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Advances in integrating different 
models assessing the impact of 
climate change on agriculture
Jacques-Eric Bergez1, Julie Constantin1, Philippe Debaeke1, Hélène Raynal1 and Sophie 
Plassin1, INRAE, France; Magali Willaume2, Toulouse INP-ENSAT, France; and Raphael  
Martin3, INRAE, France

1  �Introduction

Climate change has become a major concern, especially for agriculture (Wiebe 
et al., 2019). The IPCC Sixth Assessment Report (AR6) projects that global 
surface temperature will continue to increase until 2100 by +1.0°C to +1.8°C 
under the very low greenhouse gases (GHG) emissions scenario (SSP1-1.9) 
and up to +3.3°C to +5.7°C under the very high GHG emissions scenario  
(SSP5-8.5), compared with 1850–1900 (Porter et al., 2014; IPCC, 2021). As global 
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temperature rises, the rainfall regime will be significantly altered. Precipitation is 
likely to become more variable across regions, with an increase in high latitudes 
and a decrease in parts of the subtropics. Changes in atmospheric circulation 
and wind speed are also expected (Zeng et al., 2019; Abell et al., 2021). Beyond 
the changes in mean variables, the intensity, frequency and severity of extreme 
weather events such as heavy precipitation, flooding, drought and heatwaves 
are likely to become amplified (IPCC, 2021), but these events are generally 
difficult to predict (Sillmann et al., 2017).

Although there is uncertainty with regard to the nature, timing and extent 
of climate change impact, there is a general consensus that the combined 
effects of increasing temperatures, changing precipitation patterns and 
elevated carbon dioxide (CO2) concentrations will affect agricultural and 
livestock production (Escarcha et al., 2018; Makowski et al., 2020), and that 
the effects of extreme climate events are likely to exceed those estimated 
from changes in mean variables (Tubiello et al., 2007). On a biophysical level, 
increased temperatures accelerate plant growth and development, leading 
to shifts in plant phenology and growing periods (Gong et al., 2021). Rising 
temperatures also increase soil evaporation (Abtew and Melesse, 2013), 
diminish soil moisture (Grillakis, 2019) and increase the water requirement 
of plants. Changing climatic conditions may also affect the geographical 
distribution of crops and crop pests (i.e. insects, pathogens and weeds) 
and outbreak severity (Lamichhane et al., 2015), and facilitate the spread of 
animal diseases and pests from low to mid-latitudes (Tubiello et al., 2007). The 
occurrence of climate shocks, such as heat or water stress during critical stages 
of plant development, could have deleterious effects on yields (Zampieri 
et al., 2020). A meta-analysis estimated that without implementing adaptation 
measures, future climate trends and variability are likely to result in higher crop 
yield variability and aggregated yield losses for the most commonly grown 
cereals (rice, wheat and maize) (Challinor et al., 2009). It may also impair crop 
quality, e.g. reduced grain protein and mineral nutrient concentrations and 
altered lipid composition (DaMatta et al., 2010). Climate change may also be a 
threat for livestock production because of its impacts on feed crop and forage 
quantity and quality, animal growth and milk production, animal reproduction, 
health and mortality (Thornton et al., 2009; Nardone et  al., 2010; Rojas-
Downing et al., 2017a). Beyond the impact on plant and animal physiology and 
food quality, climate change may also alter land suitability for crop production 
(Ramirez-Cabral et al., 2017; Paola, 2018) and changes in hydrological cycles 
may drive an increased risk of soil erosion (Borrelli et al., 2020).

Climate change is also likely to have socio-economic impacts at farm, 
local and global levels. Changes in crop productivity could affect farmers’ 
income and threaten food security (Schmidhuber and Tubiello, 2007). In 



Integrating different models assessing the impact of climate change on agriculture ﻿ 3

Published by Burleigh Dodds Science Publishing Limited, 2023.

addition, adverse weather shocks can result in an increase in food prices 
and price volatility (Hertel, 2010; Nelson et  al., 2014), which could affect 
farmers’ income and their cropping decisions, and disrupt food supply 
and the global agricultural market (Porfirio et al., 2018). Studies have also 
shown that extreme climate events such as drought can alter farmers’ risk 
preferences regarding climate change (Bozzola and Finger, 2021), which 
may lead to investments in low-risk, low-return activities (Dercon and 
Christiaensen, 2011).

Climate-smart agriculture (CSA) is promoted as an approach to transform 
and reorient agricultural development to address the impacts of climate 
change (Lipper et al., 2014). CSA is defined by the FAO as a set of actions that 
(FAO, 2010):

1	 sustainably increases agricultural productivity;
2	 builds resilience to climate change from the farm to national levels 

(adaptation); and
3	 reduces or removes GHG emissions (mitigation) while enhancing the 

achievement of national food security and development goals.

Mitigation encompasses crop and livestock management strategies, increases 
soil and biomass carbon storage (e.g. by introducing cover crops and 
developing pasture-based systems) and reduces energy and fertiliser nitrogen 
(N) use (e.g. reduced tillage or using legumes; better housing and manure 
management in livestock systems). Adaptation strategies range from small 
adjustments to the redesign of entire systems (Willaume et al., 2014) that aim 
to reduce the vulnerability of agricultural systems to climate change, i.e. ‘the 
degree to which a system is susceptible to, and unable to cope with, adverse 
effects of climate change’, which is a function of exposure, sensitivity and 
adaptive capacity (IPCC, 2022).

For livestock systems, adaptation measures include modifying periods and 
frequencies of grazing, stocking rates, timing of reproduction, using more heat-
tolerant livestock breeds (Rojas-Downing et al., 2017b) and increasing animal 
and grassland diversity (Martin and Magne, 2015). Adaptation strategies in 
cropping systems encompass the selection of species and varieties that are 
better adapted to extreme climate events and resistant to pests and diseases, 
the use of climate forecasting, adjustment of fertiliser rates, amount and timing 
of irrigation, the location and timing of cropping activities, diversification of 
cropping systems (e.g. more diverse rotations) and the use of new technologies 
and practices that improve water use efficiency, maintain soil moisture and 
prevent water erosion (e.g. through Conservation Agriculture) (Tubiello et al., 
2007; Debaeke et al., 2017).
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2  �Understanding models and their application to 
problems such as climate change

Models are partisan and simplified representations of reality (Bouleau, 
1999). By partisan, we mean that the model is the result of choices made 
by the modeller for a given purpose and hypothesis. These are a priori 
choices about the representation of the processes to be described, the state 
variables chosen and the form of the equations describing the behaviour 
of these variables. By simplified, we mean that a model is a representation 
or an abstraction of a piece of reality which does not represent the overall 
complexity of the systems studied and the many ways elements in the system 
function and interact.

Since the infancy of modelling (Whisler et al., 1986; Sinclair and Seligman, 
1996), when models were mainly a way to gather knowledge and test 
assumptions, the use of models has become more widespread. Models make it 
possible (Van Ittersum and Donatelli, 2003):

	 1	 to represent and order new knowledge not yet acquired (conceptual 
operating models);

	 2	 to synthesise knowledge (acquired through experimentation or 
bibliographical research);

	 3	 to predict the evolution of systems under untested conditions (virtual 
experiments, forecasting);

	 4	 to challenge different knowledge (points of view) and identify new ideas 
for reflection and research; and

	 5	 to provide a tool for understanding and negotiating trade-offs as well as 
for capacity-building.

Use of the possibilities offered by the models thus depends on the purpose 
of the model: knowledge (scientific world) or innovation (transfer in the socio-
economic world). Other aspects related to modelling work that have also 
changed significantly include:

1	 new sources of data to build models (e.g. remote sensing, field 
sensors, high-throughput phenotyping in platforms, etc.) and (in some 
cases) a huge flow of data obtained at high speed or on a large scale 
(crowdsourcing);

2	 evolution of software engineering, including the development of 
coupling solutions, interoperability and modelling framework;

3	 new ways of using models (from on-lab modelling to participatory 
modelling, ensemble modelling, surrogate models, etc.); and

4	 improvement of computer performance, development of cloud 
computing and the evolution of programming languages.
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When discussing modelling in this chapter, we do not include only classical 
differential or difference equation types of model. All types of modelling 
(statistical models, process-based models, data-driven models, Bayesian 
model, finite-state and Petri network models, agent-based models and so 
on) share similar basic issues such as a necessary level of simplification and 
abstraction.

The impact of climate change on agricultural systems, as for other processes, 
requires specific understanding, hypotheses and types of knowledge. Models 
are well designed to reach such goals. The use of simulation models to 
explore the impact of climate change and assess the effects of mitigation and 
adaptation strategies has grown over time, and a review for two crop system 
models (APSIM and DSSAT) showed that climate change has become one of 
the largest fields of application (Keating and Thorburn, 2018). However, when 
dealing with climate change, certain modelling aspects need to be considered:

1	 New processes and an extended range of environmental factors have 
to be integrated as current knowledge is not sufficient to deal with 
the expected climatic impacts on living organisms and agricultural 
production.

2	 A transition phase is an important element as the adaptation to climate 
change is a long, dynamic process compared with the annual cycle 
of farming systems and related incremental decisions. Simulated 
indicators, showing the evolution of the states of the farming systems, 
have to be developed.

3	 Adaptation of farming systems requires multi-criteria assessment and a 
focus on some processes that require new models.

4	 Mitigation of farming practices to reduce climate change is an important 
feature that needs modelling, as well as the synergies and trade-offs 
involved in adaptation strategies.

5	 The climate in coming years is still uncertain regarding e.g. the spatial 
and temporal distribution of rainfall or extreme events. Therefore, 
stochastic modelling needs to be taken into account.

6	 In the case of adaptation and mitigation, the needs of decision-makers 
are crucial. Specific modelling of decision-making processes and 
adaptive behaviour modelling are therefore necessary.

7	 New types of simulations for different scenarios (to reflect the needs of 
different stakeholders, institutions and policymakers) require innovative 
approaches to simulation.

This chapter has the following structure. In the first section, we describe an 
‘ideal’ conceptual model to consider every aspect of the effects of climate 
change on agriculture. We will highlight the operational challenges of such 
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an approach considering the general climate change issues we described 
earlier. In the following sections, we describe advances in modelling relating to 
climate change and agricultural production. These sections are based on real 
modelling exercises and show current advances in integrating different models 
assessing the impact of climate change on agriculture. In the final section, we 
highlight missing elements and provide some guidance to moving towards a 
more complete toolbox for modelling impacts, adaptation and mitigation of 
agricultural systems facing climate change.

In the following sections, we will use the terms ‘system’ and ‘sub-system’ 
to describe the conceptual entities of the modelled entity (systemic approach), 
and module and sub-module for the implemented model. The resulting model 
is, therefore, composed of modules and sub-modules. Simulation is used when 
a model is run.

3 � The ‘ideal model’ to assess the impact of climate 
change on agriculture

The agricultural system is composed of a central sub-system, the farm, which 
interacts with its local environment but is also dependent on more global 
factors. In theory, to comprehensively model the impact of climate change on 
agriculture, all these components and their interactions should be represented 
in a conceptual framework. On each scale (farm, local and global), biophysical 
and socio-economical sub-systems should be identified (Fig. 1).

At the farm level, biophysical systems are numerous and complex. Plants, 
animals and soil behaviour can be modelled at different scales (plant to field, 
animal to herd). They can be modelled within the cropping system or livestock 
system separately or combined (fodder/manure system). Management is also 
an important part of this farm system and is driven by the socio-economical 
sub-system of the farm, i.e. the farmer and resources (financial, workforce, 
land, equipment etc.). This can be represented by fixed values (i.e. amount of 
fertiliser, date of sowing, grazing periods, feed ration) or decision rules (i.e. 
irrigation strategy, crop and variety choice, breeding strategy for animals). 
Farmer’s decisions occur at several levels in time (i.e. planning and investment, 
strategy and tactical responses) and in space (i.e. field level, crop planning 
on the farm, animal stocking rate). Each component of these systems can be 
described in detail or in outline.

The farm is an open system interacting with biophysical and socio-
economical sub-systems that can also be affected by climate change. Farms 
are nested in a landscape and within a hydrological system. These three 
sub-systems affect, and are impacted by, surrounding biodiversity, either 
wanted (e.g. pollinators) or unwanted (pests and diseases). The surrounding 
socio-economical environment of the farms should also be considered in an 
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‘ideal model’, including interaction with advisors, support from banks and 
relationships with suppliers/consumers, taking into account their organisation 
and dynamics. The farm is also influenced by more global phenomena such as 
market dynamics and regulation, population growth and food security, public 
policies and subsidies and advances in research. Breeding companies influence 
farms by disseminating cultivars better adapted to new environments, while 
agro-food chain companies also provide inputs to the system. Climate change 
also operates at a global scale. This complex environment represents a system 
in nested scales with different levels of organisation to model, raising the issue 
of upscaling and downscaling. Modelling on such a large spatial scale also 
implies representing a large temporal scale since both are linked (Ewert et al., 
2011).

The impact of climate change on agriculture will mainly modify the 
biophysical sub-systems at various scales (field level, landscape level, etc.). 
These effects should be modelled whatever the climatic event (temperature 
rising, drought, flooding, storm, increased carbon dioxide, etc.). The ‘ideal 
model’ should also be able to combine the effects of adaptation and mitigation 
measures designed and applied by all socio-economical actors at the various 
scales. Time is also a crucial component, since some effects may be cumulative 
over time or transitory.

Ideally, this model should be parsimonious, i.e. it should be as simple as 
possible in design and computing power required, simple to understand and 
easy to handle and use. It should be easy to calibrate ; be robust in a wide range 
of soil, climate and agronomic conditions ; and require little data to initialise 
new simulations. The calculation time should also be minimised to allow multi-
simulation over large ranges of situations or spatial areas.

To build such a model is quite challenging, as it is like a ‘labyrinthine 
system’. However, this representation could be used as a toolbox in which one 
can select the necessary sub-systems to consider in order to address a specific 
question. Depending on the objective, it is not necessary to model all sub-
systems with the same level of detail.

We have described the different components and organisation levels of 
the agricultural system with a focus on the farm. Numerous interactions exist 
between the system components and the environment, which have not been 
accounted for in this approach. Besides climate change, many biophysical and 
socio-economic dynamics influence farms leading to emerging properties and 
unexpected behaviour of the whole system. The complexity of this system has 
generally to be simplified for modelling purposes.

The impact of climate change is often quantified by simulating variables 
of interest (e.g. crop production, GHG fluxes, etc.) under climate projections at 
regional or national levels considering near- or far-future climatic scenarios by 
way of statistical or process-based models applied to croplands or grasslands 
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(Challinor et  al., 2009; Lobell and Burke, 2010; Rosenzweig et  al., 2014). In 
finer resolution approaches, management (sowing date, crop species, variety, 
grazing period, stocking rate, irrigation, etc.) is used as input data for site-
specific or gridded approaches (White et al., 2011; Lehmann et al., 2013). Less 
frequently, models also include the decision process, the cropping plan or the 
farm structure, which allow evaluation of incremental or systemic adaptations 
to climate change in terms of production, management and land use (Holman 
et  al., 2019). All these approaches simulate the effect of climate change on 
crop production but at different levels, with differing resolutions and based on 
various sources of information.

It is often not necessary to represent every part of the system to assess the 
impact of climate change on a specific part of the agricultural system (such as 
crop yield, nitrate leaching or calf production, for instance) or to evaluate the 
impact of adaptation measures. Only some sub-systems are needed to make this 
assessment depending on the specific objectives of the study or the scenarios 
to be tested. The level of detail in each sub-system varies and depends on the 
objectives and accuracy requirements in the simulation, from a very simplified to 
a more refined representation. The end use of the model is an important element 
to consider when designing such models to keep them useful (Prost et al., 2012).

Building a model on a large spatial and temporal scale by integrating all 
the different levels of organisation is extremely challenging. It raises issues 
regarding lack of knowledge of all the different processes (and quite often 
interactions between entities), of having data of sufficient accuracy and on 
a sufficient scale to calibrate, evaluate and run the model, all of which could 
compromise the accuracy of the results. Nevertheless, some attempts have 
been made to integrate several to almost every dimension(s) of the agricultural 
system. The various modelling choices have different advantages and limits 
that will be detailed in the following sections.

4 � Implementing the ‘ideal model’: current approaches

Implementing the ‘ideal model’ is a dual challenge given:

1	 the integration of a large number of scientific disciplines; and
2	 technical implementation requirements.

Nevertheless, there have been several examples developed over the last few 
decades. The majority have been initiated because stakeholders need an 
estimation of the impact of climate change on agriculture using multi-criteria 
assessment. They also need information to build new public policies (e.g. the 
EU Green Deal for a more climate-smart European agriculture) and devise 
adaptation and mitigation solutions.
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The SEAMLESS-IF modelling framework (Van Ittersum et  al., 2008) is a 
good example of the implementation of such an ‘ideal model’. It is the result 
of exchanges between the scientific community of agronomic and economist 
modellers and the European Commission. The SEAMLESS-IF framework is 
based on the concept of Integrated Assessment and Modelling (IAM) (Parson, 
1995; Harris, 2002; Parker et al., 2002). Operational IAM is part of the systems 
analysis paradigm which is seen as a way to model the biophysical, economic, 
social and institutional aspects of a system in an integrated and balanced way.

Other models include AROPAj (Barberis et al., 2021) and GlobAgri-WRR 
(Le Mouël et al., 2016) used in different European studies. GlobAgri-WRR is 
a global accounting and biophysical model that is designed to quantify GHG 
emissions and land-use demands related to agricultural production for specified 
levels of diets, population, non-food uses, food loss and waste and production 
systems (techniques, crop yields) in every country of the world. It incorporates 
several biophysical models (e.g. a global livestock industry model, a European 
Commission Joint Research Centre [JRC] land-use model, a nitrogen emissions 
model, etc.) but does not consider economic feedback effects. GlobAgri-WRR 
has primarily been used to estimate how changes in demand or production 
(from climate change impacts or new production methods) might impact land-
use demands and GHG emissions (Searchinger et al., 2019). Such frameworks 
also make the links between micro-level (field-farm-small region) and macro-
level (market or sector).

More recently, ‘user-friendly’ tools have been developed, such as the 
Integrated Assessment Platform (IMPRESSION) (https://climate​-adapt​.eea​
.europa​.eu​/metadata​/tools​/climsave​-integrated​-assessment​-ia​-platform). 
This tool offers a web interface, directly usable by European stakeholders, to 
explore the complex multi-sectoral issues surrounding impact, vulnerability 
and adaptation to climate and socio-economic change across Europe.

At the regional or watershed scale, some models have been developed 
following the philosophy of the ‘ideal model’, such as the MAELIA platform 
(Catarino et  al., 2021) or MOSAICA model (Chopin et  al., 2015). The MAELIA 
platform enables the assessment of the environmental, economic and social 
impacts of combined changes in agricultural activities (e.g. recycling of biomass), 
natural resource management strategies (e.g. water) and global drivers (e.g. 
dynamics of land cover and climate change). It aims to design sustainable 
strategies for water resource management within a watershed in the uncertain 
context of global change. The MOSAICA model aims to understand the effects of 
policy changes on cropping systems at the regional scale and their contribution to 
the sustainable development of regions. It explicitly incorporates information at 
field, farm, sub-regional and regional scales to provide cropping system mosaics 
by way of regional optimisation of the sum of the individual farmer's options 
under field, farm and territory biophysical and socio-economic constraints.

https://climate-adapt.eea.europa.eu/metadata/tools/climsave-integrated-assessment-ia-platform
https://climate-adapt.eea.europa.eu/metadata/tools/climsave-integrated-assessment-ia-platform
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It is important that integration is achieved without favouring one aspect 
of the system over another, since biases are often observed in integrated 
assessments towards economic, biophysical or environmental issues (Van 
Ittersum et al., 2008). Britz et  al. (2014) distinguish several approaches in a 
context of design of public policies: bio-economic farm models (BEFMs), multi-
agent models, life cycle analysis and agri-environmental impact simulation. For 
example, BEFMs have been widely used and are a specific form of model that 
aims to optimise resource management decisions by the farmer, in relation to 
inputs and outputs. Used for public policy issues, they integrate different scales 
and are linked to a partial equilibrium model, e.g. CAPRI-FT (Britz and Witzke, 
2014), IFM-CAP (Louhichi et al., 2017), FARMDYN (Britz et al., 2014) and FSSIM 
(Kanellopoulos et  al., 2014). Even if these models are operational and have 
been used in different projects, they are still based on basic assumptions and 
simplifications (e.g. an inflexible representation template of farm processes, a 
limited number of farms not necessarily representative of all the farms in the 
territory, etc.), which may be a limitation to their use in a climate change context.

5 � From ideal to pragmatic modelling of climate 
change: coupling sub-models

Modellers have to adopt a systemic approach but limit the complexity of 
the system representation by selecting the relevant spatial and temporal 
granularity or the appropriate interactions, depending on the issue they want 
to address. Over the last decade, we have observed a trend in promoting this 
approach to develop pragmatic modelling approaches to climate change 
analysis (Gouttenoire et al., 2011; van Oosterzee et al., 2014; Ewert et al., 2015; 
Ghahramani and Bowran, 2018; Naulleau et al., 2022). This pragmatism often 
leads to selecting and linking specific existing models. The subsequent model 
is therefore the result of coupling:

1	 Sub-modules coming from other models (recycling existing knowledge);
2	 New sub-modules developed as required by a project (new knowledge); 

and
3	 specific interfaces for the engineering aspects of coupling and 

management of inputs and outputs.

Coupling refers to communication and interchange of information between 
sub-modules. As noted by Siad et  al. (2019), the way the sub-modules are 
coupled varies greatly, depending on the expected outcomes but also on the 
possible computational techniques.

We have distinguished a gradient in the levels of coupling (Fig. 2). The 
first case concerns where models are chained: the principle of modelling 



﻿Integrating different models assessing the impact of climate change on agriculture 12

Published by Burleigh Dodds Science Publishing Limited, 2023.

chains or workflow. In this case, there is no real coupling as each model is 
fully independent. The second case concerns so-called weak coupling where 
the models will exchange information through files or a shared database. 
The third case consists of completely integrating models so that the included 
model becomes a simple module or sub-module. The fourth case consists 
of integrating different modules within the same model, at the level of the 
computer code. This case also includes models developed from scratch and 

(a)

(b)

(c)

(d)

(e)

Figure 2 The main five ways to couple models and modules: (a) modelling chain, (b) 
weak coupling, (c) sub-model integrated as a sub-module, (d) code integration, and (e) 
model coupling served by the modelling framework engine.
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fully rewriting codes. The result is a coherent whole from a computer science 
point of view and generally allows easier representation of interactions, in 
particular, feedback type between the various components of the model. 
Finally, the fifth case consists of developing the model in a framework, with 
coupling ensured by the coupler engine of the platform.

The sub-models to combine can be selected using different approaches. 
For instance, the decision can be driven by scientific considerations (e.g. 
relevant processes included in the sub-model), operational constraints (e.g. 
software simulation performance) or a participatory modelling approach 
(Voinov and Gaddis, 2008). In the latter case, scientists and key actors in 
designing adaptation and mitigation strategies work together to build the 
model. Together they select the sub-models by introducing biodiversity into 
biogeochemistry models, for instance as Van Oijen et al. (2020a), and scenarios 
to test in order to address climate change issues (Rodriguez et al., 2014; Cradock-
Henry et al., 2020; Van Oijen et al., 2020b; Naulleau et al., 2022). Today, a large 
variety of coupled models arise from completeness of the modelled processes, 
method of coupling used or IT solutions. As the ‘ideal model’ emphasises the 
importance of representing the farm level, we include some examples where 
the farm model is designed by coupling sub-models: Robert et  al. (2016); 
Lieffering et al. (2016); Fitzgerald et al. (2009); and Kalaugher et al. (2017). Later 
we discuss techniques commonly used to represent farmer behaviour.

6 � Integrating new knowledge and facilitating 
interoperability

Coupling technically facilitates the development of new models by combining 
existing ones, but it is often not enough. New issues related to climate change 
assessment, adaptation and mitigation necessitate the improvement of models 
through the integration of advanced knowledge and processes. For example, 
over the last few decades, the cropland and grassland modelling community 
has been organised into two international knowledge hubs:

1	 The Agricultural Model Intercomparison and Improvement Project 
(AgMIP; www​.agmip​.org); and

2	 The Modelling Agriculture with Climate Change for Food Security 
project (MACSUR; www​.macsur​.eu).

These networks have been important arenas of the exchange of knowledge 
for the agricultural modelling community and have contributed significantly 
to the improvement of farming systems models, both in their design and in 
their computational implementation (Thorburn et al., 2018). To account for the 
impact of climate change on plant development, crop modellers have been 

http://www.agmip.org
http://www.macsur.eu
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obliged to revisit current crop models. This exercise was chiefly initiated by crop 
model intercomparison exercises for major crops, which showed important 
differences between models (Fig. 3). This was mainly explained by the fact 
that climate change (e.g. elevation of the CO2 rate, temperature increase), by 
exploring unexperimented conditions, requires significant modifications in the 
representation of some biophysical processes currently implemented in most 
crop growth models (e.g. effect of priming and microbial diversity in ecosystem 
functioning as presented in Perveen et al. (2014)). It soon became clear that this 
work was easier when the original model had been built in a modular way, with 
a module associated with each process. If modelling frameworks such as APSIM 
(Holzworth et al., 2018), BioMA (Donatelli et al., 2010), DSSAT (Hoogenboom 
et al., 2019), OpenAlea (Pradal et al., 2015), RECORD (Bergez et al., 2013) and 
Simplace (Gaiser et al., 2013) helped to produce models with a good level of 

Figure 3 The use of different crop models to test the impact of climate change on soya 
relative yield. Instead of developing a new model, the AgMIP approach provides new 
knowledge on comparing different existing well-known models. From Kothari et  al. 
(2022).
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modularity, this was rarely the case for models with legacy code. Modularity 
has long been a recommended practice in the crop modelling community 
(Reynolds and Acock, 1997; Jones et al., 2001).

Most models today have developed a modular approach (Brown et al., 
2018), which facilitates their readability, their evolution by adding new modules 
and their sharing with the modeller community.

In addition, to facilitate model sharing, these communities have worked 
for the implementation of semantic interoperability. The interoperability is also 
essential because simulation results are, and will remain, uncertain despite all 
the progress on the models themselves. This is reinforced by the fact that, in 
order to assess the impact of climate change or to explore possible adaptation 
pathways, it is necessary to consider uncertainties in future climate predictions. 
One way to reduce uncertainty is to cross-reference information sources 
and this relies, in particular, on semantic interoperability. In connection with 
AgMIP, researchers have worked on the definition of standards to facilitate the 
interoperability of modules of models and data. Interoperability corresponds 
to one of the FAIR principles (Wilkinson et al., 2016), now extensively promoted 
in the agrifood community (Top et  al., 2022), and uses the International 
Consortium for Agricultural Systems Applications (ICASA) vocabulary (White 
et al., 2013). Recently, a module specification standard and a metalanguage 
Crop2ML (Midingoyi et  al., 2021) were proposed as a standard to express 
module equations.

Beyond the AgMIP community, we also observe the development of 
ontologies and their use in modelling work. They help in sharing data used 
as model inputs for model calibration and documentation. The agronomic 
community has developed many controlled vocabularies and ontologies such 
as AGROV OC (Subirats-Coll et al., 2022) from FAO or AGROPORTAL (Jonquet 
et  al., 2018). Some ontologies are very specific, such as OntoHydroAgro, 
which is dedicated to the impact of climatic changes and agricultural activities 
on water resources (Bonacin et al., 2016). To facilitate the access to cross-
referenced sources, it is also necessary to have open and collaborative software 
systems enabling the sharing of large-scale, multifaceted data and models (e.g. 
knowledge hub). Interoperability also relies on progress in software engineering 
with the development of virtualisation which allows model simulation whatever 
the computer environment. This involves, for example, distributing virtual 
images, using software engineering tools (e.g. docker) (Anderson, 2015).

7 � Integrating adaptation management practices  
into models

These improvements, although necessary, do not consider changes in 
management practices that will result from global change. In particular, during 
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a working session of the MACSUR knowledge hub (Kipling et  al., 2019), 
modellers emphasised the importance of integrating biophysical/economy/
management interactions into models when working on adaptation to, or 
mitigation of, climate change. This triple interaction involves a wide range of 
actors such as farmers and government decision-makers, each of them with a 
different perspective on what they want from models. This included different 
spatial scales, from the agricultural plot, the farm up to country or region. 
Models must consider operational, tactical and strategic decision-making 
processes.

However, these models require other approaches than those classically 
used to build biophysical models, with the latter based on mathematical 
formulae such as differential equations. An alternative approach e.g. has 
been to use decision rules to represent management aspects of cropland/
grassland. For each crop practice, a set of rules is defined which, during 
the simulation, will allow triggering of a decision (e.g. sowing, harvesting, 
irrigation, fertilisation, grazing) according to the model state variable (e.g. 
available biomass, leaf area index, soil moisture, air temperature) or even by 
calculating, for example, the rate of nitrogen fertiliser or the optimal animal 
stocking rate (Aubry et al., 1998; Bergez et al., 2006; Vuichard et al., 2007; 
Martin-Clouaire and Rellier, 2011; Dury et al., 2012; Chabrier et al., 2015). 
Using this approach in modelling work related to climate change is particularly 
important since climate change makes the use of fixed calendar dates for 
particular agronomic practices based on the current context obsolete. For 
example, in one model intercomparison study (Constantin et  al., 2019), 
sowing dates were adapted using decision rules to accommodate climatic 
variability and trends (Fig. 4).

For tactical decisions at the plot or farm level, there are fewer examples 
than for operational decisions. Nevertheless, we can refer to a number 
of works related to crop rotation or crop planning (Robert et al., 2018; 
Hajimirzajan, 2021; Pahmeyer, 2021). In these studies, the crop model is 
coupled to an economic model built to optimise an objective function (such 
as profit) under different constraints (e.g. water availability). Aghajanzadeh-
Darzi et al. (2017) coupled PaSim to AROPAj in order to estimate the economic 
effect of climate change on grassland. Others have developed applications 
for optimisation of fertilisation, such as in Ramos-Castillo et  al. (2021). In 
the case of approaches at a broader (e.g. territorial) scale accounting for 
interactions between different actors, multi-agent formalism is often used 
(Burli et al., 2021). Multi-agent-based models are used when assessing the 
impact of policymakers’ decisions on climate change mitigation policies 
(Huber et al., 2018).
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8 � Incorporating inter- and intra-species diversity  
into models

The consideration of more global processes can overlook more local processes 
which, if not taken into account, could distort simulations. For example, there 
is now evidence that climate change impacts species diversity and that this 
diversity is also a major way to mitigate the effects of climate change (Van 
Oijen et al., 2018). More and more modelling work is taking into account this 
inter-specific diversity (Li et al., 2011; Movedi et al., 2019). It is important to 
take account of genetics in models because designing new varieties able to 
deal with abiotic and biotic stresses is a way to adapt to climatic extremes and 
variability (Martre et al., 2015). White and Hoogenboom (2003) have described 
five ways of considering genetics in models:

1	 No reference to species, making the model generic;
2	 The model is species-specific without references to genotypes;

Figure 4 Modelling decision-making is important when considering climate change. In 
Constantin et al. (2019), a simple maize sowing decision model was created to analyse 
the impact of the sowing dates.
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3	 Genetic differences are represented by cultivar-specific parameters of 
the model;

4	 Genetic differences are represented by specific alleles and gene action 
is represented through linear effects on model parameters; and

5	 Genetic differences are represented by genotypes, with gene action 
explicitly simulated.

Until recently, most crop models have only integrated cultivar-specific 
parameters and based calibration on field experiments, in order to compare 
several varieties and determine those that are best adapted to a given climate 
change scenario (e.g. Zhang et al. (2022) for rice cultivars in China; Tao et al. 
(2017) for barley; Gérardeaux et  al. (2018) for cotton, etc.). Extending the 
inclusion of genetics in models is a promising approach for breeders facing 
climate change. It implies integrating more ecophysiology into the crop or 
animal model, and making the link to quantitative trait loci (QTL) and genes 
(Hammer et al., 2002). More recently, models have been customised in order 
to simulate response to climate change depending on genes/QTL. Martre et al. 
(2017) have provided an overview of progress in this area. Guitton et al. (2018) 
worked on sorghum to develop a photosensitive ideotype adapted to climate 
change using a crop and a combination of QTL, and Wallach et al. (2016) have 
predicted the flowering time of beans.

9 � From white to black box models: hybrid approaches 
and gridded simulations

The multiplicity of processes involved at heterogeneous scales has tended to 
make models more complex in their implementation and use more resources 
(e.g. more input required, more computing power and time needed). In recent 
years, statistical models have emerged from the expansion of machine learning 
techniques (Liakos et al., 2018). They are constructed by relating historical 
variables (e.g. yield) which are then simulated with other variables such as 
climate, soil or management and then applied in a context of future climate. 
While the use of statistical models beyond observed conditions raises the issue 
of uncertainty associated with the results (Lischeid et al., 2022), they are useful 
in high-resolution simulations over a large area. They require less data than 
mechanistic models and decrease the computational load.

A hybrid approach using mechanistic models and a metamodel emulating 
the mechanistic model is one method to address the issue of climate change 
impact, adaptation and mitigation on a large scale. Successful examples of this 
hybrid approach include choosing a cultivar to adapt to climate change (Zhang 
et al., 2022; Tao et al., 2017; de los Campos et al., 2020) simulating soil organic 
carbon (SOC) (Luo et al., 2019), crop yield prediction and mapping (Corrales 
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et al., 2022; Guilpart et al., 2022) and climate impact assessment (Blanc, 2017). 
This hybrid approach can also be used successfully in optimisation processes 
used to mimic farmer tactical decision-making (Nguyen et al., 2019). Modellers 
have often used a linear regression method to build the surrogate model. 
Advanced statistical methods can be used to improve performance (e.g. 
learning methods such as random decision forests).

However, the use of statistical models is not always appropriate because 
they are generally built on historical data, limiting their ability to predict the 
future. Statistical models built from simulated data also require adding and 
updating the knowledge base whenever the model is modified. One approach 
is the use of gridded simulations. This involves a map divided into cells. In 
Launay et al. (2021) e.g. cells are the intersection of climate and soil data which 
are heterogeneous in terms of surface. It is then necessary, for each of these 
cells, to run one or more instances of the model with its own inputs based on 
soil, climate, management, etc. Gridded simulations require increasingly large 
computing resources. This can range from a high-performance workstation to 
a cluster (e.g. where information needs to be provided in real time, such as 
for water flows in a watershed) or a computing grid (independent simulations 
between cells, with their own resources on each node). Moreover, these 
gridded simulations require specific databases at the territory scale. There are 
numerous sources for these databases and there is ongoing work to develop 
them, e.g. soil data at 10 km² resolution (Han et al., 2019), irrigation mapping 
(Zajac et al., 2022), testing (e.g. light radiation data) (Araghi et al., 2022) and 
climate forcing data (Ruane et al., 2021).

Specific platforms have been developed to supervise these gridded 
simulations. These platforms are responsible for formatting the data for the 
model, distributing model operations over the available resources and then 
aggregating the outputs in an easily manipulated format (i.e. NetCDF). These 
platforms can be model-specific: Jang et al. (2019) for EPIC, Eza et al. (2015) for 
PaSim or multi-model, Shelia et al. (2019) for DSSAT, APSIM and SARRA-H and 
Kim et al. (2020) for ORYZA2000.

10 � Ensemble modelling

Given the multiplicity of models and easy access to computational resources 
needed to run simulations, many studies have compared model outputs with 
each other and shown that even similar models differ in predictions relating 
to climate change (Sándor et al., 2016) and in sensitivity to different types of 
climatic hazards. In some fields of research, it is well known that models, due to 
their structure, can produce highly variable outputs. Pearson et al. (2006) e.g. 
showed that the prediction of species range distribution can vary, for a specific 
species, from -92% to +322% depending on the model used.
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The multi-model ensemble (MME) technique is used to reduce prediction 
errors and has been described in detail by Wallach et  al. (2016). It consists 
of aggregating the independent predictions of the MME to define a global 
prediction and an associated degree of uncertainty. Several models can be 
included in this MME. In addition, several sets of parameters and input data 
sets can be used for the same model.

Numerous studies have shown the efficiency of such a process, such as 
Martre et al. (2015) who concluded that the result of such an MME (by using mean 
or median) is better than that of its best model. Similarly, recent work (Ehrhardt 
et al., 2018; Sándor et al., 2020) has shown the reduction of uncertainties by 
using the MME median for the simulation of yield and carbon–nitrogen (C–N) 
cycles in field crops and grasslands. This reduction in uncertainty is also found 
for the calculation of soil C by Farina et al. (2021). Sándor et al. (2018) show 
that this approach can be used to test the impact of grassland management 
(reduced animal stocking and N input) on GHG emissions. These types of 
projections can be greatly improved in terms of accuracy and robustness, as 
shown by Araujo and New (2007). This can also be seen in Ruane et al. (2021) 
who evaluated 14 models and 11 climate data sets.

11 � Conclusion and future trends

As we have seen, there are many differing features that models can (should) 
integrate, as well as different uses of models within agricultural systems in 
relation to climate change (mitigation, adaptation and impact). Figure 5 provides 
an overview of the required properties of the models using a structured list 
based on the 5W1H approach:

1	 What is the target for the stakeholder?
2	 Why do we want to model?
3	 What about the climatic change dimension?
4	 What about the sustainability dimensions?
5	 What biophysical processes are involved?
6	 What decision-making processes are needed?
7	 What geographical scale needs to be considered?
8	 What timescale should be used?
9	 How to model?

10	 How to use the model?
11	 Any view on the simulation output analysis?

All these questions have to be answered before modelling can begin. In Fig. 5, 
we have highlighted some of the different examples discussed in this chapter. 
However, not all the cases mentioned in the figure have been discussed. We 
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have not e.g. discussed the development of a direct farmer decision-system 
support tool to deal with climate change. Mitigation is also a large source of 
uncertainty regarding modelling. The ‘what if?’ and ‘how to?’ queries require 
a specific modelling approach that is currently lacking in the literature. The 
feedback loops between climate change and different sub-systems have not 
really been considered. To date, mitigation actions have not impacted the climate 
and therefore modified the properties of the modelled systems. A larger list of 
such feedback loops could be created, but this is not the topic of this chapter.

Figure 5 highlights a range of new challenges in relation to climate change 
when discussing modelling. Some of these are listed below:

1	 Adaptation and learning processes in a long-term series simulation. If 
one wants to simulate a long-term series, and especially when dealing 
with climate change, which is quite a lengthy process, models should 
take into account adaptation and learning processes. Farmers often 
change their practices depending on conditions (climate, economic, 
pest pressure, etc.). Ecological processes also change depending 
on environmental pressure. Progress has been poor with regard to 
integrating such changes into a model.

2	 Feedback effects due to mitigation. A large body of research is available 
on mitigation options (reducing GHG, increasing C storage, etc.) at 
different scales (plot, farm, territory, nation and even globally). Several EU 
projects are concerned with this (see for example ClieNFarms, https://
www​.inrae​.fr​/sites​/default​/files​/pdf​/ClieNFarms​_PR​.pdf). One of the big 
challenges when mitigation is modelled is to integrate feedback effects. 
Depending on differing levels of some variables, different processes 
can be triggered or not, but this dynamic modelling is far from simple.

3	 Systemic and holistic approach. As explained throughout this chapter, 
a larger systemic and holistic approach to integrate climate change 
and effects on farming systems is required, which needs a more 
interdisciplinary approach. ‘Interdisciplinary’ is a buzz word in current 
research but is complicated to achieve in practice.

4	 New end users involved. As explained earlier, modelling is the process of 
creating a model in order to simulate a specific scenario. When dealing 
with climate change, some new end users and types of simulation 
may be required. As explained in the discussion of the ideal model, 
policymakers e.g. are a key group who need models to simulate climate 
change processes. Integrating the modelling process and education of 
users on the use of models may also be a challenge.

Other chapters of this book will give more information on the different models 
to tackle some specific questions (Fig. 6), and will cover a large range of 

https://www.inrae.fr/sites/default/files/pdf/ClieNFarms_PR.pdf
https://www.inrae.fr/sites/default/files/pdf/ClieNFarms_PR.pdf
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applications from gene to region, from biophysical processes to decision-
making aspects, from north to south. This introductory chapter sets the scene 
and provides a broad overview of the impressive advances in modelling over 
the last few decades to tackle climate change issues impacting agricultural 
systems.
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