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Many genomic data analyses such as phasing, genotype imputation, or local ancestry
inference share a common core task: matching pairs of haplotypes at any position
along the chromosome, thereby inferring a target haplotype as a succession of pieces
from reference haplotypes, commonly called a mosaic of reference haplotypes. For that
purpose, these analyses combine information provided by linkage disequilibrium, linkage
and/or genealogy through a set of heuristic rules or, most often, by a hidden Markov
model. Here, we develop an extremely randomized trees framework to address the
issue of local haplotype matching. In our approach, a supervised classifier using extra-
trees (a particular type of random forests) learns how to identify the best local matches
between haplotypes using a collection of observed examples. For each example, various
features related to the different sources of information are observed, such as the
length of a segment shared between haplotypes, or estimates of relationships between
individuals, gametes, and haplotypes. The random forests framework was fed with
30 relevant features for local haplotype matching. Repeated cross-validations allowed
ranking these features in regard to their importance for local haplotype matching. The
distance to the edge of a segment shared by both haplotypes being matched was
found to be the most important feature. Similarity comparisons between predicted and
true whole-genome sequence haplotypes showed that the random forests framework
was more efficient than a hidden Markov model in reconstructing a target haplotype as
a mosaic of reference haplotypes. To further evaluate its efficiency, the random forests
framework was applied to imputation of whole-genome sequence from 50k genotypes
and it yielded average reliabilities similar or slightly better than IMPUTE2. Through this
exploratory study, we lay the foundations of a new framework to automatically learn
local haplotype matching and we show that extra-trees are a promising approach for
such purposes. The use of this new technique also reveals some useful lessons on
the relevant features for the purpose of haplotype matching. We also discuss potential
improvements for routine implementation.
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INTRODUCTION

Modeling a target haplotype as a succession of segments from
other haplotypes (referred to as reference or template haplotypes)
is a common issue and a primary step in various genotype data
analyses such as genotype imputation (e.g., in Burdick et al.,
2006; Li et al., 2006; Marchini et al., 2007; Howie et al., 2009;
Daetwyler et al., 2011; Sargolzaei et al., 2014) often coupled
with phase reconstruction, local ancestry inference (e.g., in Price
et al., 2009; Baran et al., 2012; Maples et al., 2013), estimation
of identity-by-descent between segments (Druet and Farnir,
2011), or even clustering (e.g., in Su et al., 2009; Lawson et al.,
2012). To describe this modeling procedure, it is commonly
written that target haplotypes are modeled as a mosaic of
reference haplotypes (e.g., Burdick et al., 2006; Baran et al.,
2012). At any map position along the chromosome, the issue is
to find which reference haplotype matches the target haplotype
best (Figure 1A). Answering this question, for instance in the
particular case of genotype imputation, allows to infer the target
haplotype on a higher density map, on which the reference
haplotypes were observed. Several sources of information are
useful to address this question. Many methods (Li et al., 2006;
Scheet and Stephens, 2006; Howie et al., 2009; Price et al.,
2009) only take into consideration the linkage disequilibrium
information. Family information can also be a trustful source,
when available at large scale, for instance in livestock (Daetwyler
et al., 2011; Sargolzaei et al., 2014). Linkage information (Burdick
et al., 2006; Druet and Farnir, 2011; Sargolzaei et al., 2014) is a
third potential source of information to locally match haplotypes.
Common methods to address this question are usually either
based on hidden Markov models (HMM-based methods; see
Scheet and Stephens, 2006 for a general model) or rely on a set of
deterministic rules (heuristic methods, e.g., based on long-range
segments shared between individuals as in Kong et al., 2008).

The development of the latter type of methods, heuristics,
could be described as the iterative repetition of two main steps.
First, during a conception step, the human operator identifies
relevant variables and uses them in a set of rules. Then, during
a validation step, the proposed heuristic is tested. If the validation
does not return the desired efficiency, then the human operator
adjusts the heuristic in the conception step and validates it again.
Conception and validation steps would therefore be repeated
back and forth until enough efficiency is reached. Defining in
these terms the development of a heuristic method for the issue
of local haplotype matching makes it an attractive problem
for a class of machine learning methods known as supervised
classification. In such a learning framework, the classifier is fed
with data containing both explicative variables (hereafter referred
to as features, as this denomination prevails in the machine
learning community) and their classification (variable to explain,
also referred to as labels). Then, the data is repeatedly partitioned
between a learning sample, on which the classifier performs the
conception step, and an independent testing sample, on which the
classifier assesses the efficiency of the method. We recommend to
readers the review by Libbrecht and Noble (2015) for a detailed
glossary as well as clear explanations about the terms used in
machine learning.

Additionally, supervised classification also allows combining
automatically different sources of information with flexibility.
Such aspects make it interesting for locally matching haplotypes:
although most of the HMM-based methods (using models
similar to Scheet and Stephens, 2006) only rely on haplotype
similarity, other methods (e.g., Druet and Georges, 2010) can
reach higher efficiency by integrating linkage information.
Also, supervised classification returns the importance of any
explicative variable as a useful by-product for improving other
methods. Because of these advantages, Maples et al. (2013)
have already used supervised classification to address a specific
problem of local haplotype matching – local ancestry inference.
In their approach (RFMix), these authors implemented a random
forests (RF) classifier which uses positions along the genetic map
as the features.

Here, our main objective is to describe a new learning
framework to locally match haplotypes using an extremely
randomized trees classifier (extra-trees, a particular type of RF
method; see Geurts et al., 2006). In this framework, a supervised
classifier learns from a large collection of examples what are
the relevant features to take into consideration when searching
for the reference haplotype that best locally matches a target
haplotype and how to combine them. We show that the learning
framework accurately finds the best local matches by comparing
it to a state-of-the-art HMM-based framework equivalent to
IMPUTE2 (Howie et al., 2009). We eventually discuss the main
findings of our framework in terms of the importance of features
and propose improvements.

MATERIALS AND METHODS

Long-Range Haplotype Pre-phasing
All computations and results presented here come from
genotypes (for the lower-density map) and WGS (for the
higher density map) of the first bovine autosome (BTA1) of
91 dairy cattle from New Zealand (67 bulls and 24 cows;
partitioned as 36 Holstein-Friesian, 24 Jersey and 31 crossbred
individuals). All individuals have been genotyped with the
BovineSNP50k (v1 and v2) genotyping array from Illumina.
A total of 2,321 SNPs remained for BTA1 after cleaning the
initial data as described in Faux and Druet (2017) and shaped
a lower density map, later referred to as the “LD map.” Those
genotypes were phased using both linkage disequilibrium and
family information.

Besides genotyping, all individuals were sequenced at
high coverage (15× or more). Details about sequencing and
downstream filters can be found in the study by Charlier
et al. (2016). A map of 328,045 SNPs from chromosome BTA1
was obtained using stringent filtering rules (described in Faux
and Druet, 2017); this map is later referred to as the higher-
density (HD) map and includes the 2,321 SNPs from LD
map. Using stringent rules allowed reducing the proportion
of noise in our data set (e.g., assembly errors, false variants,
incorrect genotypes, or phasing errors). These stringent filtering
rules include, among others: (1) comparisons to other sets of
WGS SNPs (markers are kept if they were observed in other
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FIGURE 1 | (A) Schematic representation of local haplotype matching. Each horizontal line features a whole-chromosome haplotype (phased from red/blue bi-allelic
genotypes), to be locally matched (target) to other haplotypes (reference). Both target and reference haplotypes have P positions observed on the LD map
(rectangles) whereas reference haplotypes may be also observed on a HD map (circles, plain color if observed), thereby allowing imputation of the target haplotype.
For a given target haplotype t, the question is to find which one of the R reference haplotypes matches the best with t, in the neighborhood of LD position p
(delimited by dotted lines). Here, at positions p – 1, p, and p + 1, t perfectly matches with r and r + 1, however, t perfectly matches on HD positions only with r + 1.
Therefore, locally matching haplotypes in such case comes down to match t to r + 1 rather than to r. (B) Translating local haplotype matching into machine-readable
language. At a LD map position p, a target haplotype t can be matched to R reference haplotypes. Because target haplotypes are also observed on the HD map, we
measure the success of each of the R local matches by computing the similarity between t and each reference haplotypes on HD markers that are closer to the LD
position p than to any other LD position. Reference haplotypes returning the highest similarity with t earn a 1 (success) in the observation vector Yp,t whereas others
earn a 0 (fail). Additionally, we compute a vector Xp,t,r. of observed features (see Table 2) for any reference haplotype r. The machine learns how to discriminate
successes from fails in Yp,t according to features in Xp,t. Here, on HD markers closest to p, the target haplotype t is identical to reference haplotypes r and r + 1. This
is therefore the maximum similarity observable for haplotype t at position p. Thus, both reference haplotypes r and r + 1 earn a success (Yp,t,r = Yp,t,r + 1 = 1)
whereas any other reference haplotype less similar to t (e.g., r – 1) earns a fail (Yp,t,r − 1 = 0).

available bovine WGS datasets and if they displayed correct
Mendelian segregation in another WGS dataset), (2) removal
of genomic regions because of a high suspicion of incorrect
mapping, and (3) removal of SNPs based on additional rules for
error detection.

The HD map was then phased by the two-step method
outlined in Faux and Druet (2017). In a few words, this
method exploits the haplotypes estimated on a genotyped

population much larger (∼58,000 dairy cattle individuals from
New Zealand – more details in Faux and Druet, 2017) than the
91 sequenced individuals used in the present study. Therefore,
the resulting 182 haplotypes are very accurate: 99.72% of the
SNPs whose phasing can be assessed using Mendelian segregation
rules were proved to be assigned to their correct parental origin.
Based on these results, we consider these haplotypes as the true
haplotypes in the present study.
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Criteria for Methods Comparison
In this study, we detail a framework for automatic learning of
rules to locally match haplotypes and we compare it to an HMM-
based method designed for the same purpose. That comparison
method is inspired from Howie et al. (2009) and fully described
in the section “Hidden Markov Model for Local Haplotype
Matching.” In order to quantify the ability of each method to
accurately achieve this purpose, we partition the full set of 182
haplotypes in reference and target panels. Haplotypes in the
target panel are observed only on the LD map whereas those
in the reference panel are observed on both LD and HD maps.
Any given target haplotype is locally matched to all reference
haplotypes on the LD map. Then based on the quality of these
local matches, the target haplotype is inferred as a mosaic of the
reference haplotypes (which are observed on the HD map).

The first and main criterion to compare methods is, for any
target haplotype, the difference between the inferred and the true
haplotypes on the HD map, measured by the metric eA as the
proportion of the 328,045 SNPs whose inferred allele is different
from the true allele. Such haplotype-based comparison is possible
because we consider the phased haplotypes as correct enough
to be the true ones. To get rid of the remaining phasing errors
in method comparisons, we used a second criterion based on
genotypes rather than on haplotypes: imputation reliability (r2),
measured, for any SNP specific to the HD map, as the squared
correlation between imputed and observed genotypes of all target
individuals (see section “Cross-Validation Plan,” for partitioning
the population in reference and target). Details are given in the
next sections on how imputation is performed within the random
forests framework and the HMM. We also observed the number
of switches from a reference haplotype to another one. Such an
observation does not reflect the ability of the methods to reach
their objective but provides information on their properties (how
many segments from reference haplotypes does the method use
when modeling a target haplotype as a mosaic).

Cross-Validation Plan
The cross-validation plan is outlined in Figure 2. In order to
obtain numerous cross-validation groups (of uniform size) while
keeping a training set of a reasonable size, we have chosen to
partition the 91 individuals in thirteen groups of cross-validation
(13-fold cross-validation scheme – as detailed in section 7.10.1
of Hastie et al., 2017). In each one of them, fourteen target
haplotypes (i.e., those of seven target individuals) are inferred as
mosaics of 168 reference haplotypes (i.e., those of 84 reference
individuals). Then, the missing genotypes of the seven target
individuals are imputed on the HD map. The seven animals
forming each batch are randomly picked among the 91 animals.
In each of these cross-validation groups, the fourteen target
haplotypes are simultaneously imputed and modeled as a mosaic
of segments from reference haplotypes. The fourteen imputed
haplotypes are then summed pairwise (per individual) to obtain
seven imputed genotypes per HD marker. Once cross-validation
is achieved over all the 13 groups, there are 182 target haplotypes
inferred as mosaic of reference haplotypes and 91 imputed
genotypes per HD marker. Comparison criteria eA and r2 are then

measured respectively on all the inferred target haplotypes and on
all HD markers for 91 imputed genotypes.

Machine Learning Framework for Local
Haplotype Matching
General Framework
The purpose of local haplotype matching is to answer the
following question (see Figure 1A): at a given position p along
the chromosome, which of the R reference haplotypes would
match at best with a given target haplotype t? Answering that
question for the P map positions leads to the reconstruction of
haplotype t as a mosaic of segments picked from the R reference
haplotypes. Hereafter, we detail a framework that makes this
question answerable using an automatic classifier.

Let us consider a target haplotype t and a panel of R reference
haplotypes. Both are observed on two maps of different densities
(LD and HD maps). At a given position p, we assume that t could
be matched to R haplotypes (see Figure 1B); therefore, among
the R possible local matches with t, we expect at least one to be
better than others. To find this one out, we first compute a local
difference, denoted dp,t,r, for any couple of haplotypes t (target)
and r (reference) at position p. Considering all the HD positions
for which p is the closest position on the LD map, the difference
between r and t is computed as the number of these HD positions
that carry a different allele between r and t. This difference is
basically a measure of local similarity between haplotypes. Once
all the R differences are obtained, a success score (1) award
the reference haplotype(s) showing the lowest difference with t
whereas other reference haplotypes earn a fail score (0), returning
thus a r-long scoring vector yp,t whose elements are computed
as follows:

yp,t,r =

{
1, if (dp,t,r−min(dp,t))

nHD
≤ 0.01

0, otherwise

where nHD is the number of HD positions for which p is the
closest LD position. As expressed in the previous formula, more
than one reference haplotype may earn a success score: obviously
all those whose local difference with t is the lowest, but also those
whose local difference with t is very close to the lowest local
difference (arbitrarily defined as less than 1% of difference in
similarity with the best matching haplotype).

The machine learning task is to build up a classifier that
discriminates the best reference haplotype from others. For this
purpose, we have to feed the classifier with observations on
the same features for all the R reference haplotypes. There are
many featured observations that may prove to be helpful, e.g.,
the genetic relationship between haplotype t and any reference
haplotypes or the fact that a long identical segment is shared by
t and a given reference haplotype on the LD map. Those features
can be specific to one map position (as the latter example) or
not (as the former one). Measuring these features for all the R
reference haplotypes at all the P LD positions shapes a R-by-
P-by-N collection of observations (where N is the number of
features). Each observation of the learning sample from which to
train the classifier is therefore a vector xp,t,r of observed features
that corresponds to a specific triplet (p,t,r) with p a LD position,
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FIGURE 2 | Cross-validation plan. The total number (182) of haplotypes in our study is divided into 13 cross-validation groups containing 168 reference haplotypes
known on both LD (rectangles) and HD (circles) maps and 14 target haplotypes only known on the LD (rectangles) map. The 14 target haplotypes are each inferred
as a mosaic of segments from reference haplotypes and simultaneously imputed from reference haplotypes. Summing per individual the imputed haplotypes returns
seven imputed genotypes for each cross-validation group. Green-faced shapes are known (true haplotypes), blue-faced are modeled as mosaic of references and
red-faced are imputed.

t a target haplotype, and r a reference haplotype. The number
of observed features defines the length of each vector xp,t,r.
Following the terminology of the machine learning community
the success|fail score that corresponds to each observation is
hereafter referred to as the label. The learning sample thus
contains labeled observations, whereas samples with data to
predict would contain unlabeled observations (i.e., observed
features for each point p,t,r but not their score, which remains
to predict). The goal of the machine learning algorithm is now
to exploit observations in the learning sample and their labels in
order to build up a classifier that efficiently discriminates successes
from fails.

Specific Implementation With Extra-Trees Classifier
The following section details the implementation of the general
framework specifically achieved to address the second research
objective of this study, namely, to compare the efficiency of the
machine learning classifier to locally match haplotypes to an
HMM-based method.

Supervised classification is here achieved using the extremely
randomized trees method (extra-trees hereafter), an ensemble
method based on random forests (originally proposed by Geurts
et al., 2006). Growing a decision tree works by gathering labeled
observations showing identical values of features into a node

and then splitting the node if a substantial proportion of these
observations have distinct labels (success or fail in our specific
case). The growing process can be illustrated with the theoretical
example in Table 1: the observations listed in that table are
considered as pertaining to the same node of a decision tree. In
that theoretical example, we consider two features: the length of
a segment shared by target and reference haplotypes (LSS) and
the genomic relationship between target and reference gamete
on the current chromosome (GENGc). A node split gathering
all observations that have a value of LSS greater than 1,000 kb
would completely discriminate successes from fails. The resulting
leaves would therefore be “pure”: in one leave (LSS < 1,000 kb),
all observations are fails, in the other one (LSS > 1,000 kb) all
observations are successes. Such a node split uses only one feature
to classify the observations according to their labels and the cut-
point value that allowed this split is 1,000 kb. Node splits are
determined automatically during tree growing, by going through
all features and cut points and looking for the combination
that minimizes the label impurity of the leaves defined by this
combination. Label impurity reduction is quantified through a
score measure, with the most common ones based on Gini index
or information entropy (we use the former in our experiments).
A complete decision tree is obtained by repeatedly applying
these splitting operations on the whole learning sample until the

Frontiers in Genetics | www.frontiersin.org 5 June 2019 | Volume 10 | Article 562

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00562 June 26, 2019 Time: 15:43 # 6

Faux et al. Modeling Mosaic Haplotypes by Machine Learning

TABLE 1 | Schematic example of a learning sample.

Features Label

LSS (in kb) GENGc . . .

100 0.51 Fail

1,500 −0.02 Success

350 0.49 Fail

400 0.36 Fail

15,000 0.52 Success

5,400 0.55 Success

240 0.04 Fail

850 0.38 Fail

350 0.44 Fail

400 0.45 Fail

15,000 0.44 Success

1,500 0.56 Success

350 0.32 Fail

A target haplotype is compared to a panel of reference haplotypes at any LD
map position. Two features (LSS, length of a shared segment; GENGc, genomic
relationship between target and reference gamete on the current chromosome) are
observed. Each observation can be a success (being the best matching reference
haplotype at that position) or a fail, computed using HD map information.

resulting leaves are either pure (all examples they contain have the
same label) or contain too few examples from the learning sample
(this threshold is optimized by a parameter – see here below).

A single decision tree usually does not perform well in
terms of predictive performance. Better results are obtained
by aggregating the predictions, through a majority vote, of an
ensemble of decision trees (called forests). Several ways to obtain
the different decision trees that compose forests do exist. In
Breiman’s (2001) original RF algorithm each tree is grown from a
bootstrap sample drawn from the original learning sample and
node splitting is modified so that the best split (feature and
cut point) is searched within a random sample of k features,
redrawn at each node. In contrast, in the extra-tree’s method,
each tree is grown from the original learning sample without
bootstrapping. When splitting a node, the best split is searched for
among a subset of k randomly selected features like in standard
RF, with the difference that the cut-point for each feature is
selected randomly instead of being optimized to reduce label
impurity as in standard RF. Extra-trees have been shown to be
competitive with classical RF in terms of predictive performances
while being more computationally efficient because of the extra-
randomization (Geurts et al., 2006). For our specific case, they
have also proven to yield more accurate results than classical RF
(see Supplementary Material S1).

In this study, we used the extra-tree classifier implemented
as part of the Python SciKit-Learn package (Pedregosa et al.,
2011). Among the seventeen parameters of this implementation
of the classifier, two were set to a value different than the
default one (n_estimators, the number of trees, was set to
200 and min_samples_split, the minimum number of examples
required to split a node, was set to 1) and two were set to vary
as they were influencing results more than other parameters
during exploratory runs (unpublished results). The first one

(max_features, the number k of features randomly selected at
each node) was set to vary over the range of values [1, 2, 3, 4,
5] and the second one (min_samples_leaf, the minimum number
of examples required at a leaf node) was set to vary over the range
of values [50, 150, 250, 500, 1000, 1500, 2000, 2500].

After the learning stage, extra-trees return the importance
of each feature, which is a measure of the total reduction of
impurity brought by that feature within the forest. The higher the
importance of a given feature in the forest, the more relevant this
feature is in predicting the label. Therefore, importance values
can be used afterward to rank the features from the most to the
least relevant and to gain some understanding of the problem.

Optimization of Extra-Trees Parameters
To tune these parameters, we used a second internal cross-
validation loop. More precisely, each of the 13 groups of the
external cross-validation loop (outlined in Figure 2) is further
divided into 12 subgroups. Each of these 12 subgroups are divided
into target and reference panels in the same way as for the 13
groups of the outer loop (see Figure 2). For each of the 5-
by-8 combinations of the max_features and min_samples_leaf
parameters and for each of the 12 subgroups, all target haplotypes
are modeled as a mosaic of reference haplotypes and imputed,
and the comparison criteria eA and r2 are computed. For each
criterion, the combination of parameters yielding the best values
over all twelve subgroups is retained as the optimal one, returning
therefore the two best combinations (one per criterion) used
for the parent cross-validation group. Such two-level cross-
validation is necessary to avoid artificial inflation of results that
might arise if we would have used the target panel from the
cross-validation group in the optimization of parameters.

Building the Learning Samples
The learning sample of each of the 13 cross-validation groups
is built by successively considering each one of the 84
reference individuals as a target. Therefore, two haplotypes
considered as targets are matched to 166 haplotypes considered
as references along the 2,321 positions of our LD map. The
maximal number of labeled observations in the learning sample
of the cross-validation group is thus close to 65 million
(2,321 × 2 × 166 × 84). Handling such a large learning sample
would be tricky computationally speaking. Furthermore, we
expect much of it to be redundant, which is the reason why we
have downsized the number of labeled observations to two fixed
sizes of 100,000 and 1,000,000, randomly picked from the 65
million possibilities and, respectively, denoted as EXT-100k and
EXT-1M hereafter.

Selection of Features
Features from which observations are made were selected during
exploratory analyses (unpublished results) and are listed in
Table 2. We have listed 30 of them and ordered them in three
main types : (1) those gathering information about local similarity
between haplotypes, (2) those estimating the relationships
between individuals, gametes, and haplotypes, and (3) those
outputted from other methods for locally matching haplotypes.
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TABLE 2 | List of all features investigated for use in the random forests framework, with their names and ranges of variation.

Range

Type Name Description Min Max

Features based on position along POS Position along the SNPs of the LD panel 1 P

the chromosome and local NSS Length (in #POS) of the shared segments 0 P

haplotype sharing (16 features) R1-NSS Ranking (standard∗) of the length (in #POS) of the shared segment 1 R

R2-NSS Ranking (dense∗) of the length (in #POS) of the shared segment 1 R

DLN Distance (in #POS) to the left edge of the shared segment + 1 0 P + 1

DRN Distance (in #POS) to the right edge of the shared segment + 1 0 P + 1

DMN Distance (in #POS) to the closest edge of the shared segment + 1 0 P + 1

R1-LSS Ranking (standard∗) of the physical length of the shared segment 1 R

R2-LSS Ranking (dense∗) of the physical length of the shared segment 1 R

iDLN Inverse of DLN, as 2-(DLN)−1 when DLN > 0; 0 otherwise 0 2

iDRN Inverse of DRN, as 2-(DRN)−1 when DRN > 0; 0 otherwise 0 2

iDMN Inverse of DMN, as 2-(DMN)−1 when DMN > 0; 0 otherwise 0 2

LSS Physical length of the shared segments (in kb) 0 L

DLL Physical distance to the left edge of the shared segment 0 L

DRL Physical distance to the right edge of the shared segment 0 L

DML Physical distance to the closest edge of the shared segment 0 L

Features based on estimation of PEDI Pedigree relationship between reference and target individuals 0 2

relationship (11 features) PEDG Pedigree relationship between reference and target gametes 0 1

GENI Genomic relationship (as in Yang et al., 2010) between reference
and target individuals on all chromosomes

(n.b.)

GENG Genomic relationship (as in Yang et al., 2010) between reference
and target gametes on all chromosomes

(n.b.)

GENIc Genomic relationship (as in Yang et al., 2010) between reference
and target individuals on the current chromosome

(n.b.)

GENGc Genomic relationship (as in Yang et al., 2010) between reference
and target gametes on the current chromosome

(n.b.)

SIMI Genomic similarity between reference and target individuals on all
chromosomes

0 1

SIMG Genomic similarity between reference and target gametes on all
chromosomes

0 1

SIMIc Genomic similarity between reference and target individuals on the
current chromosome

0 1

SIMGc Genomic similarity between reference and target gametes on the
current chromosome

0 1

MNT Minimum number of ties to join the reference and target gametes
using the pedigree (equal to 100 when MNT > 99)

1 100

Features outputted from other PBLM Probability of IBD obtained by the HMM-HP-LD method 0 1

methods (3 features) R2-PBLM Ranking (dense∗) of reference haplotypes according to their PBLM 1 R

MASW Moving average of the number of switches between longest shared
segments in the surrounding 5 Mb

0 (n.b.)

∗Standard ranking is “1134” whereas dense ranking is “1123.” The dense ranking allows comparing a situation where many reference haplotypes are the local best match
to a situation where only one is the local best match: in both cases the second top-ranked reference has a ranking equal to 2. nb: not bounded.

Features of the first type contain information about local
similarity between target and reference haplotypes, according to
their position along the phased chromosome. The LD position
itself is one of these features, as well as a group of features related
to the size of the segment shared between reference and target
haplotypes (expressed in number of SNPs, in kb, or ranked) and a
group of features related to the position inside a shared segment,
expressed as the distance to the edges of the segment. If target and
reference haplotypes do not share a segment at a given position,
only the LD position is non-zero; as no identity was observed,

there are no shared segments and therefore their length and
distance to their edges are set to zero.

Then come features related to (individual, gametic,
haplotypic) relationships. Note that we understand the term
“gamete” to mean the whole set of alleles inherited from each
parent, as mentioned in previous studies involving gametic
relationships (e.g., Schaeffer et al., 1989). Estimations are based
on pedigree information and/or genomic information brought
by the LD map. In the present study, haplotypes from individuals
with ancestors in the sample are identified according to their
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parental origins (e.g., paternal vs. maternal haplotype). This
allows the use of gametic relationships (e.g., based on the
genealogy, the paternal haplotype is linked with both haplotypes
from its father and eventually to haplotypes from paternal grand-
parents, when these are present in the sample, but it is not linked
to the haplotypes from its mother, assuming both parents are
unrelated). Following notations in Figure 3, PEDI and PEDG are
the additive relationships [estimated using pedigree information
as defined in Wright (1922)], respectively, between individuals
(e.g., Ii and Ij) and gametes (e.g., Gi,p and Gj,p, or Gi,p and Gj,m).
Genomic relationships (between individuals, gametes – on all
autosomes – or haplotypes – only on current autosome and
denoted with suffix “c”) are computed using the formula by Yang
et al. (2010). That formula weights the relationship according
to allelic frequencies. Conversely, the genomic similarities
(between the same pairs of individuals, gametes, and haplotypes
as for genomic relationships) do not take into account allelic
frequencies (computed using Eq. 6 in Speed and Balding, 2014).
Considering the pedigree as a directed graph, we have computed
the feature MNT (for the minimum number of ties) as the shortest
path from any gamete to another one.

Lastly come features outputted from other methods for locally
matching haplotypes: (1) the probability that any reference

haplotype would be the best local match haplotype for a given
target haplotype (PBLM), as computed in our implementation of
the HMM and ranked from highest to lowest (R1-PBLM), and
(2) the average number of switches in the 5 Mb surrounding
the current position (MASW), using a simple (unpublished)
heuristic that reconstructs the target haplotype as a mosaic
of segments from reference haplotypes under constraint of a
minimal number of segments. Here, the rationale is that a
high value of MASW could pinpoint a chromosomal region
where no large reference haplotype could be assigned to the
target haplotype. Through PBLM, the classifier is fed the data
used by the HMM-HP-LD modality of our HMM (see the
description here below, section “Modeling Target Haplotypes As
a Mosaic of Reference Haplotypes”) without, however, specifying
its selection rule (namely, the reference haplotype with the
highest probability is chosen).

Tests With Reduced Number of Features
In order to better understand properties of the machine learning
classifier, we have applied a similar evaluation protocol to four
modalities corresponding to four relevant sets of features. Each
of them was obtained from the learning samples used in the EXT-
100k modality by hiding some features. EXT-100k-L contains all

FIGURE 3 | Estimated relationships between individuals, gametes, and haplotypes. Individuals Ii and Ij have been genotyped on the LD map; parental origins are
known, and genotypes are accurately phased. All haplotypes inherited from mother (father) are denoted as maternal (paternal) gamete Gm (Gp). For each of the 29
bovine autosomes, chromosomes are entirely phased in maternal (paternal) haplotypes Hm (Hp).
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features from the first type (cf. Table 2), EXT-100k-LR contains
all features from the first and second types, EXT-100k-H only
contains the two features obtained from the HMM (PBLM and
R1-PBLM) and the last one, EXT-100k-HR contains the two
HMM features plus all features from the second type. In this
case, the cross-validation plans, the comparison criteria and
the learning samples are the same. The only difference lies in
the range of tested values for optimization of the max_features
parameter ([1, 2] instead of [1, 2, 3, 4, 5] to not exceed the number
of features of the group with the lowest number of features).

Obtaining Evaluation Criteria
Once extra-trees have learnt discrimination rules using the
learning sample, the rules are applied to unlabeled observations
and, for any of them, the extra-tree classifier provides the
probability that the observation belongs to the two score
modalities: Ps, the probability of success, complement Pf, the
probability of fail. For any target haplotype at any LD position,
Ps are computed for each reference haplotype. The best match
is the one that has obtained the highest (predicted) probability
of success (in case of equality, the reference haplotype occurring
at first in the vector of probability is chosen). Doing so for each
LD position results in modeling the target haplotype as a mosaic
of segments from the locally best matching reference haplotypes.
The main criterion to assess the correctness of the mosaic target
haplotype, the metric eA, is obtained by summing the difference
of allelic content between a true target haplotype observed on the
HD map and its modeling as a mosaic of HD segments from the
reference haplotypes.

A first imputation of the target haplotypes (only observed on
the LD map) may be achieved by considering the inferred mosaic
of reference haplotypes (observed on both maps) on the HD
map. However, haplotype imputation may yield better results if
we consider more reference haplotypes rather than only the best
matching one, e.g., if there are more than one best matching
haplotype, or if some reference haplotypes have a Ps very close
to the highest one. Therefore, we impute the allelic content
at

i(ai ∈ [0, 1]) of a target haplotype t at SNP i by averaging over
the allelic contents of all Q best-matching reference haplotypes
among R(Q ≤ R) according to a weight wq as follows:

at
i =

Q∑
q=1

(wq · a
q
i )

The weight wq is computed according to the probabilities of the
best local match (Ps) of the Q best-matching reference haplotypes
at the LD position closest to HD position i:

wq =
Ps(q)∑Q

q=1 Ps(q)

The Q best-matching reference haplotypes are selected as those
having a Ps greater or equal to a fraction c(c ∈ [0, 1]) of the
highest Ps. For instance, setting c to 0 leads to a weighted average
of all the R reference haplotypes. Nonetheless, such an option
is not optimal: the best imputation results were obtained during
exploratory runs with c close to 1.

For a given individual, the imputed HD dosages are obtained
by summing the allelic contents of the two imputed haplotypes.
Once genotype imputation is achieved for all animals, the
imputation reliability (r2) can be computed at every HD map
position. Note that the optimization of extra-tree parameters
max_features and min_samples_leaf are independently achieved
for each criterion chosen for comparison; optimized parameters,
and thus optimized extra-trees, are different, whether the purpose
was to optimize eA or the imputation of r2. For imputation
purposes, the value of c is optimized along with max_features and
min_samples_leaf by setting it to vary in the range [0.75, 0.80,
0.85, 0.90, 0.95, 1.00].

Hidden Markov Model for Local
Haplotype Matching
Modeling Target Haplotypes as a Mosaic of
Reference Haplotypes
IMPUTE2 (Howie et al., 2009) returns imputed genotypes
without providing information on the best matching reference
haplotypes. To obtain the mosaic structure, we have implemented
an HMM equivalent to IMPUTE2 and similar to models
underlying other HMM-based methods, e.g., MaCH (phasing
and imputation, Li et al., 2006) or ChromoPainter (local
ancestry inference, Lawson et al., 2012). Our model corresponds
to settings where genotypes are pre-phased, thus it does
not include a phasing step, nor does it integrate phasing
uncertainties. Working straight from phased haplotypes rather
than genotypes makes the method comparable to the random
forests framework.

In this HMM, we model each target haplotype as an
unobserved mosaic of the R reference haplotypes (hidden states).
Emission probabilities Pe correspond to the probability to
observe allele k (k = 0|1) at a position p when the underlying
hidden state is a reference haplotype r and accounts for
genotyping errors. Denoting the probability of error as Perror, Pe
is equal to 1 − Perror if alleles are identical and to Perror if alleles
are not identical. Between positions p and p + 1, separated by a
distance dp,p + 1 (in cM), the probability of transition Pt;p,p+1
from hidden state r to hidden state s(r, s ∈ [1, R]) is estimated as:

Pt;p,p+1 =

{
1/R ·

(
1− exp

(
−Ngdp,p+1

))
if r 6= s

exp
(
−Ngdp,p+1

)
+ 1/R ·

(
1− exp

(
−Ngdp,p+1

))
if r = s

In the formula above, Ng is a parameter corresponding
to the expected number of generations from the target
haplotype to the reference haplotype. Since the maximum
number of reference haplotypes is low in our case (R = 168
at maximum, see Figure 2), we do not restrict the space
of hidden states.

At each position, we compute the probability that the
reference haplotype r contributes to the unobserved mosaic
structure of target haplotype t according to the HMM. That
probability is later referred to as the “best local match probability”
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(for consistency with definition used for the random forests
framework) and is computed with the forward–backward
algorithm (described in Rabiner, 1989). This algorithm efficiently
computes the probabilities over all possible sequences of
unobserved states and conditionally on all observations and on
the parameters of the model.

Inferring a discrete mosaic sequence is achieved in two ways:
(1) HMM-VI, selecting the most likely mosaic sequence using
the Viterbi algorithm (also described in Rabiner, 1989), or
(2) HMM-HP, selecting the hidden state (reference haplotype)
with highest probability at each map position. The HMM
is trained on the two genetic maps, LD and HD, leading
therefore to four mosaic sequences (HMM-VI-LD, HMM-VI-
HD, HMM-HP-LD, HMM-HP-HD).

The parameters Perror and Ng of the so-defined HMM have
been chosen to mimic at best the behavior of IMPUTE2 with
option allow_large_regions and default parameters except for
k_hap (set to 168) and Ne (set to 200). The selected values are
Perror = 0.0005 and Ng = 4.7619. The model was then applied to
all 14 target haplotypes of each of the 13 cross-validation groups
(see Figure 2).

Imputation of Target Haplotypes and Genotypes
Using the HMM
For any map position, haplotype imputation of a given target
haplotype is obtained by averaging the allelic content of
all reference haplotypes according to their respective best
local match probability (computed using forward–backward
algorithm). When the HMM is trained on the LD map,
HD positions that are unobserved on that map are imputed
using probabilities computed at the closest LD positions.
Imputed haplotypes are eventually paired per individual

to yield imputed dosages. With the aforementioned values
for parameters Perror and Ng and trained on the HD
map, our implementation of the model behaves similarly
enough to IMPUTE2 (using option allow_large_regions and
the fore-mentioned values for parameters k_hap and Ne) to
consider them as identical imputation methods (see correlations
between imputation methods in Supplementary Material S2).
Hereafter, genotype imputation results using the HD map
are obtained by running IMPUTE2 (with fore-mentioned
parameters) and results using the LD map are obtained by
running our implementation of the HMM (denoted HMM-LD
and written in Fortran 90).

RESULTS

Importance of Features
After supervised learning on the learning samples of the 13
cross-validation groups (see Figure 2), the importance of each of
the 30 features was computed and averaged over the 13 cross-
validation groups. The features are ranked by importance in
Figure 4, for each case of size of learning sample and each
purpose (inference of a target haplotype as a mosaic of reference
haplotypes and genotype imputation from LD to HD map).
The ranking is quite conserved between the four cases: from
96.9 to 99.7% of Spearman’s correlation, less correlated between
purposes than between sizes of LS. The three top-ranked features
are always iDMN, iDRN, and iDLN, three features expressing
the distance to the edge of a shared segment (respectively
the minimal, right and left distances) on an inverse scale.
These three features mostly form a top group, well delimited
from other features. It may be worth noting that those three

FIGURE 4 | Features ranked by their importance in extra-trees (averaged over 13 cross-validations), for the purpose of locally matching haplotypes (top) or genotype
imputation (bottom) and for two sizes of learning sample (100,000 and 1,000,000 labeled observations).
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features are always preferred to their corresponding ones on
the regular scale (DMN, DRN, and DLN). Those are ranked
in a second group of importance, alongside features related
to the size of shared segments (NSS, LSS and their rankings).
Features related to estimation of relationships (between gametes
or individuals) are always low in rankings: SIMGc earns the
highest ranking (17th) for a feature of this kind, ∼22 times less
important than iDMN in that ranking. About features related
to other assignation methods, the ranking of the best local
match probability (R1-PBLM) is always more important than
the probability itself (PBLM). The estimated number of switches
in the neighboring 5 Mb (MASW) is consistently the least
important feature, in the bottom group along with similarity
between individuals.

The distribution of four selected features (iDMN, DMN, NSS,
and GENGc) are given in Figure 5 (the detailed information
is given in Supplementary Material S3). In that figure, the
range of each of these features is divided in 20 equally spaced
bins. The relative size of each bin is then computed as the
proportion of observations falling into this bin. Among those
observations, some are labeled with success (in blue), others
with fail (in red). The purity of the bin is measured by the
proportion of objects in this bin and labeled with success.
This figure therefore shows how each of these four features
is linked to the label. For each of them, the lower the value
of the feature, the lower the purity and the larger the bins.
However, feature iDMN reaches a better compromise between
purity and size than feature GENGc does, for instance: less
than 1% of the observations fall in the last bin of GENGc,
in which 99.9% of the observations are successes, whereas
5.5% of the observations fall in the last bin of iDMN, in

which purity is reasonably high (94.5% of the observations
are successes). This may explain why iDMN is a good feature
for classification.

Differences Between True Haplotypes
and Haplotypes Predicted Using
Extra-Trees or the HMM
The 182 target haplotypes were modeled (per group of 14,
see the cross-validation plan in Figure 2) as mosaics of HD
segments from the best matching reference haplotypes. The
metric eA was then measured by comparing the modeled
haplotypes to their known phase, for the four modalities of
the HMM and the two modalities of the random forests
framework. Results are averaged over the 182 haplotypes in
Table 3. On these results, we see that the extra-trees classifier
performs better than the other methods, whether the learning
sample contains 1E5 or 1E6 objects. When a target haplotype
is inferred as a mosaic of HD segments from the reference
haplotypes that are locally classified as the best match, 98.75–
98.77% of the HD positions have allelic content identical to
the known target haplotype on the HD map. The HMM-HP-
xx returns a lower median value than the extra-trees classifier;
that median value difference is, however, much lower than the
average difference.

Among the four HMM mosaic sequences, the method
for selection of the local reference haplotype has more
impact than that of the map on which the HMM was
trained. Building the mosaic by selecting the hidden states
(reference haplotypes) with the highest best local match
probability (HMM-HP-xx) performs better on both maps

FIGURE 5 | Distribution of the success labels along the ranges of four selected features. The range of each feature is divided into 20 equally spaced bins; the relative
size of each bin (in %) is given by its height and its proportion of observations labeled with success is blue faced. The four features are DMN [distance (in #POS) to
the closest edge of the shared segment +1], iDMN [inverse of DMN, as 2-(DMN)−1 when DMN > 0; 0 otherwise], NSS [length (in #POS) of the shared segments],
and GENGc (genomic relationship between reference and target gametes, on the current chromosome).
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TABLE 3 | Inference of target haplotype as a mosaic of reference haplotypes.

eA [%] Number of switches in inferred mosaic

Min Avg Med Max Min Avg Med Max

HMM-VI-LD 0.004 1.441 0.430 11.936 0 15.7 9.0 73

HMM-HP-LD 0.005 1.304 0.413 7.401 0 19.5 9.0 91

HMM-VI-HD 0.005 1.413 0.409 8.327 0 14.9 9.0 67

HMM-HP-HD 0.005 1.310 0.394 7.403 0 27.6 9.0 671

EXT-100k 0.005 1.226 0.410 6.941 4 70.5 47.0 285

EXT-1M 0.006 1.231 0.414 7.026 4 95.8 71.0 367

Distribution of the difference between predicted and true haplotypes (eA) and of the number of switches in the mosaic, on 182 haplotypes and 328,045 HD SNPs. Best
results are boldfaced.

than by selecting the best mosaic sequence with the Viterbi
algorithm (HMM-VI-xx).

Methods are ranked almost reversely when looking at the
number of switches in the mosaic in Table 3: the best
mosaic sequences on eA tend to model the target haplotype
with more segments. For instance, when using the HMM,
the mosaic obtained by the Viterbi algorithm (HMM-VI-
xx) is less prone to switches than the mosaic obtained by
selecting the reference haplotype with highest best local match
probability (HMM-HP-xx), whatever the map (VI does 19
and 46% less switches than HP, respectively, for LD and
HD maps). Conversely, the HP mosaic sequences have a
lower proportion of error than the VI mosaic sequences
(e.g., the average eA is equal to 1.41% for HMM-VI-HD and
1.31% for HMM-HP-HD).

Comparisons of Imputation Reliability
Between Extra-Trees and HMM
In Table 4, results of imputation from LD to HD maps are
detailed for the four methods of imputation: HMM using
LD and HD maps (respectively HMM-LD and IMPUTE2)
and extra-trees with 100,000 and 1,000,000 observations in
the learning samples (respectively EXT-100k and EXT-1M).
The imputation r2 are categorized by minor allele frequency
(MAF) and position along the BTA1 chromosome. These
results show that the extra-trees classifier performs as good as
HMM: extra-trees classifiers are better on average imputation
r2 whilst IMPUTE2 has a greater number of variants that are
better imputed (higher median). Although slightly better on
rare variants (MAF < 0.05) and between first and last Mb
of the chromosome, the machine learning model is distinctly
better than the HMM on chromosome edges: SNPs located
on the last Mb of BTA1 have an average imputation r2

2.23% higher for the best extra-trees (EXT-100k) than for the
best HMM (IMPUTE2).

The statistics in Table 4 relate to the SNPs that do
not pertain to the LD map and for which imputation
reliability was always computable (for that reason, SNPs
imputed as monomorphic by one of the four methods were
excluded). The numbers of SNP excluded for being imputed
as monomorphic are proportionally very low (0.14% of the
total number of only HD SNPs) but the random forests

framework has imputed SNPs as monomorphic ∼3 to ∼4 times
more than the HMM.

Another way of categorizing SNPs to highlight imputation
differences between methods is given in Figure 6. That figure
shows the average imputation r2 in regard to the distance
between the imputed HD SNP and the closest observed LD
SNP. Ten classes of distance (from 0–2.9 to 66–389 kb)
were designed so that they all include the same number
(∼33k) of HD SNPs. For the HMM-based imputations,
the figure shows that both maps return an equal average
reliability up to ∼13 kb and then the HD map (IMPUTE2)
overtakes the LD map (HMM-LD). Besides, whatever the
size of the learning sample (EXT-100k or EXT-1M), the
random forests framework always imputes better than the
HMM which uses the same map (HMM-LD). As a result
of these two trends, the random forests framework always
yields better results than the HMM, except for the most
distant class (>66 kb), where IMPUTE2 overtakes it. However,
in that last distance class, the average imputation r2 drops
for all methods.

Machine Learning With Reduced Number of Features
The results (Table 5) obtained when considering only the features
of the first type (i.e., those based on the position along the
chromosome) are quite close to the results obtained with all
features, much more for inferring the target haplotype as a mosaic
of segments than for genotype imputation. Adding the eleven
relationship features further enhances these results. Note that
the differences between Tables 3, 4 on average imputation r2

for a given method are due to the exclusion of more SNPs
in Table 5, for being imputed as monomorphic in at least
one of the tests.

Though lower, the results achieved by an automatic
classifier only fed with two features – the features returned
by the HMM (the probability of best local match and its
ranking) – are still close to the “full” automatic classifier and
actually slightly better than HMM-HP-HD for the purpose
of inferring the target haplotype as a mosaic of segments.
For that purpose, using the two HMM features with machine
learning returns the same results as the HMM using the
LD map (HMM-HP-LD). Surprisingly however, adding the
relationship features yields worse results. The fact that the
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TABLE 4 | Genotype imputation of target haplotypes.

Overall NMA1 = 2 MAF < 0.05 MAF > = 0.05 First Mb Last Mb Between first and last Mb Number of SNP imputed as
monomorphic

N 325,358 4,020 41,931 283,427 2,587 2,370 320,401

HMM-LD Avg 91.86 71.89 80.96 93.47 87.89 87.74 91.92 125

Med 94.93 99.15 90.22 95.04 92.61 90.30 95.00

IMPUTE2 Avg 91.93 71.85 81.00 93.55 87.91 87.76 92.00 157

Med 94.97 99.14 90.20 95.10 92.21 90.39 95.03

EXT-100k Avg 92.01 72.31 81.52 93.56 88.74 89.99 92.05 455

Med 94.89 99.43 90.65 95.00 92.51 93.34 94.94

EXT-1M Avg 92.08 72.33 81.50 93.65 89.28 89.60 92.12 444

Med 94.94 99.43 91.16 95.08 92.48 92.89 95.00

Average and median imputation r2 (as percentages) of four different imputation methods, partitioned by allele frequency and by position on BTA1, after exclusion of LD
SNPs as well as any SNP imputed as monomorphic by at least one of the four methods. For each partition, the best average result is boldfaced. 1NMA, number of
occurrences of Minor allele.

FIGURE 6 | Average imputation r2 by four methods with regard to the distance between the imputed SNP (from the HD map) and the closest observed SNP (from
the LD map), for different classes of distance containing the same number of imputed SNP.

max_features parameter was set to vary between few and
low values (1 or 2) could explain this unexpected result. For
the purpose of imputation, considering only some features
never reach average imputation reliabilities higher than
those of the HMM.

DISCUSSION

Genotype Imputation Illustrates the
Effectiveness of the Random Forests
Framework
When imputing WGS genotypes from 50k dense genotypes,
the implemented random forests framework reaches average
reliabilities similar to those achieved by IMPUTE2. We

consider therefore these reliabilities as fair evidence of the
ability of our framework to efficiently learn how to locally
match haplotypes from examples (the labeled observations) for
two main reasons. First, such a measure is independent of
phasing, thus it does not embed potential phasing errors (even
though those remain scarce). Second, using the imputation
criterion makes it comparable to a state-of-the-art method,
here IMPUTE2. Imputation results of the two types of
methods are very similar, although we observed two main
differences between HMM and the random forests framework.
The first is that the random forests framework performs
better on both edges of chromosomes: a difference of ∼2%
of average imputation r2 is observed. The second difference
is that IMPUTE2 imputes genotypes at distant positions
from known genotypes with higher accuracy; this is due
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TABLE 5 | Effect of considering only some features and not others, on average
difference eA between predicted and true target haplotypes and on average
imputation r2.

eA r2 Number of SNP imputed as
monomorphic

N 182 324,738

HMM-HP-LD| HMM-LD 1.304 92.00 125

HMM-HP-HD| IMPUTE2 1.310 92.07 157

EXT-100k 1.236 92.15 455

EXT-100k-L 1.240 91.73 577

EXT-100k-LR 1.238 91.83 692

EXT-100k-H 1.304 91.47 613

EXT-100k-HR 1.345 91.03 914

Both comparison criteria are given as percentages and best results are boldfaced.

to its use of the HD map, as shown by comparison with
HMM-LD in Figure 6.

Conceptual Differences Between the
HMM and the Random Forests
Framework
The differences in imputation results could be explained by
the views behind the two types of methods, which also are
quite distinct. The very basic conceptual difference between
them lies in their modeling objectives: the HMM seeks to
find the sequence of reference haplotypes that most likely
reproduces an observed target haplotype (hence, essentially
minimizing the number of segments) while our proposed
framework searches for the best match locally (independently of
the whole sequence). In some particular designs, the reference
haplotypes correspond to the true ancestors of the target
haplotype (e.g., Mott et al., 2000; Druet and Farnir, 2011;
Zheng et al., 2015); then the HMM models the biological
process of chromosomes transmission over a few generations.
In contrast, the sequence returned by the random forests
framework has no pretention to model that biological process
but aims at imputing the target haplotype as well as possible,
chunk after chunk. When the reference haplotypes are not the
true ancestors of the target haplotype (e.g., when the target
haplotype is not a true mosaic of reference haplotypes), the
HMM framework no longer aims at finding the reference
haplotype that is the most likely to be identical-by-descent (IBD)
with the target haplotype at a given position but essentially
minimizes the number of segments in the mosaic. Conversely, the
random forests framework searches for the best match haplotype
similarly to methods estimating IBD probability, considering
the number of identical-by-state SNPs on both sides of the
position (e.g., Meuwissen and Goddard, 2001). The natural
consequence of these two different modeling purposes is a much
higher level of “mosaicism” for the random forests framework
(given in Table 3).

Beyond that first conceptual difference, another two are
of interest. First, our framework does not allow for small
differences between shared segments: a mismatch between target
and reference haplotypes terminates a shared segment. For

some methods (e.g., Beagle – Browning and Browning, 2009),
more efficient imputation results have been observed without
allowing differences. Not allowing differences also partially
explains why the extra-trees makes more switches than the
HMM. Note that the same constraint could be imposed in
the HMM framework by setting Perror to 0. Second, the two
types of methods use different map information: the random
forests framework only obtains information from the LD map
whereas the HMM may additionally obtain information from
the HD map. That difference matters since the HMM achieves
better imputation with the HD map than with the LD map
(particularly for HD SNPs distant from a LD position, see
Figure 6). When it uses the entire map, the HMM better accounts
for distances between SNP positions and for the structure of
linkage disequilibrium between SNPs. It subsequently produces
a better estimation of the haplotype blocks: a block is
defined by SNPs in perfect linkage disequilibrium, not by
those closest to a LD position. Integrating the information
from the HD map into the random forests framework would
therefore be profitable.

Main Lessons of the Extra-Trees
Classifier
Beyond its use, the random forests framework also reveals
some useful lessons for the development of methods for local
haplotype matching. The most informative lesson comes from
the importance ranking of the features: top-ranked features are
those expressing the distance to an edge of a shared segment
(e.g., DMN, minimal distance to the left or right edge of the
shared segment, or iDMN, its expression on an inverse scale).
When such a feature is not equal to zero, it contains a double
information: (1) that both haplotypes are, at this position, in a
shared segment and (2) the value of the distance to the edges
of the segment. A high value of DMN (or a value of iDMN
close to 2) reveals that both haplotypes share a long identity
segment (at least twice the length of the value of DMN) and
that the current position is quite distant from the closest edge
of this identity segment. The distance to the edge of a shared
segment is thus more important than the length of this shared
segment. As discussed above, the distance to the closest edge
might better reflect relative local IBD probabilities than the length
of the shared segment. Accordingly, minimizing the number of
segments in the mosaic as done in the HMM does not guarantee
the identification of the reference haplotype with the highest local
IBD probability.

Before going further, note that the precedence of iDMN over
DMN (and similarly for iDRN, iDLN) can be explained by the
nature of extra-trees itself: for any node split when growing a
decision tree, the extra-trees algorithm randomly picks up the
value of the cut-point for a feature uniformly between the min
and max value of this feature in the node to split. However,
the sizes of classes of iDMN are more uniformly distributed
over its (bounded) range than the sizes of classes of DMN (see
Figure 5: for DMN, >98% of the observations fall into the first
bin of range). Therefore, when picking at random a cut-point for
node splitting, there is a higher chance of having an informative
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discrimination with iDMN compared with DMN. With classical
random forests (where cut-points are optimized over the full
range of values), iDMN and DMN have similar importance (see
Supplementary Material S4).

Features rankings (Figure 4) also show that features of
the first group (i.e., 16 features related to the position
along the chromosome) unambiguously take the precedence
over the ones of the second group (relationships). Such
hierarchy was then confirmed by the tests with a reduced
number of features (Table 5). This result was expected
in the sense that the relationship features express identity
between haplotypes at maximum at the chromosome level
(feature GENGc, which actually is the most important of
these features) whereas features from the first group express
identity between haplotypes at a segment level (e.g., a high
value of feature LSS reveals an identity spanning on several
Mb). A second lesson is thus that relationship features
have a small but not null impact: removing them from
the random forests framework leads to average imputation
reliabilities lower than those of the HMM (Table 5). Our
explanation is that these relationships are still useful to
discriminate between reference haplotypes bearing a shared
segment of the same length, although for most of the cases
the length of the shared segment already captures the familial
information (long segments indicating close relationships).
Consequently, using relationship to pre-select the subset of
reference haplotypes, as done by SHAPEIT2 (Delaneau et al.,
2011) or by LDMIP (Meuwissen and Goddard, 2010), is
probably already a good way to use this information. Similarly,
we observed that adding the relationship information to the
HMM information (in the random forests framework) did not
improve our accuracy.

The rankings of features (Figure 4) bring other minor
lessons about features expressing the same aspect, but in
a different way. First, feature NSS is always preferred to
feature LSS, whereas both express the length of a shared
segment between target and reference haplotypes (respectively
in number of LD map positions and in kb). Second, the
dense rankings are of little help: standard rankings (“R1-
”) always take precedence over them (“R2-”). The rationale
behind the use of the dense rankings was to make comparable
cases where many reference haplotypes were the best match
to cases where only one reference haplotype was the best
match. In both situations, with dense ranking (“1123”), the
second-best reference haplotype is ranked second whereas,
with standard ranking (“1134”), the second-best reference
haplotype is ranked n + 1, where n is the number of best
matching haplotypes.

Perspectives and Improvements for
Routine Use of the Random Forests
Framework
As implemented in our study, the random forests framework
is not computationally competitive compared to the existing
HMM approaches. Hence, prior to a routine application,
two entangled aspects have to be considered: how does

one achieve routine predictions with higher accuracy,
and with lower computational demand than the random
forests framework as implemented so far? Both aspects
can be circumscribed to the constitution of the learning
samples, summarizing the previous question to reducing
the dimensions of these learning samples (number of
labeled observations per number of features) along with
improving accuracy.

On the aspect of the number of features, the tests conducted
in this study have shown that discarding features could lead
to very limited losses of precision but should not be done
in a group-wise manner. Now that the hierarchy of features
have been established inside each group, some features could
be trimmed off to avoid redundancy, i.e., giving preference
to iDMN over DMN, to NSS over LSS, or to R1- over
R2. For instance, an optimized set of features may also be
obtained through recursive feature elimination (Guyon et al.,
2002). Besides removing less important features, new ones
could also be investigated. Note that preliminary investigations
are, however, always necessary for new features; for instance,
we had considered the gametic linkage (as estimated in
Wang et al., 1995) but too few relationships were non-
zero so that it was helpless to identify best local matches
between haplotypes. The IBD probabilities, as estimated by
Beagle (Browning and Browning, 2009) or LDMIP (Meuwissen
and Goddard, 2010), could also be considered although the
usefulness of such features might be hampered by the time
requested for computing them. Other features to consider
are the allele (as in Maples et al., 2013), the MAF and the
position of HD SNPs. These features would extend the learning
sample to all HD positions, which would undoubtedly be
profitable for accuracy. Conversely, this would directly impact
the computational aspect. For that reason, an intermediate
solution would be to consider blocks of linkage disequilibrium
of HD SNPs (and their allele, MAF and position) instead
of operating on these HD SNPs. All lengths and distances
could also be expressed on a different scale to account
for the average number of generations between target and
reference haplotypes as in the HMM framework (e.g., using
genetic distances and the number of generations to estimate
recombination probabilities).

The number of labeled observations is the second aspect
to consider and should be optimized alongside the number of
features. Our results show a limited improvement when using
a learning sample 10-times larger (EXT-1M vs. EXT-100k). The
number of labeled observations could therefore be reduced. In
addition, their selection could be achieved in a wiser manner, e.g.,
selecting them in order to contain the most different examples
rather than randomly. The problem of the selection of the best
training examples is known as active learning in machine learning
literature (Settles, 2012).

CONCLUSION

We herein outlined a new framework for automatically
matching haplotypes along the chromosome and have
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illustrated that extremely randomized trees can effectively
combine multiple sources of information to identify the
best matching reference haplotypes. As an example, our
implementation of the extremely randomized trees achieved
slightly better imputation results than IMPUTE2. The random
forests framework also allows identifying which features are
the most important for a specific prediction. In the present
case, distance to the edges of the shared segment appeared as
the most important variable and adding genomic relationships
only marginally improved results. To conclude, this approach
might be further enhanced, for instance by including additional
features, or could also be applied to other related applications
such as identification of carriers of genetic defects or imputation
of structural variants (by including features as distance with
known carriers, genotyping intensity, etc.).
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