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1 
 

Bacillus subtilis NDmed, a model strain for 1 

biofilm genetic studies 2 

 3 

 4 

Abstract 5 

The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a 6 

medical environment. NDmed can form complex macrocolonies with highly wrinkled 7 

architectural structures on solid medium. In static liquid culture, it produces thick pellicles at 8 

the interface with air as well as remarkable highly protruding ‘‘beanstalk-like’’ submerged 9 

biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-10 

resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species 11 

biofilms by sheltering them from the action of these agents. Additionally, this non-12 

domesticated and highly biofilm forming strain has the propensity of being genetically 13 

manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the 14 

study of B. subtilis biofilms. This review focuses on several studies performed with NDmed 15 

that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm 16 

formation. Further studies in project using modern molecular tools of advanced technologies 17 

with this strain, will allow to deepen our knowledge on the emerging properties of multicellular 18 

bacterial life. 19 

 20 

 21 
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2 
 

Introduction 22 

Along with the constant environmental fluctuations, bacteria need to evolve adaptive 23 

strategies to survive, often by the formation of spatially structured assemblages encapsulated in 24 

a self-produced extracellular matrix called biofilms [1,2]. Microbial communities residing in 25 

these structured aggregates exhibit new emergent properties, such as resource capture by 26 

sorption, enzyme retention, social interactions, increased rate of genetic exchanges, enhanced 27 

tolerance and resistance to antimicrobials, and localized gradients due to the environmental 28 

micro-scale adaptations [3]. Such properties resulting in physiological diversification involve 29 

sophisticated gene regulation networks [4], whose study is important for the development of 30 

biotechnological applications using bacteria, as well as to better restrain bacterial pathogens in 31 

the medical field. A wide range of knowledge at the genetic level has been acquired from the 32 

highly tractable Gram-positive model organism Bacillus subtilis. In nature, B. subtilis is a soil-33 

dwelling, non-pathogenic, motile bacterium promoting beneficial effects on plant growth by 34 

limiting the development of pathogenic species [5,6]. B. subtilis can also be found in animal 35 

and human gut microbiota, thanks to its capacity to sporulate and to form biofilms, both of 36 

which allow this species to pass the harsh gastric environment to reach and persist in the 37 

intestine [7-9]. B. subtilis has long been considered a GRAS (Generally Recognized As Safe) 38 

organism by the FDA (U.S. Food and Drug Administration) (e.g. FDA GRAS Notice GRN No. 39 

562. http://wayback.archive-it.org/7993/20171031040136/https://www.fda.gov/downloads/ 40 

Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM448213.pdf) [10,11], and is 41 

commercially available as a probiotic for human health, in the agricultural industry as a 42 

biocontrol agent, and in the food industry as a natto subspecies in traditional Japanese food 43 

from fermented soybeans [12-15]. Due to its excellent protein secretion ability, it has been 44 

widely used as a cell factory to produce heterologous proteins [16]. Moreover, its capacity to 45 

form biofilms, associated with calcinogenic properties or synthesis of antimicrobial compounds 46 
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3 
 

find applications in the bio-remineralization of monumental stones of historical buildings or to 47 

protect ancient paintings from biodegradation [17-20]. However, the formation of biofilms can 48 

be deleterious, generating problematic side effects in industrial pipeline clogging and 49 

biofouling, as well as hazards to human health by their persistence in medical environments 50 

and devices due to their resistance to biocides [21]. In this context, and besides being 51 

recognised as a non-pathogenic bacterium, B. subtilis can still be involved in post-surgery 52 

pathogenesis, leading to anastomotic leaks due to its high collagenolytic activity [22]. For all 53 

the above reasons, combined with the fact that B. subtilis is naturally competent, easy, and safe 54 

to be manipulated in the laboratory, it became the model for Gram-positive bacteria in 55 

physiological studies on the genetic regulations involved in general metabolism, or in specific 56 

biological processes such as sporulation [23-26]. 57 

Differentiation of B. subtilis cells from motile to sessile ones has been observed to study 58 

the structured biofilm assemblages, particularly the development of complex macrocolonies on 59 

the air-solid interface and the formation of pellicles at the air-liquid interface. For instance, the 60 

wild-type strain NCIB3610 was able to form spatially organized wrinkled colonies and well-61 

structured pellicles, contrary to the domesticated reference strain 168 that was only able to form 62 

smooth colonies and thin fragile pellicles [27-31]. A genetic comparison between the two 63 

strains made it possible to identify mutations in 168 responsible for its inability to form 64 

wrinkled and robust biofilms. These mutations were probably acquired during the mutagenic 65 

treatment of the "Marburg strain" in the late 1940s [30]. Besides, NCIB3610 possesses a large 66 

endogenous plasmid pBS32 which encodes a small protein ComI that inhibits transformation in 67 

this strain [32]. This explains the very low natural genetic competence ability of this natural 68 

isolate, which made it more difficult to manipulate for further genetic studies, contrary to 168, 69 

which lost this plasmid. Nevertheless, this did not preclude many genetic studies to be 70 

performed with NCIB3610, via SPP1 phage transduction [33], or using DK1042, a comIQ12L 71 
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4 
 

mutant NCIB3610 derivative strain [32]. These studies revealed various integrated regulatory 72 

pathways controlling biofilm formation, and unveiled several molecular mechanisms involved 73 

[34,35]. Besides, several other natural B. subtilis strains have been isolated more or less 74 

recently, presenting interesting biofilm phenotypes and being naturally competent, such as P9-75 

B1 [36] or PS216 [37]. These strains have therefore also been used in many studies on different 76 

biofilm models, essentially macrocolony, floating pellicle, or even plant root colonization 77 

[38,39,40]. A submerged surface-associated biofilm model was developped with strain JH642 78 

[41], but as being a close relative to the domesticated 168, this strain could not form robust 79 

wrinkled colonies [34], and the submerged biofilm formed remains thin and not highly 80 

structured. So, although this model was particularly relevant for the study of B. 81 

subtilis multicellular communities, practically no further studies was performed with it during 82 

the next 10 years, until using confocal laser scanning microscopy, we showed that several 83 

strains of B. subtilis from different origins are capable of forming such biofilms with complex 84 

structures on immersed surfaces [42,43]. 85 

In this review, we will present NDmed, another wild-type B. subtilis strain that we have 86 

been successfully using for several years in genetic studies on biofilms (Fig.1). This strain can 87 

build highly structured biofilms in all described B. subtilis multicellular models (macro-colony, 88 

air/liquid pellicle and submerged), and is much more convenient for genetic manipulations than 89 

NCIB3610, which has greatly facilitated such studies. 90 

 91 

 92 

 93 

 94 

 95 
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5 
 

NDmed, a hyper-biofilm forming B. subtilis strain  96 

In a large number of ecological, industrial and hospital settings surface-associated 97 

microbial communities are the source of many problems, including public health issues such as 98 

nosocomial or foodborne infections [44,45]. For instance, some studies have reported the 99 

persistence of surface-associated bacteria on an endoscope even after cleaning and disinfecting 100 

procedures have taken place [46,47]. A developed biofilm provides bacteria with a protective 101 

environment and constitutes a survival strategy against stresses such as microbicide action, thus 102 

potentially leading to important healthcare issues. In the course of investigations aiming at 103 

unveiling resistance mechanisms behind such bacterial persistence and survival following 104 

biocide exposure in a medical environment, Martin et al. have isolated from an endoscope 105 

washer-disinfector a B. subtilis strain particularly resistant to high levels of disinfectants such 106 

as chlorine dioxide and hydrogen peroxide [21,48,49]. This now called NDmed strain (for non-107 

domesticated strain isolated from medical environment) forms spatially architectural macro-108 

colonies on solid agar medium and dramatically protruding ‘‘beanstalk-like’’ biofilm structures 109 

(with a height up to 300 µm) on submerged level, with the production of a notable high amount 110 

of exopolymeric substances (Fig.2) [42,50]. Such complex three-dimensional structure of the 111 

NDmed biofilm appears to hinder the penetration and reactivity of oxidative agents, and 112 

thereby leads to hyper-resistance (Fig.3).  113 

Whole genome sequencing of NDmed (4.06 Mb) revealed that this non-domesticated 114 

isolate is very close to the reference laboratory strain 168, with less than 100 single-nucleotide 115 

polymorphisms (SNPs) and less than 50 insertions/deletions (InDels) [52]. As in several other 116 

B. subtilis natural isolates, e.g. the biofilm-forming transformable strain PS216 [53], the SPβ 117 

prophage (134.4 kb) and the conjugative element ICEBs1 (20.5 kb) are missing, whereas a 118 

putative prophage (44.2 kb) is present immediately downstream of the glnA gene. It is 119 

noteworthy that among the up to now 708 sequenced genomes of B. subtilis strains from 120 
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extremely various origins (https://www.ncbi.nlm.nih.gov/ genome/browse/#!/prokaryotes/665/), 121 

one of the closest genome neighbors is that of strain PS216, displaying a gapped identity of 122 

99.9823 % with NDmed (https://www.ncbi.nlm.nih.gov/genome/neighbors/ 123 

665?genome_assembly_id=205100). No plasmid was observed in NDmed, such as the one 124 

present in NCIB3610 which encodes the ComI transformation inhibitor [32]. In both strains 125 

168 and its "ancestor" NCIB3610, the gene spsM (formerly ypqP) is disrupted by the SPβ 126 

prophage [54-57]. This spsM gene is essential for adding polysaccharides to the spore envelope 127 

[58]. Thus, SPβ has to be excised during the sporulation process for the reconstitution of a 128 

functional spsM gene. This excision is restricted to the mother cell, whereas SPβ remains in the 129 

genome of the spore, and is transmitted to the next generation [59]. spsM encodes an UDP-130 

GlcNAc 4,6-dehydratase involved in the first step of the biosynthesis of legionaminic acid from 131 

UDP-N-acetyl-α-D-glucosamine during sporulation. Legionaminic acid is a constituent of the 132 

crust, together with other carbohydrates and proteins, covering the spore surface. This 133 

outermost layer participates in the adhesion and spreading of spores into the environment [60]. 134 

In strains lacking SPβ, spsM is functional even during vegetative growth, and could therefore 135 

participate in synthesizing carbohydrates matrix components leading to the highly robust 136 

structured biofilms phenotype. Indeed, in PY79, a 168-derived laboratory strain cured of the 137 

SPβ prophage, the reestablishment of a functional spsM (ypqP) gene led to increased thickness 138 

and resistance to biocides of the associated submerged biofilms [61]. Likewise, deletion of 139 

spsM in the NDmed strain abolished its ability to protect S. aureus in a mixed submerged 140 

biofilm (Fig.5), as well as the particularly remarkable submerged biofilm or macro-colony 141 

phenotype, which could be completely restored upon complementation by an ectopic wild-type 142 

copy of the gene (Fig.6). Moreover, all the various B. subtilis strains containing a nondisrupted 143 

spsM gene that we have tested (NDmed, NDfood, PY79, BSn5, BSP1) formed denser 144 

submerged biofilms with more protruding structures than those formed by the strains whose 145 
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7 
 

spsM gene is disrupted by the SPβ prophage (168, NCIB 3610, ATCC 6051) [61]. It was 146 

therefore obvious that its product was an important determinant of B. subtilis surface biofilm 147 

architecture, through its involvement in the synthesis of matrix components participating to the 148 

protection against biocides [61]. On the other hand, on hosting the SPβ prophage in spsM, 149 

lysogenic strains acquire a bacteriocin gene cluster carried by this prophage, encoding 150 

sublancin, a lantibiotic with a broad spectrum of bactericidal activity [62]. This indicates the 151 

double importance of spsM, which depending on the environmental conditions and hosting or 152 

not SPβ, can play a defensive or offensive role, by synthesis of protective polysaccharides 153 

"shields" or antimicrobial "weapons". Thus, the genome of NDmed provided some clues for a 154 

better understanding of B. subtilis social behavior in bacterial communities from natural 155 

environments. Although all the genes involved in biofilm formation found defective in strain 156 

168 are wild-type in NDmed as in NCIB3610, some differences found between the latter strains 157 

(such as the SPβ prophage insertion) allowed to shed light on the specific biofilm phenotypes 158 

observed. However, as the biofilm morphology and matrix composition can be growth medium 159 

dependent, as shown with NCIB3610 strain for exopolymeric substances (EPS) composition 160 

[63], differences observed when comparing NDmed to NCIB3610 would vanish or turn around 161 

in case the growth medium or other environmental conditions were changed. Moreover NDmed 162 

has been proven easily transformable [50], which greatly facilitated our biofilms genetic 163 

studies. 164 

 165 

 166 

 167 

 168 

 169 

 170 
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NDmed, a versatile tool strain for genetic and structural B. subtilis 171 

biofilm studies 172 

Studies of B. subtilis biofilms use different models corresponding to different types of 173 

multicellular communities encountered in nature. In aerial models, cells grow on the surface of 174 

a nutrient medium, at the interface with air, and thanks to their technical simplicity, these 175 

models allow to observe differences in the phenotypes between strains, without requiring 176 

complex tools. On a solid medium, the formation of macrocolonies with highly wrinkled 177 

architectural structures indicates a high capacity for extracellular matrix production. Wrinkles 178 

are formed by a lateral compressive force as a consequence of localized cell death, coupled 179 

with the stiffness provided by the extracellular matrix [64]. Beneath the wrinkles forms a 180 

remarkable network of well-defined channels providing the biofilm with an enhanced transport 181 

system to exchange water, nutrients, enzymes, and signals, to dispose of potentially toxic 182 

metabolites, allowing better metabolic cooperativity [65]. From a macrocolony, and in specific 183 

optimized conditions of medium, humidity and temperature, B. subtilis cells can swarm by 184 

organized collective movements, which include hyper-flagellated and highly motile cells, while 185 

proliferating and consuming nutrients [66-70]. This exploration behavior starting from a 3-D 186 

mother macrocolony structured biofilm to a monolayer multicellular communities can be seen 187 

as the formation of a 2-D developing biofilm. On a liquid medium, the formation of a thick 188 

pellicle depends on the synthesis of extracellular polymeric substances, essential for the 189 

complex 3D structure, as well as on amphiphilic properties of Bsla forming a hydrophobic 190 

layer at the interface with air. In the submerged model, cells grow on an inert solid surface 191 

(polystyrene) and at the interface between a liquid nutritive medium. Studies of these 192 

submerged biofilms require more customized laboratory tools, for observation and 193 

quantification of the 3D structure (thickness, roughness, and biovolume). An optimized 194 

framework for this consists in growth in microplates, combined with a confocal microscopy 195 

Jo
urn

al 
Pre-

pro
of



9 
 

technique, allowing both spatial and temporal monitoring of the submerged biofilms down to a 196 

single-cell scale [71]. 197 

B. subtilis NDmed was phenotypically compared to NCIB3610 and 168 strains in four 198 

multicellular models. In this context, NDmed could form highly structured macrocolonies, 199 

pellicles, as well as submerged biofilms and was able to swarm efficiently on semi-solid 200 

medium [72]. Moreover, several NDmed-derived mutants defective in genes previously 201 

described as triggering biofilm formation in other strains were also compared through this 202 

multiculturing approach (Fig.7). This global view over different biofilm models currently used 203 

in genetic studies on both motility and biofilm formation highlighted the value of NDmed as an 204 

undomesticated, naturally competent B. subtilis isolate to point out the involvement of several 205 

genes in the formation of different structural biofilms.  206 

 207 

- Dynamics and structural determinants of B. subtilis NDmed submerged 208 

biofilms 209 

B. subtilis submerged biofilms can be a good model representative of some Bacilli 210 

natural habitats such as soil and plant roots surface [5,42,73]. NDmed has proven to be a good 211 

tool for studying the formation dynamics of such submerged biofilms. Various photonic and 212 

electronic microscopic techniques allowed us to analyze the three-dimensional biofilm 213 

architecture with this strain (Fig.8) [43]. The kinetics of bacterial colonization on the surface 214 

could be followed by time-lapse confocal laser scanning microscopy, which revealed an 215 

unexpected biphasic submerged biofilm development of NDmed. Measurements of oxygen 216 

concentration and reporting the expression of genes involved in motility, matrix synthesis and 217 

anaerobiosis allowed to decipher the phenomenon: cells first adhere to the surface, forming 218 

elongated chains, which are suddenly fragmented, releasing free motile cells. This switching 219 

coincides with an oxygen depletion, which precedes the formation of the pellicle at the liquid-220 

Jo
urn

al 
Pre-

pro
of



10 
 

air interface. Residual bacteria still associated with the solid surface start then to express matrix 221 

genes under anaerobic metabolism to build the typical biofilm protruding structures (Fig.9). 222 

The same behavior was also observed for all B. subtilis strains tested, notably 168 and 223 

NCIB3610, but seems to be very particular to this species, as it was not observed with close 224 

relative but different Bacilli (B. cereus, B. licheniformis and B. amyloliquefaciens) [74]. A 225 

transcriptome analysis by tiling arrays over a temporal scale confirmed these microscopic 226 

observations. During the first hours the genes encoding basic functions essential for cellular 227 

growth are expressed at a constant rate. Upon oxygen depletion, when none of the aerobic 228 

respiratory genes is expressed, genes required for autolysis and motility start to be upregulated, 229 

leading to elongated sessile chains fragmenting into motile cells. Shortly after, upregulation of 230 

anaerobic respiration genes can be observed, followed by expression of biofilm matrix genes, 231 

the time when the biofilms (submerged and pellicle) are in the process of formation and 232 

stabilization of complex architecture. Finally, genes related to sporulation are strongly 233 

upregulated in the old biofilm (Fig.10) [74]. 234 

 235 

- Spatio-temporal heterogeneity of gene expression in B. subtilis surface-236 

associated multicellular assemblages 237 

Bacterial cells in multicellular communities (macrocolony, pellicle, submerged biofilm, 238 

swarming cells) are not only spatially localized in microenvironmental settings different from 239 

each other, but also subjected to different chemical gradients within each model [4]. For 240 

example, in aerial biofilms, the permeability of oxygen in the biomass decreases gradually from 241 

the outer top layer to the inside bottom layers, whereas the nutrient gradient is the opposite, 242 

with higher concentrations near the surface (nutrient agar or liquid surface). On the other hand, 243 

in the submerged biofilms the oxygen and the nutrient gradients are parallel, with gradually 244 

decreasing concentrations through the biomass from the top to the bottom inert surface. These 245 
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chemical gradients generate within each biofilm model local microenvironments associated 246 

with physiologically heterogeneous bacterial subpopulations that differ both spatially and 247 

temporally and not necessarily bringing into play the same genetic elements nor at the same 248 

level. Multicellular communities developing throughout different environmental culturing 249 

conditions can present some similarities, but can also display considerable differences at the 250 

structural, chemical, and gene expression heterogeneity levels [72,76].  251 

A spatio-temporal correlation could take place between the phenotype and the patterns 252 

of gene expression, which can lead to subpopulations with different functions in coordination 253 

with time. Indeed, it has been shown that B. subtilis biofilm growth is highly regulated and 254 

organized into discrete ontogenetic stages, analogous to those of eukaryotic embryos, 255 

recapitulating phylogeny at the gene expression level [77]. Thus, various types of B. subtilis 256 

cells are present at the same time in a biofilm, such as motile cells, surfactant producers, matrix 257 

producers and sporulating ones [78]. These subpopulations with distributed different tasks are 258 

important for the growth and migration of cells seeking nutrients [79-82]. A whole 259 

transcriptional analysis of the differently localized heterogeneous compartments of these 260 

different biofilm models allowed us to further understand the core of the transcriptional 261 

network taking place between them during NDmed biofilms development. To unveil the spatial 262 

transcriptional heterogeneity between the different communities, various spatio-physiological 263 

populations selected from different spatially organized B. subtilis NDmed communities were 264 

analyzed by RNA-seq, which led to a global characterisation of genes specifically expressed in 265 

each compartmental population [83]. Following this mesoscale analysis, the patterns of 266 

expression of several selected genes were reported by fluorescent transcriptional reporter 267 

fusions at a single-cell scale with time-lapse confocal laser scanning microscopy 268 

(CLSM)(Fig.11A). This also permitted to unveil spectacular mosaic expression patterns of 269 

genes involved in antagonist functions within a biofilm, such as motility vs matrix synthesis 270 
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(Fig.11B). Especially, a particular attention on expression of oppositely regulated genes of the 271 

carbon central metabolism allowed to identify in a same biofilm bacterium under either 272 

glycolytic or gluconeogenic regimes, coexisting as spatially segregated populations. Altogether, 273 

this study gave novel insights into the development and dispersal of B. subtilis NDmed surface-274 

associated communities [83]. 275 

 276 

 277 

Future contributions of advanced technologies in the study of 278 

NDmed biofilms 279 

Our exploration of the mechanisms underlying biofilm formation and architecture in the 280 

NDmed strain already provided a huge amount of data regarding the spatiotemporal expression 281 

of genes. This genetically tractable strain is now attracting considerable interest as a model 282 

biofilm-forming Bacillus to expand our knowledge of the gene regulatory network behind this 283 

developmental switch using advanced genetic tools. 284 

The recent progress of the CRISPR-Cas technology, in combination with phage derived 285 

lambda-red recombineering system has improved genome editing and genetic engineering in a 286 

wide range of bacteria. The CRISPR/cas9 derived from Streptococcus pyogenes, has been 287 

already proved useful in assisting genome editing in both domesticated and undomesticated 288 

Bacilli [84-86]. The high level of genetic identity of the NDmed strain with the laboratory B. 289 

subtilis model strain 168 makes it possible to take advantage, by simple transformation, of the 290 

comprehensive collection of BKE/BKK single mutants targeting each of the non-essential 291 

genes of this bacterium [87]. Combined with CRISPR methodology, this invaluable collection, 292 

available from the Bacillus Genetic Stock Center (BGSC, USA) could be also leveraged to 293 

perform CRISPR-assisted targeted genetic engineering in other B. subtilis strains [88].  294 
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The CRISPR-dCas9 gene silencing system is also a very effective loss-of-function tool 295 

to study the relationships between genotype and phenotype without requiring the alteration of 296 

genes. Using a catalytically inactive Cas9 protein (dCas9) and single gene-targeting guide 297 

RNAs (sgRNAs), CRISPR interference (CRISPRi) has emerged as a powerful genetic 298 

methodology to dissect the functions of genes in various bacterial species [89-93]. Such an 299 

approach has been used to investigate 258 essential gene functions in B. subtilis 168 ([94]. This 300 

CRISPRi system, composed of chromosomally inserted modules expressing a xylose-inducible 301 

dcas9 gene and single gRNAs, is easily transferable into other B. subtilis strains with highly 302 

genomic similarities such as NDmed. Indeed, the Pxyl-based CRISPRi system is functional in 303 

NDmed and can be successfully used to block cytokinesis by targeting essential genes involved 304 

in cell division and elongation (Fig.12). CRISPR-mediated knockdown of ftsZ encoding the 305 

FtsZ protein involved in the formation of the Z-ring required for the constriction of the septum 306 

during division, triggers extensive elongation of cells only a few hours after induction, similar 307 

to a B. subtilis ftsZ mutant [95] (Fig.12B). The downregulation of expression of mreB or mreC, 308 

involved in controlling cell morphogenesis generates expected bulged and shapeless cells 309 

consequential to a defect in cell wall synthesis [96] (Fig.12B). This approach is also powerful 310 

for studying the function of genes involved in the formation and development of multicellular 311 

communities. As illustrated in Fig.12CD, silencing of epsC and downstream genes of the eps 312 

operon, responsible for the synthesis of exopolysaccharides, leads to a smooth biofilm-deficient 313 

phenotype of macrocolony, similar to that of a ΔepsA-O strain. Compared to the intricate tri-314 

dimensional structure exhibited by a wild-type strain or a strain expressing the dcas9 together 315 

with a neutral non-targeting gRNA, this observation shows that the CRISPRi technology can be 316 

successfully applied to long-term phenotypic studies and is relevant to investigate bacterial 317 

responses during the transitional switch to biofilm formation. Another interesting aspect of this 318 

approach is not only its ability to target multiple genes, but also to probe non-coding elements 319 
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of the bacterial genome. In all living organisms, non-coding RNAs (ncRNAs) are playing an 320 

important role in many biological processes by affecting the translation or the stability of 321 

mRNA [97]. Some ncRNAs were found involved in biofilm formation in various bacteria 322 

[98,99]. However, their potential regulatory role during biofilm development in Bacillus 323 

remains largely unexplored. 324 

In combination with NGS sequencing technologies, CRISPRi pool (or CRISPi-seq) is 325 

now used successfully to perform large-scale functional genetic screening using genome-wide 326 

libraries of gRNAs. These screens allow to quickly identify genes or genetic elements whose 327 

repression confers an advantage or a disadvantage in a particular physiological condition [100]. 328 

CRISPRi pools enable the interrogation of the fitness of genes upon exposure to biological 329 

stressors. This approach can be now timely used to investigate genes and regulatory pathways 330 

affecting biofilm formation when subjected to chemical or physical challenges such as biocides 331 

or extreme environments such as altered gravity. Based on the RNAseq data generated in our 332 

previous transcriptome studies, we have already constructed in NDmed a biofilm-oriented 333 

library of guide RNAs targeting a subset of genes upregulated during the early stage of biofilm 334 

formation. 335 

We project to use NDmed as a model strain for studying microbial biofilms in 336 

microgravity and hypergravity conditions. Microgravity corresponds to conditions encountered 337 

in the International Space Station (ISS), in which the establishment and development of 338 

biofilms on many different hardware surfaces can lead to significant problems [101,102]. Thus 339 

understanding the particularities in the mechanisms involved in such conditions is a real 340 

challenge toward the limitation of these problems susceptible to arise beyond the ISS in long 341 

spaceship journeys and in extraterrestrial human base settlements with lower gravity (Moon, 342 

Mars…). 343 
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To conclude, the B. subtilis strain NDmed possesses a remarkable ability to form highly 344 

structured biofilms with different morphologies such as complex macrocolonies, thick pellicles, 345 

and beanstalk-like submerged biofilm structures. It is also hyper-resistant to biocides and can 346 

protect pathogens in mixed-species biofilms. Along with its ease of genetic manipulation, 347 

NDmed stands out as a valuable bacterial model for biofilm studies using modern molecular 348 

and microscopic techniques. 349 

 350 
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Figures Legends 699 

 700 

 701 

 702 

Figure 1: Macro-colony of B. subtilis NDmed. Composite image of a colony of B. subtilis 703 

NDmed taken in digital photography (left part) and confocal scanning laser microscopy (right 704 

part); (diameter of the colony is approximately 2 cm). This artwork picture has been presented 705 

among 10 finalists at an artistic scientific photographs concourse organized by the French 706 

Embassy in Tokyo (Japan) in Dec.2022. 707 

 708 

Figure 2: Comparison of architectures of biofilms formed by B. subtilis 168 and NDmed 709 

strains. (A) Aerial views of 168 and NDmed biofilm structure, with a virtual three-dimensional 710 

shadow projection on the right. Scale bars correspond to 50 µm. (B) Scanning Electron 711 

Microscopy images of 24-hour biofilms. (C) Dye binding properties of 72 hours macrocolonies 712 

grown on Congo red indicator medium. (D) Iso-surface representation of a particular 713 

‘‘beanstalk-like’’ structure for NDmed. (From [42,50]). 714 

 715 

Figure 3: Peracetic acid (PAA) activity in B. subtilis biofilms. Visualization of the kinetics 716 

of membrane permeabilization (Chemchrome V6 fluorescence loss) in B. subtilis 168 and 717 

NDmed biofilms during PAA treatment (0.05%). Scale bars correspond to 20 µm. (From [50]). 718 

Besides, when grown in mixed biofilm with Staphylococcus aureus, the B. subtilis NDmed 719 

strain demonstrated the ability to protect this pathogen from PAA action, thus enabling its 720 

persistence in the environment (Fig.4) [50,51]. 721 

 722 

 723 
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Figure 4: Architecture of S. aureus AH478 and B. subtilis NDmed /S.aureus AH478 mixed 724 

biofilm. (A) 3D reconstruction of S.aureus AH478 biofilm. (B) 3D reconstruction of mixed 725 

species biofilm of B. subtilis NDmed (green)/S.aureus AH478 (red). Scale bars correspond to 726 

20 µm. (From [50]). 727 

 728 

Figure 5: Three-dimensional organization of B. subtilis NDmed and S. aureus mixed 729 

biofilms. Mixed biofilms of S. aureus mCherry (red) and B. subtilis GFP (green) strains were 730 

grown for 48 h. Representative 3D reconstruction images of S. aureus and B. subtilis NDmed 731 

Wild-Type (A) or spsM mutant (B) mixed biofilms are presented. The scale bars represent 50 732 

µm. (From [61]) 733 

 734 

Figure 6: Visualization of the effect of ypqP (spsM) disruption on submerged-biofilm 735 

structure and complex colony morphology in B. subtilis NDmed. (A) Colonies of the 736 

NDmed Wild-Type, ypqP mutant, and ypqP-complemented strains were grown on TSB agar 737 

for 3 days. (B and C) Biofilms of the three strains were grown for 48 h and stained with 738 

SYTO9. For each strain, representative images of the adherent cells in contact with the surface 739 

(B) and the 3D reconstruction using IMARIS software (C) are presented. The scale bars 740 

represent 50 µm. (From [61]) 741 

 742 

Figure 7: Comparative phenotype for B. subtilis strains and NDmed mutants on different 743 

multicellular culture assays. Macrocolonies were grown on 1.5% agar TSA for 6 days at 30 744 

°C. For swarming, 0.7% agar B-medium plates were inoculated on the middle and incubated 745 

for 24 hrs at 30 °C. Pellicles were obtained after 24 hrs of culture at 30 °C of bacteria in TSB in 746 

a 24-well plate. Macrocolony, swarming, and pellicle images are representative of the majority 747 
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of the phenotype from at least three replicates for each strain revealing the effect of mutations 748 

on the biofilm formation. In a microplate system, immersed biofilms are labeled by SYTO 9 749 

after 24 hrs of incubation at 30 °C. The shadow on the right represents the vertical projection of 750 

the submerged biofilm (scale bars represent 40 μm). (From [72]) 751 

 752 

Figure 8: 3D architecture of B. subtilis NDmed biofilm. (A) Three-dimensional 753 

reconstruction of biofilm from Confocal Laser Scanning Microscopy (CLSM) stack images. 754 

(C) Field Emission Scanning Electron Microscopy (FESEM) micrograph of biofilm. (B and D) 755 

Environmental Scanning Electron Microscopy (ESEM) micrographs of biofilm at pressure in a 756 

microscope chamber of 4 and 5 Torr, respectively. (From [43]). 757 

 758 

Figure 9: The biphasic process of submerged biofilm formation by B. subtilis NDmed. Left 759 

panel: A) 4D-CLSM of B. subtilis NDmed GFP on submerged surfaces. Imaris Easy 3D 760 

reconstructions (top) and sections views as an XZ projection (bottom) at specific time points of 761 

a representative experiment of three independent experiments. The shadow on the right 762 

represents a vertical (YZ) projection of the submerged biofilm (scale bars represent 20 μm). B) 763 

Space-time kymograph generated with BiofilmQ from 4D-CLSM series showing the brutal 764 

apparition of free cells in all the wells 3h after biofilm initiation and the late initiation of 765 

submerged biofilm after 7h. dz represents the distance to the surface in μm and Ich1 the GFP 766 

fluorescence intensity in relative arbitrary units. Representative of n = 3 independent biofilms. 767 

C) Individual cell length coordinately and brutally drops during chain fragmentation 2–3 h after 768 

biofilm initiation. Chains fragmentation is correlated with an increased number of detected 769 

individual objects in the medium. Mean cell length±SD calculated from n = 3 experiments. 770 

Right panel: Space-time kymographs for reporters D) hag (motility), E) tapA (matrix), F) fnr 771 

(anaerobiosis) transcription during submerged biofilm formation of B. subtilis NDmed. 772 
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Representative of n = 3 independent biofilms for each reporter. Kymographs were constructed 773 

with BiofilmQ visualization toolbox from 4D-CLSM image sequences with fluorescent 774 

transcriptional fusions (NDmed547 [amyE::Phag-gfp sacA::PtapA-mKate2] and GM3361 775 

[Pfnr-gfpmut3]). dz represents the distance to the surface in μm and Ich1 the fluorescent 776 

reporter intensity in relative arbitrary units. G) graph representing the oxygen concentration 777 

measured in two wells with a microelectrode showing a sharp decrease of oxygen concentration 778 

that drops from around 185 ppm at t = 0 below the probe detection limit after less than 5 h. 779 

(From [74]). 780 

 781 

Figure 10: Temporal tiling array transcriptome of Bacillus subtilis NDmed colonizing 782 

microplate wells. All the biomass from the wells was collected for the transcriptome analysis 783 

1, 3, 4, 5, 7, 24, and 48h after inoculation. A log2 fold change (log2FC) of expression was 784 

calculated for the genes from the ratio of expression over the average of expression across all 785 

temporal samples. The heatmap displays data for 48 genes selected from Subtiwiki categories, 786 

as representatives for the different functional categories [75]. The yellow and the blue represent 787 

respectively an upregulation or a downregulation of a gene compared to its average expression 788 

over the time course, with a scale adjusted to a log2FC of +/-2.8. (From [74]). 789 

 790 

Figure 11: CLSM of NDmed 547 reporting in green the expression of hag (motility) and in 791 

red the expression of tapA (matrix synthesis). A) 4D-CLSM of the biphasic submerged 792 

biofilm formation process. The scale bars represent 50 μm. B) CLSM visualization of the wells 793 

colonization after 24h, both on the surface (with a zoom on submerged biofilm on the bottom 794 

right with a scale bar of 30 μm) and at the liquid-air interface (with a zoom on a floating 795 

pellicle on the up right with a scale bar of 30 μm) (From [74]). 796 
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 797 

Figure 12: Gene silencing by CRISPRi in B. subtilis NDmed. (A) Schematic view of 798 

CRISPRi-mediated silencing of gene expression. (B) Phase contrast images of NDmed_Pxyl-799 

dcas9 cells expressing gRNAs targeting the mreB, mreC or ftsZ genes. Cells were cultivated in 800 

the presence of xylose1% for 5 hours prior to observation. Control cells do not contain 801 

targeting gRNA sequences. Scale bars represent 10 𝜇m. (C and D) Biofilm macrocolony assay. 802 

NDmed_Pxyl-dcas9 cells expressing gRNAs targeting the epsC gene or a negative control guide 803 

were inoculated at the center of a MSgg agar plate containing 1% xylose and grown at 30°C for 804 

40 hours (C) or 60 hours (D). The macrocolony phenotype resulting from the CRISPRi-805 

mediated gene silencing of epsC was compared to those of the NDmed Wild-Type and ΔepsA-806 

O mutant. The macrocolony images are representative of three replicates. 807 

 808 
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