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ordinate a; fec.b*, CIELAB fruit external colour coordinate b; fec.C*, CIELAB fruit external colour chroma; fec.H, CIELAB fruit external colour hue angle; fec.L*, 
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of non-commercial fruits on trusses 1–4; FOL, foliage density; FPS, fruit predominant shape; FSH, fruit size homogeneity; FSS, fruit set sequence; FW1.4, mean 
fruit weight (g) on trusses 1–4; FW1.4c, mean of commercial fruit weight (g) trusses 1–4; FW1.4nc, Mean of non-commercial fruit weight (g) trusses 1st to 4; G×E, 
genotype by environment; GBS, genotyping by sequencing; GEI, genotype by environment interaction; GGE model, genotype main effects GEI model; GH, growth 
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versal section; LD, linkage disequilibrium; MAF, minimum allele frequency; MDS, multi-dimensional scaling; meanQTL, SNP effects on the phenotypic mean of the 
trait across environments; MET, multi-environment trial; MTA, marker–trait association; NID, normally, identically and independently distributed; PCoA, principal co-
ordinate analyses; PUF, puffiness appearance; QTI, QTL by environment interactions; QTL, quantitative trait locus; r2, inter-variant allele counts squared correlations; 
RCE, ribbing at calyx end; RCRACK, presence and incidence or radial cracking; RIP, ripening earliness; RUN, ripening uniformity of the whole plot; SNP, single 
nucleotide polymorphism; stbQTL, SNP effects on the stability index; TCC, traditional tomato core collection; TNF1.4, total number of fruits on trusses 1–4; TNFP, 
total number of fruits per plant; WAASB, weighted average of absolute scores; Yield1.4c, commercial yield on trusses 1–4 (kg per plant); Yield1.4nc, non-commer-
cial yield on trusses 1–4 (kg per plant); YIELD1.4T, total yield on trusses 1–4 (kg per plant).

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

RESEARCH PAPER

Diversity and genetic architecture of agro-morphological 
traits in a core collection of European traditional tomato

Clara Pons1,2,†, , Joan Casals3,†, , Matthijs Brower4,†, , Adriana Sacco5, , Alessandro Riccini6, 
Patrick Hendrickx4, Maria del Rosario Figás1, Josef Fisher7, Silvana Grandillo5, , Andrea Mazzucato6, ,  
Salvador Soler1, , Dani Zamir7, , Mathilde Causse8, , Maria José Díez1, , Richard Finkers4,‡, , 
Jaime Prohens1, , Antonio Jose Monforte2,*,  and Antonio Granell2,*,

1 Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
2 Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat 
Politècnica de València, València, Spain
3 Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, Universitat Politècnica de Catalunya, Campus 
Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
4 Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
5 Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
6 Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
7 Hebrew University of Jerusalem, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
8 INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allée des Chênes, Domaine Saint Maurice, CS60094, 
Montfavet, 84143, France

‡Present address: GenNovation B.V. Agro Busines Park 10. 6708 PW Wageningen, The Netherlands.

† These authors contributed equally to the work.
* Correspondence: amonforte@ibmcp.upv.es or agranell@ibmcp.upv.es

Received 7 March 2023; Editorial decision 26 July 2023; Accepted 28 July 2023

Editor: Fabrizio Costa, University of Trento, Italy

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erad306/7235007 by IN

R
A C

entre Val de Loire user on 20 Septem
ber 2023

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8296-2937
https://orcid.org/0000-0002-2708-158X
https://orcid.org/0000-0001-8183-0484
https://orcid.org/0000-0001-5254-0576
https://orcid.org/0000-0003-0279-0264
https://orcid.org/0000-0002-0787-8508
https://orcid.org/0000-0001-8325-3326
https://orcid.org/0000-0003-4867-7806
https://orcid.org/0000-0002-0407-4985
https://orcid.org/0000-0002-1422-2144
https://orcid.org/0000-0002-4368-8058
https://orcid.org/0000-0003-1181-9065
https://orcid.org/0000-0003-3461-3094
https://orcid.org/0000-0003-4266-9581
mailto:amonforte@ibmcp.upv.es
mailto:agranell@ibmcp.upv.es


Copyedited by: OUP

Page 2 of 21  |   Pons et al.

Abstract 

European traditional tomato varieties have been selected by farmers given their consistent performance and adap-
tation to local growing conditions. Here we developed a multipurpose core collection, comprising 226 accessions 
representative of the genotypic, phenotypic, and geographical diversity present in European traditional tomatoes, 
to investigate the basis of their phenotypic variation, gene×environment interactions, and stability for 33 agro-mor-
phological traits. Comparison of the traditional varieties with a modern reference panel revealed that some tradi-
tional varieties displayed excellent agronomic performance and high trait stability, as good as or better than that 
of their modern counterparts. We conducted genome-wide association and genome-wide environment interaction 
studies and detected 141 quantitative trait loci (QTLs). Out of those, 47 QTLs were associated with the phenotype 
mean (meanQTLs), 41 with stability (stbQTLs), and 53 QTL-by-environment interactions (QTIs). Most QTLs displayed 
additive gene actions, with the exception of stbQTLs, which were mostly recessive and overdominant QTLs. Both 
common and specific loci controlled the phenotype mean and stability variation in traditional tomato; however, a 
larger proportion of specific QTLs was observed, indicating that the stability gene regulatory model is the predomi-
nant one. Developmental genes tended to map close to meanQTLs, while genes involved in stress response, hormone 
metabolism, and signalling were found within regions affecting stability. A total of 137 marker–trait associations for 
phenotypic means and stability were novel, and therefore our study enhances the understanding of the genetic basis 
of valuable agronomic traits and opens up a new avenue for an exploitation of the allelic diversity available within 
European traditional tomato germplasm.

Keywords:   Agro-morphological traits, core collection, G×E, GWAS, haplotype, multi-environment trial, QTL, traditional tomato.

Introduction

Investigating the genetic basis of complex traits is key for 
crop breeding. In the last 30 years, extensive quantitative trait 
locus (QTL) mapping and genome-wide association studies 
(GWAS) and their meta-analyses have resulted in a better un-
derstanding of the genetic basis of yield and associated traits, 
plant architecture, fruit appearance, and quality traits of tomato 
(Paran and van der Knaap, 2007; Ariizumi et al., 2013; Monforte 
et al., 2014; Rothan et al., 2019; Martina et al., 2021); conse-
quently, a large number of genes involved in agronomic traits 
have been identified (Paran and van der Knaap, 2007; Ariizumi 
et al., 2013; Monforte et al., 2014; Rothan et al., 2019; Martina 
et al., 2021). However, our understanding of how genotypes 
respond to different environments is still limited. Two terms 
describe the degree of sensitivity of a genotype to the environ-
mental variation: stability (Waddington, 1942) and phenotypic 
plasticity (Bradshaw, 1965). Stability is the ability of genotypes 
to buffer their developmental processes against environmental 
fluctuations (Waddington, 1942). Phenotypic plasticity, in con-
trast, is defined as the ability of a genotype to display different 
phenotypes as a response to different environments (Bradshaw, 
1965). When variation in plasticity exists among different 
genotypes, it is termed genotype by environment interaction 
(GEI) (Monforte, 2020).

Understanding the extent of how the environment can 
modify the phenotype of a trait is of great interest in plant 
breeding. From an applied point of view, the appropriate de-
gree of plasticity depends on the breeding objective (Monforte, 
2020). A high stability to environmental fluctuations and 

consistent performance of genotypes are some of the main 
objectives in breeding programmes for wide adaptation, espe-
cially under the current situation of climate change (Kusmec 
et al., 2018). However, a high trait plasticity is still needed in 
breeding programmes to obtain cultivars adapted to specific 
environments (Bernardo, 2020).

Most of the studies directed at investigating the phenotypic 
response of tomato (Solanum lycopersicum L.) to the environment 
have been conducted on experimental populations exposed to 
only two conditions (i.e. control versus stress) (Diouf et al., 
2020), such as water stress and/or salinity (Villalta et al., 2007; 
Albert et al., 2016; Diouf et al., 2018) and heat response (Grilli 
et al., 2007; Lin et al., 2010; Xu et al., 2017; Driedonks, 2018; 
Ruggieri et al., 2019; Gonzalo et al., 2020). However, while 
controlled stress trials are common in academia, plant breeders 
usually screen GEI using ‘multi-environment trials’ (METs), 
which provide a more realistic scenario of crop cultivation. In a 
MET, a number of genotypes are evaluated at several geograph-
ical locations and/or on different years, under the assumption 
that their phenotypic response would be representative of their 
response to future environments (Malosetti et al., 2013).

Via et al. (1995) proposed two classes of genetic effects 
that influence plastic responses to the environment: (i) some 
alleles may be differentially expressed among environments, 
with varying effects on the phenotype (‘allelic sensitivity’); 
and (ii) regulatory loci may cause other genes to be turned on 
or off in particular environments (‘gene regulation’). These 
models are neither mutually exclusive nor make restrictions 
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regarding the types of genes expected to be acting under 
each model (Ungerer et al., 2003). Also, intra-locus (dom-
inance) and inter-loci (epistasis) allelic interactions, as well 
as epigenetics, genetic linkage, and genome duplication/
redundancy, can contribute to variation of stability among 
genotypes, as well as increase the potential for fine-tuning 
development and environmental responses, and generating 
new trait variation (El-Soda et al., 2014; Lachowiec et al., 
2016). Recent studies have been undertaken to associate 
chromosome regions with trait stability/plasticity in tomato 
and other crops, by modelling stability as a trait, or modelling 
QTL by environment interactions (QTIs) using experimental 
mapping populations. These studies have demonstrated that 
plasticity and trait means are controlled by both specific and 
common genetic bases (Alseekh et al., 2017; Kusmec et al., 
2017, 2018; Diouf et al., 2020; Fisher and Zamir, 2021). In 
maize, allelic sensitivity seems to be the main driver of plas-
ticity, and loci associated with GEI were predominant in reg-
ulatory regions of gene-proximal regions (Gage et al., 2017). 
In tomato, the gene regulatory model was predominant for 
stability of both agronomic (Diouf et al., 2020) and metab-
olite traits (Alseekh et al., 2017), although co-localization of 
some QTLs and QTIs indicates that allelic sensitivity and ge-
netic linkage mechanisms may contribute to plasticity in this 
crop (Diouf et al., 2020). Moreover, in the case of metabolic 
stability, most of the QTLs were usually not associated with 
known metabolism genes, but rather with regulatory genes 
(Alseekh et al., 2017), supporting the gene regulatory model. 
Most interestingly, a large number of stability QTLs for dif-
ferent metabolic or agronomic traits co-localize to the same 
region of chromosomes 10 and 11, respectively (Alseekh 
et al., 2017; Diouf et al., 2020), suggesting that environmental 
trait variation can be buffered by common regulatory ge-
nomic regions harbouring a pleiotropic gene or stability gene 
modules.

Whilst tomato plasticity/stability QTLs obtained using 
interspecific mapping populations may have been selected 
during tomato domestication and early diversification (Diouf 
et al., 2020), the study of plasticity QTLs segregating in the 
European traditional tomato gene pool may identify those 
selected by farmers during the 500 years of cultivation in the 
Southern European Region, the secondary centre of tomato 
diversification (Villand et al., 1998; Mazzucato et al., 2008; 
Blanca et al., 2022). In contrast to wild species or mapping 
populations, a traditional variety is the result of complex past 
and contemporary genetic exchanges, natural and farmer-
mediated selection, adaptation to the pedoclimatic condi-
tions, traditional management, and uses (Casañas et al., 2017). 
A local adaptation could limit the response of traditional 
varieties to future environmental variations such as climate 
change, new environments, and/or new agricultural condi-
tions and systems (Corrado and Rao, 2017). Alternatively, lo-
cally adapted varieties could be a source of genetic diversity 

for traits and their stability/plasticity, to be used in breeding 
programmes and modern sustainable agriculture (Casañas 
et al., 2017).

During the last decades, a renewed interest has been observed 
in traditional varieties [vintage, landraces, and heirlooms are 
considered synonymous with traditional (Blanca et al., 2022)], 
given their recognized value as a reservoir of genes, and the 
change in society’s interest for the environment, locally pro-
duced food, and identity issues (Casañas et al., 2017). Despite 
the above, trait stability in traditional tomato has seldom been 
addressed. Most studies have focused on the adaptation of a 
few European traditional tomato varietal types to modern cul-
tivation systems (i.e. low inputs versus high inputs, open field 
versus greenhouse, etc.) (Figàs et al., 2018a, b; Casals et al., 2021) 
to increase their competitiveness against high-input cultivated 
modern varieties (Casañas et al., 2017). The study of pheno-
typic responses to environment and GEI in European tradi-
tional tomato would provide insights into the stability and the 
adaptation of particular varietal types to modern cultivation 
systems. Nevertheless, to investigate the genetic mechanisms 
regulating GEI of agronomic traits, and to exploit the allelic di-
versity available within the European traditional germplasm, it 
is necessary to cover the full genetic diversity of the European 
traditional tomato pool. Traditional tomato presents a lower al-
lelic diversity compared with contemporary varieties (Corrado 
et al., 2014; Blanca et al., 2022), although the former may be 
richer in rare alleles due to low breeding activity (Tripodi 
et al., 2021). Despite this low genetic variability, panels of tra-
ditional varieties have proved sufficient for GWAS identifying 
numerous associations and novel variability (Ruggieri et al., 
2014; Sacco et al., 2015; Baldina et al., 2016; Blanca et al., 2022; 
Pons et al., 2022).

Recently, we have characterized a European traditional to-
mato collection consisting of 1489 genotypes (TRADITOM 
collection) to gain insights into the architecture of phenotypic 
variation (Pons et al., 2022). However, its large size made it dif-
ficult to handle for METs and therefore for GEI analysis. Core 
collections (limited sets of entries derived from the whole ge-
netic pool that represents the total collection’s diversity; Frankel, 
1984) have been demonstrated to be useful for the efficient 
and economical utilization of plant germplasm and have been 
demonstrated to be useful as GWAS panels (Wang et al., 2011; 
Sauvage et al., 2014; Cao et al., 2016; Sokolkova et al., 2020), 
capturing the associations prevalent in the original collections 
(Jeong et al., 2019; Kumar et al., 2020). We have therefore de-
veloped a multipurpose core collection (TCC), comprising 
226 European traditional tomato accessions from the original 
TRADITOM collection. The TCC captured most of the gen-
otypic and phenotypic variation and geographical origin pre-
sent in European traditional tomato. The TCC together, with a 
collection of 39 modern varieties equivalent to the traditional 
tomato types, was used to analyse 33 relevant agronomic traits 
and evaluate their stability across four independent locations. 
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Our aim is to decipher the genetic control of the response 
to environmental variation in European traditional tomato 
and compare the response of traditional varieties with that of 
modern cultivars and inbreds.

Materials and methods

Development of a traditional core collection 
To establish a core collection, accessions were selected using a mixed ap-
proach based on genotyping, phenotyping, geographic data, and expert 
knowledge. For genetic data, we have compiled and merged single nucle-
otide polymorphism (SNP) genotyping data that were previously pub-
lished from 1850 tomato accessions. These comprised 1342 TRADITOM 
traditional accessions (Blanca et al., 2022; Pons et al., 2022), complemented 
with the same subset of SNPs selected from 150 re-sequenced accessions 
(Aflitos et al., 2014), eight parents from a tomato MAGIC population 
(Causse et al., 2013), and 350 accessions from an additional re-sequencing 
initiative (Lin et al., 2014). These last three collections contained acces-
sions collected principally in America (mainly South America), Europe 
(predominantly Italy), and Asia (mostly Russia) comprising Solanum lyco-
persicum accessions, as well as semi-wild (S. lycopersicum var. cerasiforme) 
and wild relatives such as S. pimpinellifolium, S. arcanum, S. habrochaites, S. 
pennellii, S. galapagense, S. cheesmaniae, S. chmielewskii, S. neorickii, S. peru-
vianum, S. corneliomulleri, S. chilense, and S. habrochaites. The initial SNP 
dataset containing 138 839 common markers was quality control checked 
and filtered. Plink, version 1.90 (https://www.cog-genomics.org/plink2) 
was used for initial filtering and pre-processing of the data. As 139 000 
SNP markers is an overkill excessive for the expected variation, a random 
sample of 20% of the markers was taken. Genotypes with >30% missing 
data points were removed, as were markers with >10% of missing data 
points. The remaining missing genotype scores were imputed by assigning 
the score of the major occurring allele to that data point. The Adegenet 
R package (Jombart, 2008; Jombart and Ahmed, 2011) and principal co-
ordinates analysis (PCoA) were used to quantify the amount of variability 
within and between the tomato accessions. Traditional accessions were 
selected to optimize the genetic diversity, based on the first three axis of 
the PCoA biplot for optimizing the selection of accessions within the 
core collections, by both genotypic and phenotypic diversity (Odong 
et al., 2013; van Heerwaarden et al., 2013)

For phenotypic diversity, we used data from 67 traits previously phe-
notyped in 1489 TRADITOM accessions (Pons et al., 2022). Phenotypic 
selection was done by selecting 20 varieties showing extreme phenotypes 
for quantitative traits (10 highest and 10 lowest), and a subset of random 
varieties selected for each category within a qualitative trait. To further 
ensure that the original geographic distribution was represented in the 
core collection, traditional tomato entries selected from phenotypic and 
genotypic data were plotted per province based on passport data (Pons 
et al., 2022) in a Google map to identify geographical regions where 
no accession was selected. Accessions without seed stock or those that 
showed phenotypic segregation in field trials were discarded from the 
collection and replaced by accessions that tightly clustered in the PCoA 
biplot, considering expert knowledge aspects (popularity, prestige, role in 
breeding history, or presence of phenotypic features of interest).

Core collection evaluation
Tassel v5.0 (Bradbury et al., 2007) was used to calculate genetic diversity 
indexes, minor allele frequency (MAF), kinship matrix, and multi-dimen-
sional scaling (MDS). Nucleotide diversity (π) was calculated for each 
SNP. Pairwise kinship coefficients were calculated using centred identity-
by-state (IBS)-based method (Endelman and Jannink, 2012). MDS anal-
ysis was based on pairwise IBS distances. ggplot2 (Wickham, 2016) and 

plotly (Sievert, 2020) R packages were used to generate plots. The number 
of SNPs located within bins of 1 Mb were plotted by SRPlot (https://
www.bioinformatics.com.cn/en), a free online platform for data analysis 
and visualization. Violin plots and Wilcox test were used to assess differ-
ences in quantitative trait distribution. Mosaic plots, χ2 independence test, 
and standardized Pearson’s residuals (dij) were used to evaluate qualitative 
variable distribution and class coverage. ggplot2 (Wickham, 2016) and 
vcd (Meyer et al., 2006) R packages were used to generate plots. All the 
statistical tests were considered significant with a P-value <0.001.

Modern collection
A modern tomato collection consisting of 39 modern cultivars was 
created by selecting hybrids and inbred breeding lines from commer-
cial companies and breeding institutes. Selected modern tomatoes rep-
resented tomatoes cultivated in Southern Europe and belonging to the 
same typologies of traditional tomatoes in terms of biochemical compo-
sition, sensory profiles, and consumer preferences (Sinesio et al., 2021). 
These modern cultivars in some cases are replacing the traditional culti-
vars in their regions of cultivation.

Plant phenotyping collection
The traditional core collection and the modern tomato collection were 
phenotyped in the experimental fields of COMAV-UPV (Spain) and 
UNITUS (Italy) during spring–summer 2016, and in INRA (France) and 
HUJI-ARO (Israel) experimental fields during spring–summer 2017, by 
using their current cultivation practices (for details of cultivation practices, 
see Supplementary Table S1). Three plants per accession were grown in a 
randomized design at each location. The phenotyped traits included quan-
titative and qualitative traits related to agronomical performance, flowering 
and ripening precocity, fruit quality, fruit shape, incidence of physiological 
disorders, and plant and inflorescence architecture (Supplementary Table 
S2). Detailed information about the phenotyping procedure and scoring 
is provided in Supplementary Table S2. All traits were scored as a unique 
observation per accession, excepting mean fruit weight (g) on trusses 1–4 
(FW1.4), mean commercial fruit weight (g) on trusses 1–4 (FW1.4c), 
mean non-commercial fruit weight (g) on trusses 1–4 (FW1.4nc), total 
estimated yield per plant (EstYIELD), commercial yield on trusses 1–4 
(Yield1.4c), non-commercial yield on trusses 1–4 (Yield1.4nc), total yield 
on trusses 1–4 (YIELD1.4T), number of commercial fruits on trusses 1–4 
(FN1.4c), number of non-commercial fruits on trusses 1–4 (FN1.4nc), 
total number of fruits on trusses 1–4 (TNF1.4), total number of fruits per 
plant (TNFP), and the CIELAB colour coordinates L*, a*, b*, the chroma 
(C*), and the hue angle (Hab) which were recorded in each plant.

Pre-processing of trait data was performed according to Pons et al. 
(2022). The heatmap of raw data was generated using clustvis (Metsalu 
and Vilo, 2015). Rows were centred; unit variance scaling was applied to 
rows. Rows were clustered using correlation distance and Ward linkage.

Analysis of variance
The phenotypic variance of traits that were recorded on a plant basis was 
partitioned into components due to the variation of genotype (G), loca-
tion, or environment (E), and their interaction (GEI). The ANOVA was 
performed in metan (Olivoto and Dal’Col Lúcio, 2020), fitting each trait 
to a mixed linear model in a combined ANOVA across environments as 
follows:

Yijk = µ+ Gi + Ej + (G× E)ij + εijk
�  (1)

Where Yijk is the response variable of the kth replicate of the ith gen-
otype in the jth location (i=1–260 accessions; j=1–4 locations; k=1–3 
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plants); μ is the grand mean; Gi is the main effect of the ith genotype; Ej 
is the main effect of the jth location; (G×E)ij is the interaction effect of 
the ith genotype with the jth location; and εijk is the random error dis-
tributed. ANOVA and variance components estimations were performed 
using a linear mixed model using residual maximum likelihood, taking 
the expected genotype means μ as a fixed effect and the rest of factors as 
random, assuming Gi~NID (0, σg

2); Ej ~NID (0, σE
2); (G×E)ij~NID (0, 

σge
2); εijk~NID (0,σ2), where NID means normally, identically, and inde-

pendently distributed. The statistical significance of variance components 
was estimated by a likelihood ratio test, and probability was obtained by 
a two-tailed χ2 test with one degree of freedom. The best linear unbiased 
predictors (BLUPs) per variety across environments (BLUPg) and per 
variety for the interaction G×E (BLUPge), and broad sense heritability 
(H2) were obtained employing a linear mixed model using both mean 
and environment effect as fixed, and genotype and interaction as random 
variables. Broad sense heritability was estimated across environments as:

H2
g =

σ̂2
g

σ̂2
g + σ̂2

ge + σ̂2
ε�  (2)

In the case of the traits collected on a per accession mean basis (qual-
itative traits and quantitative traits related to flowering and ripening 
precocity and physiological disorders), the effects of environment and 
genotype were estimated in R (R Development Core Team, 2018) using 
type III of a two-way ANOVA with fixed effects and without interaction. 
GEI was assessed by interaction plots using the interaction.plot function 
of R.

Stability indexes
Stability indexes were calculated in metan (Olivoto and Dal’Col 
Lúcio, 2020) for accessions where the trait was recorded in at least 
three trials. For quantitative traits with three plants measured per ac-
cession, stability was estimated by the weighted average of absolute 
scores (WAASB) (Olivoto et al., 2019) from the singular value de-
composition of the matrix (or interaction principal components axis, 
IPCA) of BLUPs for the GEI effects generated by the random model 
described above as follows:

WAASBi =

p∑
k=1

|IPCAik × EPk| /
p∑

k=1

EPk

�  (3)

where WAASBi is the weighted average of absolute scores of the ith gen-
otype, IPCAik is the score of the ith genotype in the kth IPCA, and EPk 
is the amount of the variance explained by the kth IPCA. The genotype 
with the lowest WAASB value was considered the most stable, that is, the 
one that deviates least from the average performance across locations.

In the case of traits collected on a per accession mean basis, the stability 
index was estimated as the projection of the genotype i onto the average 
environment coordination (AEC) ordinate (Yan, 2001; Yan and Tinker, 
2006), on the genotype main effects GEI model (GGE model) biplot 
(Yan, 2001; Yan and Kang, 2002). Briefly, the GGE model for a trait mean 
of genotype i in environment j (Yij) can be written as:

Yij = µ+ Ej +
K∑

k=1

λkξikηjk + εij

�  (4)

Where µ is the grand mean; Ej is the location j environmental main 
effect; εij=residual effect~N (0,σ2); λk=the singular decomposition value 

(eigenvalue) for the component (PC); ξik=the eigen-vector of geno-
type i for PCk; ηjk=the eigen-vector of environment j for PCk; K is the 
number of PC axes retained in the model [K≤min (g,e) and K=2 for 
a two-dimensional biplot]; and εij=the residual associated with geno-
type i in location j. For stability estimation, the mean of PC1 and PC2 
scores for all locations calculated using genotype‐focused singular value 
partitioning (SVP) was used to define an average environment. The line 
passing through this average location and the biplot origin serves as the 
abscissa of the AEC and represents the mean genotype. The ordinate of 
the AEC is the line that passes through the origin and is perpendicular 
to the AEC abscissa and approximate to the GEI associated with each 
genotype. The length of the projection of a genotype onto the AEC 
ordinate (PAEC

i), regardless of the direction, is an estimation of stability. 
The more stable the genotype, the shorter the projection onto the AEC 
ordinate.

Violin plots depicting variability in trait stability were constructed in 
gg2plot (Wickham, 2016) using unit variance scaled data. Pearson cor-
relations between mean (in the case of traits scored as unique observation 
per accession) and BLUPg (in the case of quantitative data with three 
plants measured per accession), and stability indexes were performed 
using the corrplot package (Wei, 2017). The agglomeration complete 
method was used for correlation clustering. Only correlations with sig-
nificant levels <0.01 were plotted.

Stability GWAS and genome-wide by environment interaction 
studies
The 111 110 SNPs generated by genome by sequencing (GBS) in Blanca 
et al. (2022) and Pons et al. (2022) for the TCC accessions studied here 
were used for association analysis. Filtering was performed by ensuring 
a maximum of 25% missing markers for each individual, a maximum of 
25% missing individuals for each marker, an MAF of 5%, and a homozy-
gous fraction <5%. To identify SNPs associated with the mean, GEI, and 
stability, two approaches were used.

To model stability–SNP associations, a GWAS was performed using 
a linear mixed linear model including the co-ancestry kinship matrix 
among genotypes as a random effect:

Y = X β + g+ e
�  (5)

Where Y is an n×1 vector of the estimated stability index vector, 
X is the molecular marker matrix with n×p dimensions, β is the un-
known n×1 vector of allelic effects to be estimated, g is an n×n co-
ancestry kinship matrix, and e is the random error n×1 vector. The 
GWASs were performed using the R package EMMA (Kang et al., 
2008). The kinship matrix was an identity by state matrix calculated 
by using the function emma.kinship, with an additive model for het-
erozygous alleles.

To model trait means and variance (GEI term), we performed a two-
stage approximation. First, we estimated the mean across locations and the 
GEI effects using a linear fixed effect model:

Yij = µ . . .+ Gi + Ej + (GE)ij + εij
�  (6)

Where Yij is the adjusted phenotypic value of the ith genotype in the 
jth location (i=1, 2, … , g; j=1, 2, … , e); μ is the estimated grand mean; 
Gi is the main effect of the ith genotype; Ej is the main effect of the jth 
location; (GE)ij is the interaction effect of the ith genotype with the jth 
location; and εij is the random error distributed. Then, we performed the 
GWAS on the estimated trait means and GEI effects vectors following 
a linear mixed model including the co-ancestry kinship matrix among 
genotypes as a random effect as described above.
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For both models, the significant threshold for GWAS results was 
adjusted for multiple testing using the effective number of independent 
tests (Li and Ji, 2005).

Single nucleotide polymorphism candidate region, loci, and 
quantitative trait locus definition
The confidence region for each significant SNP from GWAS and 
genome-wide by environment interaction studies (GWEIS) was defined 
on a window size defined by the SNPs with an intervariant allele count 
squared correlations (r2) higher than the interchromosomal linkage dis-
equilibrium (LD) at the 95th percentile (r2 baseline value >0.4456) and 
within a distance <2 Mb. Loci were defined by merging lead SNP can-
didate regions that physically overlapped and were found in an associated 
LD block as follows: for each lead SNP, regional LD was calculated within 
the candidate gene region using the imputed SNP matrix (Pons et al., 
2022). LD blocks were defined for SNPs with r2 higher than the baseline 
r2 value. Overlapping LD blocks or close (within 100 kb) were combined 
to conform associated loci using beddtools (Quinlan and Hall, 2010). 
SNPs significantly associated with a specific trait and located within the 
same locus collectively constitute a single QTL.

The selection of candidate genes within the confidence region was 
based on gene description, gene ontology, and relevant research papers on 
gene functions and expression databases.

Estimating meanQTL and stbQTL mode of inheritance
The mode of inheritance of meanQTL and stbQTL GWAS significant 
SNPs was tested in a two-step procedure. First the effect of the allelic 
state of a given SNP (AA, AB, BB for each individual: A for reference 
allele, and B for alternative allele) on the expression of a trait was mod-
elled using the following linear models using the lm4 R package (Bates 
et al., 2015):

In the case of the trait mean associations:

BLUPgi = β0 + β1SNPi + εij�  (7)

Where BLUPgi is the BLUP of thephenotypic value of the ith variety 
(i=1, 2, … , g) across environments obtained from the ANOVA model, 
with intercept β0; β1 the marker effect; SNPi a vector of the marker allelic 
states; and εij the random error distributed.

In the case of the stability index associations:

Stabi = β0 + β1SNPi + εij�  (8)

Where Stabi is the stability index (WAASB or PAEC
i) of the trait in 

the ith variety (i=1, 2, … , g) across environments; with intercept β0; β1 
the marker effect; SNPi a vector of the marker allelic states; and εij the 
random error distributed.

Then, marginal means for the different marker allelic states were extracted 
from the linear models using the R package emmeans (Lenth et al., 2019) 
taking into account only the SNP effect for those allelic states shared by 
>3 accessions. Pairwise multiple comparisons between the marginal means 
for the different marker allelic states were used to test differences in the ex-
pression of a trait or stability index between allelic states. Marginal means 
for the different marker allelic states were then tested for an additive mode 
of action using the following contrast where AA and BB are the marginal 
phenotypic mean values of the homozygous genotypes, and AB is the mar-
ginal phenotypic mean value of the heterozygous genotype. If the null hy-
pothesis of the additive contrast is rejected, then the following contrasts are 
performed to test dominant or recessive modes of action.

If B has a positive effect (BB>AA)

Ho : AB− BB = 0; dominant model

Ho : AB− AA = 0; recessive model

If B has a negative effect (AA>BB)

Ho : AB− AA = 0; dominant model

Ho : AB− BB = 0; recessive model

When all models are rejected and the AB is higher than both AA and 
BB, then it is considered overdominance.

Where the additive genotypic value is:

a =
AA− BB

2�  (9)

and the dominance genotypic value is:

d = AB− AA+ BB
2�  (10)

Mode of action and QTI interaction type
To study the mode of inheritance of significant QTI of quantitative traits, 
the allelic state effect of a given SNP on the expression of a trait at in-
dividual environmental combinations was modelled using the following 
linear models utilizing the lm4 R package (Bates et al., 2015):

BLUPgeij = β0 + β1SNPi + Ej + (SNP× E)ij + εij
�  (11)

Where BLUPgeij is the best linear unbiased estimation for genotype–
location interaction of phenotypic value in the ith accession (i=1, 2, … , 
g) in the jth location obtained from the model in Equation 11; β0 is the 
global intercept; β1 is the marker effect; SNPi is a vector of the marker 
allelic state; (SNP×E)ij is the interaction effect of the ith marker genotype 
with the jth location; and εij is the random error distributed.

Then, marginal means for the different marker allelic states were 
extracted from the linear models using the R package emmeans (Lenth 
et al., 2019) taking into account the SNP×E interaction effect for those 
allelic states shared by >3 accessions. Pairwise multivariate comparisons 
were performed via the Mahalanobis distance between one set of four 
means and another, and Hotelling’s T2 statistics using the mvcontrast 
function. Additivity, recessivity, and dominance were tested using the 
contrast described above.

To study the direction of effect and the QTI interaction type, dif-
ferences between the marginal means of BLUPge for the two homo-
zygous marker allelic states at individual location combinations were 
compared using a one-way ANOVA. Location-specific allelic effects 
were classified in three QTL types according to El-Soda et al. (2014): 
(i) QTIs where the effect on the phenotype is in the same direc-
tion but differs in the magnitude from one environment to another 
(QTL3); (ii) QTIs that are conditionally neutral, where the effects are 
only detected in some environments but not in others (QTL4); (iii) 
and QTIs with opposite phenotypic effects when comparing different 
environments (QTL5).
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The mode of action and allelic effect direction were considered con-
sistent for a given QTL when those estimates were similar for all the 
SNPs included in that QTL. In the case of different values, these estimates 
were considered as non-conclusive.

Linkage disequilibrium and haplotype analyses
Haploview version 4.1 (Barrett et al., 2005) was used to generate the LD 
plot and to define haplotype blocks based on Lewontin’s normalized LD 
(Dʹ) value for all pairwise combinations of SNPs spaced <1 Mb within 
the region of interest. The LD and haplotype analysis were performed 
using Haploview default parameters (MAF  <0.001, Hardy–Weinberg 
equilibrium test <0.001, and missing values <75%). Haplotype blocks 
partitioning (i.e. segments of consistently high Dʹ that break down where 
high recombination rates, recombination hotspots, and obligate recombi-
nation events (Myers and Griffiths, 2003) was performed using the solid 
spine method.

The haplotype–trait association was analysed by a two-way ANOVA 
model in Rstudio (Racine, 2012) as follows:

Yijk = µ+Hi + Cj + (H× C)ij + εijk
�  (12)

Where Yijk is the trait value of the kth accession of the ith haplotype in 
the jth collection (i.e. TCC or TRADITOM); μ is the grand mean; Hi is 
the main effect of the ith haplotype; Cj is the main effect of the jth col-
lection; (H×C)ij is the interaction effect of the ith haplotype with the jth 
collection; and εijk is the random error distributed.

For fruit weight, pairwise haplotype genotype mean comparisons 
within collection and between collections were performed with Tukey’s 
honestly significant difference (HSD) test (P<0.05). The mean and the 
SD for each haplotype genotype in each collection were extracted from 
the ANOVA model using the R package emmeans (Lenth et al., 2019). 
Box-plots were generated with ggplot2 R package (Wickham, 2016).

In the case of puffiness, a qualitative trait, haplotype–trait associations 
were evaluated with a χ2 test with Bonferroni false discovery rate (FDR) 
for pairwise nominal and ordinal comparisons of the proportions in each 
collection. Enrichment of phenotypic classes within genotypic classes 
was analysed using standardized Pearson’s residuals (dij). The results were 
presented as a mosaic plot with the ‘vcd’ R package (Meyer et al., 2006).

Results

Development of a multipurpose core collection in 
European traditional tomato

To create a core collection of European traditional tomato 
representative of 15–20% of the initial accessions (Brown 
and Spillane, 1999) in the TRADITOM collection, a mixed 
approach was used (see Supplementary Protocol S1 and 
Supplementary Figs S1 and S2A for more details). First, two 
sub-core sets of entries (accessions in the core collection) were 
selected. The first sub-core set consisted of 57 accessions aimed 
at optimizing genetic diversity. The second sub-core set com-
prised 133 entries, representing diversity in quantitative and 
qualitative phenotypic traits. Subsequently, 39 entries were 
selected to fill geographical gaps (Supplementary Fig. S2A). 
Thirty-five entries which either were not previously evaluated 
or exhibited segregation in preliminary field trials were replaced 
with accessions of historical relevance and tightly clustered to 

those selected in the first two sub-core sets (Supplementary 
Fig. S1). The final European traditional tomato core collec-
tion (TCC; Supplementary Table S3) comprised 226 entries, 
which accounted for 16.7% of the original collection. Within 
the TCC, 190 entries represent the genotypic, phenotypic, and 
geographical diversity cultivated in the Mediterranean basin 
between 1950 and 2015 (Blanca et al., 2022; Pons et al., 2022). 
Additionally, 35 accessions with historical relevance were in-
cluded. Based on the classification by Blanca et al. (2022), 121 
accessions in the TCC were classified as true vintage/landraces, 
67 as ‘traditionalized’ (varieties classified as traditional based on 
their passport, but developed by local farmers from obsolete 
commercial varieties that contained resistance gene introgres-
sions), and the remaining 38 were unclassified (Supplementary 
Table S3)

Evaluation of the core collection

The representativeness of the 226 entries of the TCC relative 
to the original TRADITOM collection was assessed compar-
ing the diversity captured in both collections. This evaluation 
was based on passport, genotyping, and phenotyping datas-
ets previously generated by Pons et al. (2022). MDS analysis, 
using genotypic data of 110 909 markers, showed that both 
collections exhibited a similar distribution of accessions in the 
MDS space, and the TCC covered the genetic variation of the 
entire TRADITOM (Fig. 1A). The percentage of SNP pol-
ymorphism, SNP distribution, MAF, and nucleotide diversity 
(π) parameters were, in general, equivalent between the entire 
TRADITOM and the TCC collections (see Supplementary 
Protocol S2, Fig. 1B, and Supplementary Figs S3 and 4). 
However, the TCC showed a 36.3% increase in π (π=0.0095, 
P-value <2.2e-16) with respect to TRADITOM, particularly 
on chr04, chr05, chr11, and chr12 (Supplementary Fig. S4B). 
The frequency of some rare alleles in the entire TRADITOM 
increased in the TCC (P-value=3.7e-6; Fig. 1B), which was also 
reflected in SNP density along chromosomes (Supplementary 
Fig. S3A).

The geographical distribution of entries was also sim-
ilar between collections (Fig.1C; Supplementary Fig. S2B). 
Regarding phenotypic variation, violin plots showed that, in 
general, the means and the range of variation for the nine 
selected quantitative traits were similar among collections 
(P-value <0.01), with the exception of FIRM (Fig. 1D). For 
qualitative traits (Supplementary Fig. S5), TCC covered all the 
ranges of trait categories represented in the TRADITOM col-
lection, although frequency distribution indicated non-homo-
geneity of distribution among the entire TRADITOM and 
TCC (Supplementary Fig. S5).

Population structure analysis using MDS (Supplementary 
Fig. S6A) and kinship coefficients matrix (Supplementary Figs 
S4C, S6C) indicated a low to moderate level of genetic relat-
edness among the majority of the TCC entries. Consequently, 
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the TCC preserved the majority of variation of the entire 
TRADITOM and met the requirements for a core collection 
to be used as a GWAS panel (Kumar et al., 2020).

Phenotypic variance of agro-morphological traits in a 
multi-location trial

We conducted field experiments at four locations 
(Supplementary Table S1) to phenotype the TCC for 33 traits 
(Supplementary Table S2). In parallel, we phenotyped a ref-
erence set of 39 modern varieties, currently cultivated in 
Southern Europe and covering the same fruit typologies as the 
TCC varieties (Supplementary Table S4). The complete phe-
notyping dataset can be found in Supplementary Table S5.

Traditional, traditionalized, and modern groups showed sig-
nificant (P<0.05) differences for most trait means. In brief, 
traditional tomatoes showed higher fruit weight (FW1.4c, 

FW1.4nc, and FW1.4) (Supplementary Fig. S7) and yield 
(YIELD1.4c, YIELD1.4n.c, EstYIELD, and YIELD1.4T) 
(Supplementary Fig. S8), but lower fruit size homogeneity 
(FSH), fruit set sequence (FSS), and number of fruits per plant 
(FN1.4c, TNF1.4, and TNFP) than traditionalized tomatoes 
(Supplementary Figs S7, S9). Further, traditional tomatoes in 
general had significantly longer time to flowering (FLOW) 
and ripening times (RIP), and lower ripening uniformity 
(RUN) than traditionalized tomatoes (Supplementary Fig. 
S10). In addition, traditional tomatoes had, on average, fruit 
with more irregular shapes (ITS), that were also more fas-
ciated (FAS), softer (FIRM), and paler (fec.L*), but with a 
more intense red colour (fec.a*, fec.C*) and green shoulders 
(GSH) than traditionalized tomatoes (Supplementary Figs. 
S9, S11, S12). Incidences of puffiness (PUF), blossom end rot 
(BER), and radial cracking (RCRACK) were higher in tra-
ditional than in traditionalized tomatoes (Supplementary Fig. 

Fig. 1.  Comparison of genetic, phenotypic, and geographic diversity of the European traditional tomato core collection (TCC) with the initial TRADITOM 
collection. (A) Multidimensional scaling based on GBS data showing the accession in the entire TRADITOM collection and highlighting the 226 accessions 
comprising the TCC. (B) Minor allele frequency (MAF) distribution of the 5715 SNPs with MAF ≥0.01 compared with the distribution of the 9073 SNPs 
polymorphic in the TCC at MAF ≥0.01. The distributions are presented as densities. The P-value of the ANOVA test comparing distributions is shown. (C) 
Geographical distribution of TCC and of the remainder of the TRADITOM accessions. (D) Violin plots depicting the distribution for nine traits in the TCC 
and in the entire TRADITOM collection. Wilcox test results between TRADITOM and TCC are shown: nsnon-significant; *P≤0.05; **P≤0.01, *** P≤0.001, 
**** P≤0. 0001. The key indicates the collection: yellow TCC and grey TRADITOM.
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S12). Compared with the modern reference panel, the tra-
ditional tomatoes in general had a lower yield (YIELD1.4c, 
YIELD 1.4T, and EstYIELD), FSS, FSH, and FIRM, but a 
higher index for easiness to detach from the pedicel (EAS), 
longer FLOW and RIP times, and higher BER and PUF 
incidences (Supplementary Figs S7–S12). It is remarkable that 
some traditional varieties had similar or even higher yield than 
modern varietes (Supplementary Fig. S8). No significant dif-
ferences in fruit weight and fruit number traits were found 
between traditional and modern tomatoes (Supplementary 
Fig. S7). The comparison between modern and traditionalized 
tomatoes showed that traditionalized ones had a significantly 
lower yield for all yield components, FN1.4nc, FW, FAS, and 

RCRACK but higher RIP, RUN, and BER (Supplementary 
Figs S7–S12).

Hierarchical clustering of the phenotypic values for each 
accession in each location (Fig. 2A) grouped the traits into 
five clusters. This partition mainly reflected the patterns of 
trait variation across environments. The accession phenotypic 
values in each location (Fig. 2A) revealed differences in trait 
values across environments, with some of them, such as fruit 
colour parameters (fec.b*, fec.C*, fec.L*, and fec.H) and yield 
(EstYIELD, YIELD1.4c, and YIELD1.4T), easily identifiable. 
The phenotypic variances were decomposed into genotype 
(VG), environment (VE), and their interaction (VGE) variances 
(see the Materials and methods). We found highly significant 

Fig. 2.  Phenotypic variability, sources of variation, and stability of 33 traits across four locations. (A) Hierarchical clustering of TCC based on the average 
trait value across the four locations. Traits are in rows and accessions in columns. The colour of the columns indicates the location. Trait means are 
centred, and scaled and clustered using correlation distance and Ward linkage. (B) Contribution of genetic, environmental, and interaction variances to 
the phenotypic variation and heritability across the four environments. Bar plots depict the proportion of variance due to genotype, environment, G×E, 
and residuals. The red line represents heritability. Traits are on the x-axis, percentage of variation on the primary y-axis, and heritability on the secondary 
y-axis. (C) Violin plots showing trait stability variation represented as unit variance standardized stability indexes. Inside the violin plots, the boxplots 
showing the median, first and third quartiles, and outliers (empty circle). FN1.4c, number of commercial fruits on trusses 1–4; FN1.4nc, number of 
non-commercial fruits on trusses 1–4; FW1.4, mean fruit weight (g) on trusses 1–4; FW1.4c, mean commercial fruit weight (g) on trusses 1–4; TNF1.4, 
total number of fruits on trusses 1–4; TNFP, total number of fruits per plant; Yield1.4c, commercial yield on trusses 1–4 (kg per plant); Yield1.4nc, non-
commercial fruit yield on trusses 1–4 (kg per plant); YIELD1.4T, total yield on trusses 1–4 (kg per plant); EstYIELD, total estimated yield per plant (kg 
per plant); EAS, easiness of fruit to detach from the pedicel; FEC, fruit external colour; FPS, fruit predominant shape; GH, growth habit; FSH, fruit size 
homogeneity; FSS, fruit set sequence; FLOW, flowering earliness, number of days from sowing until 50% of plants have at least one open flower; RIP, 
ripening earliness, number of days from sowing until 50% of plants have at least one ripe fruit; RUN, ripening uniformity of the whole plot; fec.a*, CIELAB 
fruit external colour coordinate a; fec.b*, CIELAB fruit external colour coordinate b; fec.C*, CIELAB fruit external colour chroma; fec.H, CIELAB fruit 
external colour hue angle; fec.L*, CIELAB fruit external colour coordinate L; FIRM, fruit firmness; GSH, green shoulder; ITS, irregular transversal section; 
FAS, fruit fasciation; PUF, puffiness appearance; BER, blossom-end rot; CCRACK, presence and incidence of concentric cracking; RCRACK, presence 
and incidence of radial cracking; FOL, foliage density.
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VG and VE (P-value  <0.001) for almost all the traits (Fig. 
2B; Supplementary Table S6). Genetic variance ranged from 
5.92% (FN1.4nc) to 99.87% (GH) of total variance. The en-
vironmental variance ranged from 0% (FEC, FPS, and GH) to 
61.08% (fec.b*). Generally, VG was larger than VE, except for 
some traits related to fruit colour (fec.L*, fec.b*, and fec.C*) 
and yield components Yield1.4c, YIELD1.4T, and EstYIELD. 
Similarly, VGE was highly significant (P-value <0.001) for all 
16 quantitative traits related to agronomical performance and 
fruit quality (Supplementary Table S6). The extent of GEI ef-
fect was, in general, lower than that of G and E in the case of 
fruit quality traits, while it was larger than that of E in the case 
of agronomical performance traits, being responsible for VGE 
contributing from 7.01% (fec.L*) to 37.31% (FN1.4nc) of 
the total variance. The broad sense heritability across environ-
ments (H2) ranged from ~7% (FN1.4nc) to ~76% (fec.H) (Fig. 
2B; Supplementary Table S6). In the case of traits for which 
only the accession mean was recorded (qualitative traits, phys-
iological disorders, and flowering/ripening precocity), GEI 
could not be estimated (Malosetti et al., 2013). However, the 
large values observed for residuals (Fig. 2B; Supplementary 
Table S6) and mean interaction plots (Supplementary Fig. 
S13) suggested the existence of GEI for these traits.

Phenotypic stability and trait correlations in the 
different tomato groups

The significant GEI indicated that at least some of the acces-
sions may have a low stability. The particular contribution of 
each accession to the GEI term was evaluated using stability 
indexes (i.e. the lower the values, the higher the stability; Fig. 
2C; Supplementary Table S7; Supplementary Fig. S14). Violin 
plots (Fig. 2C) revealed variability in stability for all traits, with 
accessions characterized by having intermediate and low levels 
of stability. However, most of the genotypes (>50%) showed 
high stability estimates (<1) in 21 traits.

The stability and genotype average trait values showed, in 
general, moderate to strong correlations (significance P<0.001) 
for almost all the traits (Supplementary Fig. S15). In most cases, 
the least stable accessions produced the highest phenotypic 
values (i.e. the higher the phenotypic value, the higher the trait 
stability index). Only a few traits (fec.a*, FSH, and FSS) were 
negatively correlated with their stability index. Additionally, 
some traits were correlated with the stability of other traits. For 
example, FN1.4c, TNF1.4, and TNFP correlated with the sta-
bility for other agronomic traits such as traits related to phys-
iological disorders and earliness classes (Supplementary Fig. 
S15A). Furthermore, the correlation analysis also revealed that 
(i) the more days to ripen (RIP), the less stable was the colour 
development of the fruit, and (ii) the higher the firmness 
(FIRM), the more stable the incidence of physiological disor-
ders and the fruit shape. These correlations could be explained, 
at least in part, by the correlations existing between these traits 
(Supplementary Fig. S15B).

The range of variation for stability between traditional, 
traditionalized, and modern groups greatly overlapped 
(Supplementary Figs S7–S12), without statistically significant 
differences (P-value <0.05) for the stability of most of the traits. 
The only exceptions were fec.L*, FSH, FAS, ITS, CCRACK, 
BER, FLOW, and RUN (Supplementary Figs S9–S12), which 
showed significant differences in phenotypic stability between 
the modern and traditional tomatoes, while FAS and ITS did so 
between traditional and traditionalized groups (Supplementary 
Figs S10, S11), and fec.L* and FLOW between traditionalized 
and modern (Supplementary Figs S9, S12) groups. In these 
cases, the modern tomatoes showed, on average, the highest 
stability, while the traditional ones showed the lowest for 
this last group of traits. FSH, FLOW, RUN, and BER means 
(Supplementary Figs S9–S12) were also significantly different 
between traditional and modern tomatoes, while ITS and FAS 
were significantly different between traditional and tradition-
alized tomatoes (see above). The rest of the traits showing sta-
bility differences did not show differential phenotypic means as 
a function of the tomato group. Nevertheless, traditional vari-
eties showed a wider range of trait stability than modern and 
traditionalized varieties (Supplementary Figs S8–S12).

GWAS and GWEIS for phenotypes and stability

To reveal SNP–phenotype and SNP–stability associations un-
derlying the genetic architecture of the traits and their sta-
bility, we tested (i) the SNP effects on the phenotypic mean of 
the trait across environments (meanQTL); (ii) stability assessed 
as the SNP effects modulated by the environment (QTI) (i.e. 
departure from stability); and (iii) the SNP effects on the sta-
bility index (stbQTL). We used the panel of 197 TCC acces-
sions and 2946 markers with MAF >5% (Supplementary Table 
S8). Modern varieties are mostly hybrids (therefore, a heter-
osis effect may occur) and contain multiple wild resistance 
gene introgressions. In order to avoid the effect of this dif-
ferent genetic structure compared with traditional varieties, we 
excluded them to specifically focus on traditional variability. A 
total of 199 significant marker–trait associations (MTAs, P<10-

5), consisting of 141 QTLs and involving 86 SNPs across 62 
independent loci, were identified for the phenotypic means 
and the stability (Fig. 3; Supplementary Table S9). Out of them, 
72 MTAs (47 QTLs covered by 58 SNPs in 29 loci) were asso-
ciated with the phenotypic means (meanQTLs), 69 MTAs (46 
SNPs in 35 loci) were in 53 QTIs, and 58 MTAs were in 41 
stbQTLs (34 SNPs in 24 loci).

At the chromosomal level, the significant MTAs were distrib-
uted on all chromosomes (Fig. 3), except for chr10 and chr12, 
and with a preponderance on chr11 and chr01, with 45 and 
37 MTAs, respectively (Supplementary Table S9). Additionally, 
QTLs were concentrated on different chromosomes depending 
on whether they were associated with meanQTLs, stbQTLs, or 
QTIs. QTL hotspots were found in chr01 and chr11 for mean-
QTLs, chr02 and chr05 for stbQTLs, and chr01 and chr08 for 
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Fig. 3.  Overview of meanQTLs, stbQTLs, and QTIs across chromosomes. Fuji plot representing the 199 SNP–trait associations identified by GWAS 
and GWEIS in 86 SNPs located in 62 loci, their co-localization, candidate genes, functional category, and location of previously identified QTLs. The 
innermost ring (ring 1) represents the number of traits associated with each SNP. Rings 2–11 represent the genomic position of the SNP associated with 
trait, trait category, and the type of co-localization: larger dots indicate inter-categorical co-localization; medium dots, intra-categorical; and small dots, 
trait-specific association. Ring 12 represents chromosomes and linkage blocks around trait-associated SNPs. The two outer rings represent the main 
functional categories of candidate genes for stability and the location of previously reported QTLs for the same trait or its stability. The order of the traits in 
each trait category is (from the outer-most ring): agronomical performance: EAS, FN1_4c, FN1_4nc, FSH, FW1_4, FW1_4c, TNF1_4, TNFP, Yield1_4nc; 
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Fig. 4.  Number of meanQTLs, stbQTLs, and QTIs co-localizing at the same loci for each trait. Traits are represented on the x-axis and number of 
co-localizing or specific QTLs on the y-axis. The colour code represents the type of co-localization.

Fig. 5.  Mode of action of associated loci. (A) Mosaic plot representing the distribution of each type of mode of inheritance. Stars represent significance of 
enrichment at P-value >0.05. (B) Mode of inheritance by trait and type of QTL.

agronomical performance stability: EstYIELD_QTI, FN1.4c_stab, FN1.4nc_QTI, FN1.4nc_stab, FSS.QTI, FW1.4_QTI, FW1.4_stab, FW1.4c_QTI, FW1.4c_
stab, TNF1.4_stab, TNFP_QTI, TNFP_stab, YIELD1.4c_QTI, YIELD1.4c_stab, YIELD1.4nc_QTI, YIELD1.4nc_stab, YIELD1.4T_QTI, YIELD1.4T_stab; 
flowering and ripening precocity: FLOW; flowering and ripening precocity stability: RIP_QTI, RUN_stab; fruit quality: FEC, fec.a*, fec.b*, fec.C, Fec.H, 
Fec.L, GSH; fruit quality stability: FEC_QTI, Fec.b*_stab, Fec.C*_QTI, fec.C*_stab, fec.H_QTI, Fec.H_stab, Fec.L_QTI, Firm_QTI, GSH_stab; fruit shape: 
FAS, ITS, PUF, RCE; fruit shape stability: FAS_QTI, FAS_stab; physiological disorders: CCRACK, RCRACK; physiological disorders stability: BER_QTI, 
CCRACK_QTI, RCRACK_stab; Plant & inflorescence_architecture: FOL.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erad306/7235007 by IN

R
A C

entre Val de Loire user on 20 Septem
ber 2023



Copyedited by: OUP

Trait stability in a traditional tomato core collection  |  Page 13 of 21 

QTIs. Overall, we found loci where several QTLs co-localized 
(Fig. 3), which might be due to pleiotropic effects on multiple 
traits and/or stability, trait correlation, or linkage of different 
genes. The three main association hotspots mapped at chr11 
(locus TCC_L62 with 18 QTLs and 43 MTAs), chr02 (locus 
TCC_L21 with 7 QTLs and 36 MTAs), and chr09 (locus 
TCC_L55 with 4 QTLs and 11 MTAs).

The comparison of the meanQTLs, stbQTLs, and QTIs for 
each trait at each locus revealed that the majority of QTLs 
were specific to either mean or stability (Fig. 4). Specifically, 
34.19, 29.91, and 19.66% of QTLs were specific to mean-
QTLs, QTIs, and stbQTLs, respectively, while 5.98% of mean-
QTLs and stability QTLs (QTI, stbQTL, or both) and 10.26% 
of QTIs and stbQTLs co-localize at the same loci. All QTL 
classes co-localize exclusively in two loci for five traits, namely 
FN1.4nc at locus TCC_L04 in chr01, and FAS, FW1.4, 
FW1.4c, and Yield1.4nc at locus TCC_L62 (Supplementary 
Table S9).

Assessment of the mode of inheritance of associated 
loci

To further understand the genetic mechanisms of QTLs un-
derlying the studied traits and their stability, and to classify 
these variants, we estimated the mode of inheritance (addi-
tive, dominant, recessive, and overdominant) for each SNP in-
cluded within QTLs, and the direction of additive effects for 
the minor allele relative to the major allele, and the dominance 
deviation (Supplementary Table S10; Supplementary Figs S16, 
S17). We were able to assess the mode of inheritance and the 
direction of the effect for 116 QTLs (Fig. 5; Supplementary 
Table S10). Thirteen QTLs could not be analysed, either be-
cause they were QTIs for qualitative traits, or because one of 
the allelic states was represented by fewer than three accessions. 
For 12 more, the estimation of the mode of inheritance and 
the effect was not conclusive. The majority of QTLs showed 
an additive (57.45%, 81 QTLs, P<0.05) or recessive (16.31%, 
23 QTLs) mode of inheritance (Fig. 5). When the distribu-
tion of mode of inheritance was compared across meanQTLs, 
stbQTLs, and QTIs (Fig. 5A; Supplementary Fig. S16), we 
found that stbQTLs had a significantly higher proportion of 
overdominant (12.20%) inheritance mode (P-value  <0.05, 
dij >2), while no enrichment was found for the other QTL 
types. The traits showing non-additive inheritance modes 
mainly corresponded to those related to reproductive traits 
such as fruit number and yield, and also fruit colour CIELAB 
coordinate (Fig. 5B). Regarding the direction of the effect, in 
most QTLs (75.89%), the minor frequency allele increased the 
trait or its instability, with a similar distribution across all QTL 
types (Supplementary Table S10). A further examination of the 
43 QTIs for the quantitative traits (Supplementary Figs S16, 
S17; Supplementary Table S10) indicated that 72.09% were 
detected in a single environment (El-Soda et al., 2014), 18.60% 
showed changes in the magnitude of the allelic effect among 

environments but not in the direction, and ~9% presented 
cross-interacting allelic effects among environments.

GWAS identified regions co-localizing with known 
QTLs

To further validate the efficiency of the TCC as a GWAS 
panel, we first compared the TCC associations with the meta-
analysis of the entire TRADITOM collection (Pons et al., 
2022). Twenty-eight MTAs in 13 meanQTLs for 12 traits 
were detected in both collections (Supplementary Table S9). 
Of these, 12 MTAs in five QTLs were at the same SNP, two 
MTAs in one QTL at the same loci, and 13 MTAs in eight 
QTLs were associated with a related trait at the same SNP or 
loci (i.e. fruit colour CIELAB coordinates with FEC and ITS 
with fruit shape homogeneity traits). A larger number of QTLs 
were detected in the TRADITOM meta-analysis (Pons et al., 
2022), probably due to the differences in sample size (226 in 
TTC compared with 1315 in TRADITOM). The SNP–trait 
associations in TTC included mostly common SNPs (TCC 
GWAS was based on variants with MAFs ≥5%), while associa-
tions with very rare variants were not detected. TCC-GWAS 
may reflect mostly QTLs involved in the main phenotypic 
differences among traditional European varieties. The overlap 
between QTLs previously identified in the TRADITOM 
meta-analysis (Pons et al., 2022) confirms that the TCC is a re-
liable collection for a GWAS panel. Regarding QTLs detected 
in previous works other than TRADITOM, 51 QTLs (36% of 
the total 141 QTLs) mapped to regions already associated with 
the trait or its stability (Fig. 3; Supplementary Table S9).

In total, 23 meanQTLs with 38 MTAs in 14 loci (chr01, 
chr02, chr05, chr06, chr08, and chr11) co-localized with 
known QTLs for the phenotypic mean. Furthermore, eight 
MTAs in five stbQTLs in four loci (chr01, chr08, and chr11), 
and 21 MTAs in 14 QTIs in 13 loci (chr01, chr08 and chr11) 
mapped in regions where GEI effects had been reported in 
previous studies (Supplementary Table S9).

The highest frequency of previously published QTLs 
mapped within the TCC_L62 locus on chr11 (~19.12%) 
(Supplementary Table S9). In the current work, the mean-
QTLs for FAS, FW1.4c, FW1.4, ITS and, RCE, the stbQTLs 
for FW1.4c and FW1.4, and the QTIs for FW1.4c and FW1.4 
in TCC_L62, co-localized with known QTLs (see references 
in Supplementary Table S9). The region, harbouring fas/CLV3 
(Xu et al., 2015) and fw11.3/CSR (Mu et al., 2017) (Fig. 3), 
two of the major genes regulating fruit weight and fascia-
tion, has several pleiotropic effects on plants and reproductive 
organ architecture (Chu et al., 2019; Pons et al., 2022), and 
it has been also been identified as a plasticity regulatory hub 
(Diouf et al., 2020) for fruit weight and other traits. The next 
locus that included previously published QTLs was TCC_L21 
(Fig. 3; Supplementary Table S9), with ~10.29% of total pub-
lished QTLs. In this locus, we detected multiple meanQTLs 
and stbQTLs for fruit colour traits. These QTLs overlap with a 
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previously identified QTL for external fruit colour (Pons et al., 
2022), and with the neoxanthin synthase NXS2/ABA4 gene 
(Solyc02g063170), which catalyses the last step of the caro-
tene biosynthesis pathway and the first step of the abscisic acid 
(ABA) biosynthesis pathway (North et al., 2007; Neuman et al., 
2014). Other published QTLs (Supplementary Table S9) also 
included the cutin deficient 2 gene (cd2) for cracking (Isaacson 
et al., 2009), WUS/lc for fasciation (Muños et al., 2011), and 
QTLs for which the causal gene remains to be determined, 
such as flw5.1 and flw8.1 (Diouf et al., 2020) (flowering time), 
ec_a*2.1 (external fruit colour) (Barrantes et al., 2016), fw3.1 
(fruit weight) (Barrantes et al., 2016), bpi8.1 (puffiness) (Van 
Der Knaap and Tanksley, 2003), frn1.1 (fruit number) (Gonzalo 
et al., 2022), NFr1.1 salinity (specific number of flowers in sa-
linity) (Diouf et al., 2018), ppfset1.2 (plasticity of fruit set) 
(Diouf et al., 2020), and pfrn2.1_T31_2E (plasticity of fruit 
number at different temperatures) (Gonzalo et al., 2022).

Novel QTLs and candidate genes

We explored genomic regions that flanked (<2 Mb) mean-
QTLs, stbQTLs, and QTIs to scan for candidate genes that 
may be physically proximal to associated SNPs. Within 141 
QTL regions, we identified a total of 11 094 annotated genes, 
ranging from 28 to 550 genes per QTL, with a mean of 259 
genes per QTL. To select candidate genes within the QTL 
region, in the case of meanQTLs, we prioritized genes with 
reported roles controlling the trait, while genes with reported 
roles in the integration of both external (biotic and abiotic 
stress) and internal factors (e.g. phytohormones) were priori-
tized for stbQTLs and QTIs (Fig. 3; Supplementary Table S9). 
We searched in the literature and publicly available databases 
for both tomato genes and tomato orthologues (noted here 
as ‘like’), having a demonstrated role in the studied traits or 
their stability. Many of the novel QTLs included candidate 
genes whose natural variation had not been associated in to-
mato with the trait, but their implication in the regulation of 
the trait had been demonstrated through mutant analyses (Fig. 
5; Supplementary Table S9). For instance, CCRACK mean-
QTLs in the TCC_L46 locus contained Solyc06g082980, 
a 3-β-hydroxysteroid dehydrogenase/C-4 decarboxylase 
(3-betaHSD/D) involved in a hypercracking tomato fruit 
phenotype (Schrick et al., 2012). Fruit colour (FEC, fec.a*, 
and fec.b*) mean QTLs in loci TCC_L03, TCC_L23, TCC_
L43, TCC_L55, and TCC_L60 included genes regulating the 
concentration of carotenoids in fruits such as sit (Galpaz et al., 
2008), SlEIN2 (Gao et al., 2016), LeETR4 (Tieman et al., 2000), 
or TAG1 (Vrebalov et al., 2009). The FW1.4 meanQTL in 
the TCC_26 locus contained SlGA20ox1 (Solyc03g006880), 
which plays an important role in controlling fruit weight 
(Chen et al., 2016). The GSH meanQTL in locus TCC_L61 
included SlARF10A (Solyc11g069500), a transcriptional acti-
vator controlling chlorophyll accumulation and the expression 

of SlGLK2 (Yuan et al., 2018), the gene responsible for the 
uniform ripening (u) mutation affecting chloroplast biogen-
esis in fruit and the intensity of the green shoulder (Powell 
et al., 2012). Easiness of fruit to detach from the pedicel 
(EAS) meanQTLs in locus TCC_L62 harboured the tran-
scription factor genes SlREV (Solyc11g069470) and LBD1 
(Solyc11g072470) involved in the development of the abscis-
sion zones of the flower pedicel (Hu et al., 2014) and the leaf 
(Sundaresan et al., 2016), respectively. The PUF meanQTL in 
the TCC_L53 locus contained SICDKA1 (Solyc08g066330), 
whose mutation diminished the amount of jelly in the pla-
centa (Czerednik et al., 2015).

Furthermore, we found within or near stbQTLs and QTIs 
(Fig. 5; Supplementary Table S9, and references therein), to-
mato genes or genes whose orthologues had a demonstrated 
role in abiotic stress response (ALA3-like, SlJUB1, SlPDI6-1, 
RBOH-C/E, DRIP2-like, dnaJ, SlMYB12, SlDHAR4, MSL, 
SLNAC042, 5pt2, KIN1-like, and SlMAPKKK2), biotic re-
sponse (I2, DCL2-like, RFC3-like, WRKY37, and SlmSOL2), 
auxin biosynthesis and signalling (SlTAR3 and SlARF7B/
SlARF19B), ABA (RDUF2-like, AIP2, ABI8-like, SLY2-like, 
and NXS2/ABA4), ethylene signalling (SlEIL5, SlERF1-5, and 
FUL1/TDR4 SlEIN2), gibberellin signalling (GH3-like and  
SlGRAS3), brassinosteroid signalling (BIN4-like and cu-3/
SlBRI1), polyamine biosynthesis and transport (SLOAT, 
SlLAT3, and SPM), cytokinin biosynthesis (SlIPT4 and 
SlCKX1), and jasmonate biosynthesis and signalling (SlLOX8 
and SlJAZ9). Some of these genes were also reported in hor-
mone–stress crosstalk. Among these genes in stbQTLs and 
QTIs, some of them had been previously associated with sta-
bility roles in tomato or other plants (Supplementary Table 
S9). For instance, the FN1.4nc QTI in TCC_L04 harboured 
Solyc01g011100, the tomato orthologue of the Arabidopsis 
thaliana phospholipid-transporting ATPase (AtALA3), a gene 
affecting adaptability of rosette size and fecundity in response 
to heat stress (McDowell et al., 2013). The TNFP stbQTL in 
TCC_L41 included the auxin response factor SlARF7B/
SlARF19B (Solyc05g047460), which stabilizes the develop-
mental fruit shape variability (de Jong et al., 2011; Israeli et al., 
2019). The FN1.4c QTI and TNF1.4 stbQTL in TCC_L30 
included the transcription factor Blade-On-Petiole BOPa/
SlBOP1 (Solyc04g040220), which canalizes the leaf morpho-
space (Ichihashi et al., 2014). Moreover, for some candidate 
genes in stbQTLs and QTIs, the previously reported mutation 
effect on the phenotype was obvious only in one specific en-
vironment (Supplementary Table S9). Among them were the 
NXS2/ABA4 (Solyc02g063170) (North et al., 2007; Neuman 
et al., 2014) in fruit colour stbQTLs in TCC_L21, the class 
III homeodomain leucine-zipper transcription factor CNA/
pf1/SlHB15A (Solyc03g120910) (Clepet et al., 2021) in the 
FN1.4c stbQTL, the TNF1.4 QTI in TCC_L29, and the iso-
pentenyltransferase SlIPT4 (Solyc09g064910) (Žižková et al., 
2015) in the TNFP QTI in TCC_L58.
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Fig. 6.  Association between absence (0 copies) and presence (1 or 2 copies) of haplotypes in blocks of TCC_L62 and TCC_L53 loci and FW and PUF 
in the TCC and TRADITOM collection. Absence of target haplotype is coded by ‘X’ haplotype. Only haplotypes significantly associated with the traits 
(P<0.05) are shown. (A and B) Boxplots show the effects of TCC_L62 haplotypes on FW in the TCC and TRADITOM collection. Each panel corresponds 
to one haplotype. (A) Haplotypes increasing FW. (B) Haplotypes decreasing FW. Different letters above the box plots indicate statistically significant 
differences (P<0.05). The x-axis depicts the haplotype and the y-axis the FW. The horizontal bar inside the box plot indicates the mean value. Bars 
in the box plot represent the SD, and dots correspond to outliers. (C) Mosaic plots showing the effect of the presence/absence for TCC_L53 PUF-
associated haplotypes (P<0.05). The colour of the mosaic depicts the enrichment, evaluated by departure of Pearson residuals (dij) from the expected 
value. Residuals with |dij|>4 have an approximate P-value <0.001 and with |dij|>2 have an approximate P-value <0.05. Yellow colour indicates over-
representation and red under-representation.
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Haplotype analysis of targeted loci in the TCC and 
TRADITOM collections

Finally, we assessed the ability of the TCC to capture haplo-
type diversity within the entire TRADITOM collection. We 
selected two loci associated with FW or PUF in both collec-
tions: TCC_62 locus (named L197 by Pons et al. (2022) on 
chr11 associated with FW, and the TCC_L53 locus (named 
L160 by Pons et al. (2022) on chr08 associated with PUF 
(Supplementary Table S9). The TCC genotypic data were uti-
lized to identify the minimum set of SNPs that define hap-
lotype blocks at each locus in the TCC and to determine 
haplotypes across the entire TRADITOM collection. In both 
collections, TCC_L62 exhibited three haplotype blocks (HA, 
HB, and HC), consisting of eight SNPs and 21 distinct hap-
lotypes in HA, five SNPs and 12 haplotypes in HB, and three 
SNPs and eight haplotypes in HC. The TCC_L53 locus dis-
played a single haplotype block (L53 block) with three SNPs 
and eight different haplotypes (Supplementary Table S11; 
Supplementary Fig. S18).

Among TCC_L62 and TCC_L53 haplotypes, seven and 
two, respectively, occurred at a frequency >10% (major 
haplotypes), while 12 and five were at a frequency <10% 
in each case (minor haplotypes). The remaining haplotypes, 
with frequencies <1%, were considered rare haplotypes 
(Supplementary Table S11; Supplementary Fig. S18). Similar 
haplotype frequencies were observed between the TCC and 
the entire TRADITOM collection (Supplementary Table 
S11; Supplementary Fig. S18), with only slight frequency 
increases for a few of them in the TCC. Some rare haplotypes 
could not be identified in either collection (Supplementary 
Table S11; Supplementary Fig. S18).

For each block in each locus, we also analysed the ef-
fect of haplotypes on the target trait in both collections. 
Haplotype effect was highly significant for all blocks, with 
a low or non-significant interaction effect between hap-
lotype and collection effect in most cases (Supplementary 
Table S12). For the TCC_L62 locus, HA2, HB1, HB7, HC2, 
and HC5 haplotypes significantly increased (P<0.05) FW 
(Fig. 6A; Supplementary Figs S19–S21), while HA1, HA5, 
HB3, HB4, HB5, HC1, and HC3 haplotypes significantly 
decreased it (Fig. 6B; Supplementary Figs S19–S21). With a 
few exceptions, the haplotype effect was the same between 
TCC and the entire core collection (Fig. 6B; Supplementary 
Figs S19–S21). Regarding TCC_L53, Hap1 was signifi-
cantly associated with no fruit puffiness, and Hap2, Hap3, 
Hap4, and Hap5 were related to intermediate and severe 
fruit puffiness (Fig. 6C; Supplementary Fig. S22). The sig-
nificant haplotype×collection interaction (Supplementary 
Table S12) was due to a change of the magnitude of the 
estimated allelic effects among collections, although the 
main effects were significant in both collections. The rest of 
the haplotypes appear to be neutral with no effect on the 
phenotype (Supplementary Figs S19–S22).

Discussion

The objective of the present work is to estimate and identify 
the genetic architecture of agro-morphological traits and its 
stability in European traditional tomatoes, taking advantage of 
the availability of the TRADITOM collection (Blanca et al., 
2022; Pons et al., 2022). However, the size of this collection 
restricts its application in research, especially for METs. To 
overcome this issue, we have generated the TCC European 
traditional multipurpose core collection consisting of 226 
European traditional tomato varieties (Supplementary Table 
S3) that fulfilled the initial size requirement of 5% and 20% 
of the original collection for an ideal core collection (Brown 
and Spillane, 1999). Core collections are used as a reference 
set of accessions for the whole collection, enabling more ef-
ficient and effective characterization and management (van 
Heerwaarden et al., 2013). Given that the genetic diversity 
within the tomato accessions is limited (Blanca et al., 2022) 
and the GBS technique used for the genomic characterization 
of the TRADITOM collection cannot capture all genetic di-
versity, we used a mixed approach (genotypic, phenotypic, and 
geographical) to select the TCC. This method would ensure 
that (epi)genetic variation, missed by the initial genotyping, 
was included in the core collection. Furthermore, the collec-
tion was supplemented with accessions of historical relevance 
(popularity, prestige, or role in breeding history). Although 
this process might not maximize genetic diversity, it has been 
demonstrated that core collections designed by mixing genetic 
information with expert knowledge (popularity, prestige, role 
in breeding history, or presence of phenotypic features of in-
terest) provided a similar efficiency in optimizing the retention 
of genetic diversity (Urrestarazu et al., 2019). Accordingly, the 
genetic, phenotypic, and geographical diversity between the 
TCC and the TRADITOM collection were equivalent (Fig. 
1; Supplementary Figs S2–S5). Further, the TCC satisfied nu-
cleotide diversity, structure, and co-ancestry requirements to 
be used as a GWAS panel (Supplementary Figs S4, S6) and 
validated previously reported QTLs (Supplementary Table S9). 
Moreover, using two loci as examples, one associated with a 
quantitative trait (TCC_L62) and the other with a qualitative 
trait (TCC_L53), we demonstrated that both the frequencies of 
the most common haplotypes and haplotype–trait associations 
were similar between the TCC and the TRADITOM collec-
tions (Fig. 6; Supplementary Figs S18–S22; Supplementary 
Tables S11, S12). These results indicate that TCC, despite being 
based on a small number of accessions, successfully captured 
the most common haplotypes of the TRADITOM. However, 
most importantly, TCC provides both a valuable germplasm 
resource for the identification of novel QTLs and an efficient 
way to find beneficial haplotypes without the need for exten-
sive phenotyping.

MET analysis of TCC accessions (most of them adapted to 
specific geographical areas; Casañas et al., 2017) has enabled us 
to study their response to the environment, and to identify new 
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as well as previously detected QTLs (Figs 2–4; Supplementary 
Tables S5–S9). Sixty-two loci involved in plant and fruit traits 
and 33 loci affecting the trait stability were detected (Fig. 3; 
Supplementary Table S9). We also proposed candidate genes 
within the QTL regions that could be involved in the studied 
traits and their stability (Fig. 3; Supplementary Table S9). 
Candidate genes for stbQTLs and QTIs had molecular func-
tions involved in stress and hormone signalling, while devel-
opmental genes were more often associated with meanQTLs 
(Fig. 3; Supplementary Table S9). Many studies have suggested 
that hormonal systems and network internal developmental 
signals and processes integrate environmental cues and are in-
volved in the regulation of trait plasticity (Weng et al., 2016; 
Kong et al., 2017; Xiao et al., 2017; Qiao and Stepanova, 2021; 
Jia et al., 2022). Therefore, these candidate genes provide targets 
for functional analysis to better characterize the complex pol-
ygenic regulation of the agro-morphological traits and their 
stability.

We phenotyped and estimated the stability of TCC acces-
sions (Supplementary Table S3) together with modern varieties 
and inbred lines (Supplementary Table S4) to position the tra-
ditional tomatoes within the phenotypic diversity landscape of 
the tomatoes that are currently cultivated in Southern Europe 
(Fig. 2; Supplementary Figs S7–S14; Supplementary Tables S5–
S7). In general, traditional tomatoes were more similar to the 
modern than to the traditionalized tomatoes (Supplementary 
Figs S7–S14). This could be due, in part, to traditionalized 
tomatoes being mostly medium sized, non-fasciated round 
processing tomatoes (Pons et al., 2022), while modern toma-
toes have the same typologies as traditional ones. Indeed, tradi-
tional tomatoes mainly differed from traditionalized (with the 
exception of fruit size and shape parameters) and from modern 
tomatoes in earliness, yield, FSS, FSH, FIRM, EAS, and resist-
ance to BER and cracking traits (Supplementary Figs S7–S14), 
which have for long a time been targets for modern tomato 
breeding (Causse et al., 2020). Our results also indicated that 
although modern varieties generally showed better values for 
those traits, several traditional varieties showed similar or even 
better performance in yield and other agro-morphological 
traits than modern ones (Supplementary Figs S7–S14). This 
indicates that, contrary to popular belief (Casañas et al., 2017), 
some traditional varieties exhibit excellent agronomic perfor-
mance, even as good as or better than the modern counter-
parts. Further, the large GEI found (Fig. 2; Supplementary Fig. 
S13; Supplementary Table S6) suggests that selection for adap-
tation to specific environments should be necessary to maxi-
mize some traits such as yield.

With the exception of a few traits, there was no general 
trend for higher stability in either modern or traditional-
ized tomatoes compared with traditional tomatoes (Fig. 
2; Supplementary Figs S7–S14; Supplementary Table S7). 
Differences among the tomato groups mostly reflect partic-
ular and distinctive trait characteristics of each tomato group. 

Therefore, the stability of agro-morphological traits had 
undergone a convergent selection independently by both 
farmers and modern breeders. The similar trait stability and 
plasticity among tomato groups probably indicates an ances-
trally selected attribute that favours reproductive success and 
maximizes higher plant adaptation in nature and in agricul-
tural fields (Fisher et al., 2017). In addition, as evidenced by 
the significant correlations (Supplementary Fig. S15), stability 
and trait values are not completely independent, and increas-
ing trait values could result in a trade-off in stability. A signifi-
cant correlation between phenotypic mean and stability might 
be the result of the action of pleiotropic genes (Diouf et al., 
2020). Our results indicated that both common and specific 
loci controlled the traits and stability variation in traditional 
tomato (Fig. 4; Supplementary Table S9). However, the pro-
portion of mean and stability shared loci was only 5.98%. A 
possible explanation for the discrepancy between the small 
percentage of shared loci and the magnitude of observed 
correlations is that, most probably, shared loci are those with 
major effects on the phenotype [such as fas/CLV3 (Xu et al., 
2015) and fw11.3/CSR (Mu et al., 2017) in TCC_L62] that 
have gone through extensive directional selection towards the 
allele that maximizes the trait, which in turn favoured the in-
crease in plasticity (Springate et al., 2011; Melo and Marroig, 
2015). The large proportion of independent mean and sta-
bility loci in European traditional tomato germplasm (Fig. 4; 
Supplementary Table S9) indicated that, as reported previously 
in other tomato populations (Alseekh et al., 2017; Diouf et al., 
2020), the stability gene regulatory model is the predominant 
one. This would facilitate tomato adaptation to and flexibility 
in different environments (Springate et al., 2011).

A noteworthy consequence of this is that specific stability 
loci could be targets for breeding without affecting the phe-
notypic mean, or vice versa. Since the mode of inheritance of 
a trait does not affect its stable or plastic nature (Fisher et al., 
2017), understanding the inheritance mechanism and the di-
rection of the effect of identified QTLs would provide valu-
able and practical information for planning breeding strategies 
that optimize allele combinations of favourable traits or their 
stability. We found QTLs with additive, recessive, dominant, 
and overdominant inheritance (Fig. 5; Supplementary Figs S16, 
S17; Supplementary Table S10). From a global view, most of 
the QTLs identified displayed an additive inheritance model, 
with the exception of stbQTLs, which were enriched in over-
dominant QTLs. We dealt with genotyping data from pools of 
plants of traditional accessions (Blanca et al., 2022; Pons et al., 
2022), which may have inherent intra-varietal heterogeneity 
(Casañas et al., 2017). Heterozygous loci indicate genetic het-
erogeneity, which could have segregated in our experimental 
set up. Therefore, the number of strictly additive loci may be 
overestimated, while those with dominance effects may be 
underestimated. Further experiments and crosses are needed to 
better estimate the inheritance mode.
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In summary, we have demonstrated that TCC is an efficient ge-
netic tool for investigating the genetic diversity of traditional to-
mato germplasm conserved in the Southern European genebanks. 
The relatively small size of the TCC allows complex biological 
questions to be addressed with a reasonable effort. For example, the 
previous genomic analysis of the entire TRADITOM collection 
(Blanca et al. 2022) was based on GBS markers. Consequently, large 
regions of the genome were not analysed, and complex genomic 
features such as structural variation and epigenetics could not be 
addressed. Resequencing the TTC would provide valuable insights 
into these features. Furthermore, the TCC has proven useful in dis-
secting complex traits, including environmental interactions and 
trait stability. This opens the door to utilizing the collection for 
investigating molecular traits such as transcriptome, proteome, and 
metabolome profiles, as well as their response to different stresses. 
The TCC will enhance the use of traditional tomato accessions, 
making this germplasm accessible for breeders and contributing to 
develop stable or locally adapted improved varieties.
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