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Résumé. Nous considérons un modèle de régression linéaire où la variable à expli-
quer est réelle et les co-variables sont catégorielles, scalaires et fonctionnelles et agissent de
manière additive dans le modèle. Notre objectif est d’estimer les paramètres de ce modèle,
tout en conservant un caractère interprétable pour la partie du modèle incluant les va-
riables fonctionnelles. Ce travail est une extension du modèle Bliss (Bayesian functional
Linear regression with Sparse Step function), voir Grollemund et al. (2019), développé
dans un cadre Bayésien et qui ne contient que des variables fonctionnelles. Nous pro-
posons d’étendre la méthode Bliss à un modèle plus général contenant également des
co-variables catégorielles et scalaires. Dans la suite, nous explicitons le modèle étendu et
expliquons comment estimer les paramètres d’une manière interprétable. Une illustration
est faite sur des données simulées et un jeu de données réelles sur le dépérissement de la
vigne.

Mots-clés. Données fonctionnelles, méthode Bliss, régression linéaire, statistique Bayésienne.

Abstract. We consider a linear regression model with a scalar response variable and
categorical, scalar and functional covariates, that act additively in the model. Our ob-
jective is to estimate the parameters of this model, while maintaining an interpretability
for the part of the model including the functional covariates. This work is an extension
of the Bliss model (Bayesian functional Linear regression with Sparse Step function), see
Grollemund et al. (2019), developed in a Bayesian framework with only functional cova-
riates. We propose to extend the Bliss method to a more general model that also contains
categorical and scalar covariates. In the following, we explain the extended model and how
to estimate the parameters in an interpretable way. An illustration is made on simulated
data and a real data set obtained in the field of vine dieback.

Keywords. Bayesian statistics, Bliss method, functional data, linear regression.
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1 Introduction

Technological advances allow us to collect large amount of data in many areas. In
agronomy, a major challenge is to extract information from these massive data and esta-
blish links with final characteristics such as production yields or quality. The motivation
of our study comes from a project on the vine dieback. A unique database obtained by the
Bureau National Interprofessionnel du Cognac on the monitoring of 55 plots since 1977
offers the opportunity to analyse the determinants of multi-year vine dieback trajectories.
In this project, the objectives are to be able to identify (1) the factors and interactions of
biotic, abiotic and technical factors that contribute to the decline in plot yield and to the
mortality of individual grapevines and (2) the time period over which these factors have
an impact, both in the short term at the scale of the crop cycle and in the long term since
the plot was planted. One way of modeling this problem is to build a regression model to
explain the effect of climatic conditions and cultivation managements on the vine yields.
The covariates involved in such a study are of different types : functional, categorical or
scalar. An ’interpretable’ linear regression model with functional covariates already exists
in the Bayesian framework : the Bliss model, see Grollemund et al. (2019). In this mo-
del, the prior distribution assumes that the coefficient functions are step functions. Bliss
allows to recover periods of time that influence the most the outcome, which helps answe-
ring objective (2) mentioned above. To take into account scalar and categorical covariates
as well, we have to extend the Bliss model as follows.

From a statistical point of view, consider a p-dimensional scalar covariate vector
(z1, · · · , zp), q functional covariates (x1(t), · · · , xq(t)) on C, which is an interval of R,
a categorical covariate α with r levels, and a scalar variable to be explained y. The statis-
tical linear model under consideration is as follows, for a n-sample of individuals doubly
indexed by (ij), where i = 1, · · · , r stands for the categorical levels and j = 1, · · · , ni

stands for the repetitions :

y(ij) = β0 + αi +

p∑
s=1

γsz
(ij)
s +

q∑
v=1

∫
C
βv(t)x

(ij)
v (t)dt+ ε(ij), (1)

where β0 is the intercept, (γ1, · · · , γp) and (α1, · · · , αr) are scalar parameters, and (β1(t), · · · , βq(t))
are functional parameters. Finally, ε(ij) are random variables. Note that this model could
also be extended to 2 or more categorical covariates.

The problem we are interested in is to explain the response variable from all these
covariates of different type. Statistical models that involve functional covariates with
scalar and categorical covariates are not common.

Functional data models have been popularized by works such as Ramsey and Silver-
man (1997) and Ferraty and Vieu (2006). There are different derivatives of this model in
the literature. Not to be exhaustive, we quote the generalized functional regression model
(see, Müller et Stadtmüller (2005)) and the functional regression model with a functional
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response (see, Yao et al. (2005)). It is known that the correlation between the covariates
decreases the estimation quality. In the functional part of our model, there are obviously
large correlations. To overcome this problem, robust estimators based on the minimiza-
tion of a penalized least squares criterion such as Ridge or Lasso regression exist in the
literature. However, despite the robustness of the proposed estimators, it is difficult to
interpret the estimate.
From a practical point of view, it is important to estimate periods of time during which
the climatic conditions have influenced the variable of interest. For a fixed v, if the coeffi-
cient function βv(t) is null over a period C then the integral

∫
C βv(t)xv(t)dt can be written

without using the values of xv over C and if it is positive (resp. negative) over a period
then the increase (resp. decrease) of the value of xv over this period induces an increase
(resp. decrease) of the value of y. It is important to highlight the periods where βv(t) is
positive or negative. That’s why we are interested in the estimation of the support of the
coefficient function, which is an important feature of the interpretation. To that aim, the
Bliss method focuses on the estimation of the support of the functional parameter, which
makes the interpretation easier. The functional parameter is identified through a piecewise
constant function appropriately chosen. The complex functional linear regression model
is then simplified to a linear regression model. The Bliss model is estimated in a Bayesian
framework which allows to take into account expert knowledge.
To fit linear regression models, several Bayesian approaches have been considered, and wi-
thout being exhaustive we can list Wang et al. (2007) and Goldsmith et al. (2011). To our
knowledge, the only paper specifically interested in the support of the coefficient function
using a Bayesian approach is Grollemund et al. (2019). Moreover, in the last paper, the
authors propose two estimators of the coefficient function with different properties. Our
contribution is an extension of the Bliss method to other types of variables : scalar and
categorical.

2 Model

We consider the functional parameters βv as piecewise constant functions that can be
described with a minimal number of intervals Kv :

βv(t) =
Kv∑
k=1

bk,v
|Ik,v|

1{t∈Ik,v}, for v = 1, · · · , q, (2)

where I1,v, · · · , IKv ,v are intervals included in C, |Ik,v| is the length of the interval and
b1,v, · · · , bKv ,v are real parameters. The support is the union of all Ik,v if the coefficient bk
are not null. Thus, a period of time which does not influence the outcome will be outside
the support. Replacing (2) in (1), the functional linear model becomes a linear model with
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design depending on the intervals Ik,v :

y(ij) = β0 + αi +

p∑
s=1

γsz
(ij)
s +

q∑
v=1

Kv∑
k=1

bk,vx
(ij)
v (Ik,v) + ε(ij), (3)

with

x(ij)v (Ik,v) =
1

|Ik,v|

∫
Ik,v

x(ij)v (t)dt, for Ik,v = [m1,v ± `1,v, · · · ,mKv ,v ± `Kv ,v],

where for a fixed v, mk,v is the center and `k,v is the half length of the interval Ik,v. Hence,
let define the parameters set to model (1) of dimension 3K + r + p+ 2 by :

θ =
(
β0, (α1, · · · , αr), (γ1, · · · , γp), (θ1, · · · , θq), σ2

)
,

where

θv = ((b1,v, · · · , bKv ,v), (m1,v, · · · ,mKv ,v), (`1,v, · · · , `Kv ,v)) .

For simplicity of notations, we focus on model (1) with only one scalar and one functional
covariates. We assume that we observe {y(ij), i = 1, · · · , r and j = 1, · · · , ni} replicates of
outcome, (α1, · · · , αr) levels of the categorical variable α and {z(ij), i = 1, · · · , r and j =
1, · · · , ni} are scalar observations and {x(ij)(Ik), i = 1, · · · , r, j = 1, · · · , ni and k =
1, · · · , K} are scalar observations. Notice that n =

∑r
i=1 ni . The model (3) becomes :

y(ij)|β0, αi, γ, z
(ij), (b1, · · · , bK), x(ij)(t) N

(
β0 + αi + γz(ij) +

K∑
k=1

bkx
(ij)(Ik), σ2

)
. (4)

We complete the Bayesian model (4) with the following prior distributions :

β0|σ2  N
(
0, u0σ

2
)
, αi|σ2  N

(
0, v0σ

2
)
, γ|σ2  N

(
0, w0σ

2
)
,

and π(σ2) ∝ 1/σ2. Furthermore, for k = 1, · · · , K

bk|σ2,mk, `k  NK

(
0, nσ2(G+ νλmax(G)IK)−1

)
,

mk
i.i.d.
 U (C) ,

`k
i.i.d.
 exp (a× |C|) , (5)

where G is the Gram matrix given by G = x·(I·)tx·(I·) with

x·(I·) =
{
x(ij)(Ik), i = 1, · · · , r, j = 1, · · · , ni, and k = 1, · · · , K

}
.
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3 Implementation

The full posterior distribution can be written explicitly from the Bayesian model given
in (5) by

β|y, σ2,m, `  NK

(
(xtx+ V )−1xty, σ2(xtx+ V )−1

)
,

σ2|y, β,m, `  Γ−1
(
n+K + r

2
+ 1,

1

2

{
RSS + βtV β

})
,

f(mk|y, β, σ2,m−k, `) ∝ exp
{
−RSS/2σ2

}
× f(b|mk, `k, σ

2)× f(mk), k = 1, · · · , K
f(`k|y, β, σ2, `−k,m) ∝ exp

{
−RSS/2σ2

}
× f(b|mk, `k, σ

2)× f(`k), k = 1, · · · , K

where x = (1n | A | z | x·(I·)), βt = (β0, (α1, · · · , αr), γ, (b1, · · · , bK))t and RSS =
||y − xβ||2. Furthermore, let define

A =



1n1 0n1 ... ... ... ... 0n1

0n2 1n2 0n2 ... ... ... 0n2

... ...
...

0ni ... 0ni 1ni 0ni ... 0ni

...
...

0nr ... ... ... ... 0nr 1nr


V
−
=


v−10 0 0 0

0 u−10 0 0

0 0 w−10 0
0 0 0 n−1(G+ νλmax(G)IK)

 .

The full posterior conditional distributions of parameters mk and `k are not know
distributions. However, considering that mk and `k evolve in a finite grid of their supports,
it is possible to characterize these distributions by numerically computing their probability
functions. Furthermore, the resulting Bayesian model depends on hyperparameters which
are u0, v0, w0, ν, a and K. It is possible to choose these hyperparameters so that the prior
distributions are the less informative possible. For the parameter K, we choose it rather
large which guarantees a low error insofar as the intervals can overlap. In Grollemund
et al. (2019), the authors propose some default values for the hyperparameters. As usual
with hierarchical models, sampling from the posterior distribution can be done with a
Gibbs algorithm (see : Robert and Casella (2013), Chapter 7).

4 Applications

Numerical results based both on simulated data and real data from the vineyard will
be presented.
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