that soil respiration, including HR but also below-ground 559 

AR, is largely influenced by soil temperature whereas above-ground AR is largely influenced by air 560 

temperature. Very few studies investigate the autotrophic component of respiration, and as Suleau et 561 

al. (2011), we believe that field or laboratory experiments that would directly measure AR (instead of 562 

estimating it for example with root exclusion zones) would be helpful.  563 

In an attempt to push further the analysis, we investigated the potential interactive effect of 564 

respiration sensitivity to temperature with soil moisture. We found that the soil water content (SWC), 565 
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in the first horizon 0-30cm, was a factor significantly improving linear models that correlate AR/HR 566 

with soil temperature (R
2
 = 0.51 and p < 0.01 for AR, R

2 
= 0.34 and p < 0.01 for HR). By taking the 567 

first order derivative of these models with respect to soil temperature, it appeared that the sensitivity of 568 

HR to soil temperature depends on SWC, but it is not the case for AR which includes above-ground 569 

plant respiration (Fig. A5). This goes in line with Zhang et al. (2013) which also found a correlation 570 

between HR and SWC but no significative impact of SWC on soil autotrophic respiration. We found 571 

that the soil temperature significatively decreases as SWC increases (R
2 

= 0.32, p < 0.01). Therefore 572 

we would have expected that the temperature sensitivity of HR would decrease as SWC increases (and 573 

not the opposite as illustrated with the brown line of Fig. A5), since a decrease of SWC is correlated 574 

with an increase of soil temperature and that the mineralization rate exponentially increases with 575 

temperature in the STICS model (Brisson et al., 2009). But this means that, in our temperate soil, the 576 

effect of SWC on HR, inducing an increase in HR with increasing SWC, is more important than 577 

temperature, as represented by the coefficients of the regression y2 (Fig. A5). As suggested above with 578 

Q10 relationships, the sensitivity of AR to soil temperature is almost always greater than for HR, except 579 

when the soil water content is above field capacity, i.e. 30%. As Ding et al. (2007), we believe that 580 

further study is required to investigate the interaction between soil moisture and temperature on CO2 581 

fluxes, which seems important for future modelling efforts. 582 

4. Conclusions 583 

The present study demonstrates that it is possible, from the outputs of a soil-crop model (STICS 584 

in this study), to obtain a reliable estimation of CO2 fluxes originating from a diversified crop rotation, 585 

with model efficiencies ranging from satisfactory to very good. The genericity of the proposed 586 

methodology makes it transferable to any soil-crop model. It computes separately the evolution of 587 

photosynthesis (GPP) and ecosystem respiration (RECO). This could help verifying the partitioning of 588 

the NEE observed with eddy covariance into GPP and RECO components, since many different 589 

statistical flux-partitioning methods exist (Moffat et al., 2007; Desai et al., 2008; Smith et al., 2010; 590 

Wohlfahrt and Galvagno, 2017). Moreover, the identification of autotrophic and heterotrophic 591 

components of RECO is useful to predict the evolution of RECO with climate and/or soil- and crop 592 



27 
 

management (Trumbore, 2006). Measuring that on-field is not possible with eddy covariance and 593 

requires the combined use of soil chambers (Suleau et al., 2011; Zhang et al., 2013; Whang et al., 594 

2015), that are time- and energy-consuming. Process-based models are key tools to extrapolate these 595 

results. We emphasize the importance of delivering accurate simulations of biomass, yields and 596 

nitrogen concentration prior reliable CO2 fluxes estimations, with a particular attention to crop 597 

residues management and operations that have a significative impact on these fluxes.  598 

The model was proven to capture the inter- and intra-annual variability of CO2 fluxes associated 599 

to several environmental drivers. It turns out to be a suitable tool for investigating these trends 600 

whereas field observations sometimes miss them because of the influence of external events or data 601 

inconsistency. We believe that the proposed methodology might be used to project the CO2 exchanges 602 

of various crop rotations under different management schemes and climate change scenarios, to 603 

investigate the impact of crop rotations on climate change but also their potential of adaptation and 604 

mitigation.  605 

Yet we believe that there is still room for improvement. A new version of STICS (v10) offers 606 

the possibility to consider the daily N allocation to roots, as well as the daily computation of roots 607 

mortality and soil restitution. It should help to use roots biomass simulations directly in NPP 608 

computation. This might enhance our estimation of roots NPP which was based, for crops other than 609 

winter wheat, on a constant average shoot-root ratio measured near plant maturity.  610 

Further validation with other agricultural systems, such as crops in varied pedo-climatic 611 

conditions but also grasslands, would be interesting to fully validate our methodology. A granular 612 

analysis of the model performance under contrasted management practices might also be relevant (e.g. 613 

tillage or cover crops). The ever increasing impacts of climate change should motivate us in 614 

conducting such research for an ever better understanding of the role of agricultural systems in 615 

ecosystem carbon exchanges. 616 
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8. Appendices 877 

A1. Supplementary Tables and Figures 878 

Crops Sowing date Harvest date 

Sugarbeet 30-03-04 

 

29-09-04 

Winter wheat 14-10-04 3-08-05 

Potatoes 1-05-06 15-09-06 

Winter wheat 

 

13-10-06 5-08-07 

 Sugarbeet 22-04-08 4-11-08 

Winter wheat 13-11-08 7-08-09 

Cover crop (mustard) 1-09-09 1-12-09 

Potatoes 25-04-10 5-09-10 

Winter wheat 14-10-10 16-08-11 

Maize 14-05-12 13-10-12 

Winter wheat 25-10-12 12-08-13 

Cover crop (mustard) 5-09-13 15-11-13 

Potatoes 7-04-14 22-08-14 

Winter wheat 15-10-14 2-08-15 

Cover crop (mustard) 26-08-15 9-12-15 

Sugarbeet 12-04-16 27-10-16 

Winter wheat 

 

29-10-16 30-07-17 

Cover crop (mustard) 7-09-17 6-12-17 

Potatoes 23-04-18 11-09-18 

Winter wheat 10-10-18 30-07-19 

Table A1. 16-year crop rotation at the experimental site of Lonzée (Belgium). More information 879 
is available in Buysse et al. (2017).  880 
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 881 

Crop Roots + rhizodeposition coefficient 

 

 

Winter wheat 

Before maximal rate of leaf growth 

(end of juvenile phase) 

1.5 

Between maximal rate of leaf 

growth and flowering 

0.43 

After flowering 0.33 

Sugarbeet 0.05 

Potato 0.11 

Maize 0.59 

Mustard cover crop 0.2 

Table A2. Coefficient used to compute carbon pool contained in roots and rhizodeposition, as 882 
described in NPP computation (Section 2.3.1). The coefficient is multiplied to aerial vegetative 883 
organs biomass. 884 

 885 

Crop Crop seasons used for calibration Crop seasons used for validation 

Winter wheat 2004-05, 2006-07, 2012-13, 2016-17, 2018-19 2008-09, 2010-11, 2014-15 

Sugarbeet 2008, 2016 2004 

Potatoes 2006, 2014, 2018 2010 

Table A3. Calibration and validation sets for the fitting process used to compute coefficients of 886 
maintenance respiration. 887 

  888 
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 889 

 Calibration Validation 

Crop a  

[kg C ha-1 day-1 / % of 

N in the plant / kg 

DM] 

b 

[kg C ha-1 day-

1] 

R2 EF ND RMSE 

[kg C ha-1 day-1] 

Winter wheat 3.18  

(2.86, 3.51) 

-0.87  

(-1.32, -0.41) 

0.43 0.66 0.08 142.8 

Sugarbeet 2.15 

(2.08, 2.23) 

-1.10 

(-1.23, -0.97) 

0.92 0.78 0.14 159.8 

Potatoes 8.90 

(8.19, 9.6) 

-6.91 

(-7.65, -6.17) 

0.72 0.82 -0.11 70.8 

Table A4. Linear regression of Eq. (9) results. The regression coefficients a and b are displayed 890 
for each of the three crops fitted separately on calibration datasets, with their 95%-confidence 891 
interval. Indicators EF, ND and RMSE show the model performance on an independent 892 
validation dataset. 893 

 894 

Figure A1. Soil organic carbon dynamics. The two field observations, in 2007 and 2017, are 895 
given with their standard deviation. 896 

 897 

 898 
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 899 

Figure A2. Comparison between observations and simulations for a) total aerial biomass, b) 900 
yield, c) plant nitrogen content, d) RECO, e) GPP and f) NEE, for the winter wheat cropping 901 
season of 2006-2007. 902 

 903 

 904 

  RMSE [kg C ha-1 day-1] EF ND 

Winter wheat 

 

NEE 23.70 0.69 -0.59 

  RECO 13.33 0.72 0.19 

  GPP 24.17 0.85 -0.04 

 Potatoes 

 

NEE 19.68 0.54 -5.53 

 RECO 11.69 0.37 0.24 

 GPP 25.44 0.60 0.07 

Sugarbeet 

 

NEE 25.36 0.69 -0.26 

 RECO 18.07 

.07 

-0.34 -0.11 

  GPP 37.35 0.60 -0.18 

Maize 

 

NEE 32.92 0.36 -0.57 

 RECO 20.32 0.72 0.27 

 GPP 32.41 

.92 

0.80 0.01 

Cover crop 

 

NEE 12.06 0.37 0.32 
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 RECO 12.25 -0.61 0.19 

 GPP 8.85 0.56 0.08 

Table A5. Performance indicators for CO2 fluxes modelling for the different crops.  905 
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 906 

ALL CROPS Our results at Lonzée 

experimental site 

Sándor et al. (2020) 

Model comparison 

Wattenbach et al. (2010) 

Model comparison 

Crops Winter wheat, sugarbeet, potatoes, 

maize, mustard cover crop 

Spring wheat, soybean, rapeseed, 

maize, spring wheat, triticale, 

phacelia, rice 

Winter wheat 

Crop sites 1 3 5 

Total years of data 16 19 5 

GPP EF = 0.79 Best EF between 0.43 and 0.44 

MMM EF between 0.32 and 0.58 

Best mean EF = 0.69 

Mean of mean EFs = 0.65 

RECO EF = 0.59 Best EF between -100.46 and 

0.37 

MMM EF between -3.53 and 
0.03 

Best mean EF = 0.44 

Mean of mean EFs = -0.14 

NEE EF = 0.67 Best EF between 0.15 and 0.26 

MMM EF between 0.22 and 0.55 

Best mean EF = 0.76 

Mean of mean EFs = 0.55 

WINTER WHEAT Our results at Lonzée 

experimental site 

Vuichard et al. (2016) 

ORCHIDEE-STICS 

Crops Subset with winter wheat Winter wheat 

Crop sites 1 7 

Total years of data 8 7 

GPP Mean R = 0.95 
Best R = 0.97 

Worst R = 0.88 

Mean R = 0.91 
Best R = 0.97 

Worst R = 0.80 

RECO Mean R = 0.89 
Best R = 0.95 

Worst R = 0.76 

Mean R = 0.88 
Best R = 0.95 

Worst R = 0.76 

NEE Mean R = 0.90 

Best R = 0.95 

Worst R = 0.80 

Mean R = 0.87 

Best R = 0.95 

Worst R = 0.74 

MAIZE Our results at Lonzée 

experimental site 

Li et al. (2011) 

ORCHIDEE-STICS 

Crops Subset with maize Maize 

Crop sites 1 5 

Total years of data 1 5 

GPP  
R2 = 0.88 

Mean R2 = 0.58 
Best R2 = 0.83 

Worst R2 = 0.32 

RECO  

R2 = 0.79 

Mean R2 = 0.42 

Best R2 = 0.81 
Worst R2 = 0.03 

NEE  

R2 = 0.72 

Mean R2 = 0.55 

Best R2 = 0.73 
Worst R2 = 0.23 

Table A6. Comparison of CO2 fluxes simulations performance with other CO2 fluxes simulations 907 
studies. For the winter wheat, we used the goodness of fit indicator R as in Vuichard et al. 908 
(2016), from Taylor (2001). For the maize, we used the goodness of fit indicator R

2
 as in Li et al. 909 

(2011). One must be aware that R
2 
differs from the efficiency EF, used in this present study.  910 
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 911 

 912 

Figure A3. Correlation between cumulated seasonal NEE and a) the number of days of active 913 
vegetation (NDAV) b) the cumulated photosynthetic active radiation intercepted by the canopy 914 
(Qcum), for winter wheat (WW) between emergence and harvest. 915 

 916 

Crop season Observed AR/RECO 

(Suleau et al., 2011) 

Computed AR/RECO 

Potatoes 2006 

(DOY 153-220) 

67% 81% 

Winter wheat 2006-07 

(DOY 92-200) 

89% 89% 

Sugarbeet 2008 

(DOY 136-262) 

62% 64% 

 Computed total AR/total RECO (between emergence and harvest) 

Maize 81.9% 

Potatoes 64.8% 

Winter wheat 80.6% 

Sugarbeet 76.8% 

Table A7. Ratios of AR to RECO. For the single seasons, means were computed over the 917 
observations periods of Suleau et al. (2011). For the global crop percentages, means were 918 
computed between crop emergence and harvest. 919 
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 920 

Figure A4. Correlation between daily respiration components (HR and AR) and soil temperature 921 

(over the soil profile 0-30cm) for winter wheat. The Q10 relationship is represented with its 95%-922 

confidence interval. 923 

 924 

Figure A5. Temperature sensitivity for AR and HR as a function of soil water content in the first 925 

horizon (0-30cm). The sensitivity is expressed as the first order derivative of the linear models y1 926 

and y2 with respect to soil temperature. The x-axis takes the range of simulated SWC values 927 

throughout the whole experiment. 928 
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A2. Comparisons between observed and simulated CO2 fluxes 929 

For each cropping season, the dynamics of the observed and simulated CO2 fluxes (GPP, RECO 930 

and NEE) are available in the following shared repository: 931 

https://doi.org/10.6084/m9.figshare.23540472.  932 

A3. STICS simulations data 933 

All inputs and outputs, soil and plant parameterization and crop management files that were 934 

used for simulating the BE-LON field experiment with the soil-crop model STICS are available in the 935 

following shared repository: https://doi.org/10.6084/m9.figshare.23260772. 936 

 937 


